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Abstract 

In this paper, fuzziness existing in the process of generating decision trees by discretizing continuous-valued attributes is 
considered. In a sense a better way to express this fuzziness via fuzzy numbers is presented using possibility theory. The fact 
that selection of membership functions in a class of symmetric distributions does not influence the decision tree generation 
is proved. The validity of using the tree to classify future examples is explained. On the basis of likelihood possibility 
maximization, the existing algorithm is revised. The revised algorithm leads to more reasonable and more natural decision 
trees. @ 1998 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Learning algorithms based on decision tree gener- 
ation are of  the most powerful heuristics in inductive 
learning. One optimally inductive learning method is 
to generate all possible decision trees that correctly 
classify the training set and to select the simplest of  
them. The number of  such trees is finite but very 
large, so the method is computationally burdensome 
and is feasible only for very small training set. ID3 
is an algorithm designed for generating a reasonably 
good decision tree without much computation [8]. The 
ID3 algorithm can generate a simpler decision tree by 
using minimization of class information entropy but 
cannot guarantee generation of the simplest tree. So 
far, the ID3 algorithm, which can conveniently de- 
note the information structure between attributes of  
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concepts and attribute values, has been one of the 
most powerful algorithms. Some scholars, depending 
on their different needs, present many extensions of 
the ID3 algorithm, such as GID3 [1] and GID3* [4]. 
Other algorithms based on decision tree generation 
appeared in quick succession, e.g. N2 [2] and C4 [9]. 

Generally, attributes in a learning problem can 
be divided into two classes, namely, discrete-valued 
attributes and continuous-valued attributes. The for- 
mer are regarded as nominal (categorical) notions 
while the latter, as real numbers. The above algo- 
rithms assume that all attribute values are nominal. 
Continuous-valued attributes must, therefore, be dis- 
cretized prior to attribute selection. There are various 
ways for discretization but a practical one is binary 
partition which means that a continuous-valued at- 
tribute is discretized during decision tree generation 
by partitioning its range into two intervals. A thresh- 
old value, T, for the continuous-valued attribute A is 
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Table 1 

A leaf  node in a decision tree 
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Example  1 2 3 4 5 6 7 8 9 10 

Value o f  attribute A 20 21 22 50 56 60 68 72 75 81 

Class  - - - + + + + + + + 

determined and the set [,4 ~< T] is assigned to the 
left branch, whereas [A > T] is assigned to the right 
branch. The threshold value T is called a cut point. 
This method for selecting a cut point, which is 
used in the ID3 algorithm and its variants, involves 
choosing a particular discretization among several 
possible ones. In [5], a result about the information 
entropy minimization heuristic used in discretizing 
continuous-valued attributes is derived. 

However, when a discretization is chosen for 
a given continuous-valued attribute A, values of the 
attribute A will possess fuzziness with respect to 
branching. To illustrate this kind of fuzziness, we 
consider a leaf node having 10 examples in a de- 
cision tree and a continuous-valued attribute A (see 
Table 1). By computing the information entropy, 
the best cut point, T, for discretization should be in 
the interval (22, 50). When the left branch [A <~ T] 
and the right branch [A > T] are used to classify 
future examples, the value of T is usually taken to 
be the midpoint of the interval, namely 36, without 
considering concrete structure of attribute values. Ob- 
viously, this method is not very reasonable because 
each value in the interval (22, 50) has the possibility 
for it to appear as positive example or as negative 
example. For solving this problem, a new technique, 
soft thresholds, has been presented by Quinlan in 
1993 (see [10]). In that case, some kind of weighting 
is used to soften absolute thresholds. In this paper, we 
further discuss this problem and consider whether the 
selection of the cut point T (i.e. the threshold) can be 
by fuzziness. 

Using possibility theory, this paper deals with this 
kind of fuzziness and gives us 
• a better understanding of fuzziness in the process 

of discretization, 
• a better selection of membership functions in order 

to describe this fuzziness, 
• the influence upon decision tree generation and 
• the validity of using the tree to classify future 

examples. 

In Section 2 we discuss the procedure of the algorithm 
for decision tree generation with handling fuzziness 
and in Section 3 we give the theoretical foundation for 
supporting this algorithm and prove our main results 
of this paper. 

2. Algorithm for decision tree generation with 
handling fuzziness 

2.1. Selecting the best cut point 

In the process of decision tree generation, a binary 
partition is usually regarded as a discretization for 
continuous-valued attributes. This partition should be 
chosen so as to provide useful classification informa- 
tion with respect to the classes to which the examples 
in the attribute's range belong. Often a cut point, T, is 
selected for a continuous-valued attribute A such that 
the set "A ~< T" is assigned to the left branch while 
"A > T" is assigned to the right branch. That is, the 
space of all examples will be divided into two parts 
by using a cut point. To explain the "best" cut point, 
we need the following definition (see [5]). 

Let E be the set of all examples considered, and 
let there be k classes C1, C2 . . . . .  Ck, with the property 
E=U/k=I Ci, Ci ('] Cj=O(i• j ) ,  S C E ( S ¢ O ) .  Then 
the class entropy of the subset S is defined as 

k 

Entr(S) = - Z P(C~,S) log P(Ci,S), 
i=1 

where P(Ci, S )=  ISnGI/ISI ( i =  1,2, . . . ,k) .  ]e I de- 
notes the number of elements of a set and the log- 
arithm may be to any convenient base (we define 
x log x = 0 i fx  = 0). 

Definition I. Let S be a set of examples, A a 
continuous-valued attribute, and T a cut point. Ac- 
cording to the value of the attribute A, the set S can be 
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Table 2 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

A 15 17 19 21 22 24 26 28 30 31 35 36 37 39 42 43 45 46 

Class + + + . . . .  + + + . . . .  + + + + 

divided into two subsets, $1 = {e]e E S, A(e) <~ T} 
and $2 = S - $1. Then, the class information entropy 
of the partition induced by T, denoted by E(A, T, S), 
is defined as 

E(A, T,S) = I~s Entr(S1 ) + -~lS2l Entr(S2 ), 

where [ • [ denotes the number of elements of a set. 
Assume we are to select a continuous-valued at- 

tribute A for branching at a node having a set S of 
N examples. Let there be k classes C1, C2 . . . . .  Ck, 
and suppose N examples do not have identical at- 
tribute values (if there are identical attribute val- 
ues, the similar way for handling can be used). 
The N examples which are first sorted by increas- 
ing value of attribute A can be divided into M families 
(M ~<N), denoted by FI,F2 . . . . .  FM. Then there 
exists j ( j  <<. k) for each i(i <~ M)  such that F/C Cj, 
i.e. all examples of each family belong to the same 
class. For instance, Table 2 gives us a special case 
o f k =  2, N = 18 andM = 5 for the attribute A, where 
CI = {1, 2, 3, 8, 9, 10, 15, 16, 17, 18}, C2 = {4, 5, 6, 
11, 12, 13, 14},F1 ={1, 2, 3},F2 ={4, 5, 6, 7},F3 = 
{8, 9, 10}, F4 = {11, 12, 13, 14}, F5 = {15, 16, 17, 
18}. 

Between each successive pair of families, a value is 
chosen. These values are usually regarded as the mid- 
points (see [5]), called candidate cut points. Hence, 
M -  1 candidate cut points are obtained. Among these 
M - 1  candidate cut points, T1, T2 . . . . .  TM-1, a partic- 
ular point, e.g. TA, can be selected such that the class 
information entropy of partition induced by the point 
Ta attains minimum. That is, 

E(A, TA,S)= min E(A, Ts.,S ). 
1 <~j<~M-1 

Then TA is regarded as the best cut point in the sense 
of class information entropy minimization. This de- 
termines a binary discretization for attribute A. 

After all continuous-valued attributes have been dis- 
cretized, a particular attribute should be selected for 
branching out of the node. In algorithms that use in- 

formation entropy minimization for attribute selection, 
the attribute A*, for which E(A*, Ta.,S) is minimal, 
is the selected attribute among all continuous-valued 
attributes. 

2.2. Revising the best cut point 

is said to be a fuzzy number if it is a convex, 
closed fuzzy set on R (the real line). We call the set 
{xl#(x) > 0} the support of the fuzzy number. A 
fuzzy number # is called 0-symmetric if #(0) = 1 and 
#(x) = p ( -x )  for each x E R (see [12]). The following 
is the well-known characteristic theorem of a fuzzy 
number. 

Proposition 1. Let # be a continuous fuzzy number. 
Then g has the following properties: 
(1) There exists an interval [mu, nu] such that 

#(x) = 1 for each x C [m u, nu]. 
(2) # monotonically increases for x < m u and mono- 

tonically decreases for x > nu. 
(3) L i m x ~  #(x) = 0. 

For a given 0-symmetric fuzzy number # with the 
property that the set {x I #(x)= 1 } consists of only one 
point, we denote 

{ / ~ ( ~ - - - ~ )  aER,  b > 0} byf2~ 

f2 u is called a family of fuzzy numbers, generated by #, 
which is similar to the family of distribution functions 
in probabilistic statistics where a and b are location 
parameter and scale parameter, respectively. 

Now we consider the fuzziness for branching and 
revise the selected cut point TA.. Let two families of 
examples be Fl and F2 (the family Fl lies on the left 
of TA* while the family F2 lies on the right of TA., 
without loss of generality). F1 and F2 are regarded as 
two elements of the family 12u. According to values 
of the selected attribute A*, two fuzzy numbers can be 
estimated for describing F1 and F2 (see the following 
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Table 3 
A problem of learning from example 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
AI 15 17 19 21 22 24 26 28 30 31 35 36 37 39 42 43 45 46 
A2 101 105 115 107 109 110 112 117 123 124 114 119 120 122 126 127 129 130 
A3 310 312 313 316 318 330 331 315 320 322 332 333 335 337 325 327 340 345 
Class + + + . . . .  + + + . . . .  + + + + 

section). Two fuzzy numbers, whose supports are the 
real line, should have better membership functions in 
a sense, e.g. membership functions determined in the 
following way. 

Let the ith family F/have t examples which belong 
to the same class. The sorted values of  the attribute 
A* are al ,  a2 . . . . .  at ( t >1 2). Then a better membership 
function describing F/, in a sense, is 

2x - al - at 
~F~ (x) = exp -- ~ ---- al " 

When t = 1, we take a sufficiently small, positive num- 
ber 6 and regard the membership function describing 
Fi as 

There are many forms of  ~F'(x),  but our main objec- 
tive is to evaluate the cross point o f  two membership 
functions, and this does not depend on the concrete 
forms of  #F'(x)  (see the following section). 

The cross point o f  ]A El (X) and ]AF2(x) is assumed to 
be TA* and the formula for computing this cross point is 
given in the following section. Suppose F1 contains n 
sorted values xl . . . . .  xn and F2 contains m sorted values 
y l  . . . . .  Ym (Xn < Yl ) .  It is clear that I~F'(x) < #F2(x) 
if  X > TA* and [AF'(x) > #F2(x) if x < TA* for each 
x E [Xn, Yl]. ] "IF1 (X) and/~F2 (X) represent the possibil- 
ity with which x appears in F1 and F2, respectively. 
We prefer a bigger possibility with which x appears. 
That is to say, x should belong to the left branch if 
x < TA. and to the right branch if x > TA*. The point 
TA., therefore, is regarded as the revised value of  the 
best cut point for the selected attribute A*. 

When, in turn, attributes are to be selected for 
partitioning the child nodes, the discretization process 

must be performed again to rederive a new quantiza- 
tion based on each child node's  own examples. 

2.3. Procedure  f o r  generat ing decision tree 

The procedure for decision tree generation with 
handling fuzziness is given as follows. 

SELECT a node having N examples for branching 
(a) Take an attribute and sort N examples by 

increasing the value of  the attribute. Then, obtain 
several "families" (e.g. Table 2). 

(b) Take a point (e.g. the midpoint) between each 
successive pair o f  families and regard it as a candidate 
cut point. Compute the class entropy induced by each 
candidate cut point and select the point with minimal 
entropy (the best cut point). 

(c) Determine the best cut point for each attribute. 
Select the attribute whose best cut point, denoted by 
T, has minimal entropy among all attributes. Thus, 
two families which are located on the left o f  T and on 
the right of  T are determined. 

(d) Compute the cross point o f  two membership 
functions which describe these two families (The for- 
mula is given in Section 3.3 ). By the explanation given 
in Section 2.2, the cross point is regarded as the best 
revised cut point. 

(e) According to the best revised cut point o f  the se- 
lected attribute, the tree branches at the selected node. 

REPEAT the above process for a selected child 
node until classification ends. 

2.4. E x a m p l e  

Consider a problem of  learning from example given 
in Table 3 where there are 10 positive examples, 
8 negative examples and 3 continuous-valued at- 
tributes (A1 ,A2 ,  and A3). 
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Using the algorithm listed in Section 2.3 and the algo- 
rithm in [5], we can get decision trees 1 and decision 
tree 2. 

Decision tree 1 
Root 

{nodel.(A2 ~< 121.38) 
{node 11 .(A3 ~< 315.21 ) : Positive 

node 12.(A3 > 315.21 ) : Negative 
} 

node2.(A2 > 121.38) 
{node21.(A2 ~< 122.13) :Negative 

node22.(A2 > 122.13) :Positive 
} 

} 

Decision tree 2 
Root 

{nodel.(A2 ~< 122.50) 
{nodel 1.(A3 ~< 315.50) : Positive 

nodel2.(A3 > 315.50) : Negative 
} 

node2.(A2 > 122.50)'Positive 
} 

Consider e = (21, 120, 315.4), the classification re- 
sult is negative by using decision tree 1, but the clas- 
sification result is positive by using decision tree 2. 
Assigning to example e to be negative is more reason- 
able because the possibility with which e appears in 
node 12 is larger than the possibility in node 11 where 
node 11 = [positive examples: 1, 2, 3, 8] and node 12 
= [negative examples: 4,5,6,7, 11, 12, 13]. 

3. Theoretical foundation of the algorithm 

3.1. Class information entropy minimization 

Information entropy minimization used in clas- 
sification learning algorithms is the most powerful 
heuristic. It has many advantages in optimal learning 
although it cannot result in the simplest decision tree. 
The following proposition guarantees that the entropy 
induced by the best revised cut point obtained in our 
algorithms really attains minimum among entropies 
induced by all possible candidate cut points, if the best 
revised cut point does not lie inside of some family. 

Proposition 2. Let T be a cut point, for which 
E(A, T,S) is minimal amono entropies induced by 
all possible candidate cut points. Then, T is a 
boundary point, i.e. a cut point with the followin9 
property: In the sequence of examples sorted by 
the values of attribute A, there exist two examples 
el E S and e2 E S havin9 different classes such that 
A(el) < T < A(e2), and there exist no other exam- 
ples e' E S such that A(el) < A(e') < A(e2). 

Proof. It is a counterpart of Theorem 1 in [5]. 

3.2. Maximal likelihood possibility for appearance 
of  sample 

According to the possibility theory, a fuzzy number, 
/~, can be regarded as a possibility distribution. The 
membership degree kt(x) for each x E R is considered 
the possibility with which the point x appears. The 
details on possibility theory can be found in [3]. 

The integral of a membership function # on the real 
line is called fuzzy entropy of the possibility distribu- 
tion #, denoted by E[#] (see [12]). The fuzzy entropy 
denotes a kind of uncertainty (fuzziness) of the distri- 
bution. Obviously, the greater El#] is, the higher the 
uncertainty. Particularly, when El/z] is almost zero, # 
almost becomes a real number. 

In the following, we take a fixed, 0-symmetric, con- 
tinuous fuzzy number/~ whose support is assumed to 
be R. Suppose the set {x ]/~(x) = 1} consists of only 
one point, and consider f2u, the possibility distribution 
family generated by/~ defined as 

f 
[2 u = ~ Q(x; a, b) I Qu (x; a, b) 

where a and b are the location parameter and the scale 
parameter, respectively, which is similar to the family 
of probabilistic distribution functions. 

Consider a parameter estimation problem. A fuzzy 
number (possibility distribution) has membership 
function v which belongs to f2 u and the parameters of 
v, a and b remain to be determined. A crisp sample 
from the distribution v, (Xl,X2 .. . . .  xm), is known. The 
problem is how to reasonably estimate parameters a 
and b by using the sample. 
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To obtain estimators of a and b, we apply Maxmin 

p/E estimation principle [3,6,11,12]. Let the mem- 

bership function be Q, (x; a, b), and (x1,x2,. . . ,x,) a 

sample. We denote by 

L(a, b) = min 
1 Qi<m 

Qp (xi; a, b)lE[QJ 

the likelihood possibility with which the sample 

appears. 
As a bigger possibility is preferred, we naturally re- 

quire L(a, b) is as big as possible. The Maxmin esti- 
mators of a and b are defined to be C? and 6 satisfying 

L(a^,h) = ma&&?,b>&(a, b). The Maxmin estimators 
of a and b have many advantages such as sufficiency 
and consistency (see [6,11]). The following proposi- 
tion gives us the formula of evaluating (a^, h), 

Proposition 3. The Maxmin estimator of the para- 
meter 0 = (a, b) is 

(a^ 7 6) = ((x”’ + x(4)/2, (x(m) - x(‘))/2c) 3 

where x(l) < xc2) < . . . < dm) are the ordered values 

of x1,x2,..., x,,, (m 2 2), and c is a real number at 
which the function g(t) = tp(t) (t 3 0) attains its 
maximum. 

Proof. Let J-“, p(t)dt = E, and let A denote “min” 

and V denote “max”. It is easy to compute that E[QJ= 
lb. Therefore, 

For any given b > 0, 

TEyL(a,b) 

)I 

The validity of the second equality above results from 
the following fact: let p be a O-symmetric, convex 

function, cz=a-(x@)+x(‘))/2b, and t=(x@)-x(l))/2b. 
Then 

6 v [;(/a - a> + At + a)>] 
LIER 

d V ,@I = PL(t). 
CIER 

Hence, 

By the assumption that tp(t) attains the maximum 
at t = c, L((x(‘) + x@))/2, b) attains its maximum 
at b = (x(“‘) - x(*))/2c. Therefore, the Maxminp/E 
estimation of parameter (a, b) is 

(ci,6) = ((x(1’ + x9/2, (x(m) - X”‘)/2C). 

Hence, the proof is completed. q 

Now, we discuss the revision of the best cut point. 

When N examples are sorted by increasing value of 
the attribute A,M families, Fl, F2,. . . , FM, are obtained 
(see Sections 3.1 and 3.2). Suppose the best cut point 
is located between F, and F2 (without loss of general- 
ity). Each family, E;; (i = 1 or 2), is regarded as a fuzzy 
number in the abstract and values of the attribute A 
in the family fi are considered as a crisp sample of 
the fuzzy number. After the initial fuzzy number, p, is 
chosen, the membership function describing fi (i = 1 
or 2) can be obtained by using Proposition 3. The re- 
vised value of the best cut point can be determined by 
computing the cross point of two membership func- 
tions which describe the families F, and F2. The eval- 
uation of the cross point and the selection of the initial 
fuzzy number are shown in the following subsections. 
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3.3. Steadiness of decision tree 

From the above two subsections we know that the 
decision tree is generated by using a number of binary 
partitions induced by the best revised cut points. The 
best revised cut point is obtained by evaluating a cross 
point of two membership functions. So far, we have 
used a family f2~ which is generated by a 0- symmetric 
fuzzy number f .  We have no limitation of the shape 
of f but continuity and R-support. A problem is which 
are the different shapes of f ,  and how to influence the 
decision tree generation (i.e. how to influence the best 
revised cut point). The following proposition gives a 
satisfactory answer. To a large extent, the selection 
of membership functions does not influence decision 
tree generation. 

Proposition 4. Let f be a given O-symmetric fuzzy 
number with continuous membership function and 
R-support, and let Q~ (x;abbl) and Qu (x;a2,b2), 
which are two fuzzy numbers describing a successive 
pair of  families of  attribute values, be generated by 
using Maxmin f iE  estimation. Then the cross point 
of  these two membership functions does not depend 
on the selection of  f. 

Proof. Let the first sample be (x(l),x (2) . . . . .  X ( m ) )  and 
the second sample (y(1), y(2) . . . . .  y(n/) (n, m ~> 2). By 
Proposition 3, we know that 

x ( l ) ÷ x  (m) X TM) __X (1) 
al -- , hi -- , 

2 2c 
y ( l ) + y ( n )  y(n) _ y ( 1 )  

a 2 - -  , b 2 -  
2 2c 

To evaluate the cross point, we put Ou(x;al,bl)= 
Qt~(x;a2,b2). According to Proposition 1, we obtain 
(X-- al )/bl = - ( x  - a2 )/b2 which implies that the cross 
point is T = (alb2 + a2bl )/(bl + bE), i.e. 

T = ½ { [(x O) +x(m))(y (n) - yO)) + (yO) + y(n)) 

x(x(m) _ xO))]/[(y(n) _ y(1)) + (x(m) - -  X(1))] } 

As shown in the above equality, the cross point, T, 
does not depend on the selection o f f .  Hence, the proof 
is completed. [] 

Note. When a family contains only one sample 
point, e.g. x, we may regard x - e and x ÷ e as a 

sample (x (1), x (2)) where e is a sufficiently small, pos- 
itive number. The above equality gives us a practical 
formula for computing the cross point (i.e. the best 
revised cut point). 

3.4. Validity of using the tree to classify future 
examples 

In the process of generating decision tree, we first 
select an attribute for branching at a node having a set 
of examples. Then, according to the best revised cut 
point obtained by evaluation, the left branch and the 
right branch are generated. These two branches can 
be described by two fuzzy numbers, denoted by fL 
and fR, respectively. Let the best revised cut point be 
T, and let two fuzzy numbers be f l  = Ou(x; al, bl ) 
and f2 = Q~(x; a2, b2)(al < a2 ), which lead to the best 
revised cut point T. Then the left and fight branches 
may be denoted by 

f l (X),  X > al,  
fL(X) = 1, x ~< al, 

fiR(X) = ~ f2(X), X < a2, 

t 1, X /> a2, 

and 

respectively. It is clear that every value of the attribute 
in the interval [at, a2] possesses fuzziness and can be 
assigned to the left branch or the right branch. We 
have the following result. 

Proposition 5. When the decision tree is used to 
classify a future example, class!fication possesses 
the property that a value of the attribute considered 
is assigned to the left branch (the right branch) 
if and only if the possibility with which the value 
appears in the left branch (the right branch) is equal 
to or greater than the possibility with which the value 
appears in the right branch (the left branch). 

ProoL By Proposition 1, fL(X) monotonically de- 
creases if x > al and fR(X) monotonically increases 
if x < a2. A new example, e, will belong to 
the left branch if A(e)<~ T and will belong to 
the right branch if A(e)> T. This implies that 
A(e) ~ T c:~ fL(A(e)) >/fR(A(e))c:~the possibility 
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with which A(e) appears in the left branch is greater 
than the possibility with which A(e) appears in the 
right branch. Thus, the proof is completed. [] 

4. Conclusions 

This paper presents the existence of fuzziness for 
continuous-valued attributes in decision tree genera- 
tion; in a sense, gives a better way to express this kind 
of fuzziness by means of fuzzy numbers; proves that 
the decision tree generation does not depend on the 
selection of membership functions in a symmetric dis- 
tributed family; and explains the validity of using the 
tree to classify future examples. 

The algorithm in this paper is a modification of that 
in paper [5]. Whereas paper [5] regards the best cut 
point as the midpoint, this paper regards it as the cross 
point of two membership functions. 

Comparing with paper [5], this algorithm has the 
following advantages: 
(1) it presents a new method of softening the thresh- 

old value; 
(2) it generates decision trees more reasonably and 

more naturally; 
(3) the revised cut point selection is supported by the 

possibility theory; 
(4) fuzziness in attributes is handled but rules (deci- 

sion trees generated) are still crisp. 

References 

[1] J. Chang, U.M. Fayyad, K.B. Irani and Z. Qian, Improved 
decision trees: a generalized version of ID3, Proc. 5th Int. 
Conf. on Machine Learning (Morgan Kaufmann, San Mateo, 
CA, 1988) 100-108. 

[2] P. Clark and T. Niblett, The CN2 induction algorithm, 
Machine Learnino 3 (1989) 261-284. 

[3] D. Dubois and H. Prade, Possibility Theory (Plenum Press, 
New York, 1988). 

[4] U.M. Fayyad and K.B. Irani, A machine learning algorithm 
(GID3*) for automated knowledge acquisition: improvements 
and extensions, GM Research labs, Warren MI (1991). 

[5] U.M. Fayyad and K.B. Irani, On the handing of continuous- 
valued attributes in decision tree generation, Machine 
Learning 8 (1992) 87-102. 

[6] W. Nather, On possibilistic inference, Fuzzy Sets and 
Systems 36 (1990) 327-337. 

[7] W. Nather and M. Albrecht, Fuzzy model fitting based on 
the truth of the model, Freiberger, Forschungshette D 187 
(1987). 

[8] J.R. Quinlan, Induction of decision tree, Machine Learning 
1 (1986) 81-106. 

[9] J.R. Quinlan, Probabilistic decision trees, in: Y. Kodratoff 
and R. Michalski, eds., Machine Learning: An Artificial 
Intelligence Approach, 3 (Morgan Kaufmarm, San Mateo, 
CA, 1990). 
J.R. Quinlan, C4.5: Programs for Machine Learning 
(Morgan Kaufmann, San Mateo, CA, 1993). 
W. Xizhao and H. Minghu, Note on maxmin #/E estimation, 
Fuzzy Sets and Systems, to appear. 
W. Zhenyuan and L. Shoumei, Fuzzy linear regression 
analysis of fuzzy-valued variables, Fuzzy Sets and Systems 
36 (1990) 125-136. 

[10] 

[11] 

[12] 


