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a b s t r a c t 

The D iscounted {0-1} K napsack P roblem (D{0-1}KP) is an extension of the classical 0-1 

knapsack problem (0-1 KP) that consists of selecting a set of item groups where each group 

includes three items and at most one of the three items can be selected. The D{0-1}KP is 

more challenging than the 0-1 KP because four choices of items in an item group diversify 

the selection of the items. In this paper, we systematically studied the exact and approxi- 

mate algorithms for solving D{0-1}KP. Firstly, a new exact algorithm based on the dynamic 

programming and its corresponding fully polynomial time approximation scheme were 

designed. Secondly, a 2-approximation algorithm for D{0-1}KP was developed. Thirdly, a 

greedy repair algorithm for handling the infeasible solutions of D{0-1}KP was proposed 

and we further studied how to use binary particle swarm optimization and greedy re- 

pair algorithm to solve the D{0-1}KP. Finally, we used four different kinds of instances to 

compare the approximate rate and solving time of the exact and approximate algorithms. 

The experimental results and theoretical analysis showed that the approximate algorithms 

worked well for D{0-1}KP instances with large value, weight, and size coefficients, while 

the exact algorithm was good at solving D{0-1}KP instances with small value, weight, and 

size coefficients. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

K napsack P roblem (KP) [1,6,10] is a classical NP-hard problem in computer science, which has found many applications

in various areas, such as business management, computational complexity, cryptology, and applied mathematics, and so

on. KP has some extended versions, e.g., the unbounded KP, multiple-choice KP, and quadratic KP, etc. These KP variants

[22,27,29,30,33] have been well studied and successfully solved with different techniques and methods in the past few

decades. 

D iscounted {0-1} K napsack P roblem (D{0-1}KP) a latest variant of classical 0-1 KP, which was firstly proposed by Guldan

[12] in 2007 and used the concept of discount to reflect the sales promotion in real business activities. D{0-1}KP is a 0-1 

integer programming problem with n + 1 inequality constraints including the discount constraints and knapsack capacity

constraints, while there is only one inequality constraint in the classical 0-1 KP, where n is the number of item groups. Due

to the better expressive capability to real business sales, D{0-1}KP has obtained a large number of applications in investment
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decision and resource allocation. However, the algorithmic study on how to solve D{0-1}KP in a more effective way is rare.

In [12] , Guldan presented an exact algorithm to solve D{0-1}KP based on dynamic programming [3] and discussed how to

use the heuristic algorithm to solve D{0-1}KP. Rong et al. [32] in 2012 solved D{0-1}KP by combining the special kernel of

D{0-1}KP with exact algorithm proposed in [12] . Currently, the study on how to solve D{0-1}KP mainly focuses on the exact

algorithm. As far as we know, there is no work which uses the approximate and evolutionary algorithms to solve D{0-1}KP.

Motivated by designing the high-performance and low-complexity algorithms for solving D{0-1}KP, we systematically

studied the exact and approximate algorithms for D{0-1}KP in this article. The main contributions of this article included the

following four aspects: (1) proposing a N ew E xact algorithm for D{0-1}KP (NE-DKP) with lower complexity than algorithm

studied in [12] when the sum of value coefficients is less than knapsack capacity; (2) developing a fully Poly nomial-time

approximate scheme (Poly-DKP) to simplify the aforementioned exact algorithm NE-DKP; (3) presenting a 2 - App roximation

algorithm (App-2-DKP ) for D{0-1}KP based on greedy strategy; and (4) providing a P article S warm O ptimization based

G reedy R epair algorithm for D{0-1}KP (PSO-GRDKP). On four kinds of well-known instances from real applications, we tested

the practical performances of proposed exact/approximate algorithms and analyzed their computation complexities and ap-

proximation rates. The experimental results and theoretical analysis showed that the approximate algorithms, i.e., Poly-DKP,

App-2-DKP , and PSO-GRDKP, work well for the large scale D{0-1}KPs, while the exact algorithm, i.e., NE-DKP, is good at

solving the small scale D{0-1}KPs. 

The remainder of this article is organized as follows. In Section 2 , we provide a preliminary of D{0-1}KP. In Section 3 , we

describe the new exact algorithm for D{0-1}KP. Sections 4 depicts three approximate algorithms for D{0-1}KP, respectively.

In Section 5 , we report experimental comparisons that demonstrate the feasibility and effectiveness of proposed exact and

approximate algorithms. Finally, we give our conclusions and suggestions for further research in Section 6 . 

2. Preliminary 

In this section, the definition, mathematical model, and existing exact algorithm of discounted {0-1} knapsack problem

(D{0-1}KP) are described. 

Definition 1 ((Discounted {0-1} knapsack problem) [12,32] ) . Given n item groups having 3 items and one knapsack with

capacity C , where the items in the i -th ( i = 0 , 1 , · · · , n − 1 ) item group are denoted as 3 i , 3 i + 1 , and 3 i + 2 . The value coef-

ficients of 3 i , 3 i + 1 , and 3 i + 2 are p 3 i , p 3 i +1 , and p 3 i +2 = p 3 i + p 3 i +1 , respectively. The weight coefficients of 3 i , 3 i + 1 , and

3 i + 2 are w 3 i , w 3 i +1 , and w 3 i +2 , where w 3 i +2 is the discounted weight, w 3 i + w 3 i +1 > w 3 i +2 , w 3 i +2 > w 3 i , and w 3 i +2 > w 3 i +1 .

D{0-1}KP is to maximize the total value of items which can be put into the knapsack, where at most one item is selected

from each item group and the sum of weight coefficients is less than knapsack capacity C . 

Without loss of generality, we assume that the value coefficient p k , weight coefficient w k ( k = 0 , 1 , · · · , 3 n − 1 ), and knap-

sack capacity C are the positive integers, and w 3 i +2 ≤ C ( i = 0 , 1 , · · · , n − 1 ), 
∑ n −1 

i =0 w 3 i +2 > C, then the mathematical model

of D{0-1}KP is defined as [12] : 

max 

n −1 ∑ 

i =0 

( x 3 i p 3 i + x 3 i +1 p 3 i +1 + x 3 i +2 p 3 i +2 ) (1)

s . t . x 3 i + x 3 i +1 + x 3 i +2 ≤ 1 , i = 0 , 1 , · · · , n − 1 , (2)

n −1 ∑ 

i =0 

( x 3 i w 3 i + x 3 i +1 w 3 i +1 + x 3 i +2 w 3 i +2 ) ≤ C, (3)

x 3 i , x 3 i +1 , x 3 i +2 ∈ { 0 , 1 } , i = 0 , 1 , · · · , n − 1 , (4)

where, x 3 i , x 3 i +1 , and x 3 i +2 represent whether the items 3 i , 3 i + 1 , and 3 i + 2 are put into the knapsack: x k = 0 indicates the

item k ( k = 0 , 1 , · · · , 3 n − 1 ) is not in knapsack, while x k = 1 indicates the item k is in knapsack. It is worth noting that a

binary vector X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n is a potential solution of D{0-1}KP. Only if X meets both Eqs. (2) and (3) , it is

a feasible solution of D{0-1}KP. 

D{0-1}KP obviously has the properties of optimal substructure and overlapping subproblem, thus the dynamic program-

ming is an appropriate method to solve D{0-1}KP. Guldan in [12] provided the first dynamic programming based exact

algorithm to solve D{0-1}KP. In order to distinguish Guldan’s exact algorithm with our new exact algorithm, we abbreviate

it as OE-DKP ( O ld E xact algorithm for D{0-1}KP). The recursion formula and computational complexity analysis of OE-DKP

are as follows. 

Let P = { p k | k = 0 , 1 , · · · , 3 n − 1 } and W = { w k | k = 0 , 1 , · · · , 3 n − 1 } be the value set and weight set, respectively. For each

item group i ′ ∈ {0, 1, ���, i }, at most one item is selected to put into knapsack. For all items in knapsack, G [ i , j ] is the
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maximum of total value when the sum of weight coefficients is less than the knapsack capacity j : 

G [ i, j ] = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

G [ i − 1 , j ] , i f 0 ≤ j < w 3 i 

max [ G [ i − 1 , j ] , G [ i − 1 , j − w 3 i ] + p 3 i ] , i f w 3 i ≤ j < w 3 i +1 

max 

[
G [ i − 1 , j ] , G [ i − 1 , j − w 3 i ] + p 3 i , 
G [ i − 1 , j − w 3 i +1 ] + p 3 i +1 

]
, i f w 3 i +1 ≤ j < w 3 i +2 

max 

[
G [ i − 1 , j ] , G [ i − 1 , j − w 3 i ] + p 3 i , 
G [ i − 1 , j − w 3 i +1 ] + p 3 i +1 , G [ i − 1 , j − w 3 i +2 ] + p 3 i +2 

]
, i f w 3 i +2 ≤ j ≤ C 

. (5) 

The initial G [0, j ] is defined as 

G [ 0 , j ] = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , i f 0 ≤ j < w 0 

p 0 , i f w 0 ≤ j < w 1 

p 1 , i f w 1 ≤ j < w 2 

p 2 , i f w 2 ≤ j ≤ C 

. (6) 

Let Opt 1 denote the optimal value of OE-DKP. According to Eqs. (5) and (6) , we can get Opt 1 = G [ n − 1 , C ] . OE-DKP is an

exact algorithm with pseudo polynomial time and its computational complexity of OE-DKP is O ( nC ). 

3. NE-DKP: the new exact algorithm for D{0-1}KP 

The recursion formula Eq. (5) of OE-DKP is designed based on “maximizing the total value with the given sum of weight

coefficients”. This section presents a new exact algorithm for D{0-1}KP based on dynamic programming by deriving the

recursion formula with principle of “minimizing the total weight with the given sum of value coefficients”. The new exact

algorithm is abbreviated as NE-DKP. 

The weight minimization principle is to minimize the sum of weight coefficients corresponding to items satisfying the

constraint conditions (2) and (3) when the total value is given. Let E [ i , j ] be the minimum of total weight when the sum

of value coefficients is j , where i = 1 , 2 , · · · , n − 1 , j = 0 , 1 , · · · , S, S = 

∑ n −1 
i =0 p 3 i +2 . When there is no the subset of items of

which the sum of value coefficients is j , E [ i, j ] = + ∞ . In addition, E [0, j ] satisfies E [ 0 , 0 ] = 0 , E [ 0 , p 0 ] = w 0 , E [ 0 , p 1 ] = w 1 ,

E [ 0 , p 2 ] = w 2 , and E 
[
0 , j ′ 

]
= + ∞ ( j ′ ∈ {0, 1, ���, S } and j ′ � = 0, p 0 , p 1 , p 2 ). Assume E [ i − 1 , j ] is known and p 3 i ≤ p 3 i +1 , E [ i , j ]

can be calculated as following procedures. 

1. When 0 ≤ j < p 3 i , because p 3 i ≤ p 3 i +1 < p 3 i +2 , the value coefficients of items 3 i , 3 i + 1 , and 3 i + 2 are all larger than

j . It indicates that these three items can not be put into knapsack, then we get E [ i, j ] = E [ i − 1 , j ] . 

2. When p 3 i ≤ j < p 3 i +1 , there is only one item 3 i whose value coefficient is less than j . The item 3 i can be considered

to put into knapsack, then we can get E [ i , j ] = min [ E [ i − 1 , j ] , E [ i − 1 , j − p 3 i ] + w 3 i ] . 

3. When p 3 i +1 ≤ j < p 3 i +2 , the value coefficients of items 3 i and 3 i + 1 are all less than j . They can all be put into

knapsack, then we can get E [ i , j ] = min [ E [ i − 1 , j ] , E [ i − 1 , j − p 3 i ] + w 3 i , E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 ] . 

4. When p 3 i +2 ≤ j ≤ S, the value coefficients of three items in item group i are all less than j . All items can

be put into knapsack, then we can get E [ i , j ] = min [ E [ i − 1 , j ] , E [ i − 1 , j − p 3 i ] + w 3 i , E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 ,

E [ i − 1 , j − p 3 i +2 ] + w 3 i +2 ] . 

Based on the above-mentioned analysis, the recursion formula of NE-DKP is derived as 

E [ i, j ] = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

E [ i − 1 , j ] , i f 0 ≤ j < p 3 i 
min [ E [ i − 1 , j ] , E [ i − 1 , j − p 3 i ] + w 3 i ] , i f p 3 i ≤ j < p 3 i +1 

min 

[
E [ i − 1 , j ] , E [ i − 1 , j − p 3 i ] + w 3 i , 

E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 

]
, i f p 3 i +1 ≤ j < p 3 i +2 

min 

[
E [ i − 1 , j ] , E [ i − 1 , j − p 3 i ] + w 3 i , 

E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 , E [ i − 1 , j − p 3 i +2 ] + w 3 i +2 

]
, i f p 3 i +2 ≤ j ≤ S 

. (7) 

The initial E [0, j ] is defined as 

E [ 0 , j ] = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 , i f j = 0 

w 0 , i f j = p 0 
w 1 , i f j = p 1 
w 2 , i f j = p 2 
+ ∞ , otherwise 

. (8) 

The optimal value of NE-DKP is Op t 2 = max j=1 , 2 , ··· ,S [ j | E [ n − 1 , j ] ≤ C ] which represents the total value of items in knapsack

is j and the sum of weight coefficients is less than C . 

Now, we discuss how to get the optimal solution X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n corresponding to Opt 2 by using Eqs.

(7) and (8) . Without loss of generality, we assume we have selected the items form item groups n − 1 , n − 2 , · · · , i + 1 .

According to Eq. (7) and the value of E [ i , j ], we discuss whether there is an item which should be selected from item

group i . 
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1. If E [ i, j ] = E [ i − 1 , j ] , E [ i, j ] � = E [ i − 1 , j − p 3 i ] + w 3 i , E [ i, j ] � = E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 , and E [ i, j ] � = E [ i − 1 , j − p 3 i +2 ] +
w 3 i +2 hold simultaneously. This indicates that there is no item belonging to item group i which can be put into

knapsack, then we can get x 3 i = x 3 i +1 = x 3 i +2 = 0 . 

2. If E [ i, j ] � = E [ i − 1 , j ] , this reflects that there is at least one of inequalities which holds. 

• If E [ i, j ] = E [ i − 1 , j − p 3 i ] + w 3 i , the item 3 i is put into knapsack. Then, we can get x 3 i = 1 and x 3 i +1 = x 3 i +2 = 0 . 

• If E [ i, j ] = E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 , the item 3 i + 1 is put into knapsack. Then, we can get x 3 i +1 = 1 and x 3 i =
x 3 i +2 = 0 . 

• If E [ i, j ] = E [ i − 1 , j − p 3 i +2 ] + w 3 i +2 , the item 3 i + 2 is put into knapsack. Then, we can get x 3 i +2 = 1 and x 3 i =
x 3 i +1 = 0 . 

According to the aforementioned analysis, we can determine the selected item group and the corresponding item. From

Eq. (8) , we can know whether there is an item which is selected from item group 0. Thus, we get an optimal solution of

NE-DKP. The detailed procedure of NE-DKP algorithm is summarized in Algorithm 1 . 

Algorithm 1 NE-DKP: the new exact algorithm for D{0-1}KP. 

1: Input: The value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } , and knapsack capacity C. 

2: Output: The optimal solution X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n and optimal value Op t 2 . 

3: S ← 

n −1 ∑ 

i =0 

p 3 i +2 , E [ 0 , 0 ] ← 0 , E [ 0 , p 0 ] ← w 0 , E [ 0 , p 1 ] ← w 1 , and E [ 0 , p 2 ] ← w 2 ; 

4: for j = 1 to S do 

5: if j � = p 0 and j � = p 1 and j � = p 2 then 

6: E [ 0 , j ] ← + ∞ ; 

7: end if 

8: end for 

9: for i = 1 to n − 1 do 

10: for j = 0 to S do 

11: E [ i, j ] ← E [ i − 1 , j ] ; 

12: if p 3 i ≤ j < p 3 i +1 then 

13: E [ i, j ] ← min [ E [ i, j ] , E [ i − 1 , j − p 3 i ] + w 3 i ] ; 

14: else if p 3 i +1 ≤ j < p 3 i +2 then 

15: E [ i, j ] ← min [ E [ i, j ] , E [ i − 1 , j − p 3 i ] + w 3 i , E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 ] ; 

16: else if p 3 i +2 ≤ j then 

17: E [ i, j ] ← min [ E [ i, j ] , E [ i − 1 , j − p 3 i ] + w 3 i , E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 , E [ i − 1 , j − p 3 i +2 ] + w 3 i +2 ] ; 

18: end if 

19: end for 

20: end for 

21: Op t 2 ← max 
j=1 , 2 , ··· ,S 

[ j | E [ n − 1 , j ] ≤ C ] . 

22: for i = 0 to 3 n − 1 do 

23: x i ← 0 ; 

24: end for 

25: while i > 0 and j > 0 do 

26: if E [ i, j ] = E [ i − 1 , j − p 3 i ] + w 3 i then 

27: x 3 i ← 1 , j ← j − p 3 i ; 

28: else if E [ i, j ] = E [ i − 1 , j − p 3 i +1 ] + w 3 i +1 then 

29: x 3 i +1 ← 1 , j ← j − p 3 i +1 ; 

30: else if E [ i, j ] = E [ i − 1 , j − p 3 i +2 ] + w 3 i +2 then 

31: x 3 i +2 ← 1 , j ← j − p 3 i +2 ; 

32: end if 

33: i ← i − 1 ; 

34: end while 

35: if i = 0 and j = p 0 then 

36: x 0 ← 1 ; 

37: else if i = 0 and j = p 1 then 

38: x 1 ← 1 ; 

39: else if i = 0 and j = p 2 then 

40: x 2 ← 1 ; 

41: end if 

42: Return ( Op t 2 , X ) . 
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In Algorithm 1 , the time complexities of calculating the optimal value Opt 2 and optimal solution X are O ( nS ) and O ( S ),

respectively. Thus, the computational complexity of NE-DKP is O ( nS ), where S = 

∑ n −1 
i =0 p 3 i +2 . NE-DKP is also an exact algo-

rithm with pseudo polynomial time. By comparing the computational complexity of NE-DKP with OE-DKP, the following

Theorem 1 can be obtained. 

Theorem 1. The solving speeds of OE-DKP and NE-DKP respectively depend on C and S: when C < S , OE-DKP is faster than

NE-DKP; when C > S , OE-DKP is slower than NE-DKP. The time ratio of these two algorithms is C 
S when using them to solving a

same D{0-1}KP. 

4. Three approximate algorithms for D{0-1}KP 

Because OE-DKP and NE-DKP are all the exact algorithms with pseudo polynomial time, their computational complexities

are extremely high when using them to solve the large scale D{0-1}KP. In fact, the approximate solution of D{0-1}KP is

always more desired by many NP-hard problems. It is more important for practical applications to get the approximate

solutions with the fast speed [7,11] . This section provides three approximate algorithms for D{0-1}KP. 

4.1. Poly-DKP: the fully polynomial-time approximation scheme for D{0-1}KP 

A fully polynomial-time approximation scheme for D{0-1}KP is given in this subsection based on the exact algorithm

NE-DKP. We firstly introduce the concept of fully polynomial-time approximation scheme. 

Definition 2. (Fully polynomial-time approximation scheme) [7,11] . Assume A ε is a polynomial approximation scheme for

the optimization problem I . If its performance ratio r ( A ε ) ≤ 1 + ε (for any 0 < ε < 1) and computational complexity is a

polynomial function of problem scale and 

1 
ε , then A ε is a fully polynomial-time approximation scheme for I . 

I is an instance of D{0-1}KP with the value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } ,
and knapsack capacity C . II is another instance of D{0-1}KP with the value set Q = 

{
q k 

∣∣q k = 

⌊ p k 
K 

⌋
, k = 0 , 1 , · · · , 3 n − 1 

}
,

weight set W, and knapsack capacity C , where K = max 
[

εp 
2 n , 1 

]
, p = max [ p 3 i +2 | i = 0 , 1 , · · · , n − 1 ] , 0 < ε < 1. The optimal

solution of II is Y = ( y 0 , y 1 , · · · , y 3 n −1 ) ∈ { 0 , 1 } 3 n , then Y is a fully polynomial-time approximation solution of I and its ap-

proximate value is App 1 . The detailed procedure of Poly-DKP algorithm is summarized in Algorithm 2 . From Algorithm 2 ,

we can know that the approximate value of instance I is App 1 = 

∑ n −1 
i =0 ( p 3 i y 3 i + p 3 i +1 y 3 i +1 + p 3 i +2 y 3 i +2 ) . 

Theorem 2. Poly-DKP is a fully polynomial-time approximation scheme for D{0-1}KP, its computational complexity is O 

(
n 3 

ε 

)
. 

Proof. Because p = max [ p 3 i +2 | i = 0 , 1 , · · · , n − 1 ] , when 

εp 
2 n ≥ 1 , we can derive 

n −1 ∑ 

i =0 

q 3 i +2 = 

n −1 ∑ 

i =0 

⌊ 

q 3 i +2 

K 

⌋ 

≤
n −1 ∑ 

i =0 

q 3 i +2 

K 

≤
n −1 ∑ 

i =0 

p 

K 

= 

np 

K 

K= εp 
2 n = 

2 n 

2 

ε 
;

Algorithm 2 Poly-DKP: the fully polynomial-time approximation scheme for D{0-1}KP. 

1: Input: The value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } , and knapsack capacity C for 

instance I ; the any real number 0 < ε < 1 . 

2: Output: The approximate solution Y = ( y 0 , y 1 , · · · , y 3 n −1 ) ∈ { 0 , 1 } 3 n and approximate value Ap p 1 . 

3: p ← max [ p 3 i +2 | i = 0 , 1 , · · · , n − 1 ] ; 

4: K ← max 
[

εp 
2 n , 1 

]
; 

5: for i = 0 to n − 1 do 

6: q 3 i ← int 
( p 3 i 

K 

)
; ( int ( r ) is the rounding operation to real number r.) 

7: q 3 i +1 ← int 
( p 3 i +1 

K 

)
; 

8: if q 3 i == q 3 i +1 then 

9: q 3 i ← q 3 i − 1 ; 

10: end if 

11: q 3 i +2 ← q 3 i + q 3 i +1 ; 

12: end for 

13: Q ← { q k | k = 0 , 1 , · · · , 3 n − 1 } ; 
14: ( Ap p 1 , Y ) ← NE-DKP ( Q , W , C ) ; (NE-DKP is Algorithm 1.) 

15: Ap p 1 ← 0 ; 

16: for i = 0 to 3 n − 1 do 

17: Ap p 1 ← Ap p 1 + p i y i ; 

18: end for 

19: Return ( Ap p 1 , Y ) . 



Y.-C. He et al. / Information Sciences 369 (2016) 634–647 639 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

when 

εp 
2 n < 1 , we can get 

n −1 ∑ 

i =0 

q 3 i +2 ≤
np 

K 

K=1 = np ≤ 2 n 

2 

ε 
. 

From Algorithm 2 , we can find that the computational complexity of Poly-DKP depends on NE-DKP. Thus, the time com-

plexity of Algorithm 2 is O 

(
n 

∑ n −1 
i =0 q 3 i +2 

)
= O 

(
n 3 

ε 

)
. 

Assume Opt ( I ) and X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n are the optimal value and solution of instance I , respectively. Let

S ∗ = { i | x i = 1 , i = 0 , 1 , · · · , 3 n − 1 } denote the set of items in knapsack. The items in S ∗ are determined by X . Then, we can

get Opt ( I ) = 

∑ 

i ∈ S ∗ p i . Assume Opt ( II ) and Y = ( y 0 , y 1 , · · · , y 3 n −1 ) ∈ { 0 , 1 } 3 n are the optimal value and solution of instance

II , respectively. Let S = { i | y i = 1 , i = 0 , 1 , · · · , 3 n − 1 } denote the set of items in knapsack. The items in S are determined by

Y . Then, we can get Opt ( II ) = 

∑ 

i ∈ S q i ≥
⌊

p 
K 

⌋
. Because Y is the approximate solution of instance I , App ( I ) = 

∑ 

i ∈ S p i can be

derived. Because q 3 i ≤
⌊ p 3 i 

K 

⌋
, q 3 i +1 ≤

⌊ p 3 i +1 
K 

⌋
, and p 3 i +2 = p 3 i + p 3 i +1 , we can derive 

q 3 i +2 = q 3 i + q 3 i +1 ≤
⌊ 

p 3 i +2 

K 

⌋ 

. 

Furthermore, we can get ∑ 

i ∈ S 
q i ≤

∑ 

i ∈ S 

⌊ 

p i 
K 

⌋ 

≤
∑ 

i ∈ S 

p i 
K 

, 

i.e., K 

∑ 

i ∈ S q i ≤
∑ 

i ∈ S p i . Because n 
 ε, we get 

p 

2 

≤
(

1 − ε 

2 n 

)
p = K 

(
p 

K 

− 1 

)
≤ K 

⌊ 

p 

K 

⌋ 

≤ K 

∑ 

i ∈ S 
q i ≤

∑ 

i ∈ S 
p i . 

Because 
p i 
K − 1 ≤ q i ≤ p i 

K , 
∑ 

i ∈ T p i − K | T | ≤ K 

∑ 

i ∈ T q i ≤
∑ 

i ∈ T p i holds for set T which includes the arbitrary items. Thus, we

can derive 

Opt ( I ) − K | S ∗| = 

∑ 

i ∈ S ∗
p i − K | S ∗| ≤ K 

∑ 

i ∈ S ∗
q i ≤ KOpt ( II ) = K 

∑ 

i ∈ S 
q i ≤

∑ 

i ∈ S 
p i = App ( I ) 

for sets S ∗ and S . Because | S ∗| ≤ n , we can further get 

App ( I ) ≥ Opt ( I ) − Kn = Opt ( I ) − εp 

2 

≥ Opt ( I ) − ε 
∑ 

i ∈ S 
p i = Opt ( I ) − εApp ( I ) , 

i.e., 
Opt ( I ) 
App ( I ) 

≤ 1 + ε. Hereto, we know that Poly-DKP is a fully polynomial-time approximation scheme for D{0-1}KP according

to Definition 2 . �

4.2. App-2-DKP : the 2-approximation algorithm for D{0-1}KP 

For the instance I of D{0-1}KP and arbitrarily small threshold ε > 0, the approximate ratio of Poly-DKP is 
Opt ( I ) 
App ( I ) 

≤ 1 + ε.

We can find that the computational complexity of Poly-DKP depends on 

1 
ε and increases with the decrease of ε. In fact, we

can try to eliminate the negative effects of ε on the computational complexity of approximate algorithm and then give an

approximate algorithm with computational complexity O ( n log 2 n ). The approximate ratio of such an approximate algorithm

is 
Opt ( I ) 
App ( I ) 

≤ 2 . 

Lemma 1. For items 3 i , 3 i + 1 , and 3 i + 2 in item group i , the relationship among 
p 3 i 
w 3 i 

, 
p 3 i +1 
w 3 i +1 

, and 
p 3 i +2 
w 3 i +2 

can be induced as one

of the following four cases: 

1. 
p 3 i 
w 3 i 

� = 

p 3 i +1 
w 3 i +1 

, 
p 3 i 
w 3 i 

� = 

p 3 i +2 
w 3 i +2 

, and 

p 3 i +1 
w 3 i +1 

� = 

p 3 i +2 
w 3 i +2 

; 

2. 
p 3 i 
w 3 i 

= 

p 3 i +1 
w 3 i +1 

< 

p 3 i +2 
w 3 i +2 

; 

3. 
p 3 i 
w 3 i 

= 

p 3 i +2 
w 3 i +2 

> 

p 3 i +1 
w 3 i +1 

; 

4. 
p 3 i +1 
w 3 i +1 

= 

p 3 i +2 
w 3 i +2 

> 

p 3 i 
w 3 i 

. 

Proof. We only prove the case 2, because the proving methods of cases 3 and 4 are same as case 2. When 

p 3 i 
w 3 i 

= 

p 3 i +1 
w 3 i +1 

,

let 
w 3 i +1 

w 3 i 
= 

p 3 i +1 
p 3 i 

= k, then we can get w 3 i +1 = k w 3 i and p 3 i +1 = k p 3 i . According to p 3 i +2 = p 3 i + p 3 i +1 and 0 < w 3 i +2 < w 3 i +
w 3 i +1 , we can derive 

p 3 i +2 

w 3 i +2 

= 

p 3 i + p 3 i +2 

w 3 i +2 

> 

p 3 i + p 3 i +2 

w 3 i + w 3 i +1 

= 

( k + 1 ) p 3 i 
( k + 1 ) w 3 i 

= 

p 3 i 
w 3 i 

. 

Then, we get that the case 2 holds for 
p 3 i 
w 

, 
p 3 i +1 
w 

, and 

p 3 i +2 
w 

. �

3 i 3 i +1 3 i +2 
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Algorithm 3 App-2-DKP : the 2-approximation algorithm for D{0-1}KP. 

1: Input: The value set P = { p k | k = 0 , 1 , · · · , 3 n − 1 } , weight set W = { w k | k = 0 , 1 , · · · , 3 n − 1 } , and knapsack capacity C for 

instance I . 

2: Output: The approximate solution X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n and approximate value Ap p 2 . 

3: Sorting 
p j 
w j 

( j = 0 , 1 , · · · , 3 n − 1) in descending order. Put the item 3 i + 2 in front of the items 3 i and 3 i + 1 when 

p 3 i 
w 3 i 

= 

p 3 i +2 
w 3 i +2 

or 
p 3 i +1 
w 3 i +1 

= 

p 3 i +2 
w 3 i +2 

. Storing the subscripts of ordered 

p j 
w j 

in array H ( 0 , 1 , · · · , 3 n − 1 ) . 

4: X ( 0 , 1 , · · · , 3 n − 1 ) ← ( 0 , 0 , · · · , 0 ) ; B ( 0 , 1 , · · · , n − 1 ) ← ( 0 , 0 , · · · , 0 ) ; T ← C; Ap p 2 ← 0 ; i ← 0 . 

5: while T > 0 and i ≤ 3 n − 1 do 

6: if w H ( i ) ≤ T and B 

[ 
int 

(
H ( i ) 

3 

)] 
== 0 then 

7: x H ( i ) ← 1 ; T ← T − w H ( i ) ; B 

[ 
int 

(
H ( i ) 

3 

)] 
← 1 ; Ap p 2 ← Ap p 2 + p H ( i ) ; 

8: end if 

9: i ← i + 1 

10: end while 

11: p 3 k +2 ← max 
[

p 3 j+2 | j = 0 , 1 , · · · , n − 1 
]
; 

12: if p 3 k +2 > Ap p 2 then 

13: Ap p 2 ← p 3 k +2 ; X ← 

x 0 , · · · , x 3 k +1 , x 3 k +2 , x 3 k +3 , · · · , x 3 n −1 

( 0 , · · · , 0 , 1 , 0 , · · · , 0 ) 
; 

14: end if 

15: Return ( Ap p 2 , X ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the cases 3 and 4 in Lemma 1 , we know that 
p 3 i 
w 3 i 

= 

p 3 i +2 
w 3 i +2 

or 
p 3 i +1 
w 3 i +1 

= 

p 3 i +2 
w 3 i +2 

may exist for an instance of

D{0-1}KP. If the item 3 i + 2 can be put into knapsack, the approximate solution is more desired, because it maximizes the

sum of value coefficients for the residual capacity of knapsack. We give the following Example 1 to explain this fact. 

Example 1. Assume there exist an instance I with scale 3 n = 9 . The value set and weigh set of I are 

[ ( 3 , 6 , 9 ) , ( 2 , 4 , 6 ) , ( 4 , 6 , 10 ) ] and [ ( 2 , 5 , 6 ) , ( 4 , 2 , 5 ) , ( 4 , 3 , 5 ) ] , 

respectively. The knapsack capacity is C = 14. Sorting 
p j 
w j 

( j = 0 , 1 , · · · , 8) in descending order, we can get the subscript se-

quence {4, 7, 8, 0, 2, 5, 1, 6, 3} and 

p 0 
w 0 

= 

p 2 
w 2 

= 

3 
2 which is the case 3 of Lemma 1 . Then, the item 0 is put into the knap-

sack rather than item 2. The approximate solution determined based on the greedy strategy is X 1 = ( 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 )
and the approximate value is 13. If we consider putting the item 2 into knapsack, we can get the approximate solution is

X 2 = ( 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 ) and the approximate value is 23. X 2 is the optimal solution of instance I . 

Algorithm 3 shows the detailed procedure of App-2-DKP algorithm. From Algorithm 3 , we can see that the computational

complexity of App-2-DKP is O ( n log 2 n ) which mainly depends on the sorting operation. Hereinafter, we give the theoretical

proof to the 2-approximation ratio of App-2-DKP . 

Theorem 3. The performance ratio of App-2-DKP is less than or equal to 2, i.e., 
Opt ( I ) 
App ( I ) 

≤ 2 , where Opt ( I ) and App ( I ) are the

optimal and approximate values of instance I , respectively. 

Proof. Let 
b i 
a i 

denote the maximum of 

(
p 3 i 
w 3 i 

, 
p 3 i +1 
w 3 i +1 

, 
p 3 i +2 
w 3 i +2 

)
. When 

p 3 i 
w 3 i 

= 

p 3 i +2 
w 3 i +2 

or 
p 3 i +1 
w 3 i +1 

= 

p 3 i +2 
w 3 i +2 

, we can get 
b i 
a i 

= 

p 3 i +2 
w 3 i +2 

( i = 0 , 1 , · · · , n − 1 ). For simplicity, we assume 
b 0 
a 0 

≥ b 1 
a 1 

≥ · · · ≥ b n −1 
a n −1 

. Then, there exists k ∈ { 0 , 1 , · · · , n − 1 } which satisfies

the inequations 
∑ k 

i =0 a i ≤ C, w 3 k +3 + 

∑ k 
i =0 a i > C, w 3 k +4 + 

∑ k 
i =0 a i > C, and w 3 k +5 + 

∑ k 
i =0 a i > C. Thus, we can get 

∑ k 
i =0 b i ≤

Opt ( I ) < 

∑ k +1 
i =0 b i . It indicates that the item group k + 1 is the first one of which there is no any item that can be put

into knapsack. Because there may be one item group in ( k + 2 , k + 3 , · · · , n − 1 ) of which an item will be put into knapsack,

App ( I ) ≥ ∑ k 
i =0 b i holds. because App ( I ) ≥ max [ p 3 i +2 | 0 = 1 , 2 , · · · , n − 1 ] ≥ max 

[
p 3 ( k +1 ) , p 3 ( k +1 ) +1 , p 3 ( k +1 ) +2 

]
≥ b k +1 , we can 

get 

App ( I ) ≥ 1 

2 

( 

k ∑ 

i =0 

b i + b k +1 

) 

≥ 1 

2 

( 

k +1 ∑ 

i =0 

b i 

) 

> 

1 

2 

Opt ( I ) , 

so we can derive 
Opt ( I ) 
App ( I ) 

< 2 . That is to say, App-2-DKP is the 2-approximation algorithm for D{0-1}KP. �

4.3. PSO-GRDKP: the particle swarm optimization based approximation algorithm for D{0-1}KP 

In the above-mentioned descriptions, we present two approximate algorithms, i.e., Poly-DKP and App-2-DKP , based on

the dynamic programming and greedy strategy, respectively. In the practical applications [8,9,23,24,26,31,34,36,37,40,43] , we
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Algorithm 4 GR-DKP: the greedy repair algorithm for D{0-1}KP. 

1: Input: A binary vector X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n and array H ( 0 , 1 , · · · , 3 n − 1 ) . 

2: Output: The repaired binary vector X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n . 
3: f weight ← 0 ; k ← 3 n − 1 ; 

4: for i = 0 to n − 1 do 

5: if x 3 i + x 3 i +1 + x 3 i +2 > 1 then 

6: x 3 i ← 0 ; x 3 i +1 ← 0 ; x 3 i +2 ← 0 ; 

7: j = arg max 
j=3 i, 3 i +1 , 3 i +2 

(
p j 
w j 

)
8: x j ← 1 ; 

9: f weight ← f weight + w j ; 

10: end if 

11: end for 

12: while f weight > C do 

13: if x H ( k ) == 1 then 

14: x H ( k ) ← 0 ; 

15: f weight ← f weight − w H ( k ) ; 

16: end if 

17: k ← k − 1 ; 

18: end while 

19: for j = 0 to 3 n − 1 do 

20: i ← int 

(
H ( j ) 

3 

)
; 

21: if x 3 i == 0 and x 3 i +1 == 0 and x 3 i +2 == 0 and f weight + w H ( j ) ≤ C then 

22: x H ( j ) ← 1 ; 

23: f weight ← f weight + w H ( j ) ; 

24: end if 

25: end for 

26: Return X . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

find that it is very successful to use the evolutionary algorithm (e.g., particle swarm optimization [20,42] ) to solve the

optimization problems. However, the infeasible solutions will exist because D{0-1}KP is a constrained optimization problem.

The commonly-used strategies to eliminate the infeasible solutions are to use greedy strategy to repair and optimize these

infeasible solutions. Thus, we firstly propose a G reedy R epair algorithm for D{0-1}KP (GR-DKP) and then design the PSO

based greedy repair algorithm for GR-DKP (PSO-GRDKP) in this subsection. 

4.3.1. GR-DKP: the greedy repair algorithm for D{0-1}KP 

When using PSO to solve the constrained optimization problem D{0-1}KP, two kinds of mostly-used methods to deal

with the infeasible solutions are penalty function and repair [28] , where the repair method is more effective than penalty

function method [4,5,17] . Hereinafter, we present a greedy repair algorithm when PSO is used to solve the constrained

optimization problem D{0-1}KP. 

For any binary vector X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n , it will be a feasible solution of D{0-1}KP only if it satisfies the

constrained conditions Eqs. (2) and (3) . Thus, we firstly check whether X satisfies Eq. (2) . If there exists x 3 i , x 3 i +1 , and

x 3 i +2 which makes x 3 i + x 3 i +1 + x 3 i +2 > 1 . It indicates that at least two items in item group i can be put into knapsack.

Here, x j = 1 ( j = 3 i, 3 i + 1 , 3 i + 2 ) corr esponding t o the maximum of 

(
p 3 i 
w 3 i 

, 
p 3 i +1 
w 3 i +1 

, 
p 3 i +2 
w 3 i +2 

)
is not chang ed and other x j s ar e

assigned as 0. Then, we check whether X satisfies Eq. (3) . If not, we change x H ( j ) = 1 into x H ( j ) = 0 according to the order

of H ( 3 n − 1 ) , H ( 3 n − 2 ) , . . . , H ( 0 ) until Eq. (3) holds. Finally, we check whether the updated X of which x j = 0 is assigned

to 1 satisfies Eqs. (2) and (3) . Based on the aforementioned descriptions, we give the detailed procedure of GR-DKP in

Algorithm 4 , where 
p j 
w j 

( j = 0 , 1 , · · · , 3 n − 1) are sorted in descending order and the subscripts of ordered 

p j 
w j 

are stored in

the array H ( 0 , 1 , · · · , 3 n − 1 ) . Obviously, the computational complexity of GR-DKP is O ( n ). 

4.3.2. PSO-GRDKP: the PSO based approximation algorithm for D{0-1}KP 

We design a PSO based greedy repair algorithm for solving D{0-1}KP in this subsection. B inary PSO (BPSO) [21] is

employed in our study due to its simplicity and availability when handling the 0-1 knapsack problems [18,25] . Assume

S ( t ) = 

{
[ X i ( t ) , V i ( t ) ] 

∣∣X i ( t ) ∈ { 0 , 1 } 3 n , V i ( t ) ∈ [ L, U ] 
3 n 

, i = 1 , 2 , · · · , N 

}
is the t -th generation population, where 

X i ( t ) = ( x i 0 ( t ) , x i 1 ( t ) , · · · , x i, 3 n −1 ( t ) ) 

is the position of i -th particle in the t -th generation population, which is a potential solution of GR-DKP; 

V i ( t ) = ( v i 0 ( t ) , v i 1 ( t ) , · · · , v i, 3 n −1 ( t ) ) 
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Algorithm 5 PSO-GRDKP: the PSO based approximation algorithm for D{0-1}KP. 

1: Input: The instance I of D{0-1}KP, population size N, iteration number T , lower bound L , upper bound U , acceleration 

constants c 1 and c 2 . 

2: Output: The approximate solution G (T ) and approximate value f [ G ( T ) ] of I . 

3: Sorting 
p j 
w j 

( j = 0 , 1 , · · · , 3 n − 1) in descending order. Storing the subscripts of ordered 

p j 
w j 

in array H ( 0 , 1 , · · · , 3 n − 1 ) . 

4: Generating the initial population S ( 0 ) = { [ X i ( 0 ) , V i ( 0 ) ] | i = 1 , 2 , · · · , N } randomly; 

5: for j = 1 to N do 

6: X i ( 0 ) ← GR-DKP [ X i ( 0 ) , H ( 0 , 1 , · · · , 3 n − 1 ) ] ; (GR -DKP is Algorithm 4.) 

7: end for 

8: Determining P i ( 0 ) and G ( 0 ) according to f [ X i ( 0 ) ] ; t ← 0 ; 

9: while t < T do 

10: for i = 1 to N do 

11: for j = 0 to 3 n − 1 do 

12: v i j ( t + 1 ) ← v i j ( t ) + c 1 r 1 
[

p i j ( t ) − x i j ( t ) 
]

+ c 2 r 2 
[
g j ( t ) − x i j ( t ) 

]
; 

13: if r 3 ≥ sig 
[
v i j ( t + 1 ) 

]
then 

14: x i j ( t + 1 ) ← 0 ; 

15: else 

16: x i j ( t + 1 ) ← 1 ; 

17: end if 

18: end for 

19: X i ( t + 1 ) ← GR-DKP [ X i ( t + 1 ) , H ( 0 , 1 , · · · , 3 n − 1 ) ] ; 

20: if f [ X i ( t + 1 ) ] > f [ P i ( t + 1 ) ] then 

21: P i ( t + 1 ) ← X i ( t + 1 ) ; 

22: end if 

23: end for 

24: Determining G ( t + 1 ) according to f [ P i ( t + 1 ) ] , i = 1 , 2 , · · · , N ; 

25: t ← t + 1 ; 

26: end while 

27: Return [ f [ G ( T ) ] , G ( T ) ] . 

 

 

 

 

 

 

 

 

 

is the velocity of i -th particle in the t -th generation population; N is the number of particles in the t -th generation popula-

tion; t > 0 is the number of iterations; L and U are the lower and upper bounds of velocity, respectively. Let 

P i ( t ) = ( p i 0 ( t ) , p i 1 ( t ) , · · · , p i, 3 n −1 ( t ) ) ∈ { 0 , 1 } 3 n 
and 

G ( t ) = ( g 0 ( t ) , g 1 ( t ) , · · · , g 3 n −1 ( t ) ) ∈ { 0 , 1 } 3 n 
denote the locally or personally optimal solution of the i -th particle and globally optimal solution of population. 

The position and velocity of the i -th particle is updated according to the following rules: 

v i j ( t + 1 ) = v i j ( t ) + c 1 r 1 
[

p i j ( t ) − x i j ( t ) 
]

+ c 2 r 2 
[
g j ( t ) − x i j ( t ) 

]
, (9) 

and 

x i j ( t + 1 ) = 

{
0 , i f r 3 ≥ sig 

[
v i j ( t + 1 ) 

]
1 , otherwise 

(10) 

where, i = 1 , 2 , · · · , N, j = 0 , 1 , · · · , 3 n − 1 , c 1 = c 2 = 2 are the acceleration constants, r 1 , r 2 , r 3 are the random numbers

within interval (0, 1), and sig ( x ) = 

1 
1+ e −x is the sigmoid function. Algorithm 5 depicts the detailed procedure of PSO-GRDKP.

In Algorithm 5 , the computational complexities of sorting operation and GR-DKP algorithm are O ( n log 2 n ) and O ( n ), respec-

tively. Thus, the time complexity of PSO-GRDKP is O ( n log 2 n ) + 3 O ( nN ) + T × [ O ( nN ) + O ( N ) ] . Because N < n and T < n , the

computational complexity of PSO-GRDKP is O ( n 3 ). 

5. Experimental comparison on 4 instances of D{0-1}KP 

This section conducts the exhaustive experiments to compare the performances of OE-DKP [12] , NE-DKP, Poly-DKP, App-

2-DKP , and PSO-GRDKP based on 4 kinds of large scale D{0-1}KP instances, 1 i.e., u ncorrelated instances of D{0-1}KP (udkp),

w eakly correlated instances of D{0-1}KP (wdkp), s trongly correlated instances of D{0-1}KP (sdkp), and i nverse strongly cor-

related instances of D{0-1}KP (idkp) [22,32] . All algorithms in this article are implemented with C++ language running on a
1 Available at http://sncet.com/FourKindsOfLarge-scalePInstances.rar . 

http://sncet.com/FourKindsOfLarge-scalePInstances.rar
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Table 1 

Solving performances of 5 algorithms on 10 data sets of udkp. 

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP 

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5 

udkp1 289,761 505,592 0.798 316,225 0.516 289,761 0.078 239,760 0.0 289,746 289,157 289489.4 219.0 0.134 

udkp2 510,131 769,649 2.316 676,296 2.078 510,131 0.218 472,233 0.0 509,981 509,503 509790.6 170.9 0.522 

udkp3 817,713 1,396,990 6.368 955,123 4.328 817,713 0.453 676,286 0.0 817,300 816,431 816961.6 298.4 1.156 

udkp4 1,122,074 1,965,668 11.913 1,284,269 7.611 1,122,068 0.813 907,900 0.0 1,121,812 1,121,469 1121632.0 109.9 2.025 

udkp5 1,233,057 2,054,733 15.469 1,573,966 11.626 1,233,035 1.297 1,085,503 0.008 1,232,740 1,232,490 1232591.5 100.5 3.196 

udkp6 1,399,458 2,168,210 19.653 1,921,342 16.868 1,399,458 1.922 1,256,462 0.015 1,398,909 1,398,707 1398767.6 73.2 4.659 

udkp7 1,826,261 3,096,369 32.692 2,205,688 22.630 1,826,258 2.609 1,576,358 0.015 1,825,711 1,824,834 1825424.6 320.5 6.248 

udkp8 1,920,409 3,016,327 36.476 2,552,592 30.579 1,920,409 3.343 1,743,346 0.015 1,919,810 1,918,752 1919359.4 395.6 8.241 

udkp9 2,458,318 4,097,285 55.711 2,914,816 38.315 2,458,308 4.297 2,061,688 0.015 2,456,686 2,454,768 2455811.8 793.6 10.432 

udkp10 2,886,506 5,092,146 76.961 3,217,412 47.674 2,886,491 4.984 2,292,272 0.016 2,884,139 2,880,678 2882292.0 974.3 12.794 

Table 2 

Solving performances of 5 algorithms on 10 data sets of wdkp. 

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP 

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5 

wdkp1 310,805 255,619 0.422 416,119 0.721 310,805 0.11 310,740 0.0 310,805 310,768 310790.2 18.1 0.137 

wdkp2 504,177 389,984 1.218 860,530 2.746 504,177 0.297 504,022 0.0 504,177 504,044 504100.4 62.6 0.519 

wdkp3 840,609 679,302 3.079 1,240,929 5.891 840,609 0.625 840,518 0.0 840,597 840,539 840573.8 28.4 1.149 

wdkp4 1,041,019 799,741 4.797 1,667,887 10.298 1,041,010 1.093 1,041,010 0.0 1,041,019 1,041,010 1041011.8 3.6 2.003 

wdkp5 1,606,341 1,302,412 9.704 2,059,185 15.797 1,606,341 1.672 1,606,332 0.005 1,606,332 1,606,332 1606332.0 0.0 3.106 

wdkp6 1,875,732 1,519,313 13.845 2,503,869 22.954 1,875,732 2.407 1,875,604 0.010 1,875,717 1,875,657 1875685.6 21.0 4.519 

wdkp7 1,726,671 1,340,978 13.969 2,928,683 30.923 1,726,662 3.297 1,726,556 0.010 1,726,662 1,726,636 1726648.2 11.7 6.134 

wdkp8 2,589,429 2,139,106 25.829 3,343,326 40.393 2,589,425 4.297 2,589,336 0.010 2,589,411 2,589,376 2589394.8 16.3 7.891 

wdkp9 2,551,957 2,027,672 27.501 3,705,219 50.252 2,551,940 5.344 2,551,897 0.015 2,551,928 2,551,908 2551918.4 8.5 10.203 

wdkp10 2,718,419 2,159,925 32.424 4,176,473 62.487 2,718,419 6.672 2,718,305 0.015 2,718,388 2,718,367 2718383.0 8.1 12.559 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acer Aspire E1-570G PC with Windows 8 running on a Intel(R) Core(TM) i5-3337u 1.8 GHz processor with 4 GB DDR3 RAM.

Each instance includes 10 different data sets with sizes 3 n = 30 0 , 60 0 , · · · , 30 0 0 . For each data set, the value coefficients,

weight coefficients, and knapsack capacity are generated as follows [32] . 

1. udkp instance. p 3 i , p 3 i +1 ∈ R [ 128 , 3072 ] , p 3 i < p 3 i +1 , p 3 i +2 = p 3 i + p 3 i +1 ( i = 0 , 1 , · · · , n − 1 ) ; w 3 i , w 3 i +1 ∈ R [ 256 , 4098 ] ,

w 3 i < w 3 i +1 , w 3 i +2 ∈ R [ w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1 ] ; C = r 
∑ n −1 

i =0 w 3 i +2 , where r is a random decimal within interval [0.5,

0.75] and x ∈ R [ A , B ] denotes x is a random integer within interval [ A , B ]. 

2. wdkp instance. w 3 i , w 3 i +1 ∈ R [ 256 , 4098 ] , w 3 i < w 3 i +1 , w 3 i +2 ∈ R [ w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1 ] ( i = 0 , 1 , · · · , n − 1 ) ;

p 3 i ∈ R [ w 3 i − 100 , w 3 i + 100 ] , p 3 i +1 ∈ R [ w 3 i +1 − 100 , w 3 i +1 + 100 ] , p 3 i < p 3 i +1 , p 3 i +2 = p 3 i + p 3 i +1 ; C = r 
∑ n −1 

i =0 w 3 i +2 . 

3. sdkp instance. w 3 i , w 3 i +1 ∈ R [ 256 , 4098 ] , w 3 i < w 3 i +1 , w 3 i +2 ∈ R [ w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1 ] ( i = 0 , 1 , · · · , n − 1 ) ; p 3 i =
w 3 i + 100 , p 3 i +1 = w 3 i +1 + 100 , p 3 i +2 = p 3 i + p 3 i +1 ; C = r 

∑ n −1 
i =0 w 3 i +2 . 

4. idkp instance. p 3 i , p 3 i +1 ∈ R [ 256 , 4098 ] , p 3 i < p 3 i +1 , p 3 i +2 = p 3 i + p 3 i +1 ( i = 0 , 1 , · · · , n − 1 ) ; w 3 i = p 3 i + 100 , w 3 i +1 =
p 3 i +1 + 100 , w 3 i +2 ∈ R [ w 3 i +1 + 1 , w 3 i + w 3 i +1 + 1 ] ; C = r 

∑ n −1 
i =0 w 3 i +2 . 

The exact algorithms, i.e., OE-DKP and NE-DKP, which can solve the optimal solution and value for D{0-1}KP, are time-

consuming when handling instances with the large value and weight coefficients, thus they are suitable for the instances

with smaller C or S . Our experiment mainly test the impact of C and S on the solving times of OE-DKP and NE-DKP. For

Poly-DKP, App-2-DKP , and PSO-GRDKP, we don’t guarantee these three approximate algorithms can always find the op-

timal solutions of instances. Thus, their solving performances are evaluated with the approximate ratio and solving time.

The lower the approximate ratio is and the lower the solving time is, the better the performance of algorithm is. In addi-

tion, PSO-GRDKP is a random algorithm and thus often gets the different solving results for the independent running. In

order to evaluate the performance of PSO-GRDKP more reliably, we calculate the approximate ratios of the best and worst

approximate solutions with the optimal solution. 

Theoretically, ε in Poly-DKP can be an arbitrary positive real number. However, if ε is extremely small, it will lead to the

small K or K = 1 for K = max 
[

εp 
2 n , 1 

]
. In this case, S 

K = 

∑ n −1 
i =0 

p 3 i +2 
K is very large and then it causes the out of memory when

Poly-DKP calls NE-DKP in Algorithm 2 . In our experiments, we set ε = 

20 n 
p and then we can get K = 10 . For PSO-GRDKP, the

parameters are N = 30 , L = −5 , U = 5 , c 1 = c 2 = 2 , and T = n, where n is the number of item groups. For each algorithm,

we repeatedly run it 20 times on the identical data set and use the average value as the final result. Tables 1 –4 summarize

the calculated values and solving times corresponding to 5 different D{0-1}KP algorithms on instances of udkp, wdkp, sdkp,

idkp, respectively, where C is the knapsack capacity, S = 

∑ n −1 
i =0 p 3 i +2 , App 1 is the approximate value of the approximate

algorithm Poly-DKP, App 2 is the approximate value of the approximate algorithm App-2-DKP , App Best , App Worst , App Mean , and

App are the best value, worst value, mean value, and standard deviation of PSO-GRDKP for 20 times independent running.
Std 
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Table 3 

Solving performances of 5 algorithms on 10 data sets of sdkp. 

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP 

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5 

sdkp1 352,019 265,233 0.421 456,879 0.781 351,992 0.078 351,140 0.0 352,003 351,928 351973.4 25.6 0.137 

sdkp2 545,255 389,495 1.188 910,978 2.765 545,250 0.281 545,147 0.0 545,243 545,231 545235.5 4.5 0.504 

sdkp3 986,019 741,4 4 4 3.359 1,379,036 6.140 986,008 0.625 984,581 0.0 985,905 985,602 985786.0 101.3 1.112 

sdkp4 1,247,191 916,070 5.501 1,791,499 10.626 1,247,157 1.109 1,244,851 0.005 1,247,041 1,246,432 1246780.6 206.3 1.941 

sdkp5 1,759,075 1,317,721 9.969 2,316,659 17.016 1,759,075 1.829 1,757,387 0.010 1,758,664 1,758,391 1758543.2 91.0 3.031 

sdkp6 1,795,393 1,296,459 11.719 2,697,496 23.642 1,795,375 2.516 1,794,156 0.010 1,795,373 1,795,170 1795270.6 78.4 4.416 

sdkp7 2,264,218 1,673,102 17.814 3,203,071 33.001 2,264,215 3.484 2,263,043 0.010 2,264,026 2,263,652 2263803.8 127.0 5.997 

sdkp8 2,236,703 1,621,874 19.532 3,607,252 42.581 2,236,694 4.547 2,235,634 0.010 2,236,471 2,236,106 2236318.8 150.3 7.863 

sdkp9 3,034,816 2,277,132 30.752 4,084,681 54.174 3,034,795 5.781 3,030,311 0.015 3,034,111 3,033,149 3033813.0 347.3 9.963 

sdkp10 2,916,217 2,098,311 31.596 4,611,874 66.706 2,916,181 7.204 2,915,218 0.019 2,916,071 2,915,753 2915883.2 108.4 12.325 

Table 4 

Solving performances of 5 algorithms on 10 data sets of idkp. 

Optimal OE-DKP NE-DKP Poly-DKP App-2-DKP PSO-GRDKP 

Instance value C Time 1 S Time 2 App 1 Time 3 App 2 Time 4 App Best App Worst App Mean App Std Time 5 

idkp1 277,642 225,675 0.359 435,982 0.696 277,633 0.109 277,581 0.0 277,642 277,633 277639.0 4.2 0.138 

idkp2 541,724 428,422 1.313 880,465 2.753 541,724 0.313 541,604 0.0 541,724 541,653 541683.8 32.9 0.527 

idkp3 1,016,524 823,711 3.765 1,313,736 6.150 1,016,524 0.688 1,016,457 0.0 1,016,518 1,016,464 1016500.4 22.5 1.137 

idkp4 1,220,338 987,047 6.031 1,743,255 11.078 1,220,322 1.141 1,220,269 0.0 1,220,327 1,220,296 1220317.0 10.9 2.046 

idkp5 1,342,480 1,051,968 8.016 2,159,116 16.938 1,342,474 1.812 1,342,175 0.005 1,342,454 1,342,443 1342446.6 4.5 3.184 

idkp6 1,922,488 1,559,698 14.579 2,513,375 23.173 1,922,488 2.532 1,922,381 0.010 1,922,451 1,922,400 1922420.4 17.0 4.534 

idkp7 2,190,780 1,775,465 18.923 3,011,804 32.439 2,190,763 3.453 2,190,681 0.015 2,190,759 2,190,709 2190733.2 18.6 6.128 

idkp8 2,719,899 2,222,463 27.282 3,455,865 42.408 2,719,879 5.078 2,719,593 0.015 2,719,881 2,719,815 2719851.4 22.3 8.200 

idkp9 2,377,631 1,852,115 25.095 3,911,824 53.253 2,377,619 5.656 2,377,328 0.015 2,377,631 2,377,526 2377586.6 35.5 10.281 

idkp10 3,123,425 2,506,055 38.111 4,259,048 64.519 3,123,425 7.016 3,123,335 0.015 3,123,417 3,123,339 3123373.2 27.3 12.534 

Fig. 1. Comparison between C 
S 

and Time 1 
Time 2 

on 4 instances. 

 

 

 

 

 

 

From Tables 1 –4 , we can easily find that the developed approximate algorithms (i.e., Poly-DKP, App-2-DKP , and PSO-GRDKP)

based on the newly-designed exact algorithm (i.e., NE-DKP) obtain the better solving performances than the existing exact

algorithm (OE-DKP): more accurate values and lower solving times. 

Fig. 1 presents the comparison between 

C 
S and 

T ime 1 
T ime 2 

on 4 kinds of instances, where S = 

∑ n −1 
i =0 p 3 i +2 . This comparison is

to show the impact of C and S on the solving times of OE-DKP and NE-DKP. Tables 1–4 reflects that the solving time of

OE-DKP is lower than NE-DKP for instances with C < S and higher than NE-DKP for the instance with C > S . This indicates

that OE-DKP is more suitable for instances with the smaller C and NE-DKP is more suitable for instances with the smaller
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Fig. 2. Comparison of approximate ratios among Poly-DKP, App-2-DKP, and PSO-GRDKP on 4 instances. 

Fig. 3. Comparison of solving time among 5 algorithms on 4 instances. 

 

 

 

 

 

 

 

 

 

 

 

S . In addition, Fig. 1 shows that the curve of C 
S is completely identical to the curve of 

T ime 1 
T ime 2 

, where Time 1 and Time 2 are

the solving times of OE-DKP and NE-DKP, respectively. This indicates that the time ratio of OE-DKP and NE-DKP is indeed
C 
S as shown in Theorem 1 . Fig. 2 lists the comparative results of approximate ratios among Poly-DKP, App-2-DKP , and PSO-

GRDKP on 4 kinds of instances. From Fig. 2 , we can see that Poly-DKP has the better results, because its approximate ratios

are nearly equal to 1 on each data set. App-2-DKP obtains the worse results compared with Poly-DKP and PSO-GRDKP. Fig. 3

gives the comparison of solving time among 5 algorithms on each data set. When C and S are all very large, we can get

O ( n log 2 n ) < O ( n 3 ) < O 

(
n 3 

ε 

)
< O ( nC ) or O ( n log 2 n ) < O ( n 3 ) < O 

(
n 3 

ε 

)
< O ( nS ). This reflects that App-2-DKP has the fastest

solving speed and OE-DKP and NE-DKP are slowest. The solving speeds of Poly-DKP and PSO-GRDKP are slower than App-

2-DKP and faster than OE-DKP and NE-DKP. The experimental results in Tables 1 –4 and Fig. 3 confirm this conclusion. Even

for the D{0-1}KP instance with scale 3 n = 30 0 0 , the solving times of App-2-DKP are lower than 0.02 s. The solving times of

Poly-DKP and PSO-GRDKP are unrelated to value and weight coefficients, which increase with the increase of instance scale.
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OE-DKP and NE-DKP has the highest solving times. Especially for the instances with large value and weight coefficients, the

solving speeds of OE-DKP and NE-DKP are very slow. 

Above all, we conclude the experimental results and analysis as follows. For the small scale D{0-1}KP instance with small

value and weight coefficients, OE-DKP is the first choice when C < S and NE-DKP is more excellent when C > S . For the

large scale D{0-1}KP instance with large value and weight coefficients, Poly-DKP or PSO-GRDKP should be used to obtain a

fast solving, where PSO-GRDKP is more appropriate to the instances with extremely large scales. If there is not the higher

requirement to result, App-2-DKP is the best choice, because this approximate algorithm has the fastest solving speed among

all approximate algorithms. 

6. Conclusions and further works 

This article studied one exact and three approximate algorithms for solving Discounted {0-1} K napsack P roblem (D{0-

1}KP). Unlike the existing exact algorithm, The new exact algorithm (NE-DKP) was firstly designed based on the principle of

minimizing the total weight with the given sum of value coefficients. Then, three approximate algorithms were developed

based on the designed exact algorithm: fully Poly nomial-time approximation scheme (Poly-DKP), 2 - App roximation algo-

rithm (App-2-DKP ), and PSO based G reedy R epair algorithm (PSO-GRDKP). On four kinds of well-known real applications

of D{0-1}KP, we finally tested and analyzed the solving performances of proposed exact and approximate algorithms and

provided the useful instructions for the application scenarios of proposed D{0-1}KP algorithms. 

Our future research will be addressed as the following two issues. First, we will study the uncertainty measure criterion

for a D{0-1}KP instance and further use the uncertainty minimization theory [2,13–15,38,39,44] to design the D{0-1}KP

algorithm. Second, we will design the differential evolution [16,35] and artificial bee colony optimization [19,41] based on

GR-DKP to solve D{0-1}KP. 
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