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Abstract 

We present a solution to the Maxmin #/E estimation problem of the family of fuzzy numbers with two parameters, 
location and scale, and show certain important properties of the Maxmin #/E estimator. ~' 1998 Elsevier Science B.V. 
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1. Introduction 

Maxmin #/E estimation for the family of fuzzy 
numbers with location and scale is a kind of 
method of estimating parameters for determining 
membership functions. Variations of this method 
has appeared in many papers (e.g. [,,4-8]). In paper 
[5], the estimation of the location parameter is first 
considered and the solution is given. In papers 
[6-8] ,  the special case of this estimation is dis- 
cussed by using the possibility theory. In paper [-4], 
some theoretical results on this method are ob- 
tained by drawing possibilistic inferences. In this 
paper, we continue the discussion of the Maxmin 
it/E estimation and present a solution to the family 
of fuzzy numbers with two parameters, location 
parameter and scale parameter, and show certain 
important properties. Throughout  this paper, V 
and A denote max and rain, respectively. 

* C o r r e s p o n d i n g  a u t h o r .  

First, in this section, we will briefly review the 
possibility theory and set up notations needed in 
the paper. Any fuzzy number /~, with member- 
ship function /~(x), will be defined by (1) IL~ = 
{x:/~(x) >~ ~} is a bounded, closed interval for each 
:~ ~ (0, 1), and (2)/tt  = {x:/t(x) -- 1} is not empty. 
The set of all fuzzy numbers is denoted by F(R). 
Let 

L(I~) = { Qu(a, b)[ Q.(a, b)(x) 

x-a } 

where kt is a 0-symmetric fuzzy number (i.e./t( - x) 
=/~(x) for every x ~ R), the parameter a is called 

location and the parameter b is called scale. By 
Zadeh's extension principle, we have 

i = 1  i = 1  i = 1  
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where ci (i = 1,2 . . . . .  n) are n real numbers and 
Qu(ai, bi) (i = 1, 2, . . . ,  n) are in L(At). 

Let us now consider the possibility variables. 
Suppose (U, P(U) , /7 )  denotes a possibility measure 
space where U is a set denoting all of psychological 
observations, P(U)  denotes the set of all subsets in 
U and/7  is a possibility measure, and R is the set of 
all real numbers. Any possibility variable 4 is a map 
U ~ R. Let #~(x) = H({u: 4(u) = x}) for x ~ R; then 
~t~ represents the distribution function of the pos- 
sibility variable ~. It is clear that #~ is a map from 
R to [0, 1]. If Ate is a fuzzy number then we say that 
4 is regular. We denote by 

E l 4 ]  = fR At~(t) dt. 

Then the value of E [4] represents a measure of the 
fuzziness of the distribution Ate. It is easy to prove 
that E [4] = lb if At is a 0-symmetric fuzzy number, 
the distribution function of 4 is Q¢(a, b) and ~a/~(t) dt 

We now define Ate,~ .. ¢ (xl, x2, ... ,x,), the joint 
distribution of a possibility vector (41, 42, . . . ,  ~,) 
by //({Ul~x(U) = x l , 4 2 ( u ) =  x2, . . . ,4,(u) = x,}). 
Possibility variables 41, 42 . . . . .  4, are called inde- 
pendent if 

Fl({ul4, , (u)  = x ....... ,4,~(u) = x,~}) 

k 

= A n ( {u l4 , , (u )  = x , , , } )  
i = I  

for all (x,,, . . . , x ~ , ) ~ R  k and (nl . . . .  ,rig) 
{1, 2 , . . . , n} .  Obviously, if f is a function defined 
on R" and f(41,42,  . . . ,~,)(u) is defined by 
f(41(u), 42(u) . . . . .  4,(u)) for all u e U, then 
f(41,  ~2, .--, 4,) is also a possibility variable. 

Our discussion in the following sections will em- 
ploy certain possibilistic concepts. For  a given type, 
all these classes of distribution functions depend on 
one or several parameters. The parameters may 
vary over a specified range, called parameter space. 
The collection of all the distribution functions, 
when the parameters vary over their possible range 
is called a family. Generally, the actual distribution 
is hidden in the family. Let ~1, ~2 . . . . .  ~. be n inde- 
pendent, identical distribution possibility variables 
(i.i.d.); then (4t, ~2 . . . .  , 4,) is called a sample of the 
family. The observed values of the sample may be 

obtained by psychological observation. Any func- 
tion of the sample (41,42, .--, 4,), which does not 
involve unknown parameters, is called a statistic. 
Obviously, every statistic is a possibility variable. 

Let the family be such a class of distribution 
{At~(x, 0)]0 =(0 i ,  . . . , 0 , ) ~ O }  where O is para- 
meter space (O c R"). We consider how to estimate 
reasonably the true value of the parameter 0 after 
observing psychologically the family m times and 
obtaining a observed sample (xt, x2 . . . . .  Xm). Let 
El4]  = SR Ate(x, O)dx, (41, 42 . . . . .  ~,), be a sample 
of the family and (Xl, x2 . . . . .  x=) an observed value 
of the sample. The joint distribution of the sample, 
which is regarded as the possibility with which the 
observed sample (x~,x2,  ... ,Xm) appears, can be 
denoted by 

At(X 1 . . . . .  Xm, O) : ~ Ate(X j, 0), 
j = l  

where 0 = (0~, 02, . . . ,0,) .  Noting that changes 
of values of parameters 01, 02 . . . .  ,0,  directly in- 
fluence the possibility that the observed sample 
(Xl, x2 . . . . .  Xm) appears and the value of El4] ,  we 
should select 0 such that the possibility is as high as 
possible and the value of El4]  is as small as pos- 
sible. Therefore, we denote by 

L(O) = fix #¢(xy, O)/E[#] 
j = l  

for all 0 = (01,02, . . . ,  0,) E O. If there exists 0 e  O 
such that L(O) = max0 ~ o L(O) then 0 is called Max- 
min #/E estimator of the parameter 0. 

2. A solution 

Theorem 2.1. Let  la be a O-symmetric f u z z y  number, 
L(At) = {Qu(a, b) la 6 R, b > 0} be the family  and 
(Xl, x2 . . . .  , Xm) be an observed sample of  the family. 
Then the M a x m i n  estimator of  the parameter 0 = 
(a, b) is 

(a ,  [1) = ( ( x  (11 + x(m))/2, (X (m) -- x~1))/2c), 

where x ~1) <~ x (2) ~ ... ~< x ~=) are the ordered values 
o f  Xl,  Xe . . . .  , x,, (m >>. 2), c is a real number at which 
the function 9(t) = tAt(t) (t >>- O) attains its maximum. 
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P r o o f i  Let ~ /~(t)dt = I. It is easy to compute 
that E [ L , ]  = lb. Therefore, 

L(a,  b) = I~ , 
j = 1 / 

/ x  (.' - a \  / 

j = l  

t - -V--J  J / (lb) • 
By dividing R into three subintervals, ( - ~ ,  xlU), 
Ix ~l),x [m]] and (x (ml,oc), we obtain that 
M a X , ~ R L ( a , b )  attains its maximum at a =  
(x lu + x(ml)/2 for any given b > 0; it can also be 
found in [1, Lemma 1]. Hence, 

l ~ / X  (1 )  - -  

l [ / X  (m) - -  

Let t = (x I') - x l l l /2b .  Then 

(x(~) + x ~") ) 2tp(t)  
L 2 , b  --I(Xlm)__XlU).  

AS the assumption that tla(t) attains the maximum 
at t = c, L ( ( x  (1) + x("l) /2 ,  b) attains its maximum at 
b = (x (~I - x(~))/2c. Therefore, the Maxmin t~/E es- 
timation of parameter (a, b) is 

((~, fi) = ( (X  (1) -4- xtm))/2, (X (m) -- X(1))/2C). 

The proof is completed. [] 

Example 2.1. Let us now consider the Maxmin ~/E  
estimator of the scale parameter, b, of the family 
Qv(a, b). ( x l ,  x2, ... ,Xm) is an observed sample of 
the family and (x l* l ,x  (2), ... , x  (m)) is the ordered 
arrangement of the sample. 

(a) If 

I t ( t ) = J ' l - - l x l k  if I x [ < l  (k > 0), 
t0  otherwise 

then [~ = ½(k + 1)l/k(x Im~ -- X(U). 

(b) If/~(t) = exp( - nt2), then b = ~ (x (") - x"l). 
(c) If It(t) = e -I'1, then b = l(x(") - x(U). 
(d) If 

{.,A - t  2, I t l < l ,  
~ ( t ) =  0, I t l / > l ,  

then b = ( 1 / x / 2 ) ( x  I") - xlU). 
The observed sample in Theorem 2.1 is regarded 

as crisp observations, but fuzzy observations can 
also be used. 

Example 2.2. Let p(t) = 1 - I t l  (It[ < 1) and L(/x) 
= {lt((x - a)/b)]a e R, b > 0}. We consider the 

problem of estimating vague location and vague 
scale for given fuzzy data: X~ = 1 -  I t - 2 0 1 / 8 ,  
12~<t~<28, X 2 =  1 - 1 t - 3 0 1 / 2 0 ,  10~<t~<50 
and X3 = 1 - It - 40[/8, 32 ~< t ~< 48. According 
to Zadeh's extension principle, we can evaluate 
Max(X1, X2, X3) and Min(X1, X2, X3). This re- 
suits in 

21 ~< t ~< 70/3, 

70/3 ~< t ~< 110/3, 

1 1 0 / 3  ~< t ~< 39, 

otherwise 

{ i  - (t - 2 1 ) / 1 4 ,  

= It - 301/8, 

(39 - 0/14, 

f i  - (5t - 20)/64, ~=  I t -  101/16,  

(190 - 50/16, 

4 ~ t 4 20/3, 

20/3 4 t 4 100/3, 

100/3 4 t ~ 38, 

otherwise 

by Theorem 2.1. 

3. P r o p e r t i e s  

D e f i n i t i o n  3.1. Let F be a family of distribution 
functions, ~ = (31, ~2 . . . . .  ~.n) be a sample, and let 
T(~-) be a statistic whose distribution function be- 
longs to F. We say T(~) is sufficient with respect to 
F if the joint distribution function of (T(~), 3), 
G(t, x), does not depend on x. 

N o t e  3.1. Every sample includes a certain amount 
of information on the family. Definition 3.1 shows 
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that  a sufficient statistic contains  same a m o u n t  
of informat ion  as the sample  with respect to 
the family. It  follows that  a sufficient statistic 
can be used to simplify a sample  wi thout  losing 
information.  

Definition 3.2. Let F be a family denoted  by F = 
{F(x,O)[Oe O} where O is pa rame te r  space, 

= (~1, 42 . . . . .  4,) a sample  of the family and  T(~-) 
a statistic. We say 

(a) T(~-) is a sufficient es t imator  of  0 if T(~-) is 
sufficient with respect to F; 

(b) T(~) is a consistent  es t imator  of  0 if 
H({T((- )  = 0}) = 1; 

(c) T(~) is a m a x i m u m  likelihood es t imator  of  
0 if 

L(xl ,  ... , x . ,  T(~-)) = M a x L ( x x  . . . .  ,x . ,  0) 
0 c O  

where L(x1, ... ,xn, O) = f/~ F(xj, 0). 
j = l  

Note  3.2. Sufficiency shows that  the es t imator  
can be used to est imate the p a r a m e t e r  wi thout  
losing information.  Consis tency illustrates the 
possibili ty that  the es t imator  takes true value 
is max imum.  M a x i m u m  likelihood explains the 
possibili ty that  the sample  appears  at tains 
max imum.  Therefore,  Definit ion 3.2 m a y  be re- 
garded as a cri terion for judging reasonableness  of  
an est imator.  

Theorem 3.1. Let the family be L(#), (41, 42 . . . . .  4,) 
be a sample of the family, (xl ,  x2, . . . ,  x,) an observed 
value of the sample, m = min(~l ,  42 . . . .  , ~,), M = 
Max(41,  ~2 . . . . .  4,), X = (M + m)/2 and let S = 
(M -- m)/2c where c is a number at which the func- 
tion t, #(t), attains maximum. Then 

(a) X is a consistent estimator of the parameter 
a and is a maximum likelihood estimator of the para- 
meter a when b is known; 

(b) (X, S) is a sufficient estimator of the parameter 
vector (a, b). 

Lemma 3.1. Any symmetric fuzzy number Q,(x; a, b) 
has a membership function as 

- ( x  - a ) / b )  i f  x < a ,  

Q, (x; a, b) = tf x = a, 

~#((x - a)/b) if x > a, 

where la(x) is monotonically decreasing on (0, oc ), left 
continuous, 0 <~ la(X) <~ 1, and lim . . . .  /~(x) = 0. 

Proof.  See [2]. []  

Lemma 3.2. 

7 ( Q , ( x ; a , b )  A A Q , ( Y j ; a , b ) ) : Q , ( x ; a , b )  
j = 2  

and 

( ) V Qu(x; a, b) A Q,,(y; a, b) A Qu(tj; a, b) 
F~ j = 2  

= Qu(x; a, b) A Q,(y; a, b) 

where 

r = {(Y2 . . . .  ,yn)e g n-1 lyj ~ x , j  = 2 . . . . .  n} 

and 

r 1 = { ( t  2 . . . .  , t , _ l ) ~ R " - 2 l x  <<, t) <~ y, 

j = 2 ,  . . . , n -  1}. 

Proof.  The  first equali ty can be obta ined  f rom the 
fact that  the inequali ty 

V (Qu(x; a, b) A Q,(yj; a, b)) <~ Q,(x; a, b) 
F 

holds and the sign of equali ty holds if y2 = Ya . . . .  
= y, = x; the other  equali ty is a direct result of  the 

monoton ic i ty  of Q,. [ ]  

Lemma 3.3. Let 41, ~.2 . . . .  ,4 ,  be n i.i.d, possibility 
variables having the same distribution function 
Q,(x;a,b), M = m a x ( ( x , ~ 2  . . . .  ,~n) and let m =  
min(41, ~2, ..- , 4,)- Then M and m are also two i.i.d. 
possibility variables having the same distribution 
function as 41. 

In order  to prove  the theorem, we need the fol- 
lowing lemmas.  

Proof.  The  assert ion that  M and m have the same 
distr ibution functions as ~1 is a consequence of  
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Theorem 1 in [-4]. It remains to show the indepen- 
dence. By Lemma 3.2 we have 

H ( { m =  x , M =  y})  

= H ( U  '~¢i, = x ,~ , , ,= Y , ¢ o = O , J  = 2 . . . . .  n - - 1 } )  

= V H({~,, = x, ~,, = y, ~0 = O,J  : 2, . . .  ,n  -- 1}) 
l j  

= V (H([~,,  = x}) A H({~,,, = y}) 
F~ 

j = 2  

( ) = V O. (x ;  a, b) A O~0:; a, bt A / ~  Q . ( 0 ;  a, b) 
I'~ j = 2  

= Q. (x ;  a, b) A Q.(y;  a, b) 

= H ( { m  = x}) A H ( { M  = y}) 

which completes the proof. [] 

Proof of Theorem 3.1. (a) The result that X has the 
same distribution function as ~.1 is a consequence of 
Theorem 1 in [-4]. Hence, F I ( { X  -- x}) = Q,(x;  a, b) 
holds. This implies H({X = a}) = 1 and X is a con- 
sistent estimator of the location parameter a. Let 
X (1), X (2), . . .  , X  (n) (X (1) ~ X (2) ~ "'" ~ X (n)) be the o r -  

d e r e d  values of the sample; we have 

L ( x l ,  x2, ... ,x , , ,a)  = k Ou(xj; a, b) 
j = l  

= Q~(x~n; a, b) A Q,,(x("); a, b), 

where b is supposed to be known. It is easy to prove 
that L attains maximum at (x ~) + x("))/2 when b is 
known. This results in the validity of part (a). 

(b) Let (x l ,  X2, . . . ,  Xn) ~ R", min(xl, X 2 . . . . .  .Xn) : 

:~ - c/~ and Max(x1, x2 . . . . .  x,) : ~ + c/~. We have 

=H({{1  = x l  . . . . .  ~ , = x , ,  

M = ~ + cfi, m = ~ -- cfi} ) 

= Q,,(~ + cl3; a, b) A Ou(~ - cfl; a, b) 

n - 1  

A /~ Q.(x(a'; a, b) 
] -  2 

= Q,(c~ + cfi; a, b) A Q,(~  - cfi; a, b) 

(by monotonicity) 

= H ( { M  = ~ + cfl}) A n ( { m  = :~ - cfi}) 

(by Lemma 3.3) 

= H ( I M  = ~ + o1£ m = ~ - 4 q )  

(by Lemma 3.3) 

= r l ( ,~ 'X  = ~, s = / ~ } ) .  

Thus (X, S) is sufficient with respect to L(p). The 
proof is completed. [] 

4. Summary and conclusions 

This paper is concerned with finding a solution 
to the Maxmin It /E estimation for the family of 
fuzzy numbers with two parameters, location and 
scale, and investigating its characteristic properties. 
We gave a solution when the family is generated by 
a 0-symmetric fuzzy number. The solution could be 
regarded as an estimator whose sufficiency, consist- 
ency and maximum likelihood were shown. 

The discussion was restricted to fuzzy number 
/~ which is always 0-symmetric. Non-symmetric 
case remains to be studied further. 
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