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Hashing-based methods have been widely applied in large scale image retrieval problem due to its high 

efficiency. In real world applications, it is difficult to require all images in a large database being la- 

beled while unsupervised methods waste information from labeled images. Therefore, semi-supervised 

hashing methods are proposed to use partially labeled database to train hash functions using both the 

semantic and the unsupervised information. Multi-hashing methods achieve better precision-recall in 

comparison to single hashing method. However, current boosting-based multi-hashing methods do not 

improve performance after a small number of hash tables are created. Therefore, a bagging–boosting- 

based semi-supervised multi-hashing with query-adaptive re-ranking (BBSHR) is proposed in this paper. 

In the proposed method, an individual hash table of multi-hashing is trained using the boosting-based 

BSPLH, such that each hash bit corrects errors made by previous bits. Moreover, we propose a new semi- 

supervised weighting scheme for the query-adaptive re-ranking. Experimental results show that the pro- 

posed method yields better precision and recall rates for given numbers of hash tables and bits. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The explosive growth of multi-media contents on the Inter-

net creates a huge challenge for image retrieval researches. Im-

age retrieval methods can be categorized into text-based [1–3] and

content-based (CBIR) [4–6] . CBIR methods develop rapidly in the

past decades. For a large scale CBIR problem, linear search methods

may still use too much time and therefore sub-linear methods are

needed. Instead of taking a long time to search for exact matches,

approximated nearest neighbor search methods [7,8] finding sim-

ilar images in an approximated manner are much more efficient,

especially for very large scale problems and no particular image

is targeted. Hashing-based image retrieval methods [9–11] are in-

stances of approximated nearest neighbor search methods which

represent images with binary hash codes and have shown to be

highly efficient in large scale image searches [12] . For a given query

image q , hashing method tries to find its similar by finding images

in the database yielding the smallest Hamming distances from q in

their hash codes. Therefore, hashing methods generate hash codes

for images such that similar images share similar hash codes while

dissimilar images have very dissimilar hash codes. 
∗ Corresponding author. 
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In general, image retrieval performance improves when more

ash bits and multiple hash tables are used. However, exist-

ng boosting-based multi-hashing methods do not improve and

ven sometimes reduce retrieval performance after the number of

ash tables reaches a certain threshold. Therefore, the bagging–

oosting-based semi-supervised multi-hashing method is proposed

o address this problem. The proposed method consists of two

teps: multi-hashing construction and query-adaptive re-ranking. 

Major contributions of this paper include: 

• The proposal of a semi-supervised multi-hashing using bagging

to relieve the disadvantage of boosting-based multi-hashing

methods: new hash table being highly similar to existing one’s

after a number of tables being created. Then, boosting is used

to train individual hash function in each hash table. This hybrid

method takes advantages of both bagging and boosting and ap-

plies them in different parts of the whole algorithm to maxi-

mize their benefits. 
• Proposing a semi-supervised weighting scheme for query-

adaptive re-ranking to improve retrieval performance of multi-

hashing for semi-supervised image retrieval problem. 

Related works are introduced in Section 2 . The bagging–

oosting-based semi-supervised multi-hashing with re-ranking

BBSHR) is proposed in Section 3 . Experimental results are shown

nd discussed in Section 4 . Section 5 concludes this paper. 
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. Related works 

Current hashing methods and multi-hashing methods are intro-

uced in Sections 2.1 and 2.2 , respectively. 

.1. Current hashing methods 

Hashing methods can be generally divided into three categories:

nsupervised, semi-supervised, and supervised hashing methods

ccording to the usage of semantic information. Unsupervised

ashing methods [13–17] do not use semantic information from

he given database. The Locality Sensitive Hashing (LSH) and its

ariants [18,19] are the most representative unsupervised hashing

ethods which create hash functions by random. The Principle

omponent hashing [20] is another unsupervised hashing method

hich builds hash functions based on the principle component

nalysis. The iterative quantization hashing (ITQ) [21] finds binary

ash codes for images via a minimization of the quantization error

etween the real-valued data vectors and the binary hash codes.

he objective function of the ITQ is minimized by updating the ro-

ation matrix and hash codes iteratively. The Unsupervised Bilinear

ocal Hashing applies bilinear projections to generate hash codes

16] . Instead of using hash hyperplanes to divide the data space,

he spherical hashing finds hyperspheres to partition the image set

nto different hash buckets (codes) to generate efficient hash codes

17] . Semantic labels in the database provide extra discriminative

nformation and images with the same class label should have the

ame or very similar hash codes. The LDAHash [22] and the Super-

ised Hashing with Kernels [23] are instances of supervised hash-

ng methods which require all images in the database to be labeled

nd use those labels to learn hash functions. The LDAHash applies

he linear discriminant analysis to the data features to build hash

unctions [22] . The Supervised Hashing with Kernels trains hash

unctions by maximizing Hamming distances between dissimilar

ata pairs and minimizing Hamming distances between similar

ata pairs. Supervised hashing methods usually achieve better re-

rieval performance in comparison to unsupervised hashing meth-

ds. Deep learning is also applied to learn effective hashing by the

reservation of the semantic information of images [24] . However,

n real world applications, image databases are usually partially la-

eled and requiring all images being labeled is not practical. More-

ver, supervised hashing methods tend to overfit when databases

annot provide enough semantic labels. 

Therefore, semi-supervised hashing methods [25–28] are pro-

osed to fully utilize the partial labeled images and the other large

ortion of unlabeled images. The Sequential Projection Learning for

ashing (SPLH) [25] is one of the representative semi-supervised

ashing methods which learns hash bits sequentially and corrects

rror made by the previously learned hash bit. The Bootstrap Se-

uential Projection Learning Hashing (BSPLH) is another represen-

ative semi-supervised hashing method which learns hash bits se-

uentially and corrects error made by all previous hash bits [26] .

he Deep Learning Hashing [29] generates hash codes of training

mages by the relative similarity graph and learns hash functions

rom them using the convolution neural network with both visual

nd semantic information. In [30] , two kinds of contextual query

xpansions (visual world-level and image level) are proposed based

n common visual patterns to improve the performance of image

etrieval. The topology preserving hashing trains hash functions in-

orporating the neighborhood ranking information based on data

opology [31] . 

.2. Current multi-hashing methods 

Performances of hashing can be improved by either or both in-

reasing the number of hash bits or/and the number of hash ta-
les. The Complementary Hashing (CH) [32] , the Dual Complemen-

ary Hashing (DCH) [33] , the Boosting Iterative Quantization hash-

ng with query-adaptive re-ranking (BIQH) [34] , and the QsRank

35] are instances of multi-hashing methods. Both the CH [32] and

he DCH [33] are boosting-based multi-hashing methods. The CH

rains hash table to complement error made by the previous hash

able while the DCH applies extra boosting during the training of

ash bits. The DCH applies the SPLH to train individual hash table.

uch that, in addition to complementing error made by the pervi-

us hash bit in the training of the new hash bit in a hash table,

he DCH also complements error made by the previous hash table

uring the training of a new hash table. The BIQH [34] constructs

ultiple ITQ hash tables by boosting and re-ranks retrieved images

sing a bit-level weight for each category in the image database.

hen a query image arrives, the query weight is computed by a

eighted (portion of images in its category over all categories) av-

rage of category weights of top-N images of retrieved images. The

ajor drawback of the BIQH is the requirement of fully labeled

mage database which may not be feasible for real-world large

cale image retrieval problems. The QsRank [35] constructs undi-

ected graphs using the relationship between the given query and

n image in the database. The final retrieval result of the QsRank is

onstructed using a graph-based ranking method. The Multi-Graph

ashing [36] finds a weight for each graph and the final retrieval

esult is found by the combination of graphs and their weights. 

In summary, current major multi-hashing methods (e.g. the CH,

he DCH, and the BIQH) are boosting-based which may not be

ble to improve retrieval results by increasing the number of hash

ables (after a small number). Boosting methods focus on learn-

ng of under-learned samples by new hash table and the num-

er of under-learned samples reduces significantly after a small

umber of iterations. On the other hand, unsupervised hashing

ethods usually cannot achieve satisfying performance while su-

ervised hashing methods requiring large scale image database

o have all images being labeled may be impractical. Therefore,

he bagging–boosting-based semi-supervised multi-hashing (BB- 

HR) method is proposed in this paper to relieve these. The BBSHR

ncreases weights to under-learned samples instead of removing

ell-learned samples and uses semi-supervised hashing to fully

tilize semantic information in partially labeled images. 

. The BBSHR 

The Bagging–Boosting-based Semi-supervised Hashing with 

uery-adaptive Re-ranking (BBSHR) consists of three major com-

onents: a hybrid semi-supervised multi-hashing to train multiple

ash tables, semi-supervised category-specific weight generation,

nd a semi-supervised query-adaptive re-ranking to order the re-

rieved images for a given query. These three components will be

roposed in Sections 3.1 –3.3 , respectively. 

.1. Hybrid semi-supervised multi-hashing for hashing tables 

onstruction 

The proposed hybrid method uses a bagging approach to create

ultiple databases for training multiple hash tables ( Section 3.1.1 )

nd a boosting approach to train hash functions in each hash table

 Section 3.1.2 ). In this way, we relieve the problem of severely re-

uced number of training samples of boosting-based multi-hashing

ethods after a small amount of training iterations. 

.1.1. Bagging-based semi-supervised multi-hashing 

Bagging is widely used in machine learning for both classifi-

ation and regression [37,38] . In general, the bagging method cre-

tes m training databases by randomly drawing pn images for m

imes from the unlabeled part of the original database X with n
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images [39] , where m, n , and 0 < p < 1 denote the number of bag-

ging databases, the total number of images in X , and the ratio of

images being selected for each training database, respectively. Let

X l and X u be the labeled image set and the unlabeled image set in

X , i.e. X = X l ∪ X u and X l ∩ X u = ∅ . 
Owing to the semi-supervised nature of the semantic image

retrieval problems, applying the standard bagging method on X s

may not be efficient. Therefore, we use a semi-supervised bagging

method dedicated for our semi-supervised learning environments.

Owing to the nature of only a small portion of labeled images

available in the database, all images in X l are added to every train-

ing database. Then, pn ′ images are randomly drew from X u with re-

placement to form the t th unlabeled image database X u, t , where n ′ 
denotes the number of unlabeled images X . Then, the t th training

database is created by X t = X l ∪ X u,t . These processes are repeated

m times to create m individual training databases. 

3.1.2. Boosting-based hash functions training per hash table 

Each training database is used to train a hash table with K hash

functions. The t th hash table ( H t ) consists of K hash functions, i.e.

H t = { h t, 1 , h t, 2 , . . . , h t,K } . The k th hash function of the t th hash ta-

ble is represented by: 

h t,k (x i ) = sgn (W 

T 
tk x i ) (1)

where T, W tk and sgn ( ∗) denote the transpose of matrix, the pro-

jection vector and the sign function which returns −1 when 

∗ < 0

and +1 otherwise. Therefore, the learning of a hash function is to

find the projection vector W tk of it. 

Hash functions are expected to generate hash codes such that

similar images share the same or similar hash codes while dissim-

ilar images yield different hash codes. In other words, the objective

of hash function learning is to find projection vectors to minimize

the following optimization problem: 

min E{ d t (x i , x j ) | P } − E{ d t (x i , x j ) | N} (2)

where P and N denote the set of all similar image pairs (i.e. x i and

x j ) and the set of all dissimilar image pairs, respectively. Images

of a similar image pair have the same semantic labels while im-

ages of a dissimilar image pair have different labels. E { ∗} and d t ( x i ,

x j ) denote the average value of all ∗ and the Hamming distance

between hash codes x i and x j computed using the t th hash table,

respectively. 

Let S be the semantic similarity matrix of labeled images where

S ij = 1 if ( x i , x j ) ∈ P and S i j = −1 if ( x i , x j ) ∈ N . Problem (2) is equiva-

lent to the following optimization problem: 

min 

∑ 

k 

∑ 

i j 

S i j || h t,k (x i ) − h t,k (x j ) || 2 (3)

Then, Problem (3) is converted into the following maximization

problem: 

max 
∑ 

k 

∑ 

i j 

S i j h t,k (x i ) h t,k (x j ) (4)

By relaxing the sign function condition to the real value output

from the hash function (same as [25] ), Problem (4) is transformed

into the following form: 

J(W ) = max tr(W 

T 
t X l SX 

T 
l W t ) (5)

where tr () denotes the trace of a matrix. Then, similar to the

BSPLH, a regularization term ( W 

T 
t X t X 

T 
t W t ) with a regularization pa-

rameter λ based on the unlabeled images is added to avoid over-

fitting. Therefore, the final objective function for training a hash

table using the t th training database is as follows: 

J(W ) = max tr(W 

T 
t X l SX 

T W t + λW 

T 
t X t X 

T 
t W t ) (6)
l 
For the bagging-based multi-hashing, we train m hash tables

sing m training databases. Therefore, the overall optimization

roblem is as follows: 

(W ) = max 
∑ 

t 

tr(W 

T 
t X l SX 

T 
l W t + λW 

T 
t X t X 

T 
t W t ) (7)

Problem (7) is then rewritten as follows: 

(W ) = max 
∑ 

t 

tr(W 

T 
t M t W t ) (8)

here M t = X l SX T 
l 

+ X t X 
T 
t . Optimization Problem (8) for training an

ndividual hash table can be solved using the BSPLH [26] proce-

ures as described in Algorithm 1 . Algorithm 1 shows the overall

agging and the BSPLH for training m hash tables for the semi-

upervised bagging-based multi-hashing construction. 

lgorithm 1 Bagging–Boosting-based Semi-supervised Hashing

BBSH). 

nput : data X , labeled data X l , label L for X l , length of hash code K,

umber of hash tables m , constants α, β, λ, p 

utput : projection matrixes W t where t = 1 , 2 , ...m 

1: Get the semantic matrix S using L 

2: for t =1 to m do 

3: Construct X t by the semi-supervised bagging method 

4: S 1 = S, X t, 1 = X t 
5: for k = 1 to K do 

6: M t = X l S k X l + λX t,k X 
T 
t,k 

7: Extract the first Eigen vector of M t : w t,k 

8: Compute the update weight matrix �S k using Eq. (9) 

9: S k +1 = S 1 + �S k 

10: X t,k +1 = X t,k − w k w 

T 
k 

X t,k 
11: W t,k = w t,k 

12: end for 

13: end for 

The element of update weight matrix �S k (�S k 
i j 
) is computed

s follows: 

S k i j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

. 

A i j A i j > 0 , S k 
i j 

> 0 

B i j B i j < 0 , S k 
i j 

< 0 

0 otherwise 

(9)

here A i j = (αk − D 

k 
i j 
) / 2 k, B i j = (βk − D 

k 
i j 
) / 2 k and D 

k = 

∑ k 
s =1 sgn

(X T 
l 

w s w 

T 
s X l ) . 

.2. Semi-supervised category-specific weight generation 

The semantic information provided by the semi-supervised

raining data can further improve the retrieval performance of

ashing [40] . However, the re-ranking method in [34] is fully

upervised which is not applicable to semi-supervised hashing.

herefore, we propose a new semi-supervised re-ranking based on

34] in this section. 

.2.1. Pseudo-label assignment 

The major problem of semi-supervised data is that a large por-

ion of images are unlabeled. Therefore, we propose to assign

seudo-labels to those unlabeled images. For every unlabeled im-

ge, its pseudo-label is assigned to be the majority class label of

0% of all nearest labeled images of it. Euclidean distance is used

o improve accuracy of nearest images and it is acceptable because

seudo-labels are assigned offline before any training or query. 
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.2.2. Category-specific weight computation 

For semi-supervised retrieval problems, labeled images sharing

he same category label are regarded as similar. For a hash func-

ion, images from the same category (without regarding real or

seudo-label) are expected to have the same hash code. In [34] ,

he performance of a hash function classifying images in the same

ategory to the same side is used as an evaluation criterion. 

For all images in the category C , the performance of a hash

unction h () can be evaluated by the category weight ( v C ) com-

uted as follows: 

 C = 

max (c −, c + ) 
c − + c + 

(10) 

here c − and c + denote the number of images in C yielding h () =
1 and the number of images in C yielding h () = +1 , respectively.

 C is maximum when all images are hashed to one side of the hash

unction (i.e. all +1 or − 1 ) and minimum when c − = c + . Finally, v C 
s adjusted to the range [0, 1] as follows: 

 C = (v C − 0 . 5) ∗ 2 (11)

For each hash table H t , a performance weight matrix V t is com-

uted, where V t ( i, k ) denotes the category weight of the i th cate-

ory for the hash function h t, k () computed by Eq. (11) . Then, V t ( i ,

 ) denotes the weight vector for the t th hash table of the i th cat-

gory. 

.3. Semi-supervised query-adaptive re-ranking 

Let R t be the set of images returned by the t th hash table for

he query q with Hamming distance less than or equal to a pre-

elected threshold without re-ranking. Let l i be the label (without

egarding real or pseudo-label) of the image x i in R t . Then, the

eight vector of the t th hash table for the given q ( Z t ∈ R 1 × K ) is

alculated as follows: 

 t = 

∑ 

x i ∈ R t V t (l i , :) 

n t 
(12) 

here n t denotes the number of images in R t . 

Then, weighted Hamming distances of images are computed by

he following equation: 

 w 

(x i , q ) = 

m ∑ 

t=1 

K ∑ 

k =1 

Z t (k )(h t,k (x i ) − h t,k (q )) (13)

here Z t ( k ) denotes the k th element of the Z t vector. Finally, im-

ges yielding smallest weighted Hamming distances ( d w 

) are re-

urned to user. 
Fig. 1. Flow chart
. Experiments 

In this section, we compare the BBSHR with state-of-the-art

ashing methods using three databases: the MNIST, the USPS, and

he CIFAR10. Methods in comparisons include: the LSH [18,19] ,

he CH [32] , the DCH [33] , the BIQH [34] , the BSPLH [26] , and the

PLH [25] . 

The USPS and the MNIST are handwritten digits databases con-

isting of 10 categories: 0–9 digits. The MNIST consists of 70 K

8 × 28-pixel images being represented by 784-dimensional fea-

ure vectors. The USPS consists of 9298 16 × 16-pixels images being

epresented by 256-dimensional feature vector. The CIFAR10 con-

ists of 60K images distributed in 10 categories. All databases are

ivided into two parts: 10 0 0 samples as the testing set and the

emaining samples as the training set. 

The LSH and the CH are representative unsupervised hashing

ethods which serve as baselines of comparisons. The BIQH is a

ully supervised hashing method with a fully supervised query-

daptive re-ranking. All other methods are semi-supervised hash-

ng methods. The BSPLH and the SPLH are representative semi-

upervised single table methods while the DCH is a representa-

ive boosting-based semi-supervised multi-hashing method. In ad-

ition, to emphasize the benefit of the proposed semi-supervised

uery-adaptive re-ranking, the BBSH is compared. The BBSH is

 simplified version of the BBSHR without the semi-supervised

uery-adaptive re-ranking. For semi-supervised methods, we ran-

om select 10 0 0 samples from the training set to form the labeled

ample set and the remaining training samples are used to form

he unlabeled sample set. In this paper, experiments are repeated

or 10 times and their average performances are reported as the

nal results. Similar to other semantic hashing works, two sam-

les are similar if they share the same label. The flow chat of the

BSHR is shown in Fig. 1 . 

.1. Experimental results 

In our experiments, recall-precision curves are used to evaluate

erformances of hashing methods. Figs. 2 –6 show recall-precision

urves of different methods on the three databases using hash

ode lengths of 16-bit, 24-bit, 32-bit, 48-bit, and 64-bit, respec-

ively. In addition, the Area Under Curve (AUC) [41] of recall-

recision curves are used to provide further numerical comparison

mong different hashing methods and their statistical significances

re also tested by using the t-test. 

Average and standard deviation values of AUC of different

ethods on different databases using different number of hash bits

re shown in Table 1 . The first row of Table 1 shows the name of

he database and the number of bits being used per hash table
 of BBSHR. 
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Fig. 2. Recall–precision curves with 16-bit on MNIST (a), CIFAR10 (b), and USPS (c). 

Fig. 3. Recall–precision curves with 24-bit on MNIST (a), CIFAR10 (b), and USPS (c). 

Fig. 4. Recall–precision curves with 32-bit on MNIST (a), CIFAR10 (b), and USPS (c). 

Fig. 5. Recall–precision curves with 48-bit on MNIST (a), CIFAR10 (b), and USPS (c). 
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Fig. 6. Recall–precision curves with 64-bit on MNIST (a), CIFAR10 (b), and USPS (c). 

Table 1 

AUC on MNIST, CIFAR10 and USPS with different hash code length. 

BBSHR BBSH BIQH DCH CH BSPLH SPLH LSH 

MNIST-16 0.567 ± 0.022 0.526 ± 0.025 ∗ 0.503 ± 0.007 ∗ 0.549 ± 0.016& 0.304 ± 0.006 ∗ 0.412 ± 0.011 ∗ 0.441 ± 0.011 ∗ 0.180 ± 0.012 ∗

MNIST-24 0.634 ± 0.016 0.590 ± 0.016 ∗ 0.509 ± 0.005 ∗ 0.567 ± 0.013 ∗ 0.298 ± 0.006 ∗ 0.489 ± 0.011 ∗ 0.483 ± 0.006 ∗ 0.224 ± 0.015 ∗

MNIST-32 0.661 ± 0.018 0.617 ± 0.020 ∗ 0.517 ± 0.008 ∗ 0.575 ± 0.012 ∗ 0.288 ± 0.003 ∗ 0.534 ± 0.011 ∗ 0.492 ± 0.008 ∗ 0.244 ± 0.013 ∗

MNIST-48 0.684 ± 0.019 0.643 ± 0.022 ∗ 0.521 ± 0.006 ∗ 0.584 ± 0.011 ∗ 0.282 ± 0.003 ∗ 0.586 ± 0.010 ∗ 0.514 ± 0.008 ∗ 0.277 ± 0.015 ∗

MNIST-64 0.695 ± 0.021 0.659 ± 0.021# 0.525 ± 0.005 ∗ 0.588 ± 0.018 ∗ 0.270 ± 0.003 ∗ 0.620 ± 0.015 ∗ 0.522 ± 0.016 ∗ 0.315 ± 0.011 ∗

CIFAR10-16 0.183 ± 0.005 0.169 ± 0.005 ∗ 0.188 ± 0.003$ 0.178 ± 0.007# 0.139 ± 0.001 ∗ 0.146 ± 0.003 ∗ 0.160 ± 0.007 ∗ 0.128 ± 0.003 ∗

CIFAR10-24 0.203 ± 0.006 0.185 ± 0.005 ∗ 0.186 ± 0.002 ∗ 0.181 ± 0.008 ∗ 0.136 ± 0.001 ∗ 0.155 ± 0.003 ∗ 0.170 ± 0.006 ∗ 0.128 ± 0.005 ∗

CIFAR10-32 0.218 ± 0.006 0.197 ± 0.005 ∗ 0.185 ± 0.003 ∗ 0.184 ± 0.003 ∗ 0.133 ± 0.001 ∗ 0.162 ± 0.003 ∗ 0.176 ± 0.006 ∗ 0.137 ± 0.005 ∗

CIFAR10-48 0.240 ± 0.050 0.213 ± 0.005 ∗ 0.183 ± 0.003 ∗ 0.190 ± 0.004 ∗ 0.132 ± 0.001 ∗ 0.174 ± 0.004 ∗ 0.183 ± 0.006 ∗ 0.140 ± 0.003 ∗

CIFAR10-64 0.248 ± 0.005 0.219 ± 0.004 ∗ 0.181 ± 0.002 ∗ 0.194 ± 0.006 ∗ 0.126 ± 0.001 ∗ 0.185 ± 0.004 ∗ 0.188 ± 0.007 ∗ 0.146 ± 0.005 ∗

USPS-16 0.709 ± 0.018 0.640 ± 0.018 ∗ 0.667 ± 0.011 ∗ 0.657 ± 0.040 ∗ 0.349 ± 0.006 ∗ 0.644 ± 0.013 ∗ 0.601 ± 0.025 ∗ 0.252 ± 0.038 ∗

USPS-24 0.744 ± 0.018 0.686 ± 0.017 ∗ 0.687 ± 0.010 ∗ 0.644 ± 0.040 ∗ 0.323 ± 0.005 ∗ 0.667 ± 0.015 ∗ 0.616 ± 0.020 ∗ 0.275 ± 0.040 ∗

USPS-32 0.760 ± 0.020 0.706 ± 0.023 ∗ 0.693 ± 0.013 ∗ 0.646 ± 0.032 ∗ 0.300 ± 0.002 ∗ 0.687 ± 0.009 ∗ 0.618 ± 0.022 ∗ 0.290 ± 0.040 ∗

USPS-48 0.772 ± 0.018 0.722 ± 0.022 ∗ 0.715 ± 0.007 ∗ 0.650 ± 0.041 ∗ 0.269 ± 0.002 ∗ 0.704 ± 0.009 ∗ 0.620 ± 0.020 ∗ 0.325 ± 0.030 ∗

USPS-64 0.774 ± 0.017 0.730 ± 0.017 ∗ 0.722 ± 0.009 ∗ 0.672 ± 0.040 ∗ 0.250 ± 0.002 ∗ 0.711 ± 0.009 ∗ 0.611 ± 0.021 ∗ 0.362 ± 0.033 ∗
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n a combined form, e.g. MNIST-16 denotes the MNIST database

sing 16-bit hash codes. The t -test is performed for the BBSHR

ith respect to each of other method. In Table 1 , ‘ ∗’, ‘#’, ‘&’ and

$’ denote the BBSHR outperforms a particular method with statis-

ical significance of 99.9%, 99%, 95% and less than 50%, respectively.

able 1 shows that the BBSHR outperforms all existing methods in

xperiments except the BIQH in the CIFAR10-16 experiment with

ess than 50% statistical significance. Overall, the proposed BB-

HR is significantly better than state-of-the-art hashing methods

n comparisons. 

Both unsupervised methods, i.e. the LSH and the CH, perform

he worst among all methods in comparisons. The CH performs

lightly better than the LSH because the CH is a multi-hashing

ethod which uses more bits in total. Single table-based methods,

.e. the SPLH and the BSPLH, perform worse than multi-hashing

ethods except the unsupervised CH. The major reason is that

ulti-hashing methods use more hash bits in comparison to single

able-based methods. It shows the benefits of multi-hashing. The

CH outperforms the CH in all experiments because the DCH is a

emi-supervised hashing and uses a boosting-based method for in-

ividual hash table training. Although the BIQH uses fully labeled

raining database, it does not outperform semi-supervised multi-

ashing DCH without query-adaptive re-ranking in 7 out of 15 ex-

eriments. This shows the major deficiency of the BIQH is the use

f unsupervised hashing method in combination of a fully super-

ised re-ranking. The unsupervised hashing method wastes labeled

nformation while the supervised re-ranking imposes a strong con-

traint to the BIQH by forcing it to use a fully labeled training

atabase. 

The BBSH outperforms the DCH and the BIQH in 12 and 11,

espectively, out of all 15 experiments. This shows that both the

agging–boosting-based multi-hashing methods with and without

e-ranking, i.e. the BBSHR and the BBSH respectively, are effec-
ive. However, without the re-ranking, it is difficult to outperform

he BIQH using a fully supervised re-ranking. In contrast, the re-

anking of the BBSHR is designed for semi-supervised databases

nd more practical to real-world large scale problems. Overall, the

BSHR outperforms the BBSH by 3.93% in average of all experi-

ents. 

Another observation is that better performances can be

chieved for all hashing methods except the DCH and the CH in

he same database when more hash bits are used. This may be

aused by the nature of boosting in the DCH and the CH which

ake them cannot improve after a number of hash tables being

reated owing to the out of useful training samples issue. This is

articularly significant when more bits per table is used because

he first few hash tables learn well using more bits and a lot of

raining samples are discarded by the boosting method in both the

H and the DCH. 

The training of BBSHR consists of two loops. The computational

omplexity for creating a hash function is O (nd 2 + n 2 
l 
d) and the

otal computational complexity of the BBSHR is O (mK(nd 2 + n 2 
l 
d))

here n l denotes the number of labeled images. 

.2. Parameter selection 

There are two major parameters need to be selected for the

roposed BBSHR, i.e. the bagging ratio ( p ) and the number of hash

ables ( m ). Fig. 7 shows AUC performances of the BBSHR with dif-

erent p values for the MNIST-32 using 5 hash tables. The value of

 controls the sampling ratio of unlabeled samples in the construc-

ion of training sets for individual hash table learning. Fig. 7 shows

hat increasing the p value does not yield obvious effect to the per-

ormance of the BBSHR. In our experiments, p = 0 . 4 is used. This

eeps a relatively large portion of unlabeled samples while pro-

ides a good trade-off with the computational costs. 
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Fig. 7. AUC of the BBSHR method with different p values. 

Fig. 8. AUC of the BBSHR method with different m values. 
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Fig. 8 shows AUC values of both the BBSHR and the DCH with

different number of hash tables ( m ) using the MNIST-32 with p =
0 . 4 . Fig. 8 shows that the performance of the BBSHR improves

when m increases. However, the increment of m does not yield

obvious influence to the performance of the BBSHR when m > 5.

Therefore, m = 5 is used in our experiments. In contrast, the per-

formance of the DCH decreases when m > 3. Again, the boosting of

the DCH discards training samples when they are correctly classi-

fied by the current hash table, i.e. similar samples hashed to the

same side of hash function. This makes the later hash tables (e.g.

m > 3) have no useful training samples to learn. In the extreme

case which all labeled samples are well learned and discarded, the

hashing in later table reduces to unsupervised hashing. 

5. Conclusion 

A bagging–boosting-based semi-supervised multi-hashing

method with query-adaptive re-ranking (BBSHR) is proposed

in this paper. The BBSHR uses the semi-supervised bagging to

construct multiple hash tables and then individual hash table
s trained using a boosting-based method. The semi-supervised

uery-adaptive re-ranking is proposed to further improve re-

rieval performance. Experimental results show that the BBSHR

utperforms state-of-the-art hashing methods with statistical sig-

ificance. ann1 The current assignment method of pseudo-labels

or unlabeled samples may not be optimal. In cases that nearest

eighboring samples of an unlabeled sample are evenly dis-

ributed in several classes, the pseudo-label may require a random

ssignment among multiple majority classes. Further researches

n a better pseudo-label assignment method may improve the

erformance of the BBSHR. 
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