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Abstract

This paper proposes a new approach to fuzzy rule generation from a set of examples with fuzzy representation. The
new approach called fuzzy extension matrix incorporates the fuzzy entropy to search for paths and generalizes the concept
of crisp extension matrix. By discussing paths of the fuzzy extension matrix, a new heuristic algorithm for generating
fuzzy rules is introduced. Compared with the crisp extension matrix, the proposed method has the capability of handling
fuzzy representation and tolerating noisy data or missing data. A case study shows that the proposed heuristic algorithm
partially inherits the advantages from the crisp case such as simplicity of rules and high learning accuracy. The propo-
sed approach o8ers a new, practical way to automatically acquire imprecise knowledge. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Machine learning is the essential way to acquire intelligence for any computer systems. One of the most
important branches of machine learning should be learning from examples which are usually considered to
be two classes, namely, positive and negative class. The main task of learning from examples is to @nd
a set of rules which covers positive training-examples and exclude negative training-examples, therefore,
learning from examples is sometimes called concept acquisition. During the past several decades, machine
learning community has developed many approaches to learning from examples. From these approaches, some
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have been selected to be intensively investigated and then successfully moved from laboratories to real-life
applications.
One example is the information-entropy-based decision tree induction [11,12]. A popular and powerful

heuristic algorithm for generating crisp decision trees is called ID3. The earlier version of ID3, which is based
on minimum information entropy to select expanded attributes, was proposed by Quinlan in 1986 [11] and
subsequently the revised version called C4.5 was given in [12]. The main advantage of decision tree induction
is that the algorithm can generate a relatively smaller tree without much computational e8ort. In machine
learning community, there has been much research on decision trees including the improvement of algorithms,
the handling of di8erent attributes and applications of decision trees in di8erent domains (which could be
found from many existing references). Another example is the extension-matrix-based rule induction [3,8].
The concept of extension matrix was @rst proposed by Hong [3] and then has become a powerful tool to
study the computational complexity of learning from examples and to design learning algorithms. Based on the
concept of extension matrix, some new learning algorithms such as AQ11 [8] and HCV [20] were developed,
the optimization of learning from examples was proved to be NP-hard [3], several learning systems such as
AE* [3,4] and SLFE [24] were established, and the generation of smallest fuzzy decision tree was proved to
be NP-hard [17]. Additionally, the concept of extension matrix was found to be very useful to issues such
as noise handling [21], feature subset selection [10,18], hyperspectral remotely sensed images classi@cation
rule acquisition [13], fuzzy production rule simpli@cation [16], etc. Under crisp environment, a comparative
study between decision trees and extension matrices shows that the decision tree induction is suitable for
learning problems with large scale and the extension matrix induction is suitable for learning problems with
high accuracy [5].
Traditional approaches to learning from examples, such as the above-mentioned decision tree and exten-

sion matrix, usually require attributes to take nominal-values (symbols). They obviously have the following
two weaknesses. (1) If attribute-values have linguistic meaning (such as young, old, etc.) and there exist an
overlapping among these attribute-values, these attribute-values are still regarded as nominal symbols and the
overlapping cannot be considered in learning process. (2) If attributes take real-values, they must be trans-
formed into nominal symbols before learning. This transformation seems to be reluctant since the numerical
numbers have a linear order but nominal symbols have no order at all (i.e., the initial order information
is entirely lost in the transformation). Fortunately, these two weaknesses can be overcome by incorporating
fuzzy set theory into learning from examples. By using linguistic terms de@ned by fuzzy sets, fuzzy learning
algorithms can be designed to generate fuzzy rules from examples. Compared with traditional rules, fuzzy
rules represent learned knowledge more naturally to the way of human thinking and more robust in tolerating
imprecise and conOict information.
Developing fuzzy rule generation approaches is very useful to the knowledge acquisition phase of arti@cial

expert systems. One important way of developing such approaches is to generalize the existing traditional
approaches. It should be noted that this generalization is not straightforward and often is diPcult due to the
use of membership functions. As an illustration, one can see that many di8erent fuzzy versions of decision
tree induction have been developed to handle the acquisition problem of imprecise knowledge [6,14,19,15,22].
Fuzzy decision tree algorithms not only inherit the advantages of the crisp case but also make the knowledge
representation more natural.
This paper aims to generalize a traditional extension-matrix-based rule induction, i.e., to give a fuzzy

version of this induction. We would like to investigate the feasibility of generalization, formalization of fuzzy
extension matrices, and strengths and weaknesses of this approach to fuzzy rule generation. Moreover, we
would like to check whether the fuzzy version can inherit the main advantages from the traditional version.
The organization of this paper is as follows. Section 1 is the introduction. Section 2 presents some basic

concepts of extension matrix under fuzzy environment. Based on these concepts, a heuristic algorithm for
generating fuzzy rules which incorporates the fuzzy entropy to search for a path is given in Section 3.
The numerical experiments about the extension-matrix heuristic are conducted on a data-set called Rice Taste
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Table 1
A small training set of positive examples

No. Outlook Temperature Humidity Wind

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not windy

1 0.9 0.1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0.6
2 0.0 0.7 0.3 0.8 0.2 0.0 0.1 0.9 0.2 0.8
3 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5
4 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6
5 0.0 0.3 0.7 0.0 0.0 1.0 0.0 1.0 0.1 0.9
6 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3
7 0.9 0.1 0.0 0.0 0.3 0.7 0.0 1.0 0.9 0.1
8 0.7 0.3 0.0 1.0 0.0 0.0 1.0 0.0 0.2 0.8
9 0.9 0.1 0.0 0.2 0.8 0.0 0.1 0.9 1.0 0.0
10 0.0 0.9 0.1 0.0 0.9 0.1 0.1 0.9 0.7 0.3
11 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2

Problem and the advantages of the extension-matrix-based heuristic are veri@ed in Section 4. Section 5 outlines
our future works for investigating fuzzy extension matrices. The @nal section o8ers the conclusions of this
paper.

2. Related concepts of extension-matrix under fuzzy environment

We use a notation Fm to denote the m-dimensional fuzzy vector space, i.e.,

Fm = {(x1; x2; : : : ; xm) | 06xj61; j = 1; 2; : : : ; m}:
Let E=Fk1 ×Fk2 × · · ·×Fkn be the product of n fuzzy vector spaces. An element in E, called an example, is
represented in the form

e = (�1; �2; : : : ; �n);

where �j =(aj1; aj2; : : : ; ajkj)∈Fkj (j=1; 2; : : : ; n).
Consider a problem of learning from fuzzy examples where the classi@cation is crisp. Suppose that all

examples are classi@ed into two classes, PE and NE, called positive class and negative class, respectively.
Let there be P positive examples, N negative examples and n attributes. The space of example labels is
assumed to be X = {1; 2; : : : ; P + N} and n attributes are A1; A2; : : : ; An. The value of the ith example versus
the jth attribute is assumed to be a discrete fuzzy subset, denoted by �ij (16i6P + N; 16j6n); �ij ∈Fkj .
Each attribute corresponds to several linguistic terms which are regarded as fuzzy subsets de@ned on X .

For arbitrarily given j; k (16j6n; 16k6kj), the kth linguistic term of the jth attribute is denoted by
L(k)j (16j6n; 16k6kj). When the linguistic terms of an attribute, L

(k)
j (16j6n; 16k6kj), are considered

as non-fuzzy labels, they will constitute the label space of the attribute. The value of an example with respect
to the considered attribute is just a fuzzy set de@ned on the label space. In this way, the problem of learning
from fuzzy examples is represented well. However, for the considered fuzzy set (the value of an example
with respect to an attribute), its meaning is generally not very clear.
We illustrate the above formulation by a group of fuzzy examples shown in Tables 1 and 2 (adopted

from [22] with some modi@cation). It is easy to see from Tables 1 and 2 that P=11; N =5; n=4; k1 = 3;
k2 = 3; k3 = 2; k4=2, i.e., there are four attributes Outlook: {Sunny;Cloudy;Rain}; Temperature: {Hot;Mild ;
Cool}; Humidity: {Humid ;Normal}; and Wind : {Windy;Not windy}. Note that the @rst row of the
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Table 2
A small training set of negative examples

No. Outlook Temperature Humidity Wind

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not windy

1 0.8 0.2 0.0 0.6 0.4 0.0 0.0 1.0 0.0 1.0
2 0.2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7
3 0.0 1.0 0.0 0.0 0.2 0.8 0.2 0.8 0.0 1.0
4 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7
5 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 1.0

positive example set in Table 1, we have �11 = (0:9; 0:1; 0:0); �12 = (1:0; 0:0; 0:0); �13 = (0:8; 0:2); �14 =
(0:4; 0:6). The meaning of the fourth value �14 is not very clear. The positive example shown in the @rst row
in Table 1 is represented as e+1 = (�11; �12; �13; �14).

De�nition 1. Let Aj be the jth attribute and Sj be the set of all linguistic terms of Aj. Then, [Aj �=Pj] and
[Aj =Pj] are called propositions where Pj ⊂ Sj. The conjunctive form of several propositions,

∧
j∈J [Aj ◦Pj], is

called a fuzzy rule where J ⊂{1; 2; : : : ; n}, “◦” denotes “=” or “ �=”, and “∧” denotes “AND”.

De�nition 2. Consider an example e=(�1; : : : ; �j; : : : ; �n), where the jth attribute-value �j is a fuzzy set
de@ned on Sj = {T}, the set of all linguistic terms of the jth attribute. The degree with which proposition
[Aj �=Pj] (resp. [Aj =Pj]) covers the example e is de@ned as

∧
T∈Pj

(1− �j(T ))


resp: ∧

T∈Pj

(�j(T ))


 ;

where the crisp subset Pj is a subset of Sj and “∧” denotes the minimum operator. The degree with which
a fuzzy rule covers the example e is de@ned as the minimum of covering degrees of its propositions.

Example 1. Consider the @rst positive example shown in Table 1

e+1 = (�11; �12; �13; �14) = (0:9=sunny; 0:1=cloudy; 0:0=rain; 1:0=hot; 0:0=mild ; 0:0=cool;

0:8=humid; 0:2=normal; 0:4=windy; 0:6=Not windy)

and two fuzzy rules
R1: [Outlook �= {Cloudy;Rain}] and
R2: [Outlook=Sunny]∧ [Humidity �=Normal].

The degree of R1 covering e+1 is equal to min{(1− 0:1); (1− 0:0)}=0:9 and the degree of R2 covering e+1
is equal to min{0:9; (1− 0:2)}=0:8.

De�nition 3. Let e be an example and E be a set of examples considered. M (e) is de@ned as the vector of
linguistic terms which correspond to memberships greater than or equal to 0.5; and D(e) is de@ned as the
vector of the corresponding memberships. M (E) is de@ned by putting M (e) (e∈E) together. Similarly, D(E)
can be de@ned.
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For example, consider the @rst row e+1 and the third row e+3 shown in Table 1. It is easy to check that
M (e+1 )= (sunny; hot; humid ; not windy); D(e+1 )= (0:9; 1:0; 0:8; 0:6),

M (e+3 ) =




rain hot humid windy

rain hot normal windy

rain hot humid Not

rain hot normal Not


 and D(e+3 ) =



0:9 0:7 0:5 0:5

0:9 0:7 0:5 0:5

0:9 0:7 0:5 0:5

0:9 0:7 0:5 0:5


 :

Consider Table 2 as NE, the set of all negative examples, then M (NE) and D(NE) can be given as follows:

M (NE) =




sunny hot normal Not

cloudy mild normal Not

cloudy cool normal Not

cloudy mild normal Not

sunny hot normal Not

sunny mild normal Not




; D(NE) =




0:8 0:6 1:0 1:0

0:7 0:7 0:8 0:7

1:0 0:8 0:8 1:0

0:6 1:0 0:7 0:7

1:0 0:5 1:0 1:0

1:0 0:5 1:0 1:0




:

De�nition 4. Let e+ be a positive example and NE be a set of negative examples. For each e− ∈NE, construct
a vector Vector(e−)= (x1; x2; : : : ; xn) as follows:

xj =

{
|(D(e+))j − (D(e−))j| if (M (e+))j = (M (e−))j;

(D(e−))j if (M (e+))j �= (M (e−))j;
j = 1; 2; : : : ; n;

where, for arbitrary vector V; (V )j denotes the jth component of V . The extension matrix of e+ under
background M (NE) is de@ned as {Vector(e−) | e− ∈NE}, denoted by EM (e+)|NE , in short, EM (e+). The
positive example e+ is called a seed for generating the extension matrix.

Example 2. Consider the @rst row in Table 1 as the positive example e+ and Table 2 as the negative example
set NE. Then, the extension matrix of e+ under background M (NE) is

D(NE) =




0:1 0:4 1:0 0:4

0:7 0:7 0:8 0:1

1:0 0:8 0:8 0:4

0:6 1:0 0:7 0:1

0:1 0:5 1:0 0:4

0:1 0:5 1:0 0:4




where M (NE) =




sunny hot normal Not

cloudy mild normal Not

cloudy cool normal Not

cloudy mild normal Not

sunny hot normal Not

sunny mild normal Not




:

De�nition 5. Consider an extension matrix EM =(Lij). An element of EM; Lij, is called a dead-element if
Lij6 where  is a threshold called dead-element standard. A path refers to a connection of non-dead-elements
of the extension matrix.

Example 3. Consider the extension matrix DN (E) in Example 2. For the dead-element standard  =0:4, there
will be ten dead-elements which are L11; L51; L61; L12 and Li4 (i=1; 2; : : : ; 6). The connection L13→L21→L31→
L41→L53→L63 constitutes a complete path of the extension matrix while L13→L21 an incomplete path (see
Fig. 1 where ∗ represents dead-element).
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Fig. 1. An extension matrix and its one path.

The main purpose of introducing extension matrix under fuzzy environment is to establish the relation
between a path of extension matrix and a fuzzy rule. We have the following proposition.

Proposition 1. Each path of an extension matrix (de<ned in De<nition 5) corresponds to a fuzzy rule
(denoted as

∧
j∈J [Aj �=Pj]). Each proposition [Aj �=Pj] in the fuzzy rule

∧
j∈J [Aj �=Pj] corresponds to one

or several elements of the path.

Example 4. Consider the path L13→L21→L31→L41→L53→L63 in Example 3 (see Fig. 1). Noting the
background M (NE) in Example 2, one can verify that the fuzzy rule corresponding to this path is
[Outlook �=Cloudy]∧ [Humidity �=Normal].

In the following we do not di8erentiate a fuzzy rule from a path corresponding the fuzzy rule.
Rule extraction is the most important purpose of learning from examples. Suppose that a set of examples

with crisp representation is classi@ed into two classes (positive and negative class) and this set of examples is
non-noisy, one may learn a set of rules which covers the positive examples and exclude the negative examples
exactly. The approaches to learning are various, such as, decision trees, genetic algorithms, neural networks,
especially extension matrices discussed here. It is useful to extend some existing traditional learning techniques
to their fuzzy versions. So far, many crisp approaches to extracting rules have had their fuzzy versions such
as fuzzy ID3 and fuzzy neural networks, but the fuzzy version of extension matrix approach has not been
found. In the following, we will develop the fuzzy rule generation algorithm based on extension matrices.
Proposition 1 has established the relation between a fuzzy rule and a path of extension matrix, that is, a fuzzy
rule represented as

∧
j∈J [Aj �=Pj] corresponds to a path of extension matrix. Therefore, the problem of fuzzy

rule extraction can be converted into a search for paths of an extension matrix. That is just one of the most
signi@cant purposes of introducing extension matrix under fuzzy environment.

3. Heuristic algorithm of extension matrix for generating fuzzy rules

3.1. The fuzzy entropy of a path

De�nition 6. Let PE be a set of positive examples, NE be a set of negative examples, e+ ∈PE; EM (e+) be
the extension matrix of e+ under background M (NE), PATH be a path of the extension matrix EM (e+) and
the fuzzy rule corresponding to PATH be R. The degrees of PATH covering PE and NE are de@ned as

p =
∑

{degree of R covering e | e ∈ PE}
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and

n =
∑

{degree of R covering e | e ∈ NE};
respectively. The fuzzy entropy of the path is de@ned as

Entropy(PATH) = − p
p+ n

log
p

p+ n
− n

p+ n
log

n
p+ n

:

The fuzzy entropy of a path of an extension matrix denotes the fuzziness of the path. That is the contrast degree
of covering positive examples and negative examples. Consider the path L13→L21→L31→L41→L53→L63
in Example 4, this path corresponds to the fuzzy rule [Outlook �=Cloudy]∧ [Humidity �=Normal]. Noting
that the degrees of the path covering PE and NE are

p = 0:8 + 0:1 + 0:5 + 0:3 + 0:0 + 0:6 + 0:0 + 0:7 + 0:1 + 0:1 + 1:0 = 4:2

and

n = 0:0 + 0:2 + 0:0 + 0:3 + 0:0 = 0:5;

respectively, one can compute that

E(PATH) = −4:2
4:7

log
4:2
4:7

− 0:5
4:7

log
0:5
4:7

= 0:46:

That indicates that the considered path, to a great degree, covers the set of positive examples (the degree of
covering each of Examples 1, 3, 6, 8 and 11 is not less than 0.5) and excludes the set of negative examples.
Information-entropy based on probabilistic models (i.e., Shannon entropy) is a well-known concept to

describe probabilistic uncertainty (randomness). Subsequently, this concept was extended to describe the pos-
sibility of distribution’s uncertainty (fuzziness). A typical extension was given in [1]. Here, fuzzy entropy
used is based on this extension. That is, the degree with which a rule (PATH) covers positive examples (re-
spective negative examples) is regarded as the corresponding possibility. The fuzzy entropy of the possibility
distribution (p=(p+n); n=(p+n)) represents the fuzziness of the rule (PATH), i.e., represents to what degree
the considered rule (PATH) covers both positive examples and excludes negative examples. It is clear that
a fuzzy rule (PATH) with small fuzzy entropy is desirable. If the fuzzy entropy is equal to 0, then the rule
corresponding to the path will cover a class and excludes the other class exactly, degenerating to the case of
learning from crisp examples. In the fuzzy case, it is impossible that the fuzzy entropy decreases to 0. Hence,
we desire that the fuzzy entropy is as small as possible. The following heuristic algorithm for generating
fuzzy rules is developed just according to the minimum fuzzy entropy criterion.

3.2. Heuristic algorithm of fuzzy extension matrix

Initial state: PE – a set of positive examples, NE – a set of negative examples, PATH – a path of the
extension matrix, Rule set – a rule set which initially is set to be empty. Let  ; $; % be three thresholds with
the property: 0:56 61; 0¡$¡0:5; 0¡%¡0:5. Use CPE to denote a subset of PE with the property that,
for each e∈CPE, the degree of PATH covering e is not less than  , use DN (PATH) to denote the averaged
degree of PATH covering NE, and use % to denote the dead-element standard.
Step 1: Randomly select a positive example e+ from PN , generate the extension matrix EM (e+), and put

PATH = empty; NewPATH = empty; PE1=PE.
Step 2: IF all of non-dead elements of EM (e+) had appeared in PATH, then put PE=PE − CPE

and goto Step 4 ELSE FOR (ci, one non-dead-element of EM (e+) which is not used in PATH), put
NewPATH =PATH ∪{non-dead-elements ci}, compute Entropy(NewPATH)
ENDFOR. Select the non-dead-element ck , which corresponds to minimum Entropy(NewPATH).
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Step 3: Put NewPATH=PATH∪{non-dead-elements ck}, compute Entropy(PATH);Entropy(NewPATH)
and DN (NewPATH). IF Entropy(NewPATH)¡Entropy(PATH) THEN replace PATH with NewPATH,
make a sign (already used) to ck and other elements being equal to ck in the corresponding column, goto
Step 2; ELSE PE=PE − CPE.
Step 4: IF DN (NewPATH)¡$, then output the fuzzy rule, L, corresponding to PATH and put Rule set=

Rule set∪{L};ELSE IF PE1 �=PE THEN go to Step 1.
Step 5: Output Rule set and PE (the positive examples which cannot be covered) [END].

The key points included within the above heuristic algorithm are as follows. In the process of seeking one
PATH of a extension matrix, the fuzzy entropy of the PATH is regarded as a standard for extending the
PATH under the condition that the averaged degree with which the @nal path covers NE does not exceed
the threshold $. If the fuzzy entropy is decreasing, then select the element with minimum entropy and add it
in the PATH.
We illustrate that the heuristic of extension matrix with Tables 1 and 2. To facilitate extension matrix

generation, the membership degree 0.5 in Tables 1 and 2 is specially treated as follows.

PE:

1 0.9, 0.1, 0.0, 1.0, 0.0, 0.0, 0.8, 0.2, 0.4, 0.6

2 0.0, 0.7, 0.3, 0.8, 0.2, 0.0, 0.1, 0.9, 0.2, 0.8

3 0.0, 0.1, 0.9, 0.7, 0.3, 0.0, 0.5, 0.0, 0.5, 0.0

4 0.0, 0.1, 0.9, 0.7, 0.3, 0.0, 0.0, 0.5, 0.5, 0.0

5 0.0, 0.1, 0.9, 0.7, 0.3, 0.0, 0.5, 0.0, 0.0, 0.5

6 0.0, 0.1, 0.9, 0.7, 0.3, 0.0, 0.0, 0.5, 0.0, 0.5

7 0.0, 0.7, 0.3, 0.0, 0.3, 0.7, 0.7, 0.3, 0.4, 0.6

8 0.0, 0.3, 0.7, 0.0, 0.0, 1.0, 0.0, 1.0, 0.1, 0.9

9 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.6, 0.4, 0.7, 0.3

10 0.9, 0.1, 0.0, 0.0, 0.3, 0.7, 0.0, 1.0, 0.9, 0.1

11 0.7, 0.3, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.2, 0.8

12 0.9, 0.1, 0.0, 0.2, 0.8, 0.0, 0.1, 0.9, 1.0, 0.0

13 0.0, 0.9, 0.1, 0.0, 0.9, 0.1, 0.1, 0.9, 0.7, 0.3

14 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.8, 0.2

NE:

1 0.8, 0.2, 0.0, 0.6, 0.4, 0.0, 0.0, 1.0, 0.0, 1.0

2 0.2, 0.7, 0.1, 0.3, 0.7, 0.0, 0.2, 0.8, 0.3, 0.7

3 0.0, 1.0, 0.0, 0.0, 0.2, 0.8, 0.2, 0.8, 0.0, 1.0

4 0.2, 0.6, 0.2, 0.0, 1.0, 0.0, 0.3, 0.7, 0.3, 0.7

5 1.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 1.0, 0.0, 1.0

6 1.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0

Take  =0.7 and $=0.2, use FE to denote the fuzzy entropy of the extended path
and DN to denote the averaged degree of the path covering the negative example
set NE, the computed result (five fuzzy rules) is listed as follows.
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(1) Seed: the 11th positive example
PATH: [Humidity �=Normal] FE=0.294 DN=0.117
PATH: [Humidity �=Normal]∧[Temperature �=Mild] FE=0.215 DN=0.067
Final PATH (Final rule): FE=0.141 DN=0.033
[Humidity �=Normal]∧[Temperature �=Mild]∧[Outlook �=Cloudy]

Degrees of covering positive examples:
1 0.80; 3 0.70; 5 0.70; 9 0.60; 11 0.70; 14 1.00;

(2) Seed: the eighth positive example
PATH: [Temperature �=Hot] FE=0.688 DN=0.767
PATH: [Temperature �=Hot]∧[Outlook �=Sunny] FE=0.674 DN=0.450
PATH: [Temperature �=Hot,Mild]∧[Outlook �=Sunny] FE=0.625 DN=0.217
Final PATH (Final rule): FE=0.490 DN=0.083
[Temperature �=Hot,Mild]∧[Outlook �=Sunny,Cloudy]

Degrees of covering positive examples: 8 0.70;

(3) Seed: the fourth positive example
Final PATH: (Final rule): [Wind �=Not windy] FE=0.353 DN=0.100
Degrees of covering positive examples:
4 1.00; 10 0.90; 12 1.00; 13 0.70;

(4) Seed: the second positive example
PATH: [Outlook �=Sunny] FE=0.693 DN=0.467
PATH: [Outlook �=Sunny]∧[Temperature �=Mild] FE=0.660 DN=0.217
Final PATH (Final rule): FE=0.593 DN=0.117
[Outlook �=Sunny]∧[Temperature �=Mild,Cool]

Degrees of covering positive examples: 2 0.80; 6 0.70;

(5) Seed: the seventh positive example
Final PATH: (Final rule): [Humidity �=Normal] FE=0.693 DN=0.117
Degrees of covering positive examples: 7 0.70;

The main purpose of learning from examples is to extract a set of rules from a set of examples described
as positive and negative. This set of rules, in the crisp case, covers all positive examples and excludes all
negative examples exactly. In the fuzzy case, both the training examples and the extracted rules are fuzzy,
and the extracted rules only cover positive example set and exclude negative example set to some extent.
From a set of examples with fuzzy representation such as Tables 1 and 2, a set of fuzzy rules taking the
form ∧ [ATTRIBUTE �= linguistic term(s)] can be extracted by using the proposed extension matrix heuristic
algorithm. Let the set of extracted fuzzy rules be {R1; R2; : : : ; Rn} and e be an example to be classi@ed. De@ne
P(e)=max16i6n {di |di is the degree of Ri covering e}. P(e) is regarded as the degree of e belonging to the
category described by positive examples. When crisp decision is needed, a threshold * should be given. Using
the given threshold, the process of making crisp decision can be described as: if P(e) is not less than * then
the novel example e is classi@ed to the positive class, else e is regarded as a negative example.
Using the learned @ve fuzzy rules, one can test the Positive example set (Table 1) and the Negative example

set (Table 2). The matching results are shown in Tables 3 and 4.
It is easy to see from Tables 3 and 4 that the classi@cation accuracy for the two training sets is 100% if the

threshold * is taken within the interval (0.3,0.7]. Generally speaking, the learning accuracy from a set of
examples with fuzzy representation does not reach 100%. The learning accuracy depends on the representation
of training examples and the selection of learning parameters such as several thresholds. That is veri@ed by
the case study in Section 4.
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Table 3
The matching result of positive example set

No. 1 2 3 4 5 6 7 8 9 10 11

Matching degree 0.8 0.8 0.7 0.7 0.7 0.7 0.9 1.0 1.0 0.7 1.0

Table 4
The matching result of negative example set

No. 1 2 3 4 5

Matching degree 0.2 0.3 0.2 0.3 0.0

Fig. 2. Two membership functions.

3.3. The capability of tolerating noisy data and missing data

The crisp extension matrix algorithm for generating production rules requires the positive example set to
be consistent with the negative example set. It does not permit noisy data appearing in the training set. Our
proposed approach incorporates the fuzzy entropy such that the fuzzy extension matrix algorithm, to some
extent, has the capability of tolerating noisy or missing data.
We illustrate the capability of tolerating noisy or missing data. Consider a toy problem of learning from ex-

amples with two attributes A1 and A2. Assume that the training data contains one positive example e+ = (x; y)
and a set NE with 99 negative examples e−j =(y − *1; y − *2) (j=1; 2; : : : ; 98), and e−99 = (x + *1; y − *2)
where the 99th negative example is likely to be a noisy-data, x is supposed to be less than y, and *1 or *2 is
a very small positive perturbation of the value y. These two numerical attributes are fuzzi@ed in terms of two
linguistic terms, namely “Small” and “Big” (corresponding to values x and y, respectively), with the mem-
bership functions shown in Fig. 2. After fuzzi@cation, the learning problem can be represented as Table 11
(one positive example) and Table 12 (99 negative examples).
The traditional extension matrix algorithm cannot deal with this case. We try to handle the problem using

the proposed method. Noting that the perturbations are supposed to be positive and very small, the extension
matrix EM (e+) and the negative background M (NE) can be represented as follows:

M (NE) =




Big Big

...
...

Big Big

Small Big



99×2

and EM (e+) =




1− *1 ∗
...

...

1− *1 ∗
∗ ∗



99×2

;
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Table 5
Rough sketch of rice taste data

No. Favor Appearance Taste Stickiness Toughness Overall evaluation

1 0.532 0.931 1.571 1.600 0.00 1.874
2 0.699 1.534 1.760 1.944 −0:875 1.706
...

...
...

...
...

...
...

105 0.163 1.088 1.074 0.683 −0:135 0.913

where ∗ represents dead-element. It is obvious that the searched path is L1;1→L2;1→ · · · →L98;1 which
corresponds to the production rule [A1 �=Big]. To a great extent, this fuzzy rule covers the positive example
and excludes the negative example set (the fuzzy entropy of the path is approximately log 2 and the averaged
degree with which the rule covers the set of negative examples is about 0:01).
Worth mentioning is that the missing data can be dealt with in a similar way. Continue to discuss the

above toy-example. Assume that the 99th negative example is (?; y− *) in which the @rst value is lost and *
is a positive small perturbation. One way of dealing with the missing value is to consider the missing value
to be a “don’t care”-value [2,23], which means that the missing value belongs to each linguistic term with
membership degree 1. In this way, the 99th negative example is represented as a fuzzy set

e−99 = 1:0=Small + 1:0=Big+ *=Small + (1:0− *)=Big:

Consequently, the extension matrix EM (e+) and the negative background M (NE) become the following forms,
respectively:

M (NE) =




Big Big

...
...

Big Big

Small Big

Big Big



100×2

and EM (e+) =




1− *1 ∗
...

...

1− *1 ∗
∗ ∗

1− * ∗



100×2

;

in which the symbol ∗ represents dead-element. Similar to the case of noisy data, the searched path is
L1;1→L2;1→ · · · →L98;1→L100;1 corresponding to the fuzzy rule [A1 �=Big]. The fuzzy entropy of this path
is slightly di8erent from that of the path in handling noisy case.

4. Experimental analysis

We select a data-set (called Rice Taste Problem, adopted from [9]) to verify our extension matrix heuristic
algorithm. The Rice Taste data set consists of 105 examples with @ve numerical attributes which are Favor,
Appearance, Taste, Stickiness and Toughness, respectively. The classi@cation takes a form of continuous value
representing the overall evaluation for the rice. The rough sketch of the data set is illustrated in Table 5. In
our study, examples with negative overall evaluation are regarded as positive examples and the others are
regarded as negative examples.
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4.1. Fuzzifying attribute values

This is a process of fuzzifying numerical numbers into linguistic terms. From many alternatives, we select
the fuzzy clustering algorithm. It is based on self-organized learning and can generate some type of membership
functions [7].
Let X be the considered data set. We intend to cluster X into k linguistic terms Tj; j=1; 2; : : : ; k. For sim-

plicity, we assume the shape of membership function to be triangular. These linguistic terms, Tj (j=1; 2; : : : ; k),
will have triangular membership functions as follows:

T1(x) =



1; x6a1;

(a2 − x)=(a2 − a1); a1¡x¡a2;

0; x¿a2;

Tk(x) =



1; x¿ak ;

(x − ak−1)=(ak − ak−1); ak−1¡x¡ak;

0; x6ak−1;

Tj(x) =




0; x¿aj+1;

(aj+1 − x)=(aj+1 − aj); aj¡x¡aj+1;

(x − aj−1)=(aj − aj−1); aj−1¡x¡aj;

0; x6aj−1;

1¡j¡k:

Each pair of adjacent membership functions crosses at the membership value 0.5. Only parameters needed
to be determined are k centers {a1; a2; : : : ; ak}. An e8ective method to determine these centers is Kohonen-
feature-maps algorithm [7]. At initial time, k centers are set to be distributed evenly on the range of X .
Let

A = {a1; a2; : : : ; ak}; d(X; A) =
∑
x∈X

min
i

|x − ai|:

The centers will be adjusted iteratively. Each iteration consists of three steps:
(1) randomly take a value x from X , denoted by x[n];
(2) search for an integer m such that |x[n]− am[n]|= minj |x[n]− aj[n]|;
(3) put am[n+ 1]= am[n] +  (x[n]− am[n]) and keep other centers unchanged,
where n is the iteration time and  is the learning rate.
The iteration ends when d(X; A) converges.
It is easy to see from this clustering algorithm that the sum of memberships is equal to 1 for any value.

In fact, it is unnecessary for the set of linguistic terms to form such a partition. If the cross-point between
adjacent linguistic terms is not 0.5 or the membership function changes to another form from the triangular
shape, the memberships sum fails to be 1 generally.

4.2. E?ect of di?erent linguistic terms and di?erent thresholds

For the positive example set and negative example set, around 70% examples are randomly selected as the
training sets. Two groups of di8erent linguistic terms shown in Tables 6 and 7 are obtained by using the
iterative algorithm described in Section 4.1. The experiment is repeated 12 times and then the averaged values
of test targets are shown in Table 8.
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Table 6
The @rst set of linguistic terms

Attribute No. of terms Centers of term

Favor 2 −0:91; 0:16
Appearance 2 −0:56; 0:79
Taste 4 −3:07;−1:23;−0:23; 0:60
Stickiness 2 −0:53; 0:86
Toughness 2 −0:43; 0:44

Table 7
The second set of linguistic terms

Attribute No. of terms Centers of term

Favor 3 −1:97;−0:70; 0:22
Appearance 2 −0:56; 0:79
Taste 2 −0:80; 0:50
Stickiness 3 −1:15; 0:02; 1:08
Toughness 3 −0:60; 0:03; 1:21

Table 8
Test results of the two set of linguistic terms

( ; $; *) No. of rules Correct Error rate Accuracy of the
rate of PE (%) of NE (%) test set (%)

First set (0.6, 0.2, 0.8) 5.4 95.2 4.5 90.8
Second set (0.7, 0.2, 0.6) 6.5 97.8 3.4 94.4

Table 9
The e8ect of thresholds

( ; $; *) No. of rules Correct Error rate Accuracy of the
rate of PE (%) of NE (%) test set (%)

(0.75, 0.2, 0.5) 6 92.2 2.6 89.2
(0.70, 0.2, 0.6) 7 96.5 3.2 93.1
(0.65, 0.3, 0.7) 6 88.3 2.8 85.5

Table 8 shows us that the learning result including the number of fuzzy rules, the accuracy of testing
training sets, the error rate of covering negative examples and the accuracy of novel examples classi@cation
depends on the selection of linguistic terms, where  is the threshold of covering positive examples, $ is the
maximum averaged degree of covering negative example set and * is the threshold for crisp classi@cation. It
is very important but very diPcult to select appropriate number of linguistic terms and their centers such that
the learning result attains the optimization for a given heuristic.
Di8erent thresholds will result in di8erent learning consequences. Using the second set of terms shown in

Table 7, di8erent learning consequences can be obtained by selecting di8erent thresholds  ; $ and *. The
learning consequences are shown in Table 9.
One problem is how to select parameters  ; $; * such that the performance of our method attains an optimum.

That is a diPcult problem since the performance of  ; $; * depends strongly on the representation of data sets
used in real applications. Usually, the assignment of these parameters is given by domain users according to
their requirements. Of course, that does not guarantee an optimum. It is possible that a combination of these
parameter values results in a poor performance. In other words, we cannot guarantee that the performance of
our method is better than fuzzy ID3 for any values of  ; $; *. To obtain an optimum for these parameters, one
promising method is to re@ne them in a connection structure, but the current paper does not discuss this kind
of re@nement.
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Table 10
A comparison with fuzzy-ID3

Algorithms No. of Correct rate of Correct rate of all
rules PE (%) training examples (%)

Fuzzy extension matrix 6.5 97.8 94.4
Fuzzy-ID3 13.8 91.0 86.2

Table 11
One positive example

No. A1 A2

Small Big Small Big

1 1.0 0.0 1.0 0.0

Table 12
99 negative examples

No. A1 A2

Small Big Small Big

1 *1 1− *1 *2 1− *2
2 *1 1− *1 *2 1− *2
...

...
...

98 *1 1− *1 *2 1− *2
99 1− *1 *1 1− *2 *2

4.3. Comparison to fuzzy-ID3

One powerful heuristic for generating crisp decision trees is ID3. The earlier version of ID3, which is based
on minimum information entropy to select expanded attributes, was proposed by Quinlan in 1986 [11] and
subsequently the revised version called C4.5 was given in [12]. As the increasing uncertainty is incorporated
into the knowledge-based system, it is found that using crisp ID3 to represent imprecise knowledge is not
enough. The fuzzy version of ID3, based on minimum fuzzy entropy, has been suggested by several authors
[6,14,19,15,22]. The learning result of fuzzy-ID3 heuristic is a fuzzy decision tree which can be converted
into a set of fuzzy rules. For completing this brief comparison, we do not directly use C4.5 programs in
the simple experiment given in Section 4, but use fuzzy ID3 algorithm, since C4.5 can generate only crisp
rules.
For the set of positive examples and the set of negative examples, around 70% examples are randomly

selected as the training sets. The set of linguistic terms shown in Table 7 is used. Using extension matrix
heuristic and fuzzy-ID3 heuristic, respectively, the experiment is repeated 12 times and then the averaged
values of test targets are shown in Table 10.
It can be seen from Table 10 that, with regard to the simplicity of fuzzy rules, the training accuracy and

the test accuracy, the extension matrix heuristic is superior to the fuzzy-ID3. The training time of extension
matrix heuristic is slightly longer than that of fuzzy-ID3, but the training-time di8erence between the two
algorithms is not signi@cant when the training set is not very big. To some extent, this experiment gives
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the comparative strengths and weaknesses between the popular fuzzy ID3 and the proposed fuzzy extension
matrix heuristic. Incompletely it indicates such a guideline that the proposed heuristic is more suitable for
learning problems with high accuracy and without large scale.

5. Future work

An ePcient way to develop fuzzy rule generation techniques is to extend existing traditional methodologies
of generating crisp rules to their fuzzy version. Although this paper has made an initial attempt to extend an
existing technique for rule generation (called extension matrix) to its fuzzy version, the following problems
related to fuzzy extension matrices need to be further investigated in the future.
(1) Exploring e8ectiveness of the current method to solve learning from examples with large scale.
(2) Addressing fuzziness of the output variable (classi@cation attribute), i.e., addressing whether a further

generalization of matrix is made to get rid of the restriction of crisp concepts positive and negative
classes.

(3) Making more experiments to further check to what degree the current method is robust against noisy data
and missing data, and to further compare this method with some existing fuzzy generation methods to
give their comparative strengths and weaknesses.

(4) Investigating how to select some parameters (such as  ; $; * used in the paper) such that the performance
of our method attains an optimum. An attempt to re@ne these parameters in a connection structure is
being made.

6. Conclusions

This paper deals with the fuzzy rule generation from a set of examples with fuzzy representation by using
extension matrix. A new heuristic algorithm for generating fuzzy rules, which is based on extension matrix
and incorporates the concept of fuzzy entropy, is developed. Compared with the crisp extension matrix, the
proposed method has the capability of handling fuzzy representation and tolerating noisy or missing data. The
proposed heuristic algorithm partially inherits the advantages from the crisp case such as simplicity of rules
and high learning accuracy.
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