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Improving Learning Accuracy of Fuzzy Decision Trees by Hybrid Neural
Networks

E. C. C. Tsang, X. Z. Wang, and D. S. Yeung

Abstract—Although the induction of fuzzy decision tree (FDT)
has been a very popular learning methodology due to its advantage
of comprehensibility, it is often criticized to result in poor learning
accuracy. Thus, one fundamental problem is how to improve the
learning accuracy while the comprehensibility is kept. This paper
focuses on this problem and proposes using a hybrid neural net-
work (HNN) to refine the FDT. This HNN, designed according to
the generated FDT and trained by an algorithm derived in this
paper, results in a FDT with parameters, called weighted FDT.
The weighted FDT is equivalent to a set of fuzzy production rules
with local weights (LWs) and global weights (GWs) introduced in
our previous work. Moreover, the weighted FDT, in which the rea-
soning mechanism incorporates the trained LWs and GWs, signif-
icantly improves the FDTs learning accuracy while keeping the
FDTs comprehensibility. The improvements are verified on sev-
eral selected databases. Furthermore, a brief comparison of our
method with two benchmark learning algorithms, namely, fuzzy
ID3 and traditional backpropagation, is made. The synergy be-
tween FDT induction and HNN training offers new insight into the
construction of hybrid intelligent systems with higher learning ac-
curacy.

Index Terms—Approximate reasoning, fuzzy decision trees, hy-
brid neural networks, knowledge acquisition, learning, local and
global weights.

I. INTRODUCTION

I N the contemporary research on knowledge engineering,
knowledge acquisition (learning), and knowledge inter-

pretation (reasoning) are the main tasks. The two tasks are
regarded as two tightly coupled phases in one system, as shown
in Fig. 1 [14].

Many learning approaches to knowledge acquisition have
been developed. One popular approach is called decision tree
induction, which (together with a learning algorithm ID3 and
a simple reasoning mechanism) was initially developed by
Quinlan [21]. Due to many advantages of this approach, the
decision tree induction has been investigated intensively during
the recent decade.

Most knowledge associated with human’s thinking and per-
ception has imprecision and uncertainty. In addition to the ex-
perience of domain experts, learning from examples with fuzzy
representation isconsideredasanessentialwayofacquiringsuch
knowledge. In the recent decade, for the purpose of acquiring im-
precise and uncertain knowledge, the decision-tree induction has
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been improved such that it is suitable for the fuzzy case. That is
fuzzy decision tree (FDT) induction. Investigations to FDT in-
duction could be found in [1], [3], [8], [10]–[13], [17], [25], [28],
[29], [32], [33], and [40], which are summarized as follows.

a) Revising algorithms for generating FDTs:Mainly, this
kind of revision is reflected within the process of FDT genera-
tion and influences the shape and size of FDT. For example,
Cios and Sztandera [8] proposed using fuzzy entropy in contin-
uous ID3 algorithm and achieved a remarkable decrease in con-
vergence time. Yuan and Shaw [40] introduced a new heuristic
algorithm for generating FDT, which is based on the minimal
nonspecificity and dose not use the entropy. Ichihashiet al.[11]
proposed a method of inducing FDTs in which the interview
with domain specialists is considered to be necessary for knowl-
edge acquisition in expert systems. Hayashi [10] proposed an
algorithm for generating FDT that incorporates the adjustment
mechanism of AND/OR operators such that the FDT has more
flexible representation. Wanget al. [33] investigated the opti-
mization of FDT and gave a branch-merging algorithm for FDT
generation.

b) Improving reasoning mechanism of FDTs:This kind
of improvement can be independent of FDT generation, usually
including pruning/grafting and fuzzification of nodes of FDT.
For example, Maher and Clair [17] gave an UR-ID3 algorithm
that incorporates uncertain reasoning technique and improves
the robustness of FDT. Sison and Chong [28] suggested using
the pruning of FDT to eliminate the irrelevant attributes thus to
simplify the rule base. Jenget al. [13] gave a fuzzy inductive
learning method for automatic knowledge acquisition by means
of fuzzifying the crisp decision tree and reported a remarkable
improvement of predictive accuracy. Janikow [12] gave a de-
tailed investigation for FDT, with the purpose of combining
symbolic decision trees with approximate reasoning offered by
fuzzy representation.

c) Applications to different domains:A lot of appli-
cations of FDT can be found in the existing literatures. For
example, one can find the applications of FDT to prediction
of heater outlet temperature [29], to diagnosis systems [32], to
motion planning [25], to ham quality control [1], and to power
system security assessment [3].

In FDT induction, comprehensibility has been universally ac-
cepted as one main advantage. The comprehensibility refers to
that the concepts formed by FDT are understood more easily
than that formed by other techniques such as neural networks.
Unfortunately, the FDT induction is often reported to have poor
learning accuracy (e.g., [24], [33], [40]). Here, the learning ac-
curacy contains two aspects. One is the training accuracy (the
correct rate of testing the training set), while the other is the
testing accuracy (the correct rate of predicting classes for novel
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Fig. 1. The knowledge acquisition and knowledge interpretation in a knowledge-based system.

examples). A better learning accuracy is always expected in
knowledge acquisition. In the crisp case of learning from exam-
ples without noisy data, the training accuracy can attain 100%,
but in fuzzy case, it usually fails to achieve that. When the
training time is acceptable, one always expects a higher learning
accuracy. From the investigations of FDT mentioned above, one
may find that the improvement of reasoning mechanism of FDT
given by fuzzifying nodes [13] or by fuzzifying branches [17] of
the crisp decision tree can raise the learning accuracy. This is an
important kind of approach to increase learning accuracy. How-
ever, this increase of learning accuracy is accompanied with the
decrease of the comprehensibility of FDT. Another approach to
improve the learning accuracy is to construct an oblique de-
cision tree in which a linear combination of the original at-
tributes is considered to be a new attribute [23] (in which only
the crisp case is considered). Due to the unclear meaning of new
attributes, to some extent this approach also lowers the compre-
hensibility of decision trees. Thus, one fundamental problem is
how to improve the learning accuracy while the comprehensi-
bility is kept.

Focusing on this problem, the present paper proposes using a
hybrid neural network (HNN) to refine the FDT. It is well known
that neural networks together with their learning algorithms usu-
ally have a significant merit, namely, their high prediction accu-
racy due to the highly nonlinear decision boundaries they form.
By means of incorporating this merit into the FDT induction, we
expect that the learning accuracy of FDTs can be significantly
improved while keeping the comprehensibility.

The remains of this paper are organized as follows. Section II
gives a brief review for the FDT induction. Section III discusses
the weighted FDT induction in which the weighted FDT is
equivalent to a set of fuzzy production rules with local weights
(LWs) and global weights (GWs) introduced in our previous
work and the weighted FDTs reasoning mechanism improves
the learning accuracy while keeping the comprehensibility.
Section IV investigates the training algorithm for the proposed
HNN and Section V verifies the advantages of the weighted
FDT on several databases and makes a brief comparison with
two benchmark learning algorithms. They are the initial fuzzy
ID3 algorithm and the traditional back-propagation algorithm.
Section VI offers our conclusions and the last section states the
future work.

II. FUZZY DECISION TREE INDUCTION

In this paper, the FDT induction is considered to be an algo-
rithm for generating FDT together with a reasoning mechanism.

A. Fuzzy Representation of Training Example

Fuzzy representation of training examples is introduced
in order to handle the increasing uncertainty of learning
process. The crisp representation can be regarded as a spe-
cial case of fuzzy representation. Fuzzy representation of
examples may also be expressed in the form of a set of
ATTRIBUTE Attribute-value, but the attribute-value is

considered a fuzzy set. According to the type of fuzzy sets, the
fuzzy representation of Attribute-value can be categorized into
six cases, namely, nominal valued, real valued, interval valued,
fuzzy number valued, fuzzy vector valued, and mixed-valued
attributes.

In this paper, we only deal with the learning from fuzzy
vector valued examples, in short, learning from fuzzy examples.
Learning from fuzzy examples is a type of supervised inductive
learning and the classification of each training example is
considered to be known. Traditionally, the classification is
crisp (a positive class and a negative class). In our study on
learning from fuzzy examples, the classification of training
examples is supposed to have fuzzy representations; that is, the
classification of each example is no longer a definite class, but
a fuzzy vector defined on the cluster space. For instance, when
there are only two clusters and , the fuzzy representation
of classification in this case may be .

In the following sections, we will make use of a small
training set to illustrate our learning process. The small
training set (adopted from [40]) is shown in Table I where
both attribute-values and classification of each example are
represented as the form of fuzzy vector. In this problem of
learning from fuzzy examples, there are four attributes namely
Outlook, Temperature, Humidity andWind. Their universes
of discourse are

Outlook Sunny Cloudy Rain

Temperature Hot Mild Cool

Humidity Humid Normal

and

Wind Windy Not windy

respectively. Each attribute value is a fuzzy vector defined on
the universe of discourse of the attribute. For instance, the value
of the first attribute of the first example in Table I is of the form

Sunny Cloudy Rain , in short, .
The universe of discourse of the classification is the sport to
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TABLE I
A SMALL TRAINING SET WITH FUZZY REPRESENTATION

play on the weekend such asvolleyball, swimming, weight-
lifting , in short, . The classification of each example
is a fuzzy vector defined on this universe of discourse. The
fuzzy representation of the classification of the first example in
Table I, for instance, is of the form ,
in short, .

Elements of the universe of discourse of each attribute or clas-
sification are regarded as nominal symbols in the learning from
crisp examples, but they are regarded as fuzzy vectors defined
on the example-label space in the learning from fuzzy exam-
ples. These fuzzy vectors refer usually to linguistic terms. For
instance, the linguistic term “Sunny” (an element of the universe
of discourse of the attributeOutlook) is regarded as the fuzzy
vector defined on :

Sunny

which corresponds to the first column of Table I.

B. Fuzzy Decision Tree and Heuristic Algorithm

A FDT is a generalization of the crisp decision tree (CDT).
The generalization is mainly reflected in the following several
aspects.

1) A FDT is a fuzzy partition of while a CDT is a crisp
partition of , where is the universe of discourse of all
training examples.

2) Each node of the FDT is a fuzzy set defined onwhile
each node of the CDT is a crisp set of.

3) The intersection of nodes located on the same layer is
nonempty in FDT but is empty in CDT.

4) In the fuzzy case, if is a nonleaf node and is the
set of all son-nodes of , then . In the crisp
case, the equality holds well.

5) Each attribute-value is regarded as a fuzzy set in fuzzy
case but as a crisp set in crisp case.

6) Each path from the root to a leaf can be converted to a
fuzzy rule with some degree of truth in fuzzy case, but a
crisp production rule in crisp case.

7) An example remaining to be classified matches only one
path in the CDT, but may match several paths in the FDT.

Since the generation of optimal fuzzy decision tree has been
proved to be NP-hard [33], the investigation to heuristic algo-
rithm seems to be very important. A good heuristic algorithm
for generating FDTs should strike a balance among the learning
accuracy, training hours, the simplicity of generated fuzzy rules,
and the capability of tolerating noise. For a given heuristic, the
general learning algorithm for generating fuzzy decision trees
can be described as follows.

• Consider the whole training set, i.e., which
is regarded as the first candidate node.While there exist
candidate nodes

• doselect one using a given search strategy; if the selected
one is not a leaf, then generate its son nodes by selecting
the expanded attribute using the given heuristic. These son
nodes are regarded as new candidate nodes.

Before training, the -cut is usually used for the purpose of
reducing the fuzziness of training examples. Thecut of a fuzzy
set is defined as

Increasing the value of can reduce the fuzziness of initial data
but a too large may result in an empty set [40]. Usuallyis
in the range of .

In addition to the selection of expanded attributes, the deter-
mination of the leaf node is another important issue for decision
tree generation. Generally speaking, two key points of an algo-
rithm for generating fuzzy decision trees are: 1) a heuristic for
selecting expanded attributes and 2) a standard for judging leaf
nodes.
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Fig. 2. Fuzzy decision tree for Table I.

C. Fuzzy ID3 Heuristic Algorithm

One popular and powerful heuristic algorithm for generating
crisp decision trees is called ID3. The earlier version of ID3,
which is based on minimum information entropy to select ex-
panded attributes, was proposed by Quinlan [21]. Subsequently,
the fuzzy version of ID3 based on minimum fuzzy entropy was
suggested by several authors [8], [29], [32], [34], [35]. Suppose
that training examples have a fuzzy representation like Table I,
we give (as follows) a generic version of fuzzy ID3, which is
founded on the assumption that each attribute-value (linguistic
term) is a fuzzy set defined on the universe of discourse on all
training examples.

Suppose that the clusters of the learning problem are
.

Definition 1: Let be an arbitrary node of a given fuzzy
decision tree. The relative frequency of the nodewith respect
to the cluster is defined as

where denotes the sigma count (the sum of
all membership degrees) of a fuzzy set.

In some articles ([22], [40]), is regarded as the subset-
hood of in and is interpreted as the degree of truth for the
fuzzy ruleIF Then .

Definition 2: Let be an arbitrary node of a given fuzzy
decision tree. The fuzzy entropy of the nodewith respect
to the clusters is defined as

.
Definition 3: Consider a nonleaf node and attributes

to be selected. For each ,
the attribute takes values of the fuzzy subsets,

. Hence, for the attribute son nodes of
will result. Then, the information

gain of the attribute at the node is defined as

Gain

The fuzzy ID3 heuristic algorithm can now be described as fol-
lows. Consider the whole training set, i.e., as the
first candidate node (the root). Given a leaf standard of fre-
quency , while there exist candidate nodesdo.

Step 1) Randomly choose one candidate nodewith at-
tributes to be selected.

Step 2) If the frequency of some cluster exceedsat the
node , then regard the node as a leaf and go to
Step 6).

Step 3) Compute Gain .
Step 4) Select such that Gain

Gain .
Step 5) If Gain then regard the nodeas a leaf. If

Gain then select the th attribute as the
expanded attribute, generates the son nodes ofand
regard these son nodes as new candidate nodes.

Step 6) Label node , which is no longer a candidate node.
The key points of fuzzy ID3 heuristic are that: 1) the nonpos-

itive gain is regarded as leaf standard and 2) the positive max-
imum gain is the expanded attribute standard.

D. The Performance of Fuzzy ID3 on a Small Training Set

Consider the small training set with fuzzy representation
indicated in Table I. After selecting to cut the training
set, one can directly compute

and . It results in root

where root denotes the root
node. For the first attribute , one can similarly
obtain root sunny root sunny

root cloudy root cloudy
root rain root rain . The averaged

fuzzy entropy is
. Hence, the information gain of the

first attribute root
Similarly, one can compute the information gains of other

three attributes: root ;
root ; root . Therefore,

the expanded attribute at the root should be .
The childnodes of the root can be treated similarly and it fi-

nally generates a FDT which is shown in Fig. 2, where the leaf
standard of frequency is set to be 0.8.

E. Reasoning Mechanism of FDT

In addition to the heuristic algorithm for generating FDT,
another aspect associated with FDT induction is its reasoning
mechanism. After generating the FDT, we need a mechanism to
predict the classification of novel examples or to test the classi-
fication of training examples.

For a generated FDT, each connection from root to leaf is
usually called a path. It is clear each path corresponds to a leaf.
The connection between two adjacent nodes (father node and
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son node) in one path is called a segment of the path. All seg-
ments in one path are considered to have equal importance to
the cluster labeled at the leaf.

Suppose that the generated FDT containsleaf nodes,
which correspond to paths denoted by

. Each consists of several segments denoted
by . Each segment of

corresponds to an attribute-value that is regarded as a
fuzzy set defined on (the universe of discourse of all training
examples). Let be an example remaining to be classified.
For each , its attribute-values corresponding to

are supposed to be . A mechanism
commonly used for determining the cluster of the exampleis
described as follows.

1) For each and , com-
pute , which denotes the similarity degree between

and when is a fuzzy set and denotes the

membership degree of belonging to when
is a real number.

2) Compute the overall similarity by
.

3) Compute by
where is

the number of clusters and is the cluster labeled
at the corresponding leaf.

4) The inferred result is regarded as a fuzzy vector
where is the value which in-

dicates to what degree the example belongs to
. When the crisp inferred

result is needed, one can take the consequent CLASS
with maximum .

It is worth noting that the operations min and max used in 2)
and 3) can be extended, respectively, to-norm and -norm. In
addition, if there is more than one maximum in 4), we need
another way of defuzzification to give a crisp classification for
the example .

Usually, the reasoning by FDT can be converted into that by
a set of fuzzy production rules (FPRs). The purpose of estab-
lishing the reasoning mechanism of FDTin this wayis to com-
pare with the weighted FDT introduced in the following section.

III. W EIGHTED FDT AND WEIGHTED FPR

A. Weighted FDT

A weighted FDT refers to a FDT in which several parameters
are attached to each leaf node. These parameters attached to the
leaf node include the following several aspects.

1) The degree of truth of the classification corresponding to
the leaf node. This parameter is usually called certainty
factor (CF).The CF is an important parameter of the leaf
node, which has been given in many methods of gener-
ating FDT. A leaf node of FDT can be usually converted to
a FPR and then the CF of the leaf is considered to be CF of
the FPR. It can be computed in several ways, one popular
method is by using the degree of subset hood [22]. That
is, if the leaf node corresponds to an FPR taking the form
“IF THEN ” where is the conclusion fuzzy set and

may be the intersection of several propositional fuzzy
sets, then the CF is computed by where

denotes the cardinality of a fuzzy set. This method
of computing CF can be modified by incorporating the
concept of LW or by replacing the minimum and summa-
tion with -norm and -norm, respectively.

2) The degree of importance of each segment in one path
contributing to the classification of the leaf node. These
parameters are usually called LWs.In a nonweighted
FDT, all segments in one path from the root to a leaf are
considered to have equal importance. In a weighted FDT
discussed here, an LW is assigned to a segment in one
path to indicate the relative degree of importance of the
segment contributing to its leaf node. Since a leaf node of
FDT can be usually converted to an FPR and a segment in
one path corresponds to a proposition in a FPR, the con-
cept of LW of FDT also specifies that diverse propositions
in one FPR should have different importance contributing
to its consequent. This LW plays an important role in
many real world problems. For example, in medical di-
agnosis systems it is common to observe that a partic-
ular symptom combined with other symptoms may lead to
possible diseases. It is necessary to assign an LW to each
symptom in order to show the relative degree (weight)
of each symptom leading to the consequent (a disease).
Many researchers have used this LW concept when em-
ploying FPRs to capture medical diagnostic knowledge
([7], [31]).

3) The degree of importance of the leaf node contributing to
the conclusion of classification. This parameter is usually
called GW.In a weighted FDT, since there is generally
more than one leaf node having the same classification,
a GW is assigned to the path corresponding to the leaf
node in this paper to indicate the different importance
of different paths (leaf nodes) contributing to the same
consequent. We have specified in [37] and [38] that the
GW is a concept distinct from the LW.

The most significant merit of decision tree induction should
be its comprehensibility which is mainly reflected in the fact
that each leaf node of a decision tree can be converted into a
production rule. The conversion is exact in crisp case without
noise but is usually inexact in the fuzzy case with several pa-
rameters. That is, in order to obtain a clear decision, only the
main information remains and the other information is ignored.
For example, consider a FDTs leaf node, which has a param-
eter vector where , denotes the
possibility with that the leaf node is labeled “th class”. When
it needs to be converted into a FPR, the information of the first
class and the third class will be ignored. If the ignored infor-
mation is used in the reasoning mechanism of FDT, then the
reasoning mechanism of extracted FPRs will be distinct from
that of the FDT. This indicates that the FDT is not equivalent
to the extracted FPRs. If the criterion of comprehensibility is
whether the FDT (including its reasoning mechanism) can be
equivalently converted into a set of FPRs, then different types
of parameter will affect the comprehensibility of FDT to a cer-
tain extent. For example, to some extent, the comprehensibility
of the FDT is lowered due to the aforesaid parameter vector
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. Although this kind of parameter lowers the com-
prehensibility of FDT, it can raise the prediction accuracy of
FDT to a great extent ([13], [17]).

The increasing complexity of today’s knowledge-based
system often requires many parameters for knowledge rep-
resentation. Indeed, some parameters introduced in the FDT
can enhance its knowledge representation power and can
improve its learning accuracy but, simultaneously, they lower
the comprehensibility of the FDT. One problem is what pa-
rameters should be introduced for FDT so as not to lower its
comprehensibility.

In this paper, we introduce three kinds of parameters, namely,
CF, LW, and GW. These parameters have the clear meaning and
the weighted FDT with these parameters can be equivalently
converted into a set of weighted FPRs introduced in our pre-
vious work (see Section III-B or [37]–[39]), therefore, they keep
the comprehensibility of FDT. Furthermore, it is found that re-
fining these parameters can improve the learning accuracy of
FDT considerably.

We have suggested a heuristic algorithm for a weighted FDT,
where the three kinds of parameters can be roughly given by the
heuristic. Here we need not to specify this heuristic algorithm
with complicated equations since these parameters will be ob-
tained by refining in Section IV. Moreover, the FDT generated
in Section II-C can also be considered to have these parameters
which are equal to one.

B. Weighted FPR

According to [36], propositional statements are the funda-
mental building blocks of a rule-based system. It is usually rep-
resented in the form of

The (attribute) of (an object) is (attribute-value)

e.g., the outlook of last weekend is sunny.
In our study, the object of the propositional statement is

omitted, the attribute is regarded as a variable, and the attribute
value is a fuzzy vector defined on a universe of discourse.

Unlike the crisp case, a fuzzy production rule can have lin-
guistic terms like “hot” or “high” in the antecedent and the con-
sequent part. In [37], a generic form of fuzzy production rules
has been suggested where threshold value, certainty factor, and
LW are assigned to each proposition while GW and certainty
factor are assigned to the entire rule. This paper discusses a type
of fuzzy production rules in which the LWs and the GWs are em-
phasized and the effect of other parameters is not considered.
For instance, a conjunctive weighted fuzzy production rule in
[37] takes the form of

If is is is

is

Fact is Fact is

Fact is

Conclusion is (1)

where and are attributes and
and are the fuzzy values of these attributes. LW

is the LW of the proposition “ is ” and each LW is

nonnegative. GW denotes the GW assigned to the rule
GW .

This type of FPRs can be extracted from the weighted FDT
proposed in Section III-A. The weighted FDT can be equiva-
lently converted into a set of weighted FPRs described above.
The conversion is straightforward. Paths (leaf nodes), segments
of path and three kinds of parameters (CF, LW, and GW) of leaf
node in a weighted FDT correspond to FPRs, propositions in
the antecedent and three kinds of parameters of FPRs. The three
kinds of parameters of these FPRs have the meaning similar to
that of the FDT. For example, the LW is to indicate the relative
degree of importance of a proposition contributing to its conse-
quent and the GWs indicate the degrees of importance of each
rule contributing to the conclusion.

In the following discussions on the three kinds of parameters,
LWs and GWs will be refined by a HNN in Section IV, but
the CF is not considered adjustable. It depends on LWs and its
computational equation is as follows:

in which denotes the membership function of a fuzzy set and
other notations have the same meaning as that in (1).

C. Reasoning Mechanism of Weighted FPR

Generally speaking, the reasoning mechanism of FDT cannot
be exactly converted into that of corresponding set of FPRs.
However, the reasoning mechanism of weighted FPRs converted
from our proposed weighted FDT can always be equivalent to
that of the weighted FDT. In the following, we specify this rea-
soning mechanism of weighted FPRs.

When observations do not exactly match with the antecedent
part of the rule, approximate matching and reasoning should be
used to deduce a consequent. Fuzzy matching and fuzzy rea-
soning play a key role in the approximate reasoning process.
This type of matching and reasoning is very human like since in
many situations human beings have to make decisions based on
incomplete and fuzzy information. Incorporating this capability
into the knowledge-based system is necessary. As an example,
let us consider two fuzzy production rules converted from Fig. 2.

Rule 1) Hot Cloudy

Rule 2) Hot Rain

THEN

where, for simplicity, we assume that both the LWs and the GWs
of the two rules equal to one. The observed fact, for instance, is
supposed to have the form

Hot Mild Cool

Sunny Cloudy Rain

What conclusion can be drawn? The reasonable conclusion
which tallies with person’s thinking and perception should have
the fuzzy form of where and

are two real number belonging to . If a crisp decision
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needs to be made, one can determine the crisp decision ac-
cording to the maximum of and . The problem is that using
the fuzzy matching and fuzzy reasoning based on the observa-
tion, can a reasonable conclusion be drawn? Using the method
proposed in the following section, one can obtain a consequent
of .

There are mainly two types of fuzzy reasoning method. One
is based on Zadeh’s CRI method, while the other is based on
similarity measure. In essence, what we propose here is a simi-
larity-based method.

In [38] a similarity-based method was proposed using the
degree of subsethood defined by Kosko [16]. Subsequently, it
was extended to fuzzy production rules with LWs, GWs, and
other parameters [39]. In this type of method, the similarity be-
tween the observed fact and the antecedent must be computed
according to the selected similarity measure. In this paper, be-
cause of our fuzzy representation method (the attribute value is
a fuzzy set defined on a linguistic term space), the similarity
measure between the attribute value and the antecedent of the
rule is regarded as the membership value, which indicates to
what degree the example belongs to the corresponding term.
For instance, the similarity between attribute value “Hot

Mild Cool” and the antecedent “
Hot” is 0.6.

Consider a set of fuzzy production rules
where takes the form

If is is is

is

The observed object has attribute values in the following forms:

Fact is Fact is

Fact is

For each rule within , the similarity between the propo-
sition and the observed attribute-value is defined as
the membership value which indicates to what degree the ex-
ample belongs to the corresponding term denoted by . The
overall similarity is defined as

Let there be classes denoted by . The
inferred result is regarded as a fuzzy vector
where is the value which indicates to what degree the ob-
served object belongs to . The de-
gree is determined by the following:

The normalized form of the inferred result is defined as
where

When the crisp inferred result is needed, one can take the conse-
quent CLASS with maximum . One problem is
that the algorithm cannot give a crisp decision if there exists more
than one maximum . In that situation, we need
another defuzzification method to determine the crisp decision.

It is worth noting that the fuzzy matching and reasoning
method proposed here are equivalent to the methods mentioned
in [40] when all the LWs and the GWs are equal to one. Hence,
our proposed method of fuzzy matching and reasoning indeed
generalizes the traditional one.

D. Performance on the Small Training Set

We illustrate the above fuzzy matching and the fuzzy rea-
soning process. Let us consider the second example in Table I
and the set of fuzzy rules converted from Fig. 2. All of LWs and
the GWs of these six fuzzy rules are set to one

Rule 1)

Consequent:

Rule 2)

Consequent:

Rule 3)

Consequent:

Rule 4)

Consequent:

Rule 5)

Consequent:

Rule 6)

Consequent:

Hence, the inferred result is

and its normalized form is . If a crisp
decision is to be made, one can take the second class .

The matching result of the 16 examples in Table I with re-
spect to the six fuzzy rules learned in Section II-D (where all
the LWs and the GWs are set to one) are placed in the middle
columns of Table II, labeled “classification test before modi-
fying weights.” From Table II, one can see that the learning accu-
racy is not high (examples 2, 8, and 16 cannot be classified cor-
rectly). Because the matching result depends on both the LWs
and the GWs, we expect to improve the learning accuracy via
adjusting the weights using a hybrid neural network instead of
consulting with domain experts. From the last three columns
of Table II one can see the matching result after learning the
weights, where examples 2 and 16 have already been classified
correctly. The problem of refining the weights by a HNN re-
mains to be investigated in Section IV.
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TABLE II
TEST RESULTS OFLEARNED RULES

IV. REFINING THE WEIGHTS BY A HYBRID NEURAL NETWORK

From Section III, we know that the proposed weighted FDT
including its reasoning mechanism keeps the comprehensibility
of decision tree. The remaining problem is how to adjust these
weights such that the learning accuracy can be improved. Usu-
ally, these weights are given by consultation with domain ex-
perts repeatedly. Of course, this kind of consultation is very time
consuming. Instead of the consultation, one promising approach
to obtain these weights is “learning them by a connectionist
structure.” It will be concerned with the design of a neural net-
work in which the connection weights of the network corre-
spond to the LWs and GWs of the set of FPRs and the output
of the network is the classification consequent; the formulation
of learning algorithm for training these weights; and the com-
plexity analysis of the algorithm.

A. Mapping a Set of Weighted Fuzzy Production Rules into a
Hybrid Neural Network

According to the matching and reasoning mechanism estab-
lished in Section III, a set of learned fuzzy rules can be mapped
into a hybrid neural network which has three layers: term layer,
rule layer and classification layer. The key structure of the
mapped neural network is described as follows.

1) Term Layer: This is the input layer. Each node represents
a linguistic term of an attribute. Since each linguistic term cor-
responds to an attribute value, the input of each node is regarded
as the similarity degree between the observed attribute value
and the corresponding term (proposition) of the antecedent in
a fuzzy rule. The similarity degree can also be the membership
value which indicates to what degree the observed fact belongs
to the linguistic term.

2) Rule Layer: This is the only hidden layer. Each node rep-
resenting an extracted fuzzy rule corresponds to a leaf of the
weighted FDT. According to linguistic terms (propositions) ap-
pearing in the antecedent part of a rule, the connections between
the term layer and the rule layer are determined.

3) Classification Layer:This is the output layer. Each node
represents a cluster. Since the inferred result of the weighted
fuzzy rule has generally the form of fuzzy vector (the discrete
fuzzy set defined on the space of cluster labels), the output of the
network has more than one value. The meaning of each output
value is the membership value which indicates to what degree
the training object belongs to the cluster corresponding to the
node.

4) Connection Weights:The LWs of the extracted set of
fuzzy rules are regarded as the connection weights between
the term layer and the rule layer. The GWs of the set of fuzzy
rules are regarded as the connection weights between the rule
layer and the classification layer. Noting that the fuzzy rules
generated by a fuzzy decision tree algorithm (e.g., Fuzzy ID3)
have LWs and GWs being equal to one, all the connection
weights of the network are initially set to one. It indicates that
the refinement of weights starts from a set of FPRs generated
by an initial FDT algorithm.

5) Activation Function: Instead of using the sigmiod func-
tion as in traditional neural networks, two activation functions,

and , for the rule layer and the classification layer, respec-
tively, are defined as follows:

LW LW

GW GW

These two activation functions are consistent with the rea-
soning mechanism established in the Section III-C. Noting the
use of the operators min and max, the network belongs to a type
of hybrid connection neural network.

Fig. 3 shows a hybrid neural network mapped from the six
fuzzy rules extracted from the FDT shown in Fig. 2.

B. Training the Neural Network

To formulate the backpropagation algorithm, let us consider
a generic case of this kind of hybrid neural network, shown in
Fig. 4 where there are term nodes, rule nodes and
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Fig. 3. A neural network with hybrid connections.

Fig. 4. Generic form of the HNN.

classification nodes. For a given input vector, e.g., theth input
vector, the forth propagation process of the input vector is de-
scribed as follows:

initial layer (term layer):

the given input vector

first layer (rule layer):

(2)

second layer (class layer):

(3)

Let there be training models. Then, the total error function
is defined as

(4)

in which is the th actual output of theth training model
. It is easy to see from (2), (3), and (4) that

the error is a function with respect to LW and GW
.

Let us now derive the standard backpropagation equations.
According to the principle of gradient descent, the backpropa-
gation equations for the hybrid neural network shown in Fig. 4
can be written as

and

(5)

in which is the learning rate. The two partial deriva-
tives appearing in (5) are shown as follows:

if
otherwise

(6)

if

otherwise
(7)

in which, for simplicity, the attached has been omitted from
each

and
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The training procedure is briefly described as follows.

Step 1) Initialization—all the connection weights are ini-
tially set to one.

Step 2) Model forth propagation. Computer the output of
each node by (2) and (3).

Step 3) Error backpropagation. Compute the adjustment of
each weight by (5)–(7).

Step 4) If a given stop criterion is satisfied then stop else
repeat Steps 2) and 3).

We now use the training procedure to train the hybrid
neural network shown in Fig. 3. The results of training are

and .
According to the reasoning mechanism established in Section
III-C, one can use this set of fuzzy rules with trained weights
to test the 16 training examples given in Table I. The test result
is placed into Table II (the columns labeled “classification test
after modifying weights”). It should be noted that this set of
weighted fuzzy rules is now able to classify objects 2 and 16
correctly.

C. Discussions and Remarks

As a kind of knowledge parameters, the weights in fuzzy pro-
duction rules are usually acquired according to the following
simple procedure.

Step 1) Knowledge engineers together with domain experts
specify a set of weighted fuzzy production rules
(where the values of weights remain to be deter-
mined) and select a set of historical records for
testing.

Step 2) Domain experts give the initial values of these
weights.

Step 3) Knowledge engineers test this set of weighted fuzzy
production rules according to a selected evaluation
index. If the evaluation index is acceptable, then go
to Step 5), else go to Step 4).

Step 4) Knowledge engineers adjust the values of weights
by consulting domain experts, go to Step 3).

Step 5) Stop. These values of weights are finally determined
for using in the set of weighted fuzzy production
rules.

This paper indicates that the task of consultation with domain
specialists [specified in the above Steps 3) and 4)] may be re-
placed with training hybrid neural networks. It implies that the
time spent in the consultation between knowledge engineers and
domain experts can be reduced to some extent.

For training a neural network, the initial values of connection
weights are usually given randomly. But in our proposed
training procedure, they are initially set to one. The reason is
twofold. One is the intuitive background that weights being
equal to one correspond to a set of FPRs, which are generated
by traditional learning algorithms such as Fuzzy ID3. The
other is that the initial error with weights being one is usually
less than that with weights selected randomly (due to the
learning accuracy the algorithm for generating these FPRs has
already had). To some extent, this one initialization improves
the training performance. For example, the training of the rice

taste problem in Section V are 535 epochs when initial weights
are one, but are 2268 epochs when initial weights are selected
randomly. Table V shows the epochs of training HNNs with
one initilization and with random initialization of weight for
the five databases.

Compared with the traditional backpropagation algorithm,
our proposed method makes use of the max and min functions
instead of using the sigmoid function. That implicitly results in
the reduction of computational effort. Compare (6) and (7) with
the formulation of traditional BP algorithm, one can see that
the computational complexity of our proposed algorithm is less
than that of the traditional one. Like the traditional backpropa-
gation algorithm, the algorithm proposed here is effective and
efficient. The effectiveness is demonstrated in the experiments
of next section. Moreover, the performance of the proposed al-
gorithm can be further improved by replacing the crisp deriva-
tives with the smooth derivatives [2]

if
if

and

if
if

but we will report the improvement result separately.
Usually, the convergence of training algorithms depends on

their learning rate, the form of input vector, as well as the selec-
tion of initial weights. We do not theoretically investigate the
convergence of the proposed training algorithm for the hybrid
neural network, but will explore it by numerical experiments
in the next section. The experimental results in the next sec-
tion show a better performance for the convergence of the pro-
posed training algorithm. Table IV shows a brief comparison
between the BP algorithm and our proposed one with respect
to the epochs when HNNs converge. Although there has been
some research related to HNNs such as the approximation to
continuous functions [4], application to fuzzy controller and ex-
pert systems [5], the capability as universal approximators [6],
min–max neural networks [26], [27], and so on, much more the-
oretical study on convergence is really needed.

Moreover, the training of the hybrid neural network cannot
generate new rules. This is because the training is a kind of non-
destructive learning during which the network structure is kept
intact and no new connections appear between adjacent layers.
Generally, when the set of fuzzy rules with weights adjusted by
a hybrid neural network cannot yet attain a satisfactory accu-
racy, new rule generation is regarded as necessary. Hence, the
research on destructive training with respect to hybrid neural
networks is very important and significant.

There has been some work on extracting weighted fuzzy pro-
duction rules from neural networks (e.g., [14], [30]). The article
[14] proposed an algorithm for fuzzy weighted rule extraction
from adaptive fuzzy neural networks. The fuzzy neural network
consists of five layers and the backpropagation training algo-
rithm is used. The concept of weight in [14] is distinct from that
in this paper. Moreover, we proposed a novel approach to tune
knowledge representation parameters in a fuzzy production rule
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TABLE III
SUMMARY OF THE EMPLOYED DATABASES

TABLE IV
LEARNING ACCURACY (x; y) OF DIFFERENTMETHODSWHEREx DENOTES THETRAINING ACCURACY AND y DENOTES THETESTINGACCURACY

TABLE V
TRAINING EPOCHS OFWEIGHTED FDT AND BP ALGORITHM

using a fuzzy neural network in [30]. The approach includes the
initialization, the feed forward computation and the backward
weight adjustment. Both in [14] and in [30], the conventional
addition and multiplication are chosen as the inner operation of
neural networks.

V. NUMERICAL EXPERIMENTS

In Sections II–IV, we have briefly presented the learning/rea-
soning process of the proposed method on a small training
set. To further understand the performance of this method, we
apply it as well as two benchmark learning algorithms (the
initial fuzzy ID3 and the traditional back-propagation) to five
databases.

A. Databases

The five databases employed for experiments are obtained
from various sources. Their features are briefly described below
and summarized in Table III.

1) Rice taste data—this database was used by Nozaki [19]
to verify a simple and powerful algorithm for fuzzy rule
generation. It contains 105 cases with five numerical at-
tributes. The classification attribute is continuous. Ac-
cording to positive values and negative values of the clas-

sification attribute, cases are categorized to two classes in
our experiments.

2) Iris data—this was the original data Fisher used to illus-
trate the discriminant analysis [9]. It contains 150 cases
of three different kinds of flowers. Each case consists of
four numerical attributes.

3) Mango leaf data—this set was used by Pal [20] to investi-
gate the automatic feature extraction based on fuzzy tech-
niques. It provides the information on different kinds of
mango leaf with 18 numerical attributes for 166 patterns
(cases). It has three classes representing three kinds of
mango.

4) Thyroid gland data [18]—this set contains 215 cases of
three different kinds of thyroid grand. Each case consists
of five numerical attributes.

5) Pima India diabetes data [18]—this database contains 768
cases related to the diagnosis of diabetes (268 positive and
500 negative). It has eight numerical attributes.

B. Experimental Procedures

We call the method proposed in this paper weighted fuzzy
decision tree induction—in short, WFDTI. Three methods
were compared: fuzzy ID3; traditional BP-algorithm; and
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the WFDTI. We select fuzzy ID3 and BP algorithm as the
benchmark for evaluating the WFDTI.

Noting that all attributes of the selected six databases are nu-
merical, we need to fuzzify these numerical attributes into lin-
guistic terms. We make use the following simple algorithm for
generating triangular type of membership functions ([15], [40]).

Let be the considered data set. We intend to clusterinto
linguistic terms . For simplicity, we as-

sume the type of membership to be triangular. Each linguistic
term will have the triangular membership functions as fol-
lows (see equation at the bottom of the page). Each pair of adja-
cent membership functions crosses at the membership value 0.5.
The only parameters needed to be determined are thecenters

. An effective method to determine these cen-
ters is the Kohonen feature maps algorithm [15]. At the initial
time, centers are set to be distributed evenly on the range of

. Let

The centers will be adjusted iteratively. Each iteration consists
of the following three steps:

1) randomly take a value from , denoted by ;
2) search for an integer such that

;
3) put and keep other

centers unchanged, whereis the iteration time and is
the learning rate.

The iteration ends when converges.
In our experiments, the number of linguistic terms for each

attribute is taken to be three, the parameterspecified in Sec-
tion II-B for reducing the fuzziness in training process is set to
0.35 and the leaf criterion is taken to be 0.75. The learning ac-
curacy is used to compare the performance of these methods.
For each considered database, 50% of the data is uniformly and
randomly chosen as the training set and the remaining 50% of
cases is held for testing. This procedure is repeated six times.
The learning accuracy, namely, the training accuracy and testing
accuracy, is the average of the six. Table IV shows the learning
accuracy of each method when we applied three methods to dif-
ferent databases. The experimental results of BP algorithm are
obtained by using the MATLAB toolbox of neural networks.

C. Remarks

For numerical attributes, the learning accuracy of fuzzy deci-
sion tree is usually poor when the number of linguistic terms is
very small. To improve the learning accuracy, one can use one
of the following approaches:

1) increasing the number of linguistic terms for attributes
and tuning the membership functions of these terms; that
will result in the increase of the number of extracted fuzzy
rules;

2) modifying the reasoning mechanism ([13], [17]); that will
lower the comprehensibility of the tree since the clas-
sification distribution is used in the modified reasoning
mechanism;

3) using new attributes which are given by linear combina-
tions of original attributes; that is called oblique decision
tree [23]; it also lowers the comprehensibility of the tree
due to the unclear meaning of new attributes;

4) refining knowledge parameters related to the tree is our
proposed approach in this paper; compared with the orig-
inal heuristic algorithm for tree generation, this method
has the weakness of increasing training complexity.

In this paper, we argue that the approach 4) is the most
promising one. The reason is that it cannot only improve the
learning accuracy, but also keep the comprehensibility of the
FDT and the simplicity of the extracted fuzzy rules. From
Table IV, one can see that our proposed method improves the
learning performance of fuzzy ID3. There is no significant
difference between our proposed algorithm and BP algorithm,
which has been universally considered to have better accuracy,
but the concepts formed by our proposed weighted FDT are
understood more easily than that formed by traditional neural
networks. Noting that there is only one hidden layer and its
number of nodes is equal to the number of rules in our method,
it can be seen that the complexity of our proposed method
is less than that of BP algorithm. Except for the problem of
Pima India diabetes, the HNN shows a better performance of
convergence where all initial weights are set to one (Table V)
and where the number of maximum epochs of training the
HNN for each database is set to 8000.

One can see from Tables IV and V that the performance for
the Pima India problem is poor. The improvements of learning
accuracy obtained by refining the HNN are not significant. We
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perform a further analysis on this problem and find that small
number of linguistic terms for the attributes is not suitable for
this problem. In other words, to achieve a better performance,
the scale of the weighted FDT should be very large.

VI. CONCLUSION

The inclusion of some knowledge parameters such as LW
and GW is necessary for enhancing the representation power of
FDTs. This paper proposes refining these knowledge parameters
in a hybrid neural network to improve the learning performance
of FDTs, instead of increasing the numbers of linguistic terms or
the complexity (the nodes) of FDTs to improve that. The main
advantages of the proposed method are as follows:

1) the learning performance can be improved by refining
these parameters without much computational effort.

2) since each knowledge parameter used in FDTs has the
clear meaning, the comprehensibility of FDTs can be
kept.

3) to determine these knowledge parameters, the training of
HNN can replace the task of consultation with domain
specialists to a great extent.

The synergy between fuzzy decision tree induction and hy-
brid neural network offers new insight into the construction of
hybrid intelligent systems with better learning accuracy.

VII. FUTURE WORK

In this paper, we extend the FDT induction to the weighted
FDT induction. The main idea is extracting weighted rules
from a decision tree and then refining them by using a hybrid
neural network. The weights in a weighted fuzzy production
rule are considered knowledge parameters and are mapped
into the connection weights of the hybrid neural network to
be refined. A training algorithm like traditional BP algorithm
is derived. The weighed FDT with trained (refined) weights
improves the learning accuracy of the original FDT and keeps
the comprehensibility of the FDT.

The knowledge parameters are initially given by domain ex-
perts in terms of their domain knowledge. According to the per-
formance of these parameters in a system, knowledge engineers
usually need to revise the values of these parameters by con-
sulting domain expert such that a better performance can be
achieved. This paper shows, for acquiring these knowledge pa-
rameters, the training of hybrid neural networks may replace the
task of consulting domain specialists. It implies that the time to
consult with domain experts will be reduced if this technique
is used in conjunction with consultation with domain experts.
However, since the knowledge parameters are closely related to
the domain knowledge, the reduction of time of consultation is
difficult to formulate. In the next phase, we will implement the
parameter refinement in a real-world problem. For this problem,
the time to consult with domain experts for determining knowl-
edge parameters will be actually measured, the time for training
the hybrid neural network will be given by the training proce-
dure, and a comparison between training HNNs and consulting
domain experts will be made.

Moreover, although this paper has derived a training al-
gorithm which is similar to the traditional BP algorithm and
contains some parameters like learning rates, it is difficult to
specify them for achieving a better convergence performance.
The present exploration is experimental. The resulting hybrid
neural network still faces the local minimum problem. As
an important but difficult problem, the theoretical analysis
of convergence for the HNN will be investigated later. In
addition, the derivatives for max and min in the formulation
are supposed to be crisp. It is likely that the performance of
the proposed algorithm can be further improved by replacing
the crisp derivatives with smooth derivatives. We will complete
this work in the future.
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