

Fuzzy Sets and Systems 90 (1997) 361-363

Short Communication

Notes on Riesz's theorem on fuzzy measure space¹

Ha Minghu^{a,*}, Cheng Lixin^b, Wang Xizhao^a

^aDepartment of Mathematics, Hebei University, Baoding, Hebei, 071002, PR China ^bMathematics Section, Jianghan Petroleum Institute, Jiangling, Hubei, 434102, PR China

Received December 1995; revised April 1996

Abstract

Riesz's theorems on fuzzy measure space have been improved in essence. © 1997 Elsevier Science B.V.

Keywords: Generalized measure theory; Fuzzy measure

Let X be a nonempty set, \mathscr{L} a σ -algebra of subsets of X and $\mu: \mathscr{L} \to [0, \infty)$ a fuzzy measure [1], i.e., with monotonicity and continuity and $\mu(\Phi) = 0$. We shall work throughout with the fixed fuzzy measure space (X, \mathscr{L}, μ) . Let \overline{F} denote the class of all nonnegative finite measurable functions.

Definition 1 (Zhenyuan [2]). μ is said to be autocontinuous from above (resp. from below), if

 $\mu(A \cup B_n) \to \mu(A) \quad (\text{resp. } \mu(A - B_n) \to \mu(A))$

whenever $A \in \mathcal{L}$, $B_n \in \mathcal{L}$, n = 1, 2, ..., and $\mu(B_n) \rightarrow 0$. μ is called autocontinuous, if it is both autocontinuous from above and from below.

By [4, Theorem 1], we know that the autocontinuity, the autocontinuity from above and the autocontinuity from below are equivalent. **Definition 2.** μ is said to have the property (S) (resp. (PS)), if for every sequence $\{E_n\} \subset \mathscr{L}$ with $\mu(E_n) \to 0$, there exists a subsequence $\{E_{n_i}\}$ of $\{E_n\}$ such that

$$\mu\left(\bigcap_{k=1}^{\infty}\bigcup_{i=k}^{\infty}E_{n_{i}}\right)=0$$

$$\left(\operatorname{resp.}\mu\left(X-\bigcap_{k=1}^{\infty}\bigcup_{i=k}^{\infty}E_{n_{i}}\right)=\mu(X)\right).$$

By [2, Lemma 4.1], we know that the autocontinuity from above (resp. from below) implies the property (S) (resp. (PS)).

Example 5.2 in [3] says that the property (S) (resp. (PS)) is much weaker than the autocontinuity from above (resp. from below).

Theorem 1. Let $A \in \mathcal{L}$. μ has the property (S) (resp. (PS)) if and only if for each $f \in \overline{F}$, $\{f_n\} \subset \overline{F}$, if $f_n \xrightarrow{\mu} f$ (resp. $f_n \xrightarrow{p,\mu} f$) on A, then there exists a

^{*}Corresponding author.

¹This work has been supported by The National Nature Science Foundation of China.

^{0165-0114/97/\$17.00 © 1997} Elsevier Science B.V. All rights reserved PII S 0 1 6 5 - 0 1 1 4 (9 6) 0 0 1 0 3 - 0

subsequence $\{f_{n_i}\}$ of $\{f_n\}$ such that $f_{n_i} \xrightarrow{a.e.} f$ (resp. $f_{n_i} \xrightarrow{p.a.e.} f$) on A.

Proof. Necessity: It is similar to the proof of Theorem 4.1 in [2].

Sufficiency: We may assume A = X without any loss of generality. For arbitrary $\{B_n\} \subset \mathscr{L}$ with $\mu(B_n) \to 0$, let

$$f_n(x) = \begin{cases} 0, & x \in B_n, \\ 1, & x \in B_n. \end{cases}$$

It is obvious that $f_n \xrightarrow{\mu} 0$. By the hypothesis of sufficiency, there exists a subsequence $\{f_{n_i}\}$ of $\{f_n\}$ such that $f_{n_i} \xrightarrow{\mu} 0$. Thus, there exists a set B, such that $\mu(B) = 0$ and such that $f_{n_i} \to 0$ on B^c (the complementary set of B). By the construction of $\{f_n\}$, it is not difficult to prove that $\{x: f_{n_i}(x) \to 0\} = \bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} B_{n_i}^c$, and hence, $\bigcup_{k=1}^{\infty} \bigcap_{i=k}^{\infty} B_{n_i}^c \supset B^c$, that is, $\bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} B_{n_i} \subset B$. Further we have $\mu(\bigcap_{k=1}^{\infty} \bigcup_{i=k}^{\infty} B_{n_i}) \leq \mu(B) = 0$. With an argument which is similar to preceding procedure, we can show latter part of the theorem. \Box

Remark 1. The theorem is a substantial improvement of [2, Theorem 4.1] (Riesz's theorem on fuzzy measure spaces).

Analogously, we give the following definition and theorem.

Definition 3. Let $A \in F$, $\{f_n\} \subset \overline{F}$, n = 1, 2, ... If $\lim_{\substack{n \to \infty \\ m \to \infty}} |f_n - f_m| = 0 \quad [a.e.] \quad (resp. [p.a.e.], [\mu], [p.\mu])$

on A then we say that $\{f_n\}$ converges fundamentally [a.e.] (resp. [p.a.e.], $[\mu]$, $[p.\mu]$) on A.

Theorem 2. Let $A \in \mathcal{L}$, $\{f_n\} \subset \overline{F}$, $n = 1, 2, ..., \mu$ has the property (S) (resp. (PS)) if and only if, if $\{f_n\}$ is fundamentally $[\mu]$ (resp. $[p.\mu]$) convergent on A, then there exists a subsequence $\{f_{n_i}\}$ of $\{f_n\}$ such that $\{f_{n_i}\}$ is fundamentally [a.e.] (resp. [p.a.e.]) convergent on A.

Proof. Necessity: We only prove the first part of the theorem (the rest can be proved similarly). We

may assume A = X without loss of generality. By the definition of being fundamental $[\mu]$ convergent, for any natural number k, there exists $n_k(\uparrow)$ such that

$$\mu\left(\left\{x: |f_{n_{k+1}}(x) - f_{n_k}(x)| \ge \frac{1}{2^k}\right\}\right) < \frac{1}{2^k}.$$

Let

$$E_{k} = \left\{ x: |f_{n_{k+1}}(x) - f_{n_{k}}(x)| \ge \frac{1}{2^{k}} \right\}$$

then $\lim_{k\to\infty} \mu(E_k) = 0$. Since μ has the property (S), there exists a subsequence $\{E_{k_i}\}$ of $\{E_k\}$ such that

$$\mu\left(\limsup_{i} \sup E_{k_i}\right) = \mu\left(\bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_{k_i}\right) = 0.$$

In the following, we shall prove that $\{f_{n_k}\}$ is fundamentally convergent on $X - \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_{k_i}$. In fact, for every $x \in X - \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_{k_i}$, there exists a $j(x) \in N$ (the set of all natural numbers) such that $x \in \bigcap_{j=j(x)}^{\infty} E_{k_i}^{c_k}$, or equivalently

$$|f_{n_i}(x) - f_{n_k}(x)| < \sum_{m=k}^{\infty} |f_{n_{m+1}}(x) - f_{n_m}(x)|$$
$$\leq \sum_{m=k}^{\infty} \frac{1}{2^m} = \frac{1}{2^{k-1}}.$$

Whenever $1 \ge k > j(x)$. Thus, for arbitrary $\varepsilon > 0$, we choose k_0 with $1/2^{k_0-1} < \varepsilon$, such that

$$|f_{n_i}(x) - f_{n_k}(x)| < \frac{1}{2^{k-1}} < \varepsilon$$

whenever $1 \ge k > \max\{j(x), k_0\}$.

Sufficiency: It is similar to the proof of sufficiency of Theorem 1. This completes the proof of the theorem. \Box

Acknowledgements

The authors are greatly indebted to Prof. Wu Congxin for his critical reading of the manuscript and many valuable suggestions for improvements.

References

- D. Ralescu and G. Adams, The fuzzy integral, J. Math. Anal. Appl. 75 (1980) 562–570.
- [2] Zhenyuan Wang and G.J. Klir, Fuzzy Measure Theory (Plenum Press, New York, 1992).
- W. Zhenyuan, Asymptotic structural characteristics of fuzzy measure and their applications, *Fuzzy Sets and Systems* 16 (1985) 277-290.
- [4] W. Zhenyuan, On the null-additivity and the autocontinuity of a fuzzy measure, *Fuzzy Sets and Systems* 45 (1992) 223-226.