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a b s t r a c t 

Instance selection is an important preprocessing step in machine learning. By choosing a 

subset of a data set, it achieves the same performance of a machine learning algorithm as 

if the whole data set is used, and it enables a machine learning algorithm to be feasible for 

and to work effectively with large data sets. Based on voting mechanism, this paper pro- 

poses a large data sets instance selection algorithm with MapReduce and random weight 

networks (RWNs). Firstly, the proposed algorithm employs the Map of MapReduce to parti- 

tion the large data sets into some small subsets, and deploys them to different cloud com- 

puting nodes. Secondly, the informative instances are selected in parallel with an instance 

selection algorithm. Thirdly, the Reduce of MapReduce is used to collect the selected in- 

stances from different cloud computing nodes and a selected instance subset is obtained. 

The previous three processes are repeated p times ( p is a parameter defined by the user), 

and p instance subsets are obtained. Finally, the voting method is used to select the most 

informative instances from the p subsets. The random weight network classifier is trained 

with the selected instance subset, and the testing accuracy is verified on the testing set. 

The proposed algorithm is experimentally compared with three state-of-the-art approaches 

which are CNN, ENN and RNN. The experimental results show that the proposed algorithm 

is effective and efficient. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Instance selection also named sample selection is to select a small representative subset from original data set by remov-

ing the redundant instances. In the framework of classification, the purpose of instance selection is to reduce computational

complexity of classification algorithms with little or no performance deterioration. Since Hart’s seminal work (i.e. CNN) [20] ,

many instance selection algorithms have been proposed by different researchers. CNN attempts to find a minimal consistent

subset (MCS) of the training set. A consistent subset S of a training set T correctly classifies every instance in T with the

same accuracy as T itself [7] . CNN algorithm can ensure that all instances in T are classified correctly by S . However, it

does not guarantee that S is a MCS. In addition, CNN is especially sensitive to noise, because noisy instances will usually
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be misclassified by their neighbors, and thus will be retained [44] . The reduced nearest neighbor (RNN) rule proposed by

Gates [17] starts with S = T and removes each instance from S if such a removal does not cause any other instances in T to

be misclassified by the instances remaining in S . RNN is computationally more expensive than CNN. The selective nearest

neighbor rule (SNN) proposed by Ritter [36] improves CNN and RNN by ensuring that a MCS can be found. SNN is much

more complex and its computational time is significantly greater than CNN and RNN. Based on the relative significance of

the instances in the training set, Dasarathy proposed an algorithm which can identify MCS [11] . The editing nearest neigh-

bor (ENN) rule proposed by Wilson [44] employs the so called editing rule to remove noisy instances in the training set.

The rule is that all instances which are incorrectly classified by their nearest neighbors are assumed to be noisy instances.

Based on the concepts of coverage and reach ability, the iterative case filtering (ICF) algorithm was introduced in [7] . The

reachable set depends on the distances between each instance and its nearest enemy, and the coverage set of every instance

is a list of its associates. 

Recently, some new instance selection algorithms were developed by different authors. Nikolaidis et al. proposed a class

boundary preserving algorithm [32] , which discards instances near center and retains a suitable number of instances near

border. Based on the idea of so-called chain which is a sequence of nearest neighbors from alternating classes, Fayed et al.

presented a template reduction algorithm [14] . The authors made the point that patterns further down the chain are close to

the classification boundary. Li and Maguire presented a critical pattern selection algorithm by considering local geometrical

and statistical information [27] . This algorithm selects both border and edge patterns from the data set. Based on the concept

of classifier ensemble, César et al. proposed an instance selection algorithm with linear complexity [8] . Based on the divide-

and-conquer principle, Nicolía et al. proposed an instance selection algorithm dealing with the class-imbalance problem [31] .

In order to deal with the classification problems of large data sets, Triguero et al. proposed MapReduce-based framework for

nearest neighbor classifier [39] . Based on gamma evaluator [33] , Onan proposed a fuzzy-rough instance selection method for

nearest neighbor classifier. This method fuzzifies conditional attributes and decision attributes, the fuzzification will result

in high computational complexity. From meta-learning perspective, Leyva [26] defined a set of data-complexity measures,

and applied these measures to instance selection. This is a new technical route for instance selection, but as a preprocessing

step, this kind of approaches must build the meta-data, which is very difficult in some cases. Based on outlier pattern

analysis and prediction, Lin et al. [29] proposed an approach for detecting the representative instances from large data sets.

Based on hyperrectangle clustering, Hamidzadeh et al. [19] proposed an instance reduction method, which removes non-

border(interior) instances and keeps the ones on border and near border. 

Most of the instance selection algorithms are tailored for nearest neighbor classifier, so the instances selected with these

algorithms are often only suitable for nearest neighbor classifiers. In addition, the computational complexities of these al-

gorithms are also very high, for large data sets some algorithms are impracticable. Motivated by the idea of MapReduce

[12] and voting mechanism [25] , we propose an instance selection algorithm named MRVIS (MapReduce and Voting based

Instance Selection) which can deal with the problems mentioned above. MRVIS consists of four steps. Firstly, the Map of

MapReduce is employed to partition the large data set into some small subsets which are deployed to different cloud com-

puting nodes. Secondly, the informative instances are selected in parallel with an instance selection algorithm (in this paper,

we use the CNN for selecting the informative instances, actually arbitrary instance selection algorithm can be used). Thirdly,

the Reduce of MapReduce is used to collect the selected instances from different cloud computing nodes and an instance

subset is obtained. The previous three steps are repeated p times ( p is a parameter defined by the user), and p instance

subsets are obtained. Finally, the voting method is used to select the most informative instances from the p subsets. In this

paper, the RWNs [38] also named RVFLNs (Random Vector Functional Link Networks) networks (the case of no direct link

from input layer to output layer) [23,34,35] are used as classifier to test the quality of the selected instances due to their

fast learning speed and good generalization ability. 

The paper is organized as follows. Some related notions and theoretical background are given in Section 2 . The proposed

method is presented in Section 3 . Experimental results and analysis are presented in Section 4 . Section 5 concludes the

paper. 

2. Preliminaries 

MapReduce and random weight networks are briefly reviewed in this section. 

2.1. MapReduce 

MapReduce is a simple model for distributed computing that abstracts away many difficulties in parallelizing data man-

agement operations across a cluster of commodity machines [12] . MapReduce reduces many complex tasks such as data

partitioning, scheduling tasks across many machines, handling machine failures, and performing inter-machine communica-

tion. Since it is simple and easy to use, MapReduce has been successfully applied in many fields, such as machine learning,

biological information processing, prediction and forecast, etc. By only using the information of protein sequences, You et al.

[47] propose a novel MapReduce-based parallel support vector machine for large-scale predicting protein-protein interac-

tions. Wu et al. [45] propose a MapReduce-based algorithm to mining event association rules in large scale distributed

systems, and applied the proposed algorithm to detect events, filter irrelative events, and discover their temporal correla-

tions. In [46] , the authors discussed challenges that need to be addressed to mitigate DDoS(Distributed Denial-of-Service)
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Fig. 1. Data manipulation processes of MapReduce. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attached in SDN(Software-Defined Wetworking) with MapReduce. This work can help understand how to make full use of

SDN’s advantages to defeat DDoS attacks in cloud computing environments and how to prevent SDN itself from becoming

a victim of DDoS attacks. Regarding the problem of resource optimization in MapReduce, Li et al. [28] proposed two online

dynamic resource allocation algorithms for cloud computing system. The proposed algorithm can adjust the resource allo-

cation dynamically based on the updated information of the actual task executions. Ding et al. [13] proposed a hierarchical

coevolutionary MapReduce based knowledge reduction algorithm for big data analysis. Based on frequent pattern mining,

Bechini et al. [5] proposed a MapReduce associative classifier. Based on the MapReduce model, Guo et al. [16] proposed a

community discovery algorithm, which can discover communities in large scale social networks efficiently and accurately.

Wang [41] edited a special issue which focuses on discussing the problem of how to use uncertainty to learn with big data.

Fig. 1 shows the data manipulation processes of MapReduce. 

MapReduce consists of two phases: map and reduce in which users specify the computation, and the underlying runtime

system automatically parallelizes the computation across large-scale clusters of machines [12] . Specifically, the computation

takes a set of input key/value pairs, and produces a set of output key/value pairs. The map function written by the user takes

an input pair and produces a set of intermediate key/value pairs. The MapReduce library groups together all intermediate

values associated with the same intermediate key i and passes them to the reduce function. The reduce function also written

by the user accepts an intermediate key i and a set of values for that key. It merges these values together to form a smaller

set of values. The map and reduce functions can be written as follows. 

map(k 1 , v 1 ) → list(k 2 , v 2 ) , 
reduce (k 2 , list(v 2 )) → list(v 2 ) . 

2.2. Random weight networks (RWN) 

RWNs were firstly proposed by Schmidt et al. in 1992 for training single-hidden layer feed-forward neural networks

(SLFNs) [38] . At the same time, a very similar model named random vector functional-link networks (RVFLNs) was inde-

pendently proposed by Pao et al. [34] . The learning and generalization characteristics of the RVFLNs are investigated in [35] ,

and the approximation capability of the RVFLNs is studied in [23] . The only difference between RWNs and RVFLNs is that

there are direct links in RVFLNs from input layer to output layer. 

In RWNs, the input weights and the hidden layer biases can be chosen randomly, the output weights can be analytically

determined with Moore–Penrose generalized inverse [18] of the hidden layer output matrix. Unlike other gradient-descent

based learning algorithms (such as back propagation algorithm [6] ), RWNs does not require iterative techniques to adjust

input weights and hidden layer biases during training process. By randomly initializing input weights and hidden layer

bias [48] , RWNs can overcome many drawbacks of the traditional gradient-based learning algorithms such as local minimal

and low learning speed. Due to the fast learning speed, good generalization and approximation ability, RWNs and RVFLNs

have received considerable attentions. For example, He et al. applied random weight network to fuzzy nonlinear regres-

sion analysis [21,22] , in which the authors derived a new output-layer weight updating scheme based on the triangular

fuzzy number input-output data set [21] , and revealed some feasible guidelines to the applications of uncertainty in mul-

tiple criteria decision making techniques [22] . An iterative learning algorithm for RWNs was proposed in [10] , which can

train RWNs with large scale data sets. A fast decorrelated neural network ensemble method for RWNs was proposed in [1] ,

which can overcome the drawbacks of the negative correlation ensemble learning. A local learning algorithm and a proba-

bilistic learning algorithm for RWNs were proposed in [51] and [9] respectively, both of which can improve the robustness
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of learning system. In [37] , a distributed learning algorithm for RVFLNs was proposed to handle the problem of large scale

learning. Lu et al. [30] discussed the computational problem of Moore–Penrose inverse, and proposed two effective methods

for computing Moore–Penrose inverse. Recently, Wang et al. [42,43] studied the relationship between generalization abil-

ities and uncertainties of base classifiers in ensemble learning, and obtained very valuable conclusion: the classifier with

higher uncertainty outputs has better generalization for complex boundary problems. Arqub et al. [2] conducted a further

investigation on modeling problem of uncertainty of dynamic systems, and some solutions to the problem were given in

[3,4] . Zhang and Suganthan presented a comprehensive evaluation and an excellent survey on random vector functional link

networks in [49] and [50] respectively. 

Given a training data set D = { (x i , y i ) | x i ∈ R d , y i ∈ R k , i = 1 , 2 , · · · , n } , where x i is a d × 1 input vector and y i is a k × 1

target vector, a SLFN with m hidden nodes is formulated as 

f (x i ) = 

m ∑ 

j=1 

β j g(w j · x i + b j ) , i = 1 , 2 , · · · , n, (1)

where w j = (w j1 , w j2 , · · · , w jd ) 
T is the weight vector connecting the j th hidden node with the input nodes, b j is the thresh-

old of the j th hidden node, w j and b j are randomly initialized, and β j = (β j1 , β j2 , · · · , β jm 

) T is the weight vector connecting

the j th hidden node with the output nodes. The parameters β j ( j = 1 , 2 , · · · , m ) can be estimated by least-square fitting with

the given training data set D , i.e. , satisfying 

f (x i ) = 

m ∑ 

j=1 

β j g(w j · x i + b j ) = y i . (2)

Eq. (2) can be written in a more compact format as 

Hβ = Y, (3)

where 

H = 

⎡ 

⎣ 

g(w 1 · x 1 + b 1 ) · · · g(w m 

· x 1 + b m 

) 
. . . 

. . . 
. . . 

g(w 1 · x n + b 1 ) · · · g(w m 

· x n + b m 

) 

⎤ 

⎦ , (4)

β = (βT 
1 , · · · , βT 

m 

) , (5)

and 

Y = (y T 1 , · · · , y T n ) . (6)

H is the hidden layer output matrix of the network, where the j th column of H is the j th hidden node’s output vector with

respect to inputs x 1 , x 2 , ���, x n , and the i th row of H is the output vector of the hidden layer with respect to input x i . If

the number of hidden nodes is equal to the number of distinct training samples, the matrix H is square and invertible, and

SLFNs can approximate these training samples with zero error. But generally, the number of hidden nodes is much less than

the number of training samples. Therefore, H is a non-square matrix and one cannot expect an exact solution of the system

(3). Approximating Eq. (3) using the least-square fitting is to solve the following equation: 

min 

β
= ‖ Hβ − Y ‖ . (7)

The smallest norm least-squares solution to (7) may be easily obtained: 

ˆ β = H 

† Y, (8)

where H † is the Moore–Penrose generalized inverse of matrix H . 

The RWN algorithm [38] is presented as follows. 

3. The proposed instance selection algorithm 

In this section, we firstly present the idea of the proposed algorithm, and then present the proposed algorithm. The

idea of the proposed algorithm is simple, it contains four phases. In the first phase, the large data set is partitioned into

several small subsets with Map of MapReduce, and then these subsets are deployed to different cloud computing nodes.

In the second phase, the informative instances are selected from the deployed subset in parallel with an instance selection

algorithm (in this paper, we use CNN algorithm which is simple and easy to implemented). In the third phase, the Reduce

of MapReduce is used to merge the selected instances from different cloud computing nodes, and an instance subset is

obtained. The previous three phases are repeated p times to generate p instance subsets. In the fourth phase, we cast votes

for the instances in the p instance subsets. If an instance x in one of p subsets, then x receives a vote, the number of votes of

an instance x is denoted by v ote (x ) . Obviously, the more votes a selected instance received, the more important this instance

is. The final selected instances are the ones whose number of votes is greater than or equal to a user predefined threshold
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Fig. 2. The idea of the proposed algorithm. 

Algorithm 1: RWN algorithm. 

Input : Training data set D = { (x i , y i ) | x i ∈ R d , y i ∈ R k , i = 1 , 2 , · · · , n }, an activation function g , and the number of hidden 

nodes m . 

Output : Weights matrix ˆ β . 

1 Randomly assign input weights w j and biases b j , j = 1 , 2 , · · · , m ; 

2 Calculate the hidden layer output matrix H; 

3 Calculate output weights matrix ˆ β = H 

† Y . 

 

 

 

 

 

 

 

 

 

 

 

 

λ. The idea of the proposed algorithm is illustrated in Fig. 2 . Fig. 3 shows an example of the proposed algorithm MRVIS, the

data set used in this example includes 50 instances, and p = 3 , λ = 3 . 

Given a training data set D = { (x i , y i ) | x i ∈ R d , y i ∈ R k , i = 1 , 2 , · · · , n } , the proposed algorithm is described in Algorithm 2 .

It is well known that the computational time complexities of CNN, RNN, and ENN are O ( ksn 2 ), O ( ksn 2 ) and O ( kn 2 ) re-

spectively [24] , where n is the number of instances of data set, k is the number of nearest neighbors, and s is the number

of the selected instances. In order to compare the proposed algorithm MRVIS with CNN, RNN, and ENN, a simple theoretical

analysis of the computational time complexity of the proposed algorithm MRVIS is presented. 

The algorithm MRVIS includes 14 steps. It is obvious that the computational time complexity of the step 1, the for loop

(steps 6–9), the if statement (steps 11–13), and the step 14 are all O (1). Since the number of instances of data set is n , it is

easy to obtain the computational time complexity of step 2 is O ( n ). If t is the number of computing nodes, and the instance

selection algorithm used in MRVIS is CNN, then the computational time complexities of the step 3 and step 4 are O ( 1 t ksn 2 )

and O ( ts ) respectively. 

Accordingly, the computational time complexity of algorithm MRVIS is 3 × O (1) + O (n ) + O ( 1 t ksn 2 ) + O (ts ) . Obviously,

the computational time complexity of algorithm MRVIS is O ( 1 t ksn 2 ) in the worst situation. We summarize the results in

Table 1 . From the Table 1 , it is clear that the computational time complexity of MRVIS is the lowest compared with CNN,

RNN, and ENN. 
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Fig. 3. An example of the proposed algorithm MRVIS with p = 3 , λ = 3 . 

 

 

 

 

 

 

The key issue of the implementation of the proposed algorithm is the design of the mapper function and the reducer

function of MapReduce. In our implementation, we select the important instances in parallel with CNN, and vote in parallel

for the selected instances in cloud computing platform. We present the design of the mapper function and the reducer

function for selecting instance with CNN in Algorithms 3 and 4 respectively. The design of the mapper function and the

reducer function for voting for instances can be similarly obtained. 

In Algorithms 3 and 4 , key is the class label, value is all attributes. HDFS is the Hadoop Distributed File System. 

4. Experimental results and analysis 

The effectiveness of our proposed method is verified through numerical experiments in a cloud computing platform

with 6 nodes, the configuration of the cloud computing platform is given in Table 2 , the configuration of nodes of the cloud

computing platform is given in Table 3 . 
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Algorithm 2: MRVIS: MapReduce and Voting based Instance Selection. 

Input : Training data set D = { (x i , y i ) | x i ∈ R d , y i ∈ R k , i = 1 , 2 , · · · , n }, the number of iteration p, and the threshold of 

votes λ. 

Output : The selected instance subset S. 

1 Initialize S = φ; 

2 Partition the large data set into several small subsets with map mechanism of MapReduce, and deploy them to 

different cloud computing nodes; 

3 Parallelly select the informative instances from the subsets in different cloud computing nodes with an arbitrary 

instance selection algorithm; 

4 Merge the selected instances by different cloud computing nodes, and obtain a selected instance subset; 

5 Repeat steps 2–4 p times, and obtain p selected subsets S 1 , S 2 , · · · , S p ; 

6 for (i = 1 ; i ≤ p; i = i + 1) do 

7 if (x ∈ S i ) then 

8 v ote (x ) = v ote (x ) + 1 ; 

9 end 

10 end 

11 if (v ote (x ) ≥ λ) then 

12 S = S ∪ { x } ; 
13 end 

14 Return S. 

Table 1 

Comparison of computing time complexity of the 4 algo- 

rithms. 

Algorithms CNN RNN ENN MRVIS 

Complexity O ( ksn 2 ) O ( ksn 2 ) O ( kn 2 ) O ( 1 
t 

ksn 2 ) 

Algorithm 3: The mapper function for selecting instances with CNN. 

Input : key, value, context. 

Output : The selected instance subset S. 

1 Initialize T with the data that mapper received; 

2 Randomly pick an instance x i from T ; 

3 S = x i ; 

4 T = T − x i ; 

5 repeat 

6 append = F ALSE; 

7 for (each x ∈ T ) do 

8 find instance s in S, such that d(x, s ) = min 

s j ∈ S 
d(x, s j ) ; 

9 if (Class (x ) 	 = Class (s )) then 

10 S = S ∪ x ; 

11 T = T − x ; 

12 append = T URE; 

13 end 

14 end 

15 until append=FALSE; 

16 return S. 

Algorithm 4: The reducer function for selecting instances with CNN. 

Input : key, value, context. 

Output : key, value. 

1 for (all instances received form each mapper ) do 

2 sort the pair of key and value; 

3 output the results to HDFS; 

4 end 
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Table 2 

The configuration of the cloud computing platform. 

Items Configuration 

Operating System Ubuntu 13.04 

Hadoop Hadoop 0.20.2 

JDK JDK-7u71-linux-i586 

Eclipse Eclipse-java-luna-SR1-linux 

Table 3 

The configuration of the nodes of the cloud computing platform. 

Items Configuration 

CPU Inter Xeon E5-4603 with two cores, 2.0GZ 

Memory 8G 

Network Card Broadcom 5720 QP 1Gb 

Hard Disk 1TB 

Table 4 

The basic information of the 8 data sets. 

Data sets #Instances #Attributes #Classes 

Banana 5300 2 2 

Cloud 10 0 0 0 2 2 

Gaussian 20 0 0 0 2 2 

Shuttle 580 0 0 9 7 

Artificial 250 0 0 0 10 2 

cod_rn 487565 8 2 

Poker 1025010 10 10 

Susy 50 0 0 0 0 0 17 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two experiments are conducted on 8 data sets including 2 artificial data sets and 6 UCI data sets [15] . The first exper-

iment is to determine a suitable range of the random weights and the suitable values of parameters p and λ. The second

experiment is to compare the proposed algorithm MRVIS with three state-of-the-art approaches CNN, ENN and RNN on

three aspects: the number of selected instances, the condensed ratio, and testing accuracy. There are 4 small data sets and

4 large data sets in the 8 selected data sets, the largest data set includes five hundred million instances with 17 attributes

and two classes. For each data set, the 10-fold cross-validation are run 10 times. The experimental results are the average

of the 10 outputs. The basic information of the 8 data sets is listed in Table 4 . 

The first artificial data set is two-dimensional cloud data with two equal priori probable classes [40] . The class ω 1 is the

mixture of three different Gaussian distributions: 

p(x | ω 1 ) = 

1 

2 

(
p 1 (x ) 

2 

+ 

p 2 (x ) 

2 

+ p 3 (x ) 

)
, (9)

where, x = (x 1 , x 2 ) , and 

p i (x ) = 

1 

2 πσix 1 σix 2 

× exp 

(
− (x 1 − μix 1 ) 

2 

2 σ 2 
ix 1 

− (x 2 − μix 2 ) 
2 

2 σ 2 
ix 2 

)
, (10)

where μix 1 
and μix 2 

are the means of x 1 and x 2 of the i th Gaussian component, σix 1 
and σix 2 

are the corresponding standard

deviations. 

The class ω 2 is a single Gaussian distribution: 

p(x | ω 2 ) = 

1 

2 π
exp 

(
−x 2 1 + x 2 2 

2 

)
. (11)

The second artificial data set is a two-dimensional Gaussian data with two classes ω i (i = 1 , 2) , the distribution of ω i is

p(x | ω i ) ∼ N (μi , �i ) , (12)

where μ1 = (0 . 1597 , 1 . 3541) T , μ2 = (1 . 1597 , 1 . 4541) T , �1 = 

[0 . 1726 0 . 0912 

0 . 0912 0 . 1020 

]
, and �2 = 

[0 . 1726 0 . 0912 

0 . 0912 0 . 1020 

]
. 

4.1. Experiment 1: To determine a suitable range of the random weights and the suitable values of parameters p and λ

For random weight networks, it is important to generate random weights with a uniform distribution within a suitable

range, which is usually set to the interval [ −1 , +1] . However, there are no theoretical or experimental analysis on the ra-
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Fig. 4. The relationship between T-accuracy and the w on 4 small data sets. 

Table 5 

The influence of the two parameters on the performance of the proposed algorithm. 

Artificial cod_rn Poker Susy 

p λ T-accuracy p λ T-accuracy p λ T-accuracy p λ T-accuracy 

1 1 0 .5521 1 1 0 .8923 1 1 0 .8209 1 1 0 .8012 

3 2 0 .6019 3 2 0 .9228 3 2 0 .8927 3 2 0 .8609 

5 3 0 .6266 5 3 0 .9409 5 3 0 .9205 3 2 0 .8851 

6 4 0 .6272 6 4 0 .9409 7 4 0 .9205 3 2 0 .8927 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tionality of this setting in the literature. In experiment 1, we conduct an experimental analysis on the 8 selected data sets,

and conclude that in our experiments this setting is suitable. Furthermore, we conjecture that this setting is reasonable for

most applications. In experiment 2, the random weighting are generated in this way. 

In our work, we use random weight networks as classifiers to test the selected subsets of instances. In order to determine

the suitable range of the random weights, for each data set, we generate the random weights with a uniform distribution

within interval [ −w, + w ] , where w is a positive real number. The w is initialized to 0.25 and increased by 0.25 each time

until it is equal to 2.0. With w set to different values we record the average testing accuracies (denoted by T-accuracy)

of the RWNs with fixed structure. The experimental results on 4 small data sets and on 4 large data sets are shown in

Figs. 4 and 5 . From Figs. 4 and 5 , we can see that the value of w does affect the performance of the RWNs, and the RWNs’

performance are poor when the value of w is too small or too large, for example, when w = 0 . 25 or w = 2 . 00 . For all data

sets, the optimal performance are taken when w = 1 . Accordingly, we experimentally conclude that the suitable range of

random weights is [ −1 , +1] . 

In the proposed algorithm MRVIS, there are two user defined parameters p and λ. Generally, the parameter λ should

satisfy λ > 0.5, which means that the selected instances should receive more than half the votes. Regarding the parameter

p , the experimental results show that the testing accuracy (the T-accuracy in the following Table 5 ) achieves the largest

values on most data sets when p is equal to 5 or 6. In experiment 2, we set p = 6 and λ = 4 . The influence of the two

parameters on the performance of the proposed algorithm MRVIS is listed in Table 5 . 

4.2. Experiment 2: The comparison between the proposed algorithm with CNN, ENN and RNN 

In experiment 2, we compare the proposed algorithm MRVIS with the three state-of-the-art approaches CNN, ENN and

RNN. On the 4 small data sets, we compare MRVIS with CNN, ENN and RNN on three aspects: the number of selected

instances, the condensed ratio, and testing accuracy. The comparisons of performances are listed in Tables 6–9 . While on 4
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Fig. 5. The relationship between T-accuracy and the w on 4 large data sets. 

Table 6 

The experimental results on data set banana. 

Algorithms S-number S-ratio T-accuracy 

CNN 752 4 .6542 0 .8854 

ENN 2893 1 .2098 0 .8945 

RNN 739 4 .7361 0 .8791 

MRVIS 433 8 .0831 0 .8796 

Table 7 

The experimental results on data set cloud. 

Algorithms S-number S-ratio T-accuracy 

CNN 1675 3 .9797 0 .8403 

ENN 5492 1 .2138 0 .8942 

RNN 1599 4 .1689 0 .8399 

MRVIS 785 8 .4917 0 .8418 

Table 8 

The experimental results on data setGaussian . 

Algorithms S-number S-ratio T-accuracy 

CNN 2585 5 .1579 0 .9172 

ENN 11843 1 .1258 0 .9418 

RNN 2540 5 .2492 0 .9171 

MRVIS 1647 8 .0953 0 .9129 

Table 9 

The experimental results on data set shuttle. 

Algorithms S-number S-ratio T-accuracy 

CNN 564 68 .5567 0 .9978 

ENN 37845 1 .0270 0 .9952 

RNN 541 71 .4713 0 .9974 

MRVIS 397 97 .3955 0 .9854 
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Table 10 

The experimental results on data set artificial. 

Algorithms S-number S-ratio T-accuracy CPU time 

CNN 91754 1 .8164 0 .6048 18415 

ENN - - - - 

RNN - - - - 

MRVIS 41786 3 .9886 0 .6272 451 

Table 11 

The experimental results on data set cod_rn. 

Algorithms S-number S-ratio T-accuracy CPU time 

CNN 39813 8 .1810 0 .9389 24967 

ENN - - - - 

RNN - - - - 

MRVIS 21867 14 .8950 0 .9409 768 

Table 12 

The experimental results on data set poker. 

Algorithms S-number S-ratio T-accuracy CPU time 

CNN - - - - 

ENN - - - - 

RNN - - - - 

MRVIS 61242 11 .1580 0 .9205 4621 

Table 13 

The experimental results on data set susy. 

Algorithms S-number S-ratio T-accuracy CPU time 

CNN - - - - 

ENN - - - - 

RNN - - - - 

MRVIS 268415 12 .4186 0 .8827 15682 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

large data sets, besides the mentioned three aspects, we also compared the CPU time. The experimental results are given

in Tables 10–13 . In the Tables 6 –13 , S-number denotes the number of selected instances, C-ratio denotes the condensed ratio,

T-accuracy denotes the testing accuracy respectively, while in the Tables 10 –13 , the symbol “-” means that the results cannot

be obtained. Compared with CNN, ENN, and RNN, from the experimental results listed in Tables 6 –13 , we can find that our

algorithm removes much more instances while obtaining the similar accuracies. What’s more, CNN do not work out results

on the two largest data sets: poker and susy, ENN and RNN do not work out results on all four largest data sets, while our

proposed algorithm can work well on all four large data sets. 

5. Conclusions 

Based on MapReduce and voting mechanism, this paper proposes a large data set instance selection algorithm named

MRVIS, which is practicable on large data sets, while some classic algorithms (e.g. CNN, ENN, RNN) are impracticable. Fur-

thermore, the proposed algorithm has three major advantages: (1) fast learning speed, (2) high condensed ratio, and (3)

no limitation on the instance selection algorithm used in MRVIS. The fast learning speed is due to the parallelization of

selecting informative instances, the high condensed ratio is achieved by voting mechanism. The experimental results have

verified that the proposed algorithm is much more feasible and effective than the three state-of-the-art approaches CNN,

ENN and RNN. In our future works, (1) we will introduce a regularization term into optimal problem (7) and investigate

its impact on the performance of the proposed algorithm. (2) We will theoretically analyze the rationality of the setting of

random weights. 
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