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Improving Learning Accuracy of Fuzzy Decision Trees by Hybrid Neural
Networks

E. C. C. Tsang, X. Z. Wang, and D. S. Yeung

Abstract—Although the induction of fuzzy decision tree (FDT) been improved such that it is suitable for the fuzzy case. That is
has been a very popular learning methodology due to its advantage fuzzy decision tree (FDT) induction. Investigations to FDT in-
of comprehensibility it is often criticized to result in poor learning duction could be found in[1], [3], [8], [10]-[13], [17], [25], [28]

accuracy. Thus, one fundamental problem is how to improve the ; .
learning accuracy while the comprehensibility is kept. This paper [29], [32], [33], and [40], which are summarized as follows.

focuses on this problem and proposes using a hybrid neural net- a) Revising algorithms for generating FDT#ainly, this
work (HNN) to refine the FDT. This HNN, designed according to  kind of revision is reflected within the process of FDT genera-
the generatltted _FDTFagg tr?iir?ed by a? algoritl?n; der_ivEtd (ijnthi$ tion and influences the shape and size of FDT. For example,
aper, results in a with parameters, called weighte N ; ; ;
'[I)'hz weighted FDT is equivaleﬁt to a set of fuzzy prodgction rules Cios and Sztandera [8] proposed using fuzzy entropy in C_Ontm'
with local weights (LWs) and global weights (GWs) introduced in  YOUS ID3 a_lgorlthm and achieved a re_markable decrease in con-
our previous work. Moreover, the weighted FDT, in which the rea-  Ve€rgence time. Yuan and Shaw [40] introduced a new heuristic
soning mechanism incorporates the trained LWs and GWs, signif- algorithm for generating FDT, which is based on the minimal
icantly improves the FDTs learning accuracy while keeping the nonspecificity and dose not use the entropy. Ichihashl.[11]
FDTs comprehensibility. The improvements are verified on sev- proposed a method of inducing FDTs in which the interview

eral selected databases. Furthermore, a brief comparison of our ith d . ialists i idered to b for k |
method with two benchmark learning algorithms, namely, fuzzy with domain Specialists IS conslaered to be necessary 1or knowl-

ID3 and traditional backpropagation, is made. The synergy be- €dge acquisition in expert systems. Hayashi [10] proposed an
tween FDT induction and HNN training offers new insight into the  algorithm for generating FDT that incorporates the adjustment

construction of hybrid intelligent systems with higher learning ac- - mechanism of AND/OR operators such that the FDT has more
curacy. flexible representation. Wanet al. [33] investigated the opti-
Index Terms—Approximate reasoning, fuzzy decision trees, hy- mization of FDT and gave a branch-merging algorithm for FDT
brid neural networks, knowledge acquisition, learning, local and  generation.
global weights. b) Improving reasoning mechanism of FDT$his kind
of improvement can be independent of FDT generation, usually
|. INTRODUCTION including pruning/grafting and fuzzification of nodes of FDT.
. . For example, Maher and Clair [17] gave an UR-ID3 algorithm
I N the contempor_a_ry research_ on knowledge ENgINeEring; incorporates uncertain reasoning technique and improves
knpwledge acquisition (Iearnmg), and knowledge Nt e robustness of FDT. Sison and Chong [28] suggested using
pretation (reasoning) are the main tasks. The o tasks 8 pruning of FDT to eliminate the irrelevant attributes thus to

regarded as two tightly coupled phases in one system, as Sh%Wleify the rule base. Jengf al. [13] gave a fuzzy inductive

in Fig. 1 [14]. learning method for automatic knowledge acquisition by means

Many learning approaches to knowledge acquisition ha}ﬂ?fuzzifying the crisp decision tree and reported a remarkable

_been Qevelop_ed. One pop”"’?‘r approac_h Is calle_d decision § 5rovement of predictive accuracy. Janikow [12] gave a de-
induction, which (together with a learning algorithm ID3 an biled investigation for FDT, with the purpose of combining

a s_ml"nple erasltj)mngt; mechamjm) tvvas |n|;|::1rllly developehd ; mbolic decision trees with approximate reasoning offered by
Quinlan [21]. Due to many advantages of this approach, 2y representation.

decision tree induction has been investigated intensively during c) Applications to different domainsA lot of appli-

the recent decade. cations of FDT can be found in the existing literatures. For

Most knowledge associated with human’s thinking and peéi(ample, one can find the applications of FDT to prediction

ception has imprecision and uncertainty. In addition to the Xt heater outlet temperature [29], to diagnosis systems [32], to

perience of domain experts, learning from examples with fuz.ﬁ){ tion planning [25], to ham quality control [1], and to power

representationis considered as an essential way of acquiring s#:y em security assessment [3].

knowledge. Inthe recent decade, for the purpose of acquiring im-

. . o ; . In FDT induction, comprehensibility has been universally ac-
precise and uncertain knowledge, the decision-tree induction r&%f)ted as one main advantage. The comprehensibility refers to

that the concepts formed by FDT are understood more easily

. . . , than that formed by other techniques such as neural networks.
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Fig. 1. The knowledge acquisition and knowledge interpretation in a knowledge-based system.

examples). A better learning accuracy is always expectedAn Fuzzy Representation of Training Example

knowledge acquisition. In the crisp case of learning from eXam-£ 5y representation of training examples is introduced
ples without noisy data, the training accuracy can attain 1009, 5rder to handle the increasing uncertainty of learning
but in fuzzy case, it usually fails to achieve that. When the o occ The crisp representation can be regarded as a spe-
training time is acceptable, one always expects a higher learniig| ~,se of fuzzy representation. Fuzzy representation of
accuracy. From the investigations of FDT mentioned above, O%mples may also be expressed in the form of a set of
may find that the improvement of reasoning mechanism OfFDRTTRIBUTE — Attribute-valug, but the attribute-value is
given by fuzzifying nodes [13] or by fuzzifying branches [17] 0t 5 sigered a fuzzy set. According to the type of fuzzy sets, the
the crisp decision tree can raise the learning accuracy. This iggh;y representation of Attribute-value can be categorized into
important kind of approach to increase learning accuracy. Hogfy cases, namely, nominal valued, real valued, interval valued,
ever, this increase of learning accuracy is accompanied with tfﬂ%zy number valued, fuzzy vector valued, and mixed-valued
decrease of the comprehensibility of FDT. Another approach i iputes.
improve thg Iearning accuracy is t(_) cqnstruct an opl?que de- this paper, we only deal with the learning from fuzzy
cision tree in which a linear combination of the original atyector valued examples, in short, learning from fuzzy examples.
tributes is considered to be a new attribute [23] (in which onlye 4 ning from fuzzy examples is a type of supervised inductive
the crisp case is considered). Due to the unclear meaning of N@Wring” and the classification of each training example is
attributes, to some extent this approach also lowers the COMR{Easigered to be known. Traditionally, the classification is
henS|b|I.|ty of decision trees. Thus, one fuqdamental problemdﬁsp (a positive class and a negative class). In our study on
hF’.W t.o improve the learning accuracy while the comprehen:,;é-aming from fuzzy examples, the classification of training
bility is k'ept. : . examples is supposed to have fuzzy representations; that is, the
Focusing on this problem, the present paper proposes usingaification of each example is no longer a definite class, but
hybrid neural network (HNN) torefine the FDT. Itis well knowng ¢,y vector defined on the cluster space. For instance, when
that neural networks together with their learning algorithms Usiiare are only two clustet8 and N, the fuzzy representation
ally have a significant merit, namely, their high prediction accyss |assification in this case may 168.4/ P, 0.6/N).
racy due to the highly nonlinear decision boundaries they form.|, e following sections, we will make use of a small
By means of incorporating this merit into the FDTinduction,wgﬂaining set to illustrate our learning process. The small
expect that the learning accuracy of FDTs can be significanipaining set (adopted from [40]) is shown in Table | where
improved while keeping the comprehensibility. ~ both attribute-values and classification of each example are
_The remains of this paper are organized as follows. Sectionllyresented as the form of fuzzy vector. In this problem of
gives a brief review for the FDT induction. Section Il d'scussﬂéarning from fuzzy examples, there are four attributes namely

the weighted FDT induction in which the weighted FDT igy 50k, Temperature, Humidity andWind. Their universes
equivalent to a set of fuzzy production rules with local weightSt qiscourse are

(LWSs) and global weights (GWSs) introduced in our previous

work and.the weighted FD_Ts reasc_)ning mechanism imprp_ves U(Outlook) = {Sunny Cloudy, Rain}
the learning accuracy while keeping the comprehensibility. _
Section IV investigates the training algorithm for the proposed U(Temperature) = {Hot, Mild, Cool}
HNN and Section V verifies the advantages of the weighted U(Humidity) = {Humid, Normal}
FDT on several databases and makes a brief comparison vty
two benchmark learning algorithms. They are the initial fuzzy
ID3 algorithm and the traditional back-propagation algorithm.
Section VI offers our conclusions and the last section states the
future work.

U(Wind) = {Windy, Not.windy}

respectively. Each attribute value is a fuzzy vector defined on
the universe of discourse of the attribute. For instance, the value
of the first attribute of the first example in Table | is of the form

In this paper, the FDT induction is considered to be an alg@.9/Sunny+0.1/Cloudy+ 0.0/Rain), in short,(0.9,0.1, 0.0).
rithm for generating FDT together with a reasoning mechanisihe universe of discourse of the classification is the sport to

Il. Fuzzy DECISION TREE INDUCTION
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TABLE |
A SMALL TRAINING SET WITH FUZzY REPRESENTATION

No.  Qutlook Temperature Humidity Wind Sports Plan

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not v S w
1 0.9 0.1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0.6 0.0 0.8 0.2
2 0.8 0.2 0.0 0.6 0.4 0.0 0.0 1.0 0.0 1.0 1.0 0.7 6.0
3 0.0 0.7 0.3 0.8 0.2 0.0 6.1 0.9 0.2 0.8 0.3 0.6 0.1
4 0.2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7 0.2 0.1 0.0
5 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0
6 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0.8
7 0.0 0.3 0.7 0.0 0.0 1.0 0.0 1.0 0.1 0.9 0.0 0.0 1.0
8 0.0 1.0 6.0 0.0 0.2 0.8 0.2 0.8 0.0 1.0 0.7 0.0 0.3
9 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3 0.2 0.8 0.0
10 0.9 0.1 0.0 0.0 0.3 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7
11 0.7 0.3 0.0 1.0 0.0 0.0 1.0 0.0 0.2 0.8 0.4 0.7 0.0
12 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1
13 0.9 0.1 0.0 0.2 0.8 0.0 0.1 0.9 1.0 0.0 0.0 0.0 1.0
14 0.0 0.9 0.1 0.0 0.9 0.1 0.1 0.9 0.7 0.3 0.0 0.0 1.0
15 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0
16 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 1.0 0.8 0.6 0.0

play on the weekend such &solleyball, swimming, weight- 6) Each path from the root to a leaf can be converted to a
lifting }, in short {V, S, W}. The classification of each example fuzzy rule with some degree of truth in fuzzy case, but a
is a fuzzy vector defined on this universe of discourse. The crisp production rule in crisp case.

fuzzy representation of the classification of the first example in 7) An example remaining to be classified matches only one
Table I, for instance, is of the forif®.0/V 4+ 0.8/5 4+ 0.2/W), path in the CDT, but may match several paths in the FDT.

in short,(0.0,0.8,0.2). _ _ Since the generation of optimal fuzzy decision tree has been
Elements of the universe of discourse of each attribute Ord?ﬁbved to be NP-hard [33], the investigation to heuristic algo-

sif_ication are regarded as nominal symboals in the learning frpmam seems to be very important. A good heuristic algorithm
C”StF;] examplels, ::)ug tlhey are reg:ﬁrdlced as fuzfzy vefctors deﬁqs generating FDTs should strike a balance among the learning
on the example-label space In the fearning Irom fuzzy exa ccuracy, training hours, the simplicity of generated fuzzy rules,

ples. These f‘.JZZV_V?‘CtorS r“efer us’l,JaIIy to linguistic terms. F hd the capability of tolerating noise. For a given heuristic, the
instance, the linguistic term “Sunny” (an element of the universe

of discourse of the attribut®utlook) is regarded as the fuzzygeneral Iearn_mg algorithm for generating fuzzy decision trees
) ) can be described as follows.
vector defined od1,2,...,16}:

 Consider the whole training set, i.€1,1,...,1) which
Sunny=0.9/1 + 0.8/2 + 0.0/3 + --- + 1.0/16 is regarded as the first candidate noWéile there exist
candidate nodes
« doselect one using a given search strategy; if the selected
one is not a leaf, then generate its son nodes by selecting
the expanded attribute using the given heuristic. These son
nodes are regarded as new candidate nodes.
Before training, thex-cut is usually used for the purpose of
A FDT is a generalization of the crisp decision tree (CDTYeducing the fuzziness of training examples. et of a fuzzy
The generalization is mainly reflected in the following severalet A is defined as

=(0.9,0.8,0.0,...,1.0)
which corresponds to the first column of Table I.

B. Fuzzy Decision Tree and Heuristic Algorithm

aspects.
1) A FDT is a fuzzy partition ofX while a CDT is a crisp 4 [ A(x) Alz)>a
partition of X, whereX is the universe of discourse of all az) = 0 Alz) < o’

training examples.
2) Each node of the FDT is a fuzzy set defined¥rwhile Increasing the value ef can reduce the fuzziness of initial data

each node of the CDT is a crisp set®f but a too largex may result in an empty set [40]. Usuallyis
3) The intersection of nodes located on the same layeritisthe range of0, 0.5].
nonempty in FDT but is empty in CDT. In addition to the selection of expanded attributes, the deter-

4) In the fuzzy case, iV is a nonleaf node anflV, } is the mination of the leaf node is another important issue for decision
set of all son-nodes oWV, thenu;V; € N. In the crisp tree generation. Generally speaking, two key points of an algo-
case, the equality; V; = N holds well. rithm for generating fuzzy decision trees are: 1) a heuristic for

5) Each attribute-value is regarded as a fuzzy set in fuzgglecting expanded attributes and 2) a standard for judging leaf
case but as a crisp set in crisp case. nodes.
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The root-node

Temperature
Hot Mild Cool: W
Outlook Wind
Sunny: 8 Cloudy: S Rain: W Windy: W Not windy: V
Fig. 2. Fuzzy decision tree for Table I.
C. Fuzzy ID3 Heuristic Algorithm Step 2) If the frequency of some cluster exce@dat the
One popular and powerful heuristic algorithm for generating godeg, then regard the nod§ as a leaf and go to

crisp decision trees is called ID3. The earlier version of ID3, Step 3 éep ).t Gaiatt S) (k — 1.2
which is based on minimum information entropy to select ex- tep 4) Solmpt]li € a(h t7h 2 (G - ’S’ ) ':”)M
panded attributes, was proposed by Quinlan [21]. Subsequently',S ep 4) G:iricéﬂ’?) Z};C at Gaip,(5) = axX1<k<n

the fuzzy version of ID3 based on minimum fuzzy entropy was
suggested by several authors [8], [29], [32], [34], [35]. Suppose
that training examples have a fuzzy representation like Table I, .
we give (as follows) a generic version of fuzzy ID3, which is expar:jdter:]d attribute, g(;jenerates the s%r_ldn(?[dé‘sa;fd

founded on the assumption that each attribute-value (IinguisticS 6 rﬁgf;r | edi: sor?_ ':]0_ es als new can 'd‘?‘de no e(;s.
term) is a fuzzy set defined on the universe of discourse on all tep 6) Label nods, which is no longer a candidate node.

Step 5) If Gain, (S) < 0thenregard the nodgas a leaf. If
Gain, (S) > 0 then select thégth attribute as the

training examples. The key points of fuzzy ID3 heuristic are that: 1) the nonpos-
Suppose that the clusters of the learning problentarg = itive gain is regarded as leaf standard and 2) the positive max-
1,2,...,L). imum gain is the expanded attribute standard.

Definition 1: Let N be an arbitrary node of a given fuzzy
decision tree. The relative frequency of the nddevith respect ) o _ _
to the clusterC; (1 < I < L) is defined asf;(N) = M(N n Consider the small training set with fuzzy representation
all membership degrees) of a fuzzy set set, one can directly compute/(v) = 45 M(S) =

In some articles ([22], [40])f;(V) is regarded as the subset4-2, M (W) = 6.5 andsum = 15.2. It results inFN(root) =
hood of V in C; and is interpreted as the degree of truth for the (4-5/15.2) Log(4.5/15.2) — (4.2/15.2) Log(4.2/15.2) —
fuzzy rulelF N ThenC;. (6.5/15.2) Log(6.5/15.2) = 1.07where root denotes the root
decision tree. The fuzzy entropy of the nodewith respect obtain FN(root N sunny=1.03, M(root N sunny= 6.2;
to the clusterssy (I = 1,2,...,L) is defined aFE(V) = FN(root N cloudy)= 0.99, M(root N cloudy)= 4.6; and
S LRV - In(f(N)). FN(root N rain)= 0.00, M (root N rain)= 2.6. The averaged

Definition 3: Consider a nonleaf nodé and» attributes fuzzy entropy is (6.2/13.4)"1.03 + (4.6/13.4)70.99+
A® | AM™ to be selected. For each (1 < k < n), (2.6/13.4)*0.00 = 0.81. Hence, the information gain of the

the attribute A% takes m; values of the fuzzy subsets,first attributeGain(Outlook,root) = 1.07 —0.81 = 0.26.
Agk)’ - ,Aﬁ,’ii Hence, for the attributet®), m; son nodes of S|m|larly,_ one f:an .compute the information ga-lns of. other
S.§n Agk)) ...Ssn A%Z will result. Then, the information three attributes: Gain(Temperature,root)= 0.28; Gain

gain of the attributed® at the nodes is defined as (Humidity,root)= 0.05; Gain(Wind, root)= 0.22. Therefore,
the expanded attribute at the root shouldibeperature.

The childnodes of the root can be treated similarly and it fi-
ma M (5 A A(k)) nally generates a FDT which is shown in Fig. 2, where the leaf
Gain(A(k)’ S) =FE(S) — Z ‘ - standard of frequency is set to be 0.8.

SAZ M (sna®)

x FE (S N AE“) .

D. The Performance of Fuzzy ID3 on a Small Training Set

E. Reasoning Mechanism of FDT

In addition to the heuristic algorithm for generating FDT,
o _ . another aspect associated with FDT induction is its reasoning
The fuzzy ID3 heuristic algorithm can now be described as fahechanism. After generating the FDT, we need a mechanism to

lows. Consider the whole training set, i.€1,1,...,1) as the predict the classification of novel examples or to test the classi-
first candidate node (the root). Given a leaf standard of frgcation of training examples.
quency, while there exist candidate nodds. For a generated FDT, each connection from root to leaf is

Step 1) Randomly choose one candidate ngdeith » at- usually called a path. It is clear each path corresponds to a leaf.
tributesAM ..., A™ to be selected. The connection between two adjacent nodes (father node and
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son node) in one path is called a segment of the path. All seg- A may be the intersection of several propositional fuzzy
ments in one path are considered to have equal importance to sets, then the CFis computedbf{ AN B) /M (A) where

the cluster labeled at the leaf. M (-) denotes the cardinality of a fuzzy set. This method
Suppose that the generated FDT containsleaf nodes, of computing CF can be modified by incorporating the
which correspond ten paths denoted bfree = {Path;,i = concept of LW or by replacing the minimum and summa-
1,2,...,m}. EachPath; consists of several segments denoted tion with .S-norm andZ’-norm, respectively.
by Path; = {Seggi), Seggi), .. ,,Seggjg. Each segment of 2) The degree of importance of each segment in one path
Path; corresponds to an attribute-value that is regarded as a  contributing to the classification of the leaf node. These
fuzzy set defined oX (the universe of discourse of all training parameters are usually called LWBE1 a nonweighted
examples). Letz be an example remaining to be classified. FDT, all segments in one path from the root to a leaf are
For eachi (1 < i < m), its attribute-values corresponding to considered to have equal importance. In a weighted FDT
Path; are supposed to t{@Y)’ 051)7 o Cr(ﬁ)}. A mechanism discussed here, an LW is assigned to a segment in one
commonly used for determining the cluster of the exanepte path to indicate the relative degree of importance of the
described as follows. segment contributing to its leaf node. Since a leaf node of
1) Foreachi (1 < ¢ < m) andj (1 < j < n;), com- FDT can be usually converted to an FPR and a segmentin

one path corresponds to a proposition in a FPR, the con-
ceptof LW of FDT also specifies that diverse propositions
in one FPR should have different importance contributing

puteSMEi), which denotes the similarity degree between
SegEZ) andOJ@ whenOJ@ is a fuzzy set and denotes the

membership degree 61]('1) belonging Uﬁeg]('z) whenC]@ to its consequent. This LW plays an important role in
is a real number. ‘ ‘ many real world problems. For example, in medical di-
2) Compute the overall similaritsM® by SM®@ = agnosis systems it is common to observe that a partic-
Min; <j<n, (SM](»Z))- ular symptom combined with other symptoms may lead to
3) Compute 1, (K = 1,2,...,K) by possible diseases. It is necessary to assign an LW to each
zr = Max;{SM®W|B®) = CLASS,} where K is symptom in order to show the relative degree (weight)
the number of clusters anB() is the cluster labeled of each symptom leading to the consequent (a disease).
at the corresponding leaf. Many researchers have used this LW concept when em-
4) The inferred result is regarded as a fuzzy vector  ploying FPRs to capture medical diagnostic knowledge
(z1,%2,...,2%) Where z; is the value which in- ([71, [31)).
dicates to what degree the exampie belongs to  3) The degree of importance of the leaf node contributing to
CLASS; (k = 1,2,...,K). When the crisp inferred the conclusion of classification. This parameter is usually
result is needed, one can take the consequent CLASS called GW.In a weighted FDT, since there is generally
with maximumzy, (1 < k < K). more than one leaf node having the same classification,
It is worth noting that the operations min and max usedin2)  a GW is assigned to the path corresponding to the leaf
and 3) can be extended, respectively/toorm andS-norm. In node in this paper to indicate the different importance
addition, if there is more than one maximum in 4), we need of different paths (leaf nodes) contributing to the same
another way of defuzzification to give a crisp classification for consequent. We have specified in [37] and [38] that the
the example:. GW is a concept distinct from the LW.

Usually, the reasoning by FDT can be converted into that by The most significant merit of decision tree induction should
a set of fuzzy production rules (FPRs). The purpose of estaje its comprehensibility which is mainly reflected in the fact
lishing the reasoning mechanism of FDthis wayis to com-  that each leaf node of a decision tree can be converted into a
pare with the weighted FDT introduced in the following sectiorproduction rule. The conversion is exact in crisp case without
noise but is usually inexact in the fuzzy case with several pa-
lll. WEIGHTED FDT AND WEIGHTED FPR rameters. That is, in order to obtain a clear decision, only the
. main information remains and the other information is ignored.
A. Weighted FDT For example, consider a FDTs leaf node, which has a param-
A weighted FDT refers to a FDT in which several parametegger vector(ay, az,a3) = (0.3,0.4,0.3) wherea;, denotes the
are attached to each leaf node. These parameters attached tgdRgibility with that the leaf node is labeledt!i class”. When
leaf node include the following several aspects. it needs to be converted into a FPR, the information of the first
1) The degree of truth of the classification corresponding tdass and the third class will be ignored. If the ignored infor-
the leaf node. This parameter is usually called certaintyation is used in the reasoning mechanism of FDT, then the
factor (CF).The CF is an important parameter of the leafeasoning mechanism of extracted FPRs will be distinct from
node, which has been given in many methods of gend¢hat of the FDT. This indicates that the FDT is not equivalent
ating FDT. A leaf node of FDT can be usually converted tt the extracted FPRs. If the criterion of comprehensibility is
a FPR and then the CF of the leaf is considered to be CFwfiether the FDT (including its reasoning mechanism) can be
the FPR. It can be computed in several ways, one popugquivalently converted into a set of FPRs, then different types
method is by using the degree of subset hood [22]. Thatt parameter will affect the comprehensibility of FDT to a cer-
is, if the leaf node corresponds to an FPR taking the fortain extent. For example, to some extent, the comprehensibility
“IF ATHEN B” where B is the conclusion fuzzy set andof the FDT is lowered due to the aforesaid parameter vector
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(a1, a2, az). Although this kind of parameter lowers the comnonnegative. GWR) denotes the GW assigned to the rite
prehensibility of FDT, it can raise the prediction accuracy (iGW(R) > 0).

FDT to a great extent ([13], [17]). This type of FPRs can be extracted from the weighted FDT
The increasing complexity of today’s knowledge-basegroposed in Section IlI-A. The weighted FDT can be equiva-
system often requires many parameters for knowledge rdpntly converted into a set of weighted FPRs described above.
resentation. Indeed, some parameters introduced in the FDife conversion is straightforward. Paths (leaf nodes), segments
can enhance its knowledge representation power and adipath and three kinds of parameters (CF, LW, and GW) of leaf
improve its learning accuracy but, simultaneously, they loweode in a weighted FDT correspond to FPRs, propositions in
the comprehensibility of the FDT. One problem is what pahe antecedent and three kinds of parameters of FPRs. The three
rameters should be introduced for FDT so as not to lower kinds of parameters of these FPRs have the meaning similar to
comprehensibility. that of the FDT. For example, the LW is to indicate the relative
In this paper, we introduce three kinds of parameters, namedggree of importance of a proposition contributing to its conse-
CF, LW, and GW. These parameters have the clear meaning goent and the GWSs indicate the degrees of importance of each

the weighted FDT with these parameters can be equivalentlyfe contributing to the conclusion.
converted into a set of weighted FPRs introduced in our pre-In the following discussions on the three kinds of parameters,
vious work (see Section I11-B or [37]-[39]), therefore, they keepWs and GWs will be refined by a HNN in Section IV, but
the comprehensibility of FDT. Furthermore, it is found that rehe CF is not considered adjustable. It depends on LWs and its
fining these parameters can improve the learning accuracycoimputational equation is as follows:
FDT considerably. ] ]

We have suggested a heuristic algorithm for a weighted FDT, CF(R) = 225 (N Wi - s 5) A s (4))
where the three kinds of parameters can be roughly given by the 2 wB(Jd)
heuristic. Here we need not to specify this heuristic algorithm . .
with complicated equations since these parameters will be dB.Which ; denotes the membership function of a fuzzy set and
tained by refining in Section IV. Moreover, the FDT generate@tn€r notations have the same meaning as thatin (1).
in Section II-C can also be considered to have these parameEa
which are equal to one.

.rSReasoning Mechanism of Weighted FPR

Generally speaking, the reasoning mechanism of FDT cannot

B. Weighted FPR be exactly converted into that of corresponding set of FPRs.
According to [36], propositional statements are the fund&lowever, the reasoning mechanism of weighted FPRs_converted

mental building blocks of a rule-based system. It is usually reffom our proposed weighted FDT can always be equivalent to

resented in the form of that of the weighted FDT. In the following, we specify this rea-
soning mechanism of weighted FPRs.
The (attribute) of (an object) is (attribute-value) When observations do not exactly match with the antecedent
part of the rule, approximate matching and reasoning should be
e.g., the outlook of last weekend is sunny. used to deduce a consequent. Fuzzy matching and fuzzy rea-

In our study, the object of the propositional statement &ning play a key role in the approximate reasoning process.
Omitted, the attribute is regarded asa Variable, and the att“btﬂﬂs type of matching and reasoning is very human like since in
value is a fuzzy vector defined on a universe of discourse. many sjtuations human beings have to make decisions based on

Unlike the crisp case, a fuzzy production rule can have lifhcomplete and fuzzy information. Incorporating this capability
guistic terms like “hot” or “*high” in the antecedent and the connto the knowledge-based system is necessary. As an example,

sequent part. In [37], a generic form of fuzzy production rulqgt ys consider two fuzzy production rules converted from Fig. 2.
has been suggested where threshold value, certainty factor, and
LW are assigned to each proposition while GW and certaintRule 1)IF Temperature = Hot AND Outlook = Cloudy
factor are assigned to the entire rule. This paper discussesatype  THEN Swinming

ff i les inwhich the LW he GW! - .
of fuzzy production rules in which the sandt' eG sare edeJle 2)IF Temperature — Hot AND OutLook — Rain
phasized and the effect of other parameters is not considered. o
For instance, a conjunctive weighted fuzzy production rule in THENW lifting

37] takes the form of
371 where, for simplicity, we assume that both the LWs and the GWs

R:If V;is AJAND V,is A,...AND V, is 4, of the two rules equal to one. The observed fact, for instance, is
THEN U is B,LW,LWs, ...,LW,,, GW(R) supposed to have the form
Factl: Vi is A7, Fact2: Vais A3, ..., Temperature = 0.6/Hot+ 0.4/Mild + 0.0/Cool
Factn: V,, is A Outlook = 0.0/Sunny+ 0.5/Cloudy-+ 0.5/Rain
ConclusionU is B* Q)

What conclusion can be drawn? The reasonable conclusion
whereVy, Vs, ..., V,, andU are attributes andl;, As,..., A,, which tallies with person’s thinking and perception should have
and B are the fuzzy values of these attributes. L{¥ < ¢ < the fuzzy form of(a/swimming,b/W_1lifting) wherea and
n) is the LW of the proposition V; is 4,” and each LW is b are two real number belonging {6, 1]. If a crisp decision
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needs to be made, one can determine the crisp decision \Affien the crisp inferred result is needed, one can take the conse-
cording to the maximum of andb. The problem is that using quent CLASS with maximuniy, (1 < & < K). One problemis
the fuzzy matching and fuzzy reasoning based on the obsertret the algorithm cannot give a crisp decision if there exists more
tion, can a reasonable conclusion be drawn? Using the mettiban one maximurdy, (1 < k& < K). In that situation, we need
proposed in the following section, one can obtain a consequeanbther defuzzification method to determine the crisp decision.
of (0.5/swimming,0.4/W_1ifting). It is worth noting that the fuzzy matching and reasoning
There are mainly two types of fuzzy reasoning method. Omeethod proposed here are equivalent to the methods mentioned
is based on Zadeh’s CRI method, while the other is based ior{40] when all the LWs and the GWs are equal to one. Hence,
similarity measure. In essence, what we propose here is a simir proposed method of fuzzy matching and reasoning indeed
larity-based method. generalizes the traditional one.
In [38] a similarity-based method was proposed using the
degree of subsethood defined by Kosko [16]. SubsequentlyPit Performance on the Small Training Set
was extended to fuzzy production rules with LWs, GWs, and e jllustrate the above fuzzy matching and the fuzzy rea-
other parameters [39]. In this type of method, the similarity bgpning process. Let us consider the second example in Table |
tween the observed fact and the antecedent must be compiigd the set of fuzzy rules converted from Fig. 2. All of LWs and

according to the selected similarity measure. In this paper, Bge GWs of these six fuzzy rules are set to one
cause of our fuzzy representation method (the attribute value is

a fuzzy set defined on a linguistic term space), the similarity Rule 1)SM<1) = Min(1-0.6,1-0.8)
m:ea§ure bet(\j/v%en tr;e] attributs varllge anld the ﬁpt:geg_entt of tthe = 0.6. ConsequenSwinming.
rule is regarded as the membership value, which indicates to @) _ apn(1 . )

what degree the example belongs to the corresponding term. Rule 2)SM™ = Min(1 - 0.6,1-0.2)

For instance, the similarity between attribute valoeyHot + = 0.2. ConsequeniSwimming.
0.4/Mild + 0.0/Cool” and the antecedenTémperature = Rule 3)SM® = Min(1-0.6,1-0.0)
Hot" is 0.6. = 0.0. Consequenti_lifting.

Consider a set of fuzzy production rulés = {R;,i =

) — Min(1 - .
1,2,...,m} whereR; takes the form Rule 4)SM™ = Min(1 -0.4,1 - 0.0)

= 0.0. Consequenty_lifting.

R;: If Vi is AV AND Vyis A5 ... AND V,,, is AY) Rule 5)SM® = 1.0.0
THEN U is B® Lw{) tw{) . LW® GW(R,). =0.0. Consequenti_1ifting.

Rule 6)SM® = Min(1-0.4, 1 - 1.0)

The observed object has attribute values in the following forms: — 0.4. Consequentiolleyball.

Factl: V, is C”,  Fact2: Vais Cy/, ..., MaX(l-SM(l),l- SM(Q)) =0.6,
Factn;: V,, is C%). Max(l-SM(?’),l~SM(4),1~SM(5))
= 0.0,

For each ruleR; within S, the similarity between the propo-
sition AJ@ and the observed attribute-valﬂé”) is defined as Max (1 . SM(G)) =0.4.
the membership value which indicates to what degree the ex-

ample belongs to the corresponding term denote%i\hy). The Hence, the inferred result is

overall similaritySM‘” is defined as
y (0.4/Volleyball, 0.6/Swimming, 0.0/W_lifting)

sM®W = Min (LWJ : SMJ('Z)) ' and its normalized form i§0.67/V, 1.00/S,0.00/W). If a crisp
o decision is to be made, one can take the second $ldesing.
Letthere bek classes denoted B1.ASS; , ..., CLASSk. The The matching result of the 16 examples in Table | with re-
inferred result is regarded as a fuzzy vector,x2,...,xx) spect to the six fuzzy rules learned in Section II-D (where all
wherez;, is the value which indicates to what degree the olthe LWs and the GWs are set to one) are placed in the middle
served object belongs t6LLASS, (k = 1,2,..., K). The de- columns of Table II, labeledclassification test before modi-

greezxy, is determined by the following: fying weights’ From Table Il, one can see that the learning accu-
‘ racy is not high (examples 2, 8, and 16 cannot be classified cor-
&y = Max { CW(R;) - SM® | BY = CLASSk} rectly). Because the matching result depends on both the LWs

and the GWs, we expect to improve the learning accuracy via
adjusting the weights using a hybrid neural network instead of
The normalized form of the inferred result is defined a%onsulting with domain experts. Frpm the last three cqlumns
(dy,dy, ..., dic) where of '_rable Il one can see the matching result after learning t_he

weights, where examples 2 and 16 have already been classified
correctly. The problem of refining the weights by a HNN re-
mains to be investigated in Section IV.

(k=1,2,...,K).

dy = Tk (k=1,2,...,K).

Maxi<j<ra;
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TABLE I
TEST RESULTS OFLEARNED RULES

No. Known Classification test before Classification test after
classification modifying weights modifying weights
v S W v S w v S w
1 0.00 0.80 0.20 0.00 1.00 0.00 0.00 1.00 0.00
2 1.00 0.70 0.00 0.67 1.00 0.00 1.00 0.82 0.00
3 0.30 0.60 0.10 0.29 1.00 0.43 0.34 1.00 0.51
4 0.90 0.10 Q.00 1.00 0.43 0.43 1.00 0.32 0.43
5 0.00 0.00 1.00 0.43 0.14 1.00 0.53 0.18 1.00
6 0.20 0.00 0.80 0.43 0.00 1.00 0.43 0.00 1.00
7 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
8 0.70 0.00 0.30 0.25 0.00 1.00 0.25 0.00 1.00
9 0.20 0.80 0.00 0.00 1.00 0.00 0.00 1.00 0.00
10 0.00 0.30 0.70 0.14 0.00 1.00 0.14 0.00 1.00
11 0.40 0.70 0.00 0.00 1.00 0.00 0.00 1.00 0.00
12 0.70 0.20 0.10 1.00 0.00 0.43 1.00 0.00 0.43
13 0.00 0.00 1.00 0.00 0.25 1.00 0.00 0.18 1.00
14 0.00 0.00 1.00 0.43 0.00 1.00 0.43 0.00 1.00
15 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
16 0.80 0.60 0.00 1.00 1.00 0.00 1.00 0.59 0.00

IV. REFINING THE WEIGHTS BY A HYBRID NEURAL NETWORK 3) Classification Layer: This is the output layer. Each node
;epresents a cluster. Since the inferred result of the weighted

including its reasoning mechanism keeps the comprehensibi zy rule ha_ls generally the form of fuzzy vector (the discrete
of decision tree. The remaining problem is how to adjust the zy set defined on the space of cluster labels), the output of the

weights such that the learning accuracy can be improved. U&?_two_rk has more than_one value. _Thg meaning of each output
alue is the membership value which indicates to what degree

ally, these weights are given by consultation with domain ex- traini biect bel to the clust ding to th
perts repeatedly. Of course, this kind of consultation isverytirrli € training object belongs to the cluster corresponding to the

consuming. Instead of the consultation, one promising approzﬂ:(?l €.

to obtain these weights idearning them by a connectionist]c 4) Colnnectmn Welghgsfl'hetrl]_Ws of th? extra(_:teh(il Sstt\(/)vf
structure” It will be concerned with the design of a neural net U#2y fules are regarded as the connection weights between

work in which the connection weights of the network corret—he term layer and the rule layer. The GWs of the set of fuzzy

spond to the LWs and GWs of the set of FPRs and the out H{es are regarded as the connection weights between the rule

of the network is the classification consequent; the formulati Aver and the cIaSS|f|cat|qn. layer. Notlng that the fuzzy rules
enerated by a fuzzy decision tree algorithm (e.g., Fuzzy ID3)

of learning algorithm for training these weights; and the con{’ . .

: g ay Ining g have LWs and GWs being equal to one, all the connection
plexity analysis of the algorithm. . . -

weights of the network are initially set to one. It indicates that

he refinement of weights starts from a set of FPRs generated
y an initial FDT algorithm.
_ _ _ _ 5) Activation Function: Instead of using the sigmiod func-
According to the matching and reasoning mechanism estaign as in traditional neural networks, two activation functions,

lished in Section Il, a set of learned fUZZy rules can be mappeg and‘/2' for the rule |ayer and the classification |a_yer, respec-
into a hybrid neural network which has three layers: term lay&fyely, are defined as follows:

rule layer and classification layer. The key structure of the
mapped neural network is described as follows. VI(LW;, ;) = Min; (LW - x;)

1) Term Layer: Thisis the input layer. Each node represents Va(GW;, ;) = Max;(GW; - ;).
a linguistic term of an attribute. Since each linguistic term cor-
responds to an attribute value, the input of each node is regardedihese two activation functions are consistent with the rea-
as the similarity degree between the observed attribute vai@ning mechanism established in the Section I1I-C. Noting the
and the corresponding term (proposition) of the antecedentuse of the operators min and max, the network belongs to a type
a fuzzy rule. The similarity degree can also be the membersi@iphybrid connection neural network.
value which indicates to what degree the observed fact belong§ig. 3 shows a hybrid neural network mapped from the six
to the linguistic term. fuzzy rules extracted from the FDT shown in Fig. 2.

2) Rule Layer: This is the only hidden layer. Each node rep- "
resenting an extracted fuzzy rule corresponds to a leaf of tHe 'raining the Neural Network
weighted FDT. According to linguistic terms (propositions) ap- To formulate the backpropagation algorithm, let us consider
pearing in the antecedent part of a rule, the connections betwaegeneric case of this kind of hybrid neural network, shown in
the term layer and the rule layer are determined. Fig. 4 where there aré, term nodes,/; rule nodes and.;

From Section Ill, we know that the proposed weighted FD

A. Mapping a Set of Weighted Fuzzy Production Rules into
Hybrid Neural Network
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Sunny(x1) \

Cloudy(xz) Rule 1.(y1)
uz \t
Rain(xs) i Rule 2. (y2) Swimming(zr)
Hof(x;) = 5 —» Rule 3. (y3) V3 —P
> /VW_lifting(z;)
Mild(xs) 7 Rule 4. (y,) vy
U3 Vs

Cool(xs) y\:Rule 5. (ys)/ Volleyball(zs)
U 6
Windy(x7) /Rule 6. (vs)
umn

Not_windy(xs)

Fig. 3. A neural network with hybrid connections.

G-

©)
Vi

i=12,-,1L,

Gij

2)
Y

k=12,-,1L,

Fig. 4. Generic form of the HNN.

classification nodes. For a given input vector, e.g.sitleinput  the error £ is a function with respect to LW.w;; and GW
vector, the forth propagation process of the input vector is 08w, (i =1,...,Lo;j=1,...,Li;k=1,..., La).

scribed as follows: Let us now derive the standard backpropagation equations.
initial layer (term layer): According to the principle of gradient descent, the backpropa-
gation equations for the hybrid neural network shown in Fig. 4
{ v Omli=1,2... ,LO} (the given inputvectgr  can be written as
) OE,
first layer (rule layer): Lwij := Lwi; — TR and
Lo JF
) Gwjp, := Gw, 3, 5
o= A (Lwsy - 50]) G=12..L @ R L Te ©)
=1
in which «;; (%) is the learning rate. The two partial deriva-
second layer (class layer): tives appearing in (5) are shown as follows:
L .
y IE Op- o'V, it 1Ty >
(2,1 — _ no_ kY0, 1242
Jj= L,
OE, On-Gwn -y, it >T, T3<T
Let there beaV training models. Then, the total error function 8Lw = ; koY b= s
is defined as 0, otherwise
N L (7)
z:: kz:: ( (] = n]) in which, for simplicity, the attachefgh] has been omitted from
N /1 eachyl” (o = 4,5,k f = 0,1,2)
= vl = wln]
z=: <2 k=1 ) ) Ok:yl(f)_ykv =Gwjr -y ( )
0
ZEA:E 4) TQ:\/(Gan"yg))’ T3:Lwij'y§)
q#]
n=l and
in whichy;[n] is thekth actual output of theth training model Ty = /\ (me. . yéO)) )

(1 < k < Lp). lItis easy to see from (2), (3), and (4) that pi
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The training procedure is briefly described as follows. taste problem in Section V are 535 epochs when initial weights

Step 1) Initialization—all the connection weights are iniare one, but are 2268 epochs when initial weights are selected
tially set to one. randomly. Table V shows the epochs of training HNNs with

Step 2) Model forth propagation. Computer the output e initilization and with random initialization of weight for
each node by (2) and (3) the five databa;es. N . .

Step 3) Error backpropagation. Compute the adjustment ofCompared with the traditional backpropagation algorithm,
each weight by (5)—(7). our proposed method makes use of the max and min functions

Step 4) If a given stop criterion is satisfied then stop eldBstead of using the sigmoid function. That implicitly results in
repeat Steps 2) and 3). the reduction of computational effort. Compare (6) and (7) with

We now use the training procedure to train the hybri@e formulation of traditional BP algorithm, one can see that

neural network shown in Fig. 3. The results of training arf'® computational complexity of our proposed algorithm is less
u[t — 11]: 0.54,1.00,1.00,0.77,0.74, 0.81,0.81, 1.00, 1.00 than that of the traditional one. Like the traditional backpropa-
: 0.54,1.00,1.00,0.77,0.74,0.81,0.81, 1.00, 1.00,

1.00,1.00 and v[1 — 6]: 0.77,1.00,1.00, 1.00, 1.00, 1.00. ga_tic_)n algorithm, th_e algorit_hm proposed he_re is effectiv_e and
According to the reasoning mechanism established in sectifficient. Thf-: effectiveness is demonstrated in the experiments
I1l-C, one can use this set of fuzzy rules with trained weighf¥ Next section. Moreover, the performance of the proposed al-
to test the 16 training examples given in Table 1. The test resgf"ithm can be further improved by replacing the crisp deriva-
is placed into Table 1I (the columns labeledéssification test tVeS With the smooth derivatives [2]
after modifying weight3. It should be noted that this set of )
weighted fuzzy rules is now able to classify objects 2 and 16 OMax(z, c)) = { L !f vz
correctly. Oz z ifz<e

and

C. Discussions and Remarks
1, ifz<e

As a kind of knowledge parameters, the weights in fuzzy pro- a0, e ifrse

duction rules are usually acquired according to the following Ox

simple procedure. but we will report the improvement result separately.
Step 1) Knowledge engineers together with domain expertsysually, the convergence of training algorithms depends on
specify a set of weighted fuzzy production rulesheir learning rate, the form of input vector, as well as the selec-
(where the values of weights remain to be detefion of initial weights. We do not theoretically investigate the
mined) and select a set of historical records fafonvergence of the proposed training algorithm for the hybrid

a(Min(z, c)) {

testing: _ o neural network, but will explore it by numerical experiments
Step 2) Domain experts give the initial values of thes@ the next section. The experimental results in the next sec-
weights. tion show a better performance for the convergence of the pro-

Step 3) Knowledge engineers test this set of weighted fuzgysed training algorithm. Table IV shows a brief comparison
production rules according to a selected evaluatigfetween the BP algorithm and our proposed one with respect
index. If the evaluation index is acceptable, then g@ the epochs when HNNs converge. Although there has been

to Step 5), else go to Step 4). ~ some research related to HNNs such as the approximation to
Step 4) Knowledge engineers adjust the values of weigfgntinuous functions [4], application to fuzzy controller and ex-
by consulting domain experts, go to Step 3). pert systems [5], the capability as universal approximators [6],

Step 5) Stop. These values of weights are finally determinggin—max neural networks [26], [27], and so on, much more the-
for using in the set of weighted fuzzy productiorpretical study on convergence is really needed.
rules. Moreover, the training of the hybrid neural network cannot
This paper indicates that the task of consultation with domagenerate new rules. This is because the training is a kind of non-
specialists [specified in the above Steps 3) and 4)] may be deestructive learning during which the network structure is kept
placed with training hybrid neural networks. It implies that thntact and no new connections appear between adjacent layers.
time spentin the consultation between knowledge engineers @eherally, when the set of fuzzy rules with weights adjusted by
domain experts can be reduced to some extent. a hybrid neural network cannot yet attain a satisfactory accu-
For training a neural network, the initial values of connectioracy, new rule generation is regarded as necessary. Hence, the
weights are usually given randomly. But in our proposegtsearch on destructive training with respect to hybrid neural
training procedure, they are initially set to one. The reasonngtworks is very important and significant.
twofold. One is the intuitive background that weights being There has been some work on extracting weighted fuzzy pro-
equal to one correspond to a set of FPRs, which are generadadtion rules from neural networks (e.g., [14], [30]). The article
by traditional learning algorithms such as Fuzzy ID3. ThEL4] proposed an algorithm for fuzzy weighted rule extraction
other is that the initial error with weights being one is usuallfrom adaptive fuzzy neural networks. The fuzzy neural network
less than that with weights selected randomly (due to tleensists of five layers and the backpropagation training algo-
learning accuracy the algorithm for generating these FPRs hilsm is used. The concept of weight in [14] is distinct from that
already had). To some extent, this one initialization improves this paper. Moreover, we proposed a novel approach to tune
the training performance. For example, the training of the ridgmowledge representation parameters in a fuzzy production rule
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TABLE

611

SUMMARY OF THE EMPLOYED DATABASES

Database Domain Source Classes Attributes ® Examples
Rice Taste Food [19] 2% 5 105
Iris Biological  [9] 3 4 150
Mango Leaves Biological  [20] 3 18 166
Thyroid Gland Medical [18]) 3 5 215
Pima India Diabetes Medical [18] 2 8 768

¥ The continuous output is separated into two categories by positive values and negative values.

®) A1 attributes are numerical,

TABLE IV
LEARNING ACCURACY (z, y) OF DIFFERENTMETHODSWHERE x DENOTES THETRAINING ACCURACY AND y DENOTES THETESTING ACCURACY

Database Fuzzy ID3 WFDTI BP

Rice Taste (0.86, 0.84) (0.97, 0.90) (0.96,0.91)
Iris (0.96, 0.96) (0.97,0.97) (0.97,0.97)
Mango Leaf (0.86, 0.80) (0.96, 0.89) (0.99, 0.90)
Thyroid Gland (0.82,0.78) (0.93, 0.85) (0.95, 0.82)
Pima India Diabetes®  (0.75, 0.72) (0.82, 0.78) (0.82,0.76)

"®The iteration does not converge and a threshold is used.

TABLE

\Y,

TRAINING EPOCHS OFWEIGHTED FDT AND BP ALGORITHM

Database WFDTI® WFDTIY BP

Rice Taste 535 2268 2896

Iris 69 186 328

Mango Leaf 689 1677 1893

Thyroid Gland 812 2285 2166

Pima India Diabetes 2819 5671 8000
-y

epochs.

using a fuzzy neural network in [30]. The approach includes the
initialization, the feed forward computation and the backward
weight adjustment. Both in [14] and in [30], the conventional 2)
addition and multiplication are chosen as the inner operation of

neural networks.

V. NUMERICAL EXPERIMENTS

3)

In Sections II-1V, we have briefly presented the learning/rea-
soning process of the proposed method on a small training
set. To further understand the performance of this method, we
apply it as well as two benchmark learning algorithms (the

initial fuzzy ID3 and the traditional back-propagation) to five
databases.

A. Databases

4)

5)

The five databases employed for experiments are obtained
from various sources. Their features are briefly described below

and summarized in Table IlI.

1) Rice taste data—this database was used by Nozaki [19] .
to verify a simple and powerful algorithm for fuzzy ruleB- ExPerimental Procedures
generation. It contains 105 cases with five numerical at- We call the method proposed in this paper weighted fuzzy
tributes. The classification attribute is continuous. Aadecision tree induction—in short, WFDTI. Three methods
cording to positive values and negative values of the clasere compared: fuzzy ID3; traditional BP-algorithm; and

with initial weight being 1. ™ with initial weight selected randomly. “ given maximum

sification attribute, cases are categorized to two classes in
our experiments.

Iris data—this was the original data Fisher used to illus-
trate the discriminant analysis [9]. It contains 150 cases
of three different kinds of flowers. Each case consists of
four numerical attributes.

Mango leaf data—this set was used by Pal [20] to investi-
gate the automatic feature extraction based on fuzzy tech-
niques. It provides the information on different kinds of
mango leaf with 18 numerical attributes for 166 patterns
(cases). It has three classes representing three kinds of
mango.

Thyroid gland data [18]—this set contains 215 cases of
three different kinds of thyroid grand. Each case consists
of five numerical attributes.

Pima India diabetes data [18]—this database contains 768
cases related to the diagnosis of diabetes (268 positive and
500 negative). It has eight numerical attributes.
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the WFDTI. We select fuzzy ID3 and BP algorithm as th€. Remarks

benchmark for evaluating the WFDTI. For numerical attributes, the learning accuracy of fuzzy deci-
Noting that all attributes of the selected six databases are W5n tree is usually poor when the number of linguistic terms is

merical, we need to fuzzify these numerical attributes into ”r\‘/'ery small. To improve the learning accuracy, one can use one
guistic terms. We make use the following simple algorithm fqis 1,0 following approaches:

generating triangular type of membership functions ([15], [40]).
Let X be the considered data set. We intend to clustémto

k linguistic termsZ;,j = 1,2,..., k. For simplicity, we as-

sume the type of membership to be triangular. Each linguistic rules-

term 7 will haV(_a the triangular membership functlons_ as fol-_ 2) modifying the reasoning mechanism ([13], [17]): that wil
lows (see equation at the bottom of the page). Each pair of adja- lower the comprehensibility of the tree since the clas-

cent membership functions crosses at the membership value 0.5. "~ . T : o .
. sification distribution is used in the modified reasoning
The only parameters needed to be determined ark temters LT
. : mechanism;
{ai1,as,...,ax}. An effective method to determine these cen- . . . . . .
) . .. 3) using new attributes which are given by linear combina-
ters is the Kohonen feature maps algorithm [15]. At the initial : L ; i . . i
) e tions of original attributes; that is called oblique decision
time, k centers are set to be distributed evenly on the range of . S
tree [23]; it also lowers the comprehensibility of the tree

X Let due to the unclear meaning of new attributes;
A={ay,az,...,a1}; d(X,A)= Z Min |z — a;]. 4) refining knowledge parameters related to the tree is our
@ proposed approach in this paper; compared with the orig-

) ) ] . ] . . inal heuristic algorithm for tree generation, this method
The centers will be adjusted iteratively. Each iteration consists 55 the weakness of increasing training complexity.

1) increasing the number of linguistic terms for attributes
and tuning the membership functions of these terms; that
will resultin the increase of the number of extracted fuzzy

zcX

of the following three steps: In this paper, we argue that the approach 4) is the most
1) randomly take a value from X, denoted byz[n]; promising one. The reason is that it cannot only improve the

2) search for an integem such that|z[n] — a[r]| = learning accuracy, but also keep the comprehensibility of the
Miny|z[n] — a;[n]|; FDT and the simplicity of the extracted fuzzy rules. From

3) puta,[n+1] = an[n]+a(z[n] - a,[n]) and keep other Table 1V, one can see that our proposed method improves the
centers unchanged, whetds the iteration time and is  learning performance of fuzzy ID3. There is no significant
the learning rate. difference between our proposed algorithm and BP algorithm,

The iteration ends whed( X, A) converges. which has been universally considered to have better accuracy,
In our experiments, the number of linguistic terms for eadbut the concepts formed by our proposed weighted FDT are
attribute is taken to be three, the parameteapecified in Sec- understood more easily than that formed by traditional neural
tion 11-B for reducing the fuzziness in training process is set toetworks. Noting that there is only one hidden layer and its
0.35 and the leaf criterion is taken to be 0.75. The learning asamber of nodes is equal to the number of rules in our method,
curacy is used to compare the performance of these methatlgan be seen that the complexity of our proposed method
For each considered database, 50% of the data is uniformly amdess than that of BP algorithm. Except for the problem of
randomly chosen as the training set and the remaining 50%Rima India diabetes, the HNN shows a better performance of
cases is held for testing. This procedure is repeated six timesnvergence where all initial weights are set to one (Table V)
The learning accuracy, namely, the training accuracy and testangd where the number of maximum epochs of training the
accuracy, is the average of the six. Table IV shows the learniRgIN for each database is set to 8000.
accuracy of each method when we applied three methods to difOne can see from Tables IV and V that the performance for
ferent databases. The experimental results of BP algorithm #re Pima India problem is poor. The improvements of learning
obtained by using the MATLAB toolbox of neural networks. accuracy obtained by refining the HNN are not significant. We

1 xr < ay
Ti(zx)=< (aa—x2)/(azs —a1) a1 <z<a
0 T > as
1 x > ay
Ti(z) =S (v —ap_1)/(ax —ax—1) a1 < <ag
0 T < ag-1
0 T > ajq1
Tz = (aj41—z)/(aj41 —a;) a; i+ 1< j<k.
(=1 @ aj-1)/(a; —a;j—1) a1 <z <a, !

o

x S @51
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perform a further analysis on this problem and find that small Moreover, although this paper has derived a training al-
number of linguistic terms for the attributes is not suitable fagorithm which is similar to the traditional BP algorithm and
this problem. In other words, to achieve a better performanamntains some parameters like learning rates, it is difficult to

the scale of the weighted FDT should be very large.

specify them for achieving a better convergence performance.

The present exploration is experimental. The resulting hybrid

VI. CONCLUSION

neural network still faces the local minimum problem. As

an important but difficult problem, the theoretical analysis

The inclusion of some knowledge parameters such as Ly

convergence for the HNN will be investigated later. In

and GW is necessary for enhancing the representation powepgfiition, the derivatives for max and min in the formulation

FDTs. This paper proposes refining these knowledge parametgfs supposed to be crisp.

It is likely that the performance of

in a hybrid neural network to improve the learning performangg, proposed algorithm can be further improved by replacing

of FDTs, instead of increasing the numbers of linguistic terms @fe crisp derivatives with smooth derivatives. We will complete
the complexity (the nodes) of FDTs to improve that. The majfis work in the future.

advantages of the proposed method are as follows:

1) the learning performance can be improved by refining
these parameters without much computational effort.

2) since each knowledge parameter used in FDTs has thé!
clear meaning, the comprehensibility of FDTs can be
kept. (2]

3) to determine these knowledge parameters, the training of
HNN can replace the task of consultation with domain [3]
specialists to a great extent.

The synergy between fuzzy decision tree induction and hy-[4]
brid neural network offers new insight into the construction of
hybrid intelligent systems with better learning accuracy.

(6]

VIl. FUTURE WORK 7]
In this paper, we extend the FDT induction to the weighted
FDT induction. The main idea is extracting weighted rules [g]

from a decision tree and then refining them by using a hybrid
neural network. The weights in a weighted fuzzy production 9
rule are considered knowledge parameters and are mapped
into the connection weights of the hybrid neural network tol10]
be refined. A training algorithm like traditional BP algorithm
is derived. The weighed FDT with trained (refined) weights11]
improves the learning accuracy of the original FDT and keeps
the comprehensibility of the FDT. [12]
The knowledge parameters are initially given by domain ex413]
perts in terms of their domain knowledge. According to the per-
formance of these parameters in a system, knowledge engineem]
usually need to revise the values of these parameters by con-
sulting domain expert such that a better performance can be
achieved. This paper shows, for acquiring these knowledge pél—sl
rameters, the training of hybrid neural networks may replace thge
task of consulting domain specialists. It implies that the time to
consult with domain experts will be reduced if this technique[17]
is used in conjunction with consultation with domain experts.
However, since the knowledge parameters are closely related to
the domain knowledge, the reduction of time of consultation iélg]
difficult to formulate. In the next phase, we will implement the [19]
parameter refinement in a real-world problem. For this problem,
the time to consult with domain experts for determining knowl-15,
edge parameters will be actually measured, the time for training
the hybrid neural network will be given by the training proce-[21]
dure, and a comparison between training HNNs and consultinga
domain experts will be made.
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