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Abstract

We present a solution to the Maxmin yu/E estimation problem of the family of fuzzy numbers with two parameters,
location and scale, and show certain important properties of the Maxmin u/E estimator. C; 1998 Elsevier Science B.V.
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1. Introduction

Maxmin u/E estimation for the family of fuzzy
numbers with location and scale is a kind of
method of estimating parameters for determining
membership functions. Variations of this method
has appeared in many papers (e.g. [4—8]). In paper
[57, the estimation of the location parameter is first
considered and the solution is given. In papers
[6-8], the special case of this estimation is dis-
cussed by using the possibility theory. In paper [4],
some theoretical results on this method are ob-
tained by drawing possibilistic inferences. In this
paper, we continue the discussion of the Maxmin
w/E estimation and present a solution to the family
of fuzzy numbers with two parameters, location
parameter and scale parameter, and show certain
important properties. Throughout this paper, V
and A denote max and min, respectively.
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First, in this section, we will briefly review the
possibility theory and set up notations needed in
the paper. Any fuzzy number pu, with member-
ship function p(x), will be defined by (1) u, =
{x: u(x) = a} is a bounded, closed interval for each
2€(0,1), and (2) p; = {x: u(x) =1} is not empty.
The set of all fuzzy numbers is denoted by F(R).
Let

L) = {Qu(a, b)| Qula, b)(x)

:/,L<x;a>,aER,b>0}.

where p is a 0-symmetric fuzzy number (i.e. u( — x)

= u(x) for every x e R), the parameter a is called
location and the parameter b is called scale. By
Zadeh'’s extension principle, we have

Z ciQula;, b)) = Q, (Z ¢iq;, Z |Cilbi> e L(w),

i=1 i=1 i=1
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where ¢; (i = 1,2, ...,n) are n real numbers and
Q,(a;, b)) (i=1,2, ... ,n)are in L(p).

Let us now consider the possibility variables.
Suppose (U, P(U), IT) denotes a possibility measure
space where U is a set denoting all of psychological
observations, P(U) denotes the set of all subsets in
U and 1 is a possibility measure, and R is the set of
all real numbers. Any possibility variable ¢ is a map
U — R. Let pg(x) = O({u: &(u) = x}) for x € R; then
U represents the distribution function of the pos-
sibility variable &. It is clear that y, is a map from
R to [0, 1. If g, 1s a fuzzy number then we say that
¢ is regular. We denote by

B = | o

Then the value of E[£] represents a measure of the
fuzziness of the distribution g,. It is easy to prove
that E[&] = Ib if y is a O-symmetric fuzzy number,
the distribution function of ¢ is Q(a, b) and Lz u(rde
=1

We now define p; ., ... ¢ (X1, X2, .., X,), the joint
distribution of a possibility vector (&4, &, ..., &)

by H({ul&1(w) = x1, &) = xa, -, W) = X, }).
Possibility variables &, &,, ..., ¢, are called inde-
pendent if
O({ul &, W) = x,, ..., &, () =x,})

k

= A O({ulé,(w) =x,})

i=1

for all (x,,...,x,)eR* and (n,..,n)c

{1,2, ...,n}. Obviously, if f is a function defined
on R" and f(&,¢&,, ...,&,)w) is defined by
f(Ew), &), ... ¢, ) for all uelU, then
f(&1,&,, ..., &) is also a possibility variable.

Our discussion in the following sections will em-
ploy certain possibilistic concepts. For a given type,
all these classes of distribution functions depend on
one or several parameters. The parameters may
vary over a specified range, called parameter space.
The collection of all the distribution functions,
when the parameters vary over their possible range
is called a family. Generally, the actual distribution
is hidden in the family. Let &,, &,, ..., &, be ninde-
pendent, identical distribution possibility variables
(i.1.d)); then (&4, &5, ..., &,) 18 called a sample of the
family. The observed values of the sample may be

obtained by psychological observation. Any func-
tion of the sample (¢4, &,, ..., £,), which does not
involve unknown parameters, is called a statistic.
Obviously, every statistic is a possibility variable.

Let the family be such a class of distribution
{e(x, 0010 = (04, ...,0,) € ©@} where © is para-
meter space (@ — R"). We consider how to estimate
reasonably the true value of the parameter 6 after
observing psychologically the family m times and
obtaining a observed sample (x, x5, ..., X,). Let
E[&] = g pelx, 0)dx, (&1, &5, ..., &), be a sample
of the family and (x{, x,, ..., x,,) an observed value
of the sample. The joint distribution of the sample,
which is regarded as the possibility with which the
observed sample (x, x5, ..., X,) appears, can be
denoted by

,u(xla e s Xy 6) = /\ ué(xjﬂ 9)9
ji=1

where 0 =(0,,0,, ....0,). Noting that changes
of values of parameters 0,, 8., ..., 8, directly in-
fluence the possibility that the observed sample
{x1, X3, ...,X,) appears and the value of E[£], we
should select @ such that the possibility is as high as
possible and the value of E[£] is as small as pos-
sible. Therefore, we denote by

LO) = N\ nelx;, 0)/E[E]
ji=1

for all 8 = (Ql, 8,, ....0,) € O. If there exists f c O
such that L(f) = max,. ¢ L(6) then 0 is called Max-
min y/E estimator of the parameter 6.

2. A solution

Theorem 2.1. Let p be a O-symmetric fuzzy number,
L(uw) ={Q,(a,b)|ac R, b >0} be the family and
(X1, X3, ..., X,,) be an observed sample of the family.
Then the Maxmin estimator of the parameter 0 =
(a, b) is

(@, B) = (< + x™)/2, (x™ — xV)/2c),

where x'V € x® < .. < x™ are the ordered values
Of X1, X2, oo s Xpu (M = 2), ¢ is a real number at which
the function g(t) = tu(t) (t = 0) attains its maximum.
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Proof. Let f“ tydt = L It 1s easy to compute
that E[L,] = Ib. Therefore,

L(a, b) = /\ ,u( >’/ (I1b)
Z\ (X(” - “) // (Ib)

S

By dividing R into three subintervals, (— oo, x'!),
[xM, x™7 and (x™, o), we obtain that
Max, g L(a, b) attains its maximum at a=
(xV + x")/2 for any given b > 0; it can also be
found in [1, Lemma 17. Hence,

x(l) +X(m)
L(‘T”’)
1 x— g x™ g
1 X(m)_x(l)
ZE“< 2b >

Let t = (x" — xV/2h. Then

L X(l)+x(m)’b _ 2[#0) '
2 [(x™ — x1)

As the assumption that tu(t) attains the maximum
att = ¢, L((x*" + x™)/2, b) attains its maximum at
b = (x"™ — x1}/2¢, Therefore, the Maxmin y/E es-
timation of parameter (a, b) is

(@, b) = ((xV + x™)/2, (x"™ — x1)/2¢).

The proof is completed. [

Example 2.1. Let us now consider the Maxmin u/E
estimator of the scale parameter, b, of the family
Q.(a, b). (x;,x;, ...,x,) 1s an observed sample of
the family and (x'*', x'%, ... x"™) is the ordered
arrangement of the sample.

(a) I
U= xF i x| <1
ult) = {0 otherwise (k>0
then b =4 (k + 1) (x™ — x).

(b) If () = exp(—mnt?), tAhenlA) = JIn(xm — xh),
(c) If p(t) = e~ then b = $(x"™ — x1),
(d) If

NS SRRt
=1, > 1,

then b = l/f xM — xty,

The observed sample in Theorem 2.1 is regarded
as crisp observations, but fuzzy observations can
also be used.

Example 2.2, Let p(t) =1 —|t] (|t} < 1} and L(u)
= {u((x —a)/b)lac R,b > 0}. We consider the
problem of estimating vague location and vague
scale for given fuzzy data: X, =1 —|[r —20]|/8,
12<r<28 X,=1—1t—30//20, 10<1<50
and X3 =1 — |t —40}/8, 32 <t <48, According
to Zadeh’s extension principle, we can evaluate
Max(X,, X», X3) and Min(X,, X, X3). This re-
sults in

1 —(t—21)/14, 21 <t <70/3,
t

. 1—|t—30|/8, 70/3<t<110/3,
a =

1—(39—-1/14, 110/3 <r <39,

0 otherwise

1 — (5t —20)/64, 4<t<20/3,
£ 1 —|t—10]/16, 20/3 <t < 100/3,

1 — (190 — 51)/16, 100/3 <t < 38,

0 otherwise

by Theorem 2.1.

3. Properties

Definition 3.1. Let F be a family of distribution
functions, & = (¢4, &5, ..., &,) be a sample, and let
T(&) be a statistic whose dlstrlbutlon function be-
longs to F. We say T(&) is sufficient with respect to
F if the joint distribution function of (T (&), &),
G(t, x), does not depend on x.

Note 3.1. Every sample includes a certain amount
of information on the family. Definition 3.1 shows
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that a sufficient statistic contains same amount
of information as the sample with respect to
the family. It follows that a sufficient statistic
can be used to simplify a sample without losing
information.

Definition 3.2. Let F be a family denoted by F =
{F(x,0)|0 € ®} where © is parameter space,
&= (&1, ¢,, ..., &) asample of the family and T(&)
a statistic. We say

(a) T(¢) is a sufficient estimator of 8 if T(&) is
sufficient with respect to F;

(b) T(Z) is a consistent estimator of 8 if
I{TE)=0)=1

(¢) T(¢) 1s a maximum likelihood estimator of
9 if

L(xy, ..., x,, T()) = Max L(xy, ..., X, 0)
0ec@
where L(xy, ...,x,, 0) = A\ F(x;, 0).

ji=1

Note 3.2. Sufficiency shows that the estimator
can be used to estimate the parameter without
losing information. Consistency illustrates the
possibility that the estimator takes true value
is maximum. Maximum likelihood explains the
possibility that the sample appears attains
maximum. Therefore, Definition 3.2 may be re-
garded as a criterton for judging reasonableness of
an estimator.

Theorem 3.1. Let the family be L(p), (¢4, &, ..., &)
be a sample of the family, (x, x,, ..., x,) an observed
value of the sample, m = min(¢,, &,, ..., &), M =
Max(&, &y, oy E), X =M +m)/2 and let S =
(M — m)/2c where c is a number at which the func-
tion t, u(t), attains maximum. Then

(a) X is a consistent estimator of the parameter
a and is a maximum likelihood estimator of the para-
meter a when b is known;

(b) (X, S) is a sufficient estimator of the parameter
vector (a, b).

In order to prove the theorem, we need the fol-
lowing lemmas.

Lemma 3.1. Any symmetric fuzzy number Q ,(x; a, b)
has a membership function as

w—x—a)b)y if x <a,
Qu(X;aab): 1 ifxza,
u((x —a)/by if x>a,

where y(x) is monotonically decreasing on (0, oc), left
continuous, 0 < p(x) < 1, and lim, ., u(x) = 0.

Proof. See [2]. [0

Lemma 3.2.
V (Qu(X; a, b) A /_\ Qu(y); a, b)) = Q.(x; a, b)

and

\/ <Qﬂ(x; a, by A Qu(y;a,b) A A 0,(t;; a, b))

r, ji=2

= Qu(x; a4, b) A Qu(y; a, b)

where

F={(ys ....yn)eR "y <x,j=2,...,n}
and

Iy ={(ts ‘--:fn—1)6R"*2|X<tj<y,

i=2...,n—1}

Proof. The first equality can be obtained from the
fact that the inequality

V (Qu(x; a,b) A Qu(y;: a, b)) < Qu(x; a, b)

r

holds and the sign of equality holds if y, = y3 = ---
= y, = x; the other equality is a direct result of the
monotonicity of Q,. [

Lemma 3.3. Let &, &,, ..., &, be n iid. possibility
variables having the same distribution function
0,(x;a,b), M =max(&,, &, ...,8,) and let m =
min(&y, &,, ..., ¢&,). Then M and m are also two i.id.
possibility variables having the same distribution
Sfunction as &,.

Proof. The assertion that M and m have the same
distribution functions as &; is a consequence of



Wang Xizhao, Ha Minghu | Fuzzy Sets and Systems 94 (1998) 71-75 75

Theorem 1 in [4]. It remains to show the indepen-
dence. By Lemma 3.2 we have

H({m = x.M = y})

= H(U G =x 8 =, & =tpj=2 ....n— 1}>

..,n—1})

\/ <Qu(x; a, b) A Qy(y: a, b) /\ n/_\ Qu(tj; a, b))

1 ji=2

It

,,,
Q.(x;a, by A Qu(y; a, b)
O({m = x}) AN TT({M =y})

which completes the proof. (]

Proof of Theorem 3.1. (a) The result that X has the
same distribution function as ¢, is a consequence of
Theorem 1 in [4]. Hence, IT({X = x}) = Q,(x; a, b)
holds. This implies /1({X = a}) = 1 and X is a con-
sistent estimator of the location parameter a. Let
xM x@) L X (xD < %P < - < x) be the or-
dered values of the sample; we have

L(xlvxla ---,xnva): /\ Qu(xj;a, b)

j=1
= Qu(x(l); as b) /\ Qu(x(n); a’ b)’

where b is supposed to be known. It is easy to prove
that L attains maximum at (x'" + x™)/2 when b is
known. This results in the validity of part (a).

(b) Let (x1, Xy, ..., X,) € R", min(xq, X3, ... ,%,) =
a — ¢ff and Max(xq, X5, ..., X,) =« + ¢f. We have

H({él = X1, ---’én:me 2“7S:ﬁ})

:H({él = X1, "'75}1 = X,
M=uo+cf,m=ua—cf})
=Qx+cfia, b) A Qo —ch;ab)

n—1

AN Qux; a, b)
ji=2

= Qulo + cf;a,b) A Qo — cf; a, b)
(by monotonicity)

= (M = 2+ B}) A TT({m = 2 — cB})
(by Lemma 3.3)

= II({M = o+ cf, m =2 — cf})
{by Lemma 3.3)

= I({X =25 =f)).

Thus (X, S) is sufficient with respect to L(u). The
proof is completed. [

4. Summary and conclusions

This paper is concerned with finding a solution
to the Maxmin u/E estimation for the family of
fuzzy numbers with two parameters, location and
scale, and investigating its characteristic properties.
We gave a solution when the family is generated by
a 0-symmetric fuzzy number. The solution could be
regarded as an estimator whose sufficiency, consist-
ency and maximum likelihood were shown.

The discussion was restricted to fuzzy number
u which is always O-symmetric. Non-symmetric
case remains to be studied further.
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