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a b s t r a c t 

In big data fields, with increasing computing capability, artificial neural networks have shown great 

strength in solving data classification and regression problems. The traditional training of neural net- 

works depends generally on the error back propagation method to iteratively tune all the parameters. 

When the number of hidden layers increases, this kind of training has many problems such as slow con- 

vergence, time consuming, and local minima. To avoid these problems, neural networks with random 

weights (NNRW) are proposed in which the weights between the hidden layer and input layer are ran- 

domly selected and the weights between the output layer and hidden layer are obtained analytically. 

Researchers have shown that NNRW has much lower training complexity in comparison with the tradi- 

tional training of feed-forward neural networks. This paper objectively reviews the advantages and dis- 

advantages of NNRW model, tries to reveal the essence of NNRW, gives our comments and remarks on 

NNRW, and provides some useful guidelines for users to choose a mechanism to train a feed-forward 

neural network. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Artificial neural networks (ANNs) have received considerable

attention due to its powerful ability in image processing, speech

recognition, natural language processing, etc. The ANN models

performance depends largely on the quantity and quality of data,

computing power, and the efficiency of algorithms. Traditional

ANNs train models by iteratively tuning all the weights and biases

in minimizing a loss function which is defined as the difference

between model predictions and real observations. During the

training process, the derivatives of the loss function are back

propagated to each layer to guide parameter adjustment [1] .

Unfortunately this method has several critical drawbacks, such

as slow convergence, local minima problem, and model selection

uncertainty. 

Deep learning refers to train a multilayer neural network by

using a gradient based technique, which has become an unprece-

dented hot research topic after AlphaGo, an artificial intelligence

program based on deep learning technology, beat Lee Sedol, the

famous 18-time Go world champion [2] . Deep learning trains

models in a similar way as the traditional ANNs do. In deep

learning, all the parameters are first initialized by using unsu-

pervised methods and then are tuned by using Back Propagation
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BP) technique method [1] . The multilayer architecture can be

reated as a whole and all the internal parameters need to be

ne-tuned iteratively. As the depth increases, training a deep

earning model needs tremendous amount of time, even on the

owerful GPU-based computers [3–7] . In addition, deep learning

ith BP has all weaknesses that ANNs have. 

Neural network with random weights (NNRW) provides a solu-

ion for the problems that traditional ANNs and the BP-based deep

earning approaches have. NNRW is defined as a non-iterative

raining algorithm in which the hidden weights and biases are

andomly selected from a given range and kept same throughout

he training process while the weights between the hidden layer

nd the output layer are obtained analytically. Compared with

raditional learning with global tuning such as deep learning with

P-based method, NNRW can achieve much faster training speed

ith acceptable accuracy. In addition, NNRW is easy to implement

nd its universal approximation capability has been proven in

heory [8–10] . 

In recent years, there are several review articles about NNRW

ave been published. Deng et al. [11] provided an overview of

xtreme learning machine (ELM) theory and its variants, especially

n online sequential ELM (OS-ELM), incremental ELM (I-ELM), ELM

nsembles, etc. In addition, [11] mentioned some of the embryos

f deep ELM architecture, such as ELM Auto-encoder (ELM-AE)

nd Multilayer ELM (ML-ELM). With the rapid development of

LM, many improved algorithms and diverse applications have

merged recently. Huang et al. [12] has shown that, apart from
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Fig. 1. The evolvement of feed-forward NNRW. 
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lassification and regression, ELM can be extended to deal with

ompression, feature learning, and clustering. The ELM hardware

mplementation and parallel computation techniques of ELM are

lso being mentioned in [12] . 

Although [11,12] have offered a thorough overview of earlier

LM theory and its applications, there are still two important

roblems remain untouched. First, the essential idea and training

echanism of ELM are the same as other types of NNRW, such as

andom vector functional link networks (RVFL) [13] and Schmidts

ethod [14] (refer to Section 2 for details). However, the above

eview articles do not touch on the development of this field and

ack of discussion of these similar algorithms. Second, it is well

nown that deep neural network can obtain high-level represen-

ation from data, which is the core reason for the success of deep

earning. Intuitively, NNRW with deep architecture can greatly

mprove the performance of existing models and be applied to

ore complex tasks. Actually, a large number of successful cases

ave sprung up in recent years. However, the above documents

ack the relevant contents. 

Zhang et al. [15] and Li et al. [16] have conducted a compre-

ensive study on the relationship between the parameters and the

erformance of RVFL (which is also a type of NNRW) and given a

eries of guidance for building RVFL models. Zhang and Suganthan

17] and Scardapane and Wang [18] presented a survey on the

volution of NNRW and its related topics, especially on RVFL,

adial basis function network with random weights, and recurrent

etworks with random weights. However, none of these reviews

ention ELM theory and its applications, and there is a lack of

omments on the relationship between ELM and other NNRW. 

Based on the above reasons, this paper makes a comprehensive

urvey on the development of NNRW theory and its applica-

ions, especially on the discussion of the differences between

hese algorithms (i.e., RVFL, Schmidts method, ELM, etc.) and

he evolution of deep NNRW (such as Auto-encoder with NNRW,

estricted Boltzmann machine with NNRW, and convolutional

eural networks with NNRW). 

It is worth noting that, regarding the focuses and contents, our

eview is quite different from some existing surveys mentioned

bove. The architecture of this paper is shown in Fig. 1 . 

The rest of the paper is organized as follows. We first review

he advantages and disadvantages of shallow neural networks

ith random weights by incorporating our comments in Section 2 ,

nd then describe the development of deep neural network with

andom weights and its applications in Section 3 , and finally

onclude the paper in Section 4 . 

. Shallow feed-forward neural network with random weights 

nd applications 

Randomness has been introduced into artificial neural network

ince the period of perception model [19] . Inspired by the biolog-

cal nervous system, Rosenblatt [19] designed a perception model,
hich includes retina of sensory units (S-points, used to trans-

it stimulation signals to association cells), a set of association

ells (A-units, generating reflection of excitement or inhibition

ccording to the value of impulse intensities), and response units

R-unit, giving responses in a similar way as A-units do). In this

erception model, the connections between any two A-units are

ssumed to be random. Rosenblatt observed that this system with

andomly connected units can give specific responses to specific

timuli under certain constraints. 

Inspired by the pioneers work, Pao et al. [13] proposed Ran-

om Vector Functional Link Networks (RVFL) and Schmidt et al.

14] proposed another single layer feed-forward neural network

ith random weights, both in 1992. Since then, many researchers

ave devoted tremendous efforts to developing theories and appli-

ations for neural networks with random weights. In this section,

e will study two typical shallow feed-forward neural networks

ith random weights and their applications. 

.1. Random Vector Functional Link Networks (RVFL) and its 

pplications 

Random Vector Functional Link Networks (RVFL) was proposed

y Pao et al. in the 1990s [8,9,13,20,21] . The structure of RVFL is

hown in Fig. 2 . RVFL is a special single layer feed-forward neural

etwork (SLFN), in which the input layer is directly connected to

oth the hidden layer and the output layer. The weights between

he input layer and hidden layer are randomly selected from

 −1, 1], while the weights between the input layer and output

ayer and the weights between the hidden layer and output

ayer are obtained by MooreCPenrose pseudo-inverse. The authors

ointed out that not all the weights in RVFL are equally important

nd it is not necessary to iteratively tune all of them [21] . In addi-

ion, the authors showed several advantages of RVFL, such as easy

ardware implementation [13] , fast convergence [21] , powerful

pproximation capability [8,9] , and satisfying the requirements of

eal-time applications [20] . 

Zhang et al. [15] and Li et al. [16] have conducted a lot of

xperiments to study the relationship between hidden parameters

nd the performance of RVFL. Zhang and Suganthan [15] show

hat the direct links between input layer and output layer have

ignificant impact on the performance of RVFL. Using Radbas as

ctivation function often can achieve better performance than

sing either hardlim or sign as activation function. Li and Wang

16] have studied the relationship between the scope setting of

idden parameters and the model performance. They mentioned

hat it is improper to select hidden weights and biases from an

mpirically fixed scope setting (i.e., [ −1, 1]) for any RVFL model. 

So far, single hidden layer RVFL and its variants have been

idely used in real-world applications. Some notable applica-

ions include time-series data prediction [22] , English language

andwritten script recognition [23] , semi-supervised learning [24] ,

ardware implementation [25] , conditional probability densities
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Fig. 2. The structure of RVFL. 

Fig. 3. The structure of Schmidt’s method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The structure of ELM. 
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prediction [26,27] , Ensemble learning [28] , distributed learning

[29] , signal enhancement [30] , etc. 

2.2. Standard feed-forward neural network with random weights and 

extreme learning machine 

At same time when Pao et al. proposed RVFL [8,9,13] , Schmidt

et al. proposed another standard feed-forward neural network

with random weights [14] . The structure of this network is shown

in Fig. 3 . 

Unlike RVFL, there is no direct link between the input layer and

output layer. The weights between the input layer and hidden layer

are randomly selected and kept same throughout the training pro-

cess. The weights between the hidden layer and output layer are

determined by using the Fisher method. Note that the value multi-

plied by the node and the weight (between the node and the out-

put node) can be used as the threshold value to absorb the system

error. The paper shows that this method can achieve comparable

accuracy and much smaller standard deviations compared with the

standard back propagation method in low dimensional problems. 

Inspired by this work, more and more related theories and

applications have been developed in recent years. One of the most

attractive theories is proposed by Huang et al. in 2004 with the

new name extreme learning machine (ELM) [31] . ELM extends
he above standard feed-forward neural network with random

eights in many ways, such as setting the bias of the output

ode to zero, transforming different hidden nodes to one unified

orm, etc. Ridge regression theory, linear systems stability theory,

atrix stability theory, neural network generalization performance

heory, and maximal margin theory are also embodied in ELM

heory [32–34] . Huang et al. [31] gave a series of theoretical

nalysis and rigorous theoretical proof for ELM. It shows that

lmost any nonlinear piecewise continuous random hidden nodes

including Sigmoid nodes, Radial basis function nodes, Wavelet,

ourier series and Biological neurons) can be used in ELM, and

he resultant networks have universal approximation capabilities

10] . Huang et al. [35] have proven that support vector machine

SVM, [36] ) is a suboptimal solution of ELM and [37] shows that

andom projection (RP) and principal component analysis (PCA)

re special cases of ELM when linear function is used as activation

unction. In addition, Huang et al. [38] mentioned that ELM theory

s inherently consistent with the mechanism of biological learning

a part of neurons are randomly connected and some neurons do

ot need to be tuned, [39–43] ) and the basic learning units in

iological learning (compression, feature learning, sparse coding,

lustering, and classification) can be implemented by the same

LM architecture. To some extent, ELM is often seen as a gener-

lized feed-forward neural network with random weights [38,44] .

he standard network structure of ELM is shown in Fig. 4 . 

Up to now, the standard feed-forward neural network with

andom weights [14] and shallow ELMs have been widely applied
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o many applications. Some notable applications include fuzzy

onlinear regression [45] , embedded system [46–48] , human face

ecognition [49–51] , human action recognition [52] , traffic sign

ecognition [53] , biology and bioinformatics [54,55] , image classi-

cation [56] , indoor localization [57] , clustering problem [58,59] ,

igh-dimensional data [60] , etc. In addition to these typical appli-

ations, some improved algorithms are equally worth mentioning.

61] proposed a functional iterative method to optimize the

olution of original ELM model and proved this method could

onverge linearly. Ensemble learning can always achieve better

eneralization ability [62,63] and [64] showed two different ELM-

ased ensemble strategies (i.e., ensemble with same architecture

nd ensemble with different base components) and gave some

uidelines for constructing a good ELM-based ensemble model. 

.3. Remarks 

This is a special type of methodologies for training feed-

orward neural networks, i.e., random assignment of input weights

nd biases. The following is brief summary historically. 

In 1988 Broomhead and Lowe [65] proved implicitly the uni-

ersal approximation ability of this type of neural networks based

n the radial basis function network with random centers. 

In 1992 Pao et al. [13] and Schmidts group [14] proposed the

andom Vector Functional Link Networks (RVFL) and standard

eed-forward neural network with random weights, respectively.

he most obvious difference between the two networks is that

here is a direct connection between the input layer and output

ayer in RVFL, while Schmidts method does not. 

In 1994 Pao et al. [21] pointed out that it is not necessary

o tune all the linking-weights of RVFL iteratively, because most

f them are not important. Furthermore, they demonstrated the

niversal approximation ability of RVFL in [8,9] . 

In 2006 Huang et al. further investigated this type of neu-

al networks and its training methodology with the new name

xtreme learning machine (ELM) [10,44] . 

After 2006 there appear several new names to describe this

ype of neural networks such as random weight network (RWN)

45,51] , neural network with random weights (NNRW) [50] , ran-

om weight neural network (RNN) [66] , feed-forward networks

ith random weights (RW-FFN) [17] , etc. 

Essentially the ideas all of above-mentioned neural networks

nd their training mechanisms are same but some details are

lightly different. In other words the similarity is essential while

he difference is trivial. We list some differences as follows. 

(1) Network architecture . The most distinct character of RVFL

is that the input layer is directly connected to the out-

put layer, while Schmidts method and ELM do not. ELM

has been extended to multiple hidden layers architectures

and achieved many outstanding achieves, while RVFL and

Schmidts method are mainly used in the single hidden layer

cases. In addition, both RVFL and Schmidts method are

fully connected networks, while ELM can be both fully con-

nected network and partially connected network. And the

hidden nodes in ELM can be sub-networks, while RVFL and

Schmidts method can not. 

(2) Hidden node type . The hidden node type of RVFL is lim-

ited to Sigmoid and Radial basis function, Schmidts method

only works in Sigmoid cases, while the hidden node type of

ELM is extended to Sigmoid, Radial basis function, Wavelet,

Fourier series, Biological neurons, etc. 

(3) Training mechanism . In [65] only the radial basis function

centers are randomly selected but not the impact factors,

while in ELM both of them are randomly selected. The ob-

jective optimization function of ELM is based on both the
structural and empirical risks errors, and thus guarantees

that the model has better generalization ability, while other

methods are not. Compared to ELM, Huang [33] has proved

that RVFL and Schmidts method provide suboptimal solu-

tions. 

(4) Universal approximation ability . The universal approxima-

tion ability of ELM and its variations have been rigorously

proved in theory, while there is no theoretical proof for

Schmidts method. Both Broomhead et al. [65] and Paos

group [8,9] also did not give rigorous proof for full random

hidden nodes cases. 

For convenience in this paper we call this type of neural

etworks and their training mechanism as neural networks

ith random weights (NNRW). NNRW, which has a fundamental

ssumption that not-all-weights are necessarily tuned in the train-

ng, indeed overcomes the problems of low training efficiency in

omparison with gradient based training, but the following critical

ssues remain. 

(1) Generalization ability . There is no sufficient evidence to show

that the generalization ability of NNRW is superior to other

methods. Although Huang et al. have proved that SVM is a

suboptimal solution of ELM [35] , however, it is impossible

for NNRW to have high prediction accuracy (i.e., the gener-

alization ability) for all the datasets. Up to now, it is still un-

clear that what kind of problems NNRW can have excellent

performance. 

(2) Feedback mechanism . Owing to the non-iterative learning

strategy, NNRW can achieve much faster learning speed.

There’s no such thing as a free lunch, without the iterative

tuning of weights, NNRW may not be able to obtain the se-

mantic meaning of learned weights. The impact of this non-

feedback mechanism remains to be investigated. In addition,

the random feature mapping is the core idea of NNRW, the

effective evaluation of the random feature mapping remains

untouched. 

(3) Model stability . The randomization range and the type of dis-

tribution of the hidden parameters have significant impact

on the performance of NNRW. Unfortunately, there is still no

good way to guide the selection of the hidden parameters.

Different random parameters produce different models, and

thus cause the model performance to be unstable. How to

solve this problem remains to be studied. In addition, the ac-

tivation function of NNRW is also playing an important role

in the model stability. Zhang et al. [15] showed that Radbas

always achieves better performance while hardlim and sign

always degenerate the performance of RVFL. Huang et al.

[12] demonstrated that any activation function which is in-

finitely differentiable in any interval can make ELM model fit

any object function with probability one under certain con-

ditions. However, there is still no clear guidance on the se-

lection of activation function for different problems. 

(4) Advanced algorithm . Nowadays, multi-task learning strategy

(MTL) has been applied to neural networks and shows

the huge development potential. The core idea of MTL

is that learning a task together with other related tasks

at the same time via a shared representation to improve

the performance of model [67] . Specifically, for neural net-

works, the hidden nodes are shared among multiple tasks

while the output nodes are independent for different tasks.

[68–71] have shown that integrating MTL into the training

process of deep learning can effectively improve the perfor-

mance of deep neural network. NNRW is also extended to

the scenario of MTL and the generalization ability is greatly

improved [72–74] . However, what to share and how to de-

sign the corresponding network architecture for different
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Fig. 5. The structure of Auto-encoder. 
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problems are needed to be further studied, especially in the

deep architecture cases. 

3. Deep neural network with random weights and its 

applications 

Deep neural network, aka deep learning, has produced a lot of

breakthrough results in recent years [75] . Some notable applica-

tions include speech recognition [76,77] , image recognition [78,79] ,

customer review sentence sentiment classification [80] , and 3D

human poses recovery [81–83] , etc. One of the reasons for success

is that the network structure is getting deeper and deeper. It is

well known that feature selection or extraction plays an essentially

important role on the learning process. Facts show that the multi-

layer structure can do better than the shallow network in learning

high-level abstractions from complex tasks, such as computer vi-

sion, speech recognition, and natural language processing. In other

words, Thin + Tall architectures, that is, multilayer architectures,

in which each hidden layer do not have a lot of nodes, can be

much more efficient than Fat + Short architectures, that is, shallow

architectures, in which sometimes only single hidden layer with

a lot of nodes [5,84,85] . As mentioned in Section 1 , deep learning

is often considered as a supervised fine-tuning process with un-

supervised initialization. The multilayer architecture is treated as

a whole and all the hidden parameters are trained multiple times

in a similar way as the BP-based method does. There are a lot of

hidden parameters in a typical deep neural network architecture,

which means iteratively fine tuning all the hidden parameters will

be very time-consuming [3–7] . 

As discussed in Section 1 , NNRW can achieve much faster

speed than BP-based methods with acceptable accuracy. Therefore,

it is a promising way to incorporate NNRW into the existing deep

learning architectures. In the rest of this section, we will show

the evolvement of deep neural network with random weights

(DNNRW) and its applications, which include Auto-encoder (AE)

with random weights, restricted Boltzmann machines (RBN) with

random weights, and Convolutional neural networks (CNN) with

random weights. Most of the top-level algorithms in deep learning

are based on AE, RBM, and CNN. In general, these three algorithms

are mainly used for pre-training in deep learning. They can effec-

tively learn transformations from a low-level representation to a

high-level one, especially in non-linear cases. Compared with the

traditional linear method such as principal component analysis

(PCA), they can learn much more significant semantic meanings

from raw data. In addition, perhaps more importantly, they can be

stacked to form a deep structure, which in turn makes them more

powerful. Once deep network is pre-trained, input data will be

transformed to a better representation and can be more effectively

used for classification. 

3.1. Auto-encoder network 

Auto-encoder (AE) is a simple 3-layer neural network and

mainly used to learn a representation from a dataset by using

unsupervised learning. The basic structure of AE is shown in Fig. 5 .

In a typical AE, the target values are set to be equal to the

inputs, and the number of hidden nodes is much less than number

of input nodes. The basic idea is that the hidden neurons are able

to extract relevant features from the training data by minimizing

the reconstruction error. 

Hinton et al. [3] proposed a pre-training method for deep

learning based on AE and restricted Boltzmann machine in 2006.

This method can effectively improve the training efficiency of deep

learning. Their idea is that hidden parameters are initialized by AE

from the first hidden layer and the hidden output of previous AE is

used as the input of next AE. When unsupervised learning (AE) is
ompleted, all the parameters are fine tuned by using the BP-based

ethod. In this way, they can alleviate the problem of gradient

ispersion that often occurs in the training process of deep learn-

ng. Subsequently, more and more neural networks based on AE

ave been developed, such as stacked auto-coder-based (SAE)

5] and stacked denoising auto-coder-based (SDAE) [4] . 

Because auto-encoder neural network is an unsupervised learn-

ng algorithm with back-propagation, it is inevitable to inherit

he shortcomings of the BP-based method, which may affect the

erformance of deep neural network. Some researchers proposed

o take advantage of NNRW to resolve the problem and have made

ome progress. 

Kasun et al. [86] designed a novel auto-encoder based on ELM

ELM-AE), which represents features with singular values. Unlike

riginal ELM, the weights and biases of the hidden nodes are re-

uired to be orthogonal, and the input is equal to the output. Based

n ELM-AE, they stack it to form a deep architecture (named ML-

LM) by using similar methods like SAE. Unlike the traditional SAE,

L-ELM does not require global fine tuning. Compared with other

eep neural networks such as deep belief network [3] , ML-ELM can

chieve faster speed with higher accuracy on MNIST dataset [87] . 

Cecotti conducted more verification tests for ML-ELM on four

andwritten character databases [88] . The results confirm that

L-ELM has great advantages in accuracy and execution time. As

he number of hidden layers increase, the performance of ML-ELM

ncreases until the number of hidden layers reaches a certain

umber. 

Tang et al. [89] optimized ML-ELM with a new ELM-AE model

nd proposed hierarchical ELM (H-ELM). Compared with ELM-AE

roposed in [86] , Tang et al. adopted L1-norm optimization instead

f L2-norm optimization used in [86] . Because of using the L1

enalty, the new ELM-AE can obtain more sparse and meaningful

idden features. In addition, H-ELM does not require the initial val-

es of hidden parameters to be orthogonal. Several experimental

esults on car detection, gesture recognition, and real-time object

racking show that H-ELM achieves more robust and better perfor-

ance when compared with ML-ELM. Iosifidis et al. [90] further

pplied H-ELM to solve supervised subspace learning problems. 

Different from [89] , Sun et al. [91] combined the original

LM–AE with manifold regularization and proposed generalized

xtreme learning machine auto-encoder (GELM–AE). Compared

ith the original ELM–AE, GELM–AE has stronger ability to extract

ore relevant features for clustering. It also shows that GELM–AE

an be stacked to form a deep structure. 

Zhang et al. [92] introduced a local denoising criterion into

LM–AE and proposed ELM denoising auto-encoder (ELM–DAE).

hey pointed out that the ELM–DAE can extract higher level

epresentations than original ELM–AE. Then the authors stacked
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Fig. 6. The structure of RBM. 
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LM–DAE to create a deep architecture named Denoising ML-

LM and reported its effectiveness in supervised learning and

emi-supervised learning problems. 

Hu et al. [93] proposed a stacked deep neural network based

n unsupervised extreme learning machines [94] to deal with

nsupervised problems. They showed that this architecture can

ield a better embedding space for clustering. And their method

uns much faster than deep auto-encoder (DA) and stacked

uto-encoder (SAE). 

In addition, Gu et al. [95] designed a wireless localization sys-

em based on the combination of deep neural network embedded

ith semi-supervised learning and ELM. The former can be used

o extract high-level abstract feature from a lot of unlabeled data

nd ELM is used to make a quick classification. 

.2. Restricted Boltzmann machines 

Restricted Boltzmann machine (RBM) is a probabilistic graphi-

al model based on stochastic neural network, which can be used

o learn a probability distribution from training data. RBM shares a

imilar idea with AE, which also can be stacked as building blocks

f multi-layer learning architectures, aka deep belief networks

DBNs) [3] . A typical structure of RBM is shown in Fig. 6 . 

A simple RBM has two layers, including a visible layer and a

idden layer. Nodes in the visible layer are fully connected to the

odes in the hidden layer, while there are no connections between

odes in the same layer. The visible layer is used to receive the

nput data and the hidden layer is used to generate a new feature

ector. Details of the training process are given in [3] . RBM has

een successfully applied to dimensionality reduction, feature

earning, and classification, etc. 
Fig. 7. A typical CNN
Hinton et al. [76] showed that the deep neural network with

BM-based weights initialization can achieve better performance

n speech recognition than the deep neural network with random

eights initialization. One explanation is that RBM-based pre-

raining can receive a better starting point for parameters tuning

o approach to the global optimum. However, here the deep neural

etwork adopted BP-based method for weights tuning. And thus,

he learning process is time-consuming. 

Rosa et al. [96] merged RBM and randomized algorithms and

roposed a deep structure for nonlinear system identification. In

his system, the distributions of the hidden weights are trained

y using input data and RBM. It shows that combining RBM and

he randomized algorithm gives better performances for nonlinear

ystem identification. 

In [97] , a DBN–ELM structure for image classification was

roposed, where DBN is used as features extractor and ELM is

rained on DBN-learnt features as the classifier. The DBN + ELM

tructure can achieve much faster speed and higher accuracy than

BN with other classifiers such as SVM. The similar conclusion

an be verified by Han et al. [77] . 

Zhang et al. [98] proposed a hybrid architecture based on ELM

ith Manifold Regularization and the semi-restricted Boltzmann

achine (SRBM), named IELM–DFE. In IELM–DFE, the SRBM mod-

ls were stacked to a DBN model for feature extraction, the last

idden layer of this DBN model was used as the hidden layer

f ELM, and the output weights were calculated by Manifold

egularization ELM model. The authors showed that IELM–DFE

ould perform well in classification tasks. 

.3. Convolutional neural networks 

Deep neural networks based on convolution have been widely

sed in computer vision, speech recognition, and natural language

rocessing, etc. Since LeCun et al. [87] proposed a deep architec-

ure, LeNet-5, based on convolutional neural network (CNN) in

998, many deeper neural networks have been proposed, such as

lexNet [78] and VGG [79] . CNN can efficiently deal with image

rocessing problems due to its unique features, including shared

eights, sub-sampling, and local receptive fields. In general, a sim-

lest CNN includes an input layer, a convolutional layer, a pooling

ayer, a fully-connected layer, and an output layer. The input layer

olds the raw pixel values of the image; the convolutional layer

omputes the output of nodes that are connected to local regions

n the input layer; the pooling layer performs the down-sampling

peration along the spatial dimensions; the fully-connected layer

omputes the class scores; and the output layer gives the final re-

ults. In this way, we can create a deep architecture by alternately

tacking the convolutional layer and pooling layer. A typical CNN

rchitecture is shown in Fig. 7 . 
 architecture. 
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Although CNN has been proven to be effective, how to effec-

tively train such deep models is still an unsolved problem. 

By conducting thorough experiments, Jarrett et al. [99] found

that random filters used in the two-stage feature extraction sys-

tem can achieve comparative accuracy on the Caltech-101 dataset

[100] compared to the approach using unsupervised pre-training

and exact fine tuning of the filters. The discovery is of great

practical significance, which means that the network architecture

plays a more important role than hidden parameters in deep

learning. In other words, not all the hidden parameters need to

be fine-tuned if we are able to design a proper deep architecture.

In this way, the computing efficiency can be greatly improved. A

similar discovery can be found in [101] . 

Zhang et al. [102] combined the RVFL architecture and convo-

lutional neural network and proposed the convolutional random

vector functional link (CRVFL) neural network for solving visual

tracking problems. In CRVFL, the convolutional filters are randomly

initialized and kept same, only the parameters in the fully con-

nected layers need to be learned. Compared with traditional CNNs,

this method does not suffering from global fine-tuning and the

system is not sensitive to the hyper-parameters such as learning

rate, size of mini-batch, and epochs. It was also shown that CRVFL

runs on a CPU-based computer can achieve comparable accuracy to

the traditional deep learning approaches running on a GPU-based

computer, but the learning time is significantly reduced. 

Zeng et al. [103] designed a hybrid deep architecture for traffic

sign recognition, where CNN acts as a feature extractor and ELM

was trained on CNN-learnt features as the classifier. They showed

that this architecture has three advantages: low model complexity,

high performance, and fast speed. Similar architectures have been

applied to handwritten digit recognition [104–106] , lane detection

task [107] , 3D feature learning [108] , etc. 

3.4. Remarks 

Auto-encoder is an efficiency feature extraction technology

which can be easily stacked to deep architecture for obtaining

high-level representation. In traditional DAE, all the hidden param-

eters are iteratively tuned according to BP-based method until the

predefined stopping criterion is satisfied. This method suffers from

several disadvantages, such as low convergence rate, time con-

suming, high computational complexity, etc. The introduction of

NNRW effectively im proves the efficiency of this training process.

In the hybrid architecture, the hidden parameters are obtained

based on non-iterative method. Compared with traditional DAE,

the new scheme can achieve much faster training speed and lower

computational complexity. 

The key idea of the RBN+NNRW deep architecture is that

replace the random weight assignment with RBM-based weight

initialization and keep the weights of output layer nodes being

obtained analytically. It is noted that this method is a non-iterative

technique. In this way, the training efficiency can be improved sig-

nificantly and the computational complexity is reduced markedly. 

CNN does well in image feature extraction, while NNRW can

achieve fast training speed in classification problems. The hybrid

deep architecture of CNN and NNRW can effectively im prove the

efficiency of BP-based deep CNN. However, there are still several

open problems need to be studied. First, the key parameters in

CNN are set manually, such as the number of filters, the size of

convolutional kernel, etc. Although some researchers have tried

to randomly select some of these parameters [99,101] , there is

no clear criterion to guarantee the performance of deep learning

models. Second, in most cases, only the single hidden layer NNRW

are used as classifiers in the hybrid deep architecture, whether

multiple hidden layer NNRW can be applied in this architecture

remains untouched. Third, many applications mentioned above
ave shown that NNRW are effective for small training datasets,

hile CNN requires large datasets to exert its powerful feature

xtraction capabilities. CNN can extract high-level feature repre-

entation from raw data, however, what comes with this advantage

s more parameters needed to be tuned. And thus large datasets

re always required to train a model. Whether the combination

f CNN and NNRW can reduce the scale of parameters and make

NN effective on smaller training datasets needs to be studied. 

In addition, it is found in [109,110] that the mechanism of

andom weight assignment can be potentially used to handle re-

nforcement learning problems. Moreover, other advanced feature

election algorithms [111,112] also have the potential to enhance

he performance of NNRW model and are worthy to further study.

imilar to the shallow NNRW, the deep NNRW has the advantages

f significantly improving the training efficiency, which is an

xtremely critical problem for gradient based training of large

cale feed-forward neural networks with deep architecture. The

ajor disadvantages of deep NNRW are that 

(1) During the training process there are not weight-feedbacks,

which may play an indispensable role for hierarchical fea-

ture extraction in gradient based training of deep networks 

(2) The feature extraction for a deep NNRW with layers is com-

pleted without feedbacks in the first layers, while the pre-

diction model is built at the layer. Unfortunately, the num-

ber of nodes at the last layer is usually very big. 

. Concluding remarks 

In this paper, we present a thorough survey on the evolvement

f feed-forward neural networks with random weights (NNRW),

specially its applications in deep learning. In NNRW, due to

he weights and the threshold of hidden layer are randomly

elected and the weights of output layer are obtained analytically,

NRW can achieve much faster learning speed than BP-based

ethods. As described above, NNRW have been widely applied

o many applications. Traditional deep learning has produced lots

f breakthrough results in recent years. However, it suffers from

everal notorious problems, such as numerous parameters that

eed to be tuned, high requirements for computing resources, low

onvergence rate, and high computational complexity, etc. This

aper has shown that the combination of traditional deep learning

nd NNRW can greatly improve the computing efficiency of deep

earning. 

However, there are still several open problems need to be

ddressed, such as how to determine the randomization range and

he type of distribution of the hidden weights? It is well known

hat, the randomization range and the type of distribution of the

idden weights have significant impact on the performance of

NRW.However, there is no clear criterion to guide the selection

f the hidden weights. In most cases, the authors directly set the

andomization range to an empirical range (i.e., [ −1, 1]). But this

ange can not guarantee the optimal performance of NNRW [15] .

n addition, NNRW have shown good generalization performance

n the problems with higher noise, how to prove it in theory and

stimate the oscillation bound of the generalization performance

re not clear. Moreover, [38] shows that NNRW are inherently

onsistent with the mechanism of biological learning, one of the

ost foundational abilities of biological learning is to handle

omplex problems with small samples (e.g., for a kid, just a few

at pictures are needed, to learn and grasp the features of the

at), whether NNRW have such a capability have not been fully

erified by theories and applications (i.e., whether NNRW can

ffectively handle the small datasets with high dimensions needs

urther investigation). In addition to the content mentioned in

his article, this type of training mechanism also can be applied
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o other classical neural networks, such as radial basis function

etwork and kernel-based methods. For more information, you can

efer to [17,18] . Zhang and Suganthan [17] give a survey on radial

asis function network with random weights and kernel-based

ethods with random weights. In [18] , the authors give a concise

eview for recurrent neural networks with random weights and

andomized kernel approximations. 

The following problems may be interesting for further research:

(1) Studying the impact of the randomization range and the

type of distribution of the hidden parameters. Parameter se-

lection plays an important role in the performance and sta-

bility of NNRW model. And thus, a thorough study of this

problem will be of great value. 

(2) Improving NNRW algorithms to handle the problems with

small samples. Complex problems with small samples are

challenging problems for traditional learning algorithms, not

for biological learning. It is interesting to study whether

NNRW have the similar ability like biological learning. 

(3) Giving a rigorously theoretical proof for the effectiveness of

random feature mapping in deep NNRW. Random feature

mapping plays a key role in NNRW, which ensure the uni-

versal approximation capability and the generalization per-

formance of NNRW. It is worth studying the role of random

feature mapping in deep NNRW cases. 
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