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Abstract—Fuzzy decision tree induction is an important way
of learning from examples with fuzzy representation. Since
the construction of optimal fuzzy decision tree is NP-hard, the
research on heuristic algorithms is necessary. In this paper,
three heuristic algorithms for generating fuzzy decision trees are
analyzed and compared. One of them is proposed by the authors.
The comparisons are two fold. One is the analytic comparison
based on expanded attribute selection and reasoning mechanism;
the other is the experimental comparison based on the size of
generated trees and learning accuracy. The purpose of this study
is to explore comparative strengths and weaknesses of the three
heuristics and to show some useful guidelines on how to choose an
appropriate heuristic for a particular problem.

Index Terms—Approximate reasoning, fuzzy decision trees,
fuzzy rules, heuristic algorithms, learning, learning from fuzzy
examples.

I. INTRODUCTION

T HERE have been many methods for constructing decision
trees from collections of crisp examples [16]. The

decision trees generated by these methods are useful in building
knowledge-based expert systems. Due to the rapid growth of
uncertainty in the knowledge-based systems, it is found that
using crisp decision trees alone to acquire imprecise knowledge
is not enough. Uncertainty such as fuzziness and ambiguity
should be incorporated into the process of learning from
examples such as decision tree induction. Approaches to fuzzy
decision tree generation have been suggested by many authors
(e.g., [7], [8], [18], [19], [21], [26], [27]).

The fuzzy decision tree with minimal number of leaf-nodes
is usually thought to be optimal. It can be regarded as a
commonsense application of Occam’s Razor [1]. However,
the optimal (fuzzy) decision tree generation has been proved
to be NP-hard [6], [20]. Therefore, the research on heuristic
algorithms is necessary. The heuristic information used in
constructing fuzzy decision trees can be various and each
heuristic may be better than the other in some aspects. Mainly
three heuristics for generating fuzzy decision trees could be
found from the existing references. The first is called Fuzzy
ID3 which was initially proposed by Quinlan in the crisp case
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[15] and was developed by many researchers. (e.g., [7], [8],
[18], [21]). The heuristic information used in fuzzy ID3 is the
minimal fuzzy entropy. The second was suggested by Yuan and
Shaw [27]. This heuristic is distinct from fuzzy ID3 heuristic
and uses the minimal ambiguity (nonspecificity) of a possibility
distribution to select expanded attributes. Recently, the authors
have proposed the third heuristic [26], which uses the max-
imum classification importance of attribute contributing to its
consequent to select the expanded attributes and is specified
in the comparative process of following sections. Despite
these heuristics for generating fuzzy decision trees, little is
known regarding their comparative strengths and weaknesses.
In this paper, three heuristics are analyzed and compared. The
comparisons are two fold. One is the analytic comparison based
on expanded attribute selection and reasoning mechanism. The
other is the experimental comparison based on the size of trees
and learning accuracy. The purpose of this comparative study
is to explore the strengths and the weaknesses of each of the
three heuristics and to show some useful guidelines on how to
choose an appropriate heuristic for a particular problem.

Throughout this paper, represents a discrete universe of
discourse, denotes the set of all fuzzy subsets defined on

. For and , sometimes
is represented as , and the
concept of cardinality of a fuzzy set is used. It is well known that
the cardinality of a fuzzy set is a generalization of the number
of elements in a crisp set. Although there are arguments and
questions on the cardinality of finite fuzzy sets (e.g., [22]), this
paper selects a common form of the cardinality of a fuzzy set,
i.e., . When the crisp case is considered,

is the number of elements of a crisp set.

II. HEURISTIC ALGORITHMS FORFUZZY DECISION TREE

GENERATION

In this section, a formal definition for a fuzzy decision tree is
given. The heuristic algorithm for generating a fuzzy decision
tree, which has two components (a criterion of expanded
attribute selection and an approximate reasoning mechanism),
is discussed. The generic procedure of fuzzy decision tree
generation is outlined.

A. Learning From Examples and Fuzzy Decision Tree

We first formulate a problem of learning from examples
with fuzzy representations. Consider a set of examples

which is defined as the universe of dis-
course . (In short, is denoted by . Let

and be a set of fuzzy attributes
where denotes a classification attribute. Each

1083–4419/01$10.00 © 2001 IEEE
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TABLE I
SMALL TRAINING SET WITH FUZZY REPRESENTATION

fuzzy attribute consists of a set of linguistic terms
. All

linguistic terms are defined on the same universe of discourse
. The value of the th example with respect to the th

attribute, denoted by , is a fuzzy set defined on
. In other words, fuzzy set

has a form of +

where denotes the corresponding membership degree
.

To illustrate these notations, we consider an example shown
in Table I which describes a small training set of learning
from fuzzy examples [27]. The universe of discourse is

. Five fuzzy attributes and their linguistic
terms are

Outlook

Sunny, Cloudy, Rain

Temperature

Hot, Mild, Cool

Humidity

Humid, Normal

Wind

Windy, Not Windy

Sports-plan

V, S, W

where is the classification attribute and the three symbols,
V, S and W, denote three sports to play on weekends; volleyball,
swimming and weightlifting, respectively. Each linguistic term
(corresponding to a column of Table I) is a fuzzy subset defined
on . For instance, = Sunny = 0.9/1 + 0.8/2 + 0.0/3 + +
1.0/16. As to the value of theth example with respect to the
th attribute, one can easily observe such as= 0.9/Sunny +

0.1/Cloudy + 0.0/Rain.

According to [16], a graph consists of a finite,
nonempty set of nodes and a set of edges . If the edges
are ordered pairs of nodes, then the graph is said to be
directed. A path in a graph is a sequence of edges of the form

which is from to with
length . A directed tree is a graph without cycles, satisfying
the following properties.

1) There is exactly one node, called root, which no edges
enter.

2) Every node except the root has exactly one entering edge.
3) There is a unique path from the root to each node.

If is an edge in a tree, thenis called the father of , and
is a son of . If there is a path from to then

is a proper ancestor of and is a proper descendent of. A
node with no proper descendent is called a leaf.

Definition 1: Consider the above formulated problem of
learning from examples. A fuzzy decision tree is defined as a
directed tree with the following properties.

1) Every node except the root is a fuzzy subset which
can be represented as a conjunction of several lin-
guistic terms where ,

and denotes the intersection
among fuzzy sets.

2) Every leaf corresponds to one or more linguistic terms of
the classification attribute.

For a fuzzy decision tree, the root is considered a special
fuzzy subset defined on . While all linguistic
terms become nominal symbols, i.e., all fuzzy sets become crisp
sets, Definition 1 describes a crisp decision tree. Fuzzy decision
trees can be built by using different heuristic algorithms to train
Table I (e.g., Figs. 1–3).

B. Heuristic Algorithm for Generating Fuzzy Decision Tree

A fuzzy decision tree with the smallest number of leaf-nodes
is usually called optimal. The construction of a optimal fuzzy
decision tree, however, has been proven to be NP-hard [6], [20].
(Intuitively speaking, the complexity of a NP-hard problem
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Fig. 1. Fuzzy decision tree by using fuzzy ID3 heuristic to train Table I (� = 0.4,� = 0.95).

Fig. 2. Fuzzy decision tree by using Yuan and Shaw’s [27] heuristic to train Table I (� = 0.4,� = 0.95).

Fig. 3. Fuzzy decision tree by using our proposed heuristic to train Table I (� = 0.4,� = 0.95).

exponentially increases with the problem-size. It is considered
to be unrealistic to design an exact algorithm for a NP-hard
problem at present. For more understanding on NP-hard, one
can refer to [2].) Therefore, researchers had to investigate

heuristic algorithms for generating relatively better trees. The
heuristic algorithm in this paper contains two components,
namely 1) a criterion of expanded attribute selection and 2)
an approximate reasoning mechanism. For given heuristic
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information and a leaf-standard, the general procedure for
generating fuzzy decision trees can be described as follows.

Consider as the first candidate node where N
is the number of training examples.

WHILE there exist candidate nodes
DO select one using the search strategy; if the selected one
is not a leaf, then generate its son-nodes according to an
expanded attribute obtained by the given heuristic. These
son-nodes are regarded as new candidate nodes.

Before training the initial data, the -cut is usually used
for the initial data [27]. The purpose of using-cut is to
reduce the fuzziness. The-cut of a fuzzy set A is defined as

. Raising can reduce the fuzziness
of initial data, but the too big may result in empty examples.
Usually, is in the interval (0, 0.5]. Generally speaking, if
the training result is satisfactory then the used algorithm is
considered to be able to handle the existing fuzziness and
using -cut is unnecessary. Otherwise,-cut should be used to
improve the learning performance. The selection of the value
of depends on problem–domain and users’ requirements. (A
more detailed explanation for-cut could be found in [27]).

Focusing on the expanded attribute selection and reasoning
mechanism, we will compare three powerful heuristics
algorithms for fuzzy decision tree generation. They are
heuristicI (the well known fuzzy ID3, e.g., [18]), heuristicII
given in [27], and our recently proposed heuristicIII in [26].

III. COMPARISON OFEXPANDED ATTRIBUTE SELECTION

A. Outline of Three Expanded Attribute Selection Methods

1) Heuristic I: Fuzzy ID3: One powerful heuristic for
generating crisp decision trees is called ID3. The earlier
version of ID3, which is based on minimum classifica-
tion information-entropy to select expanded attributes, was
proposed by Quinlan in 1986 [15]. As the increasing uncer-
tainty is incorporated into the knowledge-based system, the
fuzzy version of ID3 has been suggested by several authors.
(e.g., [7], [8], [18], [21]). Classification information-entropy
based on probabilistic models, i.e., Shannon entropy, is a
well-known concept to describing probabilistic distribution’s
uncertainty. Subsequently, this concept was extended to
describe the possibilistic distribution’s uncertainty, called
fuzzy entropy. A typical extension was given in [3]. Here a
possibilistic distribution refers to a vector whose components
are in [0,1] while a probabilistic distribution is a possibility
distribution with the property that the sum of all components
is equal to 1.

For a probabilistic distribution, each component is consid-
ered as the probability with which the corresponding event
occurs. A possibilistic distribution is usually considered as
a fuzzy set (vector), and each component of the vector, i.e.,
the membership degree, is regarded as the possibility with
which the corresponding event occurs. For the difference and
consistency between probability and possibility, on can refer
to [28]. The difference between the uncertainty described
by the entropy of a probabilistic distribution and described
by the fuzzy entropy of a possibilistic distribution is that the

former attains its maximum at all components being 0.5 but
the latter does not. Fuzzy ID3 uses the fuzzy entropy of a
possibilistic distribution. We briefly describe the expanded
attribute selection of fuzzy ID3 as follows.

Consider a nonleaf node S having n attributes
to be selected. For each , the attribute
takes fuzzy subsets (linguistic terms), .

denotes the classification attribute, taking values
.

Definition 2: For each attribute value (fuzzy subset),
, its relative frequencies

concerning the th fuzzy class

at the considered nonleaf node S is defined as

.
Definition 3: At the considered nonleaf node, the fuzzy

classification entropy of is
defined as .

Definition 4: The averaged fuzzy classification entropy of
the th attribute is defined as in which

denotes the weight of theth value and is defined as
.

Fuzzy ID3 heuristic aims to search for an attribute such that
its averaged fuzzy classification entropy attains minimum, i.e.,
selecting such an integer (the th attribute) that

.
2) Heuristic II: Yuan and Shaw’s Method:Another existing

powerful heuristic is chosen from the article [27]. Instead of
using minimum fuzzy entropy, this heuristic uses the minimum
classification ambiguity to select expanded attributes. The
classification ambiguity is called nonspecificity (also called
U-uncertainty). It is the only function that satisfies all nine
requirements for a possibilistic measure of uncertainty [5], [9].
Continuing to use the notations in part 1) of this section, Yuan
and Shaw’s heuristic is briefly formulated below.

Definition 5: At the considered nonleaf node , the
classification ambiguity of is
defined as in which

with descending order is a

permutation of which is a normalization
of , i.e., .

Definition 6: The averaged classification ambiguity of the
th attribute is defined as in which

is defined identically as Definition 4.
Yuan and Shaw’s heuristic aims to search for an attribute such

that its averaged classification ambiguity attains minimum, i.e.,
selecting such an integer (the th attribute) that

.
3) Heuristic III: Our Proposed Method:Our proposed new

heuristic [26] was based on the concept of degree of importance
of attribute contributing to the classification. This concept
was firstly proposed by Pawlak [14] while investigating the
reduction of knowledge. It was used to extract the minimum
indispensable part of equivalent relations. In [26] we extended
this concept to a fuzzy case and then used it to select the
expanded attribute at a considered node while generating
fuzzy decision trees. This paper gives a revised version of the
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TABLE II
TWO TYPES OFCARS

proposed heuristic. Before describing the heuristic, we look at
the intuitive background of this heuristic.

A fundamental problem we are interested in is whether or
not each attribute-value has the same degree of importance
contributing to the fuzzy classification. To answer this question,
we consider a simple crisp case (Table II) which is obtained by
observing cars manufactured by two different car factories.

Intuitively, a rule can be extracted from Table II. That is,
the max-speed of cars made in Factory A is low. The second
attribute max-speed seems to be more important than the
other attributes. This intuitive importance of an attribute can
be defined formally by the number of inconsistent examples
added due to removing an attribute from the table. An example
x is called inconsistent with respect to a fixed example y if all
attribute-values of x are the same as the corresponding values
of y but their classifications are different. It is easy to see
that the number of inconsistent examples with respect to the
first example in Table II is one when removing the max-speed
attribute, and is zero when removing either colors or size.
Therefore, according to this viewpoint, the attribute max-speed
is considered to be indispensable with respect to classification
and to be more important than the other attributes.

The above degree of importance of attributes contributing to
the classification is generalized to the fuzzy case in the next
definition.

Definition 7: Using the notations introduced at the beginning
of part A in Section II. Let
be the value of theth example with respect to theth at-
tribute, , , be
the value of the th example with respect to the classification

, i.e., is a fuzzy set defined on
(the set of linguistic terms of

the classification attribute ), is a selected similarity
measure,
(where denotes minimum, , and

. Then, for the k-th attribute , the
importance degree of itsth linguistic term
contributing to the classification is defined as

where

Definition 8: The averaged degree of importance of theth
attribute is defined as in which is
defined identically as Definitions 4 or 6.

The key points included in Definition 8 are that 1) the
similarity measure between attribute-values or between
classification-values replaces checking whether two at-
tribute-values or two clusters are identical; 2) the number of

inconsistent examples becomes vague; and 3) the function
is used to express the inconsistent degree.

Our proposed heuristic aims to search for an attribute such
that its averaged degree of importance contributing to the
classification attains maximum, i.e., selecting such an integer

(the th attribute) that .
Respectively, using the three expanded attribute selection

methods, we can train Table I where the cut-standard is chosen
to be = 0.4. To facilitate comparison, we purposely select

= 0.95 as the leaf-standard without any restriction although
such selection results in three impractical and complicated
trees Figs. 1–3.

B. Comparison of Three Expanded Attribute Selection
Criterions

Proposition 1: For fixed and , consider two functions
given in Definitions 3 and 5

and

Within the area , the first
function attains its minimum at a vector of which each
component is either 0 or 1, and the second attains its min-
imum at a vector in which one component is 1 but the
other components are 0. Here we make the appointment

.
The proof is in the Appendix located at the end of this paper.

Based on Definitions 4 and 6, this proposition indicates that
fuzzy ID3 heuristic aims averagely to search the expanded at-
tribute with relative frequencies as close to 0 or 1 as possible
while Yuan and Shaw’s method aims averagely to search one
with relative frequencies as close to 0 (except for the maximum
frequency) as possible.

It is easy to see from Proposition 1 that the minimum of
the function implies the minimum of the function

and the inverse is invalid. Particularly, if
is a probabilistic distribution then the two

minima are equivalent.
Proposition 2: From Proposition 1, functions and

attain their maxima at and
, respectively.

Proposition 1 implies that when all frequencies are 1 the
fuzzy entropy is 0 but the nonspecificity attains maximum. That
indicates such a situation in which different expanded attributes
will be selected by using fuzzy ID3 heuristic and Yuan and
Shaw’s heuristic. However, Proposition 1 indicates that if Yuan
and Shaw’s heuristic selects an expanded attribute with very
small value of then Fuzzy ID3 will select the same
expanded attribute at the same nonleaf node. Moreover, for
the frequency distribution, the smaller the nonspecificity, the
closer it is to a probabilistic distribution. Thus Proposition 1
intuitively indicates that the two heuristics are likely to select
the same expanded attribute while the nonspecificity is small.
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Particularly, if the two heuristics select the same expanded
attribute at the root with small fuzzy entropy and nonspecificity,
then the two heuristics for selecting expanded attributes are
gradually consistent . That is, the expanded attribute selection
of fuzzy ID3 heuristic, to some extent, is identical to the one of
Yuan and Shaw’s heuristic. From Figs. 1 and 2, one can clearly
see the process of expanded attributes of the two heuristics. The
result shows that the expanded attributes of the two heuristics
are the same at most nonleaf nodes.

Our proposed heuristic is based on the maximum degree of
importance of attribute contributing to the fuzzy classification.
It aims, on the considered node with several attributes to be
chosen, to select an attribute whose contribution to classification
is maximal. We have the following Proposition 3.

Proposition 3: Under an assumption of uniform distribution,
either maximum or minimum degree of importance implies
maximum fuzzy entropy when the classification is crisp and
implies maximum nonspecificity when the classification is
fuzzy. The uniform distribution assumption is formulated in the
proof (see Appendix).

Here we would like to illustrate this proposition in the crisp
situation. Consider a group of cases with symbolic attributes.
The classification takes only two symbols, namely, “+” and “.”
Let be a value of an attribute A. Then this group of cases
can be categorized into two subsets and .
Further, for each case , a subset of cases

all attribute-values of cases e and u are the same except at-
tribute can be generated. If the number of positive cases
is greater than or equal to the number of negative cases then

is assigned to a symbol “+” (denoted by = “+”)
else to a symbol “ ” (denoted by = “ ”). Proposition
3 assumes that is distributed uni-
formly. This assumption indicates that the number of
with “+” is approximately equal to the number of
with “ .” The degree of importance of, i.e., the number of
inconsistent cases caused by deleting, is determined by the
class of . Particularly, if the class is identical to

for each then the degree of importance
of attains minimum, and if the class is opposite to
for each then the degree of importance ofat-
tains maximum. Due to the assumption of uniform distribution,
either maximum or minimum degree of importance ofimplies
that the node has the maximum classification entropy.

Proposition 3 indicates that the relation between our pro-
posed heuristic and the others is very complicated. It implicitly
proposes that there exists such an attribute at which the max-
imum (minimum resp.) degree of importance and maximum
(minimum resp.) entropy can be achieved simultaneously at a
node. For example, we consider the crisp case shown in Table III
where there are eight examples, three attributes, and two classes.

Since the crisp classification entropy can be regarded as
a special case of fuzzy case, one can directly compute the
classification entropies of the three attributes, which are 0.33,
0.32, and 0.29, respectively. On the other hand, we can also
compute the degree of importance of each attribute contributing
to the classification. The degree of importance of the first
attribute, for instance, is equal to 1 + 0 + 0 + 0 + 1 + 1 + 2
+ 1 = 6 (that is the total number of examples with the same

TABLE III
CRISPTRAINING SET

attribute-values and the different class by removing the first
attribute). Similarly, one can obtain the degrees of importance
of the second attribute and the third attribute, that are 4 and 0,
respectively.

C. Complexity Caused by Expanded Attribute Selection

With regard to the complexity of the fuzzy decision tree,
the relation among the three heuristics is nondeterministic,
dependent mainly on the expanded attribute selection. We first
consider the computation effort while expanding a nonleaf
node and then consider the size of trees. From Definitions 3–8,
we have the following proposition.

Proposition 4: While expanding the same nonleaf node in
terms of the three heuristics, the following assertion is valid:

CE(fuzzy ID3)

CE(Yuan and Shaw's method)CE(our method)

where CE represents the term Computation-Efforts which refers
mainly to the number of times of operations such as addition,
multiplication, max, min, etc.

The number of leaves is an important index to measure the
size of a tree. Obviously, the bigger the number of leaves, the
more the complexity. The generic standard of leaf-node is a
frequency-threshold, that is, a node (fuzzy set) is regarded as a
leaf if the relative frequency of some class at the node exceeds a
given threshold. In the process of training Table I to generate the
fuzzy decision trees Figs. 1–3, we have made use of the generic
standard (without restrictions) where the threshold is set to 0.95.
From Proposition 1, we have the following proposition.

Proposition 5: If a node is judged to be a leaf in Yuan and
Shaw’s heuristic with very small ambiguity then it is a leaf in
ID3 as well.

Proposition 5 indicates intuitively that the size of the tree
generated by ID3 is generally smaller than that by Yuan and
Shaw’s heuristic. Moreover, Proposition 3 implicitly shows
that the number of leaves given by our heuristic is generally
bigger than the number given by Fuzzy ID3 or Yuan and
Shaw’s heuristic. We do not have an exact relation among the
node-numbers of these generated trees. However, Propositions
4 and 5 together with the experiments in Section V show a
nonrigorous relation, that is, for the complexity, Fuzzy ID3
Yuan and Shaw’s method our method.
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TABLE IV
SUMMARY OF THE EMPLOYED DATABASES

TABLE V
SUMMARY OF ANALYTIC COMPARISON

D. Discussion

On a nonleaf node, ID3 aims on average to select an attribute
such that the components of the frequency vector are as close
to zero or one as possible whereas Yuan and Shaw’s heuristic
aims on average to select an attribute such that only one
component is as close to one as possible and other components
are as close to zero as possible. Propositions 2 and 3 indicate
that there is a significant difference between fuzzy ID3 and
Yuan and Shaw’s method when training examples have much
classification uncertainty (ambiguity). Moreover, Propositions
1 and 2 show that these two heuristics are gradually consistent
when classification ambiguity is small, which gives us such
guidelines that ID3 heuristic is better if more than one fuzzy set
in the consequent part of the generated fuzzy rule is acceptable
(e.g., IFA THEN B or C) and Yuan and Shaw’s heuristic is
better if it is unacceptable. To a great extent, the experimental
results in Section V demonstrate this comparison assertion
(Table VII) where more than one fuzzy set in the consequent
part is unacceptable. Synthesizing the above propositions,
we can reasonably consider that the main strengths of Fuzzy
ID3 are the generation of a tree with small size (leaf-nodes)
whereas the main strengths of Yuan and Shaw’s method are the
nonspecificity existing in the classification can be effectively
handled.

Our method selects an attribute which has the most influ-
ence to the classification as the expanded attribute, and on av-
erage, it can arrange the degree of importance of attributes in
descending order. The main strength of our method is that the
algorithm can generate weighted fuzzy rules. A weighted fuzzy
rule means that, for each proposition of antecedent of the rule,
a weight is assigned to indicate the degree of importance of
the proposition. It can be universally accepted that, in a fuzzy
production rule, different propositions should have a different
degree of importance contributing to the consequent. For ex-
ample, in medical diagnosis systems it is common to observe

that a particular symptom combined with other symptoms may
lead to a possible disease. Doctors often assign a weight to
each symptom in order to show the relative degree (weight) of
importance of each symptom leading to the consequent (a dis-
ease), which means that for a disease one symptom is possibly
more important than another symptom.

The weight assignment is an important but difficult problem.
Usually the weight values are given by domain specialists in
terms of their experience. Due to the domain experience, it is dif-
ficult to measure the weight values. This paper makes an initial
attempt to measure the weight by a type of degree of importance.
Noting that domain experts usually consider a proposition to be
important only if the loss of this proposition will result in many
errors, the importance of a proposition specified by domain ex-
perts is coherent with the importance of an attribute-value given
in Definition 7. Thus our proposed heuristic gives a new way to
roughly acquire the weights while generating the fuzzy decision
tree (fuzzy rules). That is, for a linguistic term of an expanded at-
tribute, its degree of importance (which is defined in Definition
7) is regarded as the weight of the corresponding proposition. In
this way, while converting the tree into a set of rules, a number
of weighted fuzzy rules are derived.

Compared with traditional fuzzy rules (FRs), weighted fuzzy
rules (WFRs) have at least two advantages. One is that WFRs
can enhance the representation power of FRs [23] and the other
is that WFRs can improve the learning accuracy due to the use
of weights as well as the operator pair (addition, multiplication),
which is reflected partially in the following sections.

Moreover, an arrangement of attributes according to their
degrees of importance can be given. This arrangement provides
some guidelines for the robustness, that is, the loss of some
attribute-values with small importance of classification does
not heavily affect the prediction accuracy for novel cases.
This comparison assertion is also partially reflected in the
experiments of Section V (Table VI).



222 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 2, APRIL 2001

IV. COMPARISON OFREASONING MECHANISM

A. Rule Forms Generated by the Three Algorithms

Definition 9: A simple fuzzy rule takes a form “IF an-
tecedent THEN consequent (CF)” where the antecedent is the
intersection of some fuzzy sets
and the consequent is one fuzzy set and are defined
on the same universe of discourse), CF is the certainty factor
defined as M(antecedent consequent)/M(antecedent). A
weighted fuzzy rule [23], [24] takes a form “IF antecedent
THEN consequent (CF., Lw, Th)” where the antecedent, the
consequent and the certainty factor are defined as that in the
simple form, Lw = (Lw , Lw , , Lw ) is the local weight
vector and Th = (Th, Th , , Th ) is the threshold for firing
the rule.

The following are the forms of fuzzy production rules with
parameters extracted from the fuzzy decision trees generated by
the three heuristics discussed above.

Fuzzy ID3 method: IF THEN
.

Yuan and Shaw’s method: IF THEN
.

Our method: IF THEN
.

We consider the comprehensibility together with the
reasoning mechanism for the three forms of fuzzy production
rules. The parameter denotes the certainty factor. The rules
generated by fuzzy ID3 have the parameter vector
for representing the classification distribution. That is, the
crisp decision is not given since all components of the vector

are used in the reasoning mechanism [8], [18].
It usually makes the meaning of the consequent unclear, and
therefore, lowers the comprehensibility to some extent. From
our method, weighted fuzzy production rules can be extracted.
The weight parameter vector has the clear
meaning, i.e., it indicates the degree of each proposition
contributing the consequent . Its many advantages have been
demonstrated in our previous work (e.g., [23]–[25]). Noting that
the fuzzy rule extracted from Yuan and Shaw’s tree includes
only one parameter CF, one can see that the comprehensibility
of Yuan and Shaw’s tree is better than that of our tree which is,
in turn, better than that of fuzzy ID3 tree, that is

Compreh(fuzzy ID3 tree)

Compreh(Our tree)

Compreh(Yuan and Shaw's tree)

Fuzzy decision tree induction is usually reported to have poor
learning-accuracy [17], [20], [27]. To some extent, the inclusion
of several parameters can improve the learning-accuracy [8]
but simultaneously lowers the comprehensibility. Practically,
one needs to make a trade-off between the accuracy and the
comprehensibility.

B. Reasoning Mechanism

Inference in an ordinary decision tree is executed by
matching one branch (a path) starting from the root and ending
at a leaf-node to which a class is attached as the inference

result. On the other hand, in a fuzzy decision tree, more than
one branch must be matched approximately. The reasoning
mechanism used in fuzzy ID3 (e.g., [18]) consists of the
following three key points.

a) For the operation to aggregate membership values for the
path of edges, the multiplication is adopted from many
alternatives.

b) For the operation of total membership value of the path
of edge and the certainty of the class attached to the
leaf-node, the multiplication is also adopted.

c) For the operation to aggregate certainties of the same class
from the different paths of edges, the addition is adopted
from several alternatives.

In Yuan and Shaw’s method, simple fuzzy rules can be ex-
tracted from the generated tree. Each path of branches from
root to leaf can be converted to a simple fuzzy rule with the
antecedent representing attributes on the passing branches from
root to leaf and the consequent representing the class(es) labeled
at the leaf. Because of the fuzziness, more than one fuzzy rule
can be applied at the same time for one object classification.
As a result, the object is classified into different classes with
different degrees. The reasoning mechanism used in Yuan and
Shaw’s method is briefly described as follows [27].

a) Take the minimum of memberships of
(in Definition 8) of the antecedent, which is

regarded as the degree of the inferred conclusion.
b) Take the maximum of the different memberships as the

degree of class when two or more rules are applied to
classify the object into the same class with different
memberships.

c) When only one class is required, the class with highest
degree is selected.

In our proposed method, weighted fuzzy rules can be
extracted from the generated trees. The weight assigned to
each proposition is regarded as the degree of importance of the
attribute-value contributing to the classification. (The degrees
of importance are defined in Definition 7 and are computed
in selecting the expanded attribute). Like the case of a simple
fuzzy rule, each path of branches from root to leaf can be
converted to a weighted fuzzy rule. Our matching algorithm
uses the weighted average of membership to classify an object
into different classes with different degrees. We describe the
reasoning mechanism used in our method as follows [23].

Let be an object to be classified, F be
a group of weighted fuzzy production rules extracted from the
tree, and there are k clusters. The initial state ofwith respect
to classification is set to be .

Step 1) From the group F, select a rule R: IFTHEN
where the antecedent A is supposed

to be ; the consequent B to be
; and the local weight to be

.
Step 2) Compute the membership degree ofbelonging to

: where the membership function
of the fuzzy set is denoted by itself.

Step 3) Let Th = be the threshold.
If for each proposition the inequality
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holds, then the rules are executed. Compute
the overall weighted average of similarity
measures as
where .

Step 4) Modify the matching-consequent according to one
of the beforehand given modification strategies:

4a) more or less form: ;
4b) membership-value reduction form:

;
4c) keeping the consequent of the rule unchanged

(no modification): .

Step 5) Compute the certainty degree of as
;

Step 6) Put where is a number
corresponding to the cluster of the consequent.

Repeat the above six steps until each rule within the group F
has been applied to the object.

Let us now analyze and compare the mechanism used in the
above three heuristic methods. Theoretically the main difference
between the reasoning mechanism used in fuzzy ID3 and Yuan
and Shaw’s method is that the operators are (addition, multipli-
cation) denoted by (+,) in the former but are (max, min) in
the latter. The operator pair (max, min) emphasizes the effect
of maximum membership degree whereas (+,) puts stress on
the effect of averaged memberships. Usually, the reasoning ac-
curacy for novel examples of the operator pair (+,) is better
than that of the pair (max, min), which is partially demonstrated
by the experiments in Section V. It is very likely that the poor
reasoning accuracy of (max, min) is due to the fact that the lost
information available for classification caused by (max, min) is
more than that caused by (+,). Similar to fuzzy ID3, the op-
erators used in our proposed reasoning mechanism are also (+,
). The reasoning mechanism used in fuzzy ID3 emphasizes the

effect of averaged memberships whereas ours emphasizes the
effect of weighted average of memberships. It is clear that the
weighted average is a generalization of the traditional average
model. Due to the inclusion of weight, the learning accuracy of
our reasoning method for some learning problems is superior to
that of the method used in fuzzy ID3. The experimental results
of the three matching algorithms are shown in Section V.

C. Remark

The heuristic algorithm for generating a fuzzy decision
tree and the reasoning mechanism are discussed separately.
Two kinds of operators, namely, (+,) and (max, min), can
be employed in the reasoning algorithms and, in the sense of
prediction accuracy, (+, ) is shown to be better than (max,
min) experimentally. However, the comprehensibility of (max,
min) is obviously better than that of (+,). Noting that both (+,
) and (max, min) can be regarded as special cases of T-norm

and S-norm (i.e., T-conorm), one can expect that the reasoning
performance is further improved by the inclusion of T-norm
and S-norm in the reasoning algorithm.

The results of analytic comparison from Sections III and IV
are summarized in Table V, which are partially demonstrated by
experiments of the following section.

V. EXPERIMENTS

In this section, five selected databases are used. Experimental
comparisons are made with respect to the three heuristics
discussed above, based on the following issues: the number of
total nodes, the number of leaf-nodes, the training accuracy,
the testing accuracy and the capability of tolerating noisy
data. Partial results of analytic comparisons listed in previous
sections are experimentally demonstrated in this section.

A. Brief Introduction to Databases Used in Our Experiments

The five databases employed for experiments are obtained
from various sources. Their features are briefly described below
and summarized in Table IV.

1) Rice taste data: This database was used by Nozaki
[12] to verify a simple and powerful algorithm for
fuzzy rule generation. It contains 105 cases with five
numerical attributes. The classification attribute is
continuous. According to positive values and negative
values of the classification attribute, cases are catego-
rized into two classes in our experiments.

2) Iris data: This was the original data Fisher used to
illustrate the discriminant analysis [4]. It contains 150
cases of three different kinds of flowers. Each case con-
sists of four numerical attributes.

3) Mango leaf data: This set was used by Pal [13] to
investigate the automatic feature extraction based
on fuzzy techniques. It provides the information on
different kinds of mango-leaf with 18 numerical
attributes for 166 patterns (cases). It has three classes
representing three kinds of mango.

4) Thyroid gland data [11]: This set contains 215 cases of
three different kinds of thyroid grand. Each case con-
sists of five numerical attributes.

5) Pima India diabetes data [11]: This database contains
768 cases related to the diagnosis of diabetes (268
positive and 500 negative). It has eight numerical
attributes.

B. Experimental Procedures

Noting that all attributes of the selected five databases are
numerical, we need to fuzzify these numerical attributes into
linguistic terms. We make use of the following simple algo-
rithm for generating triangular type of membership functions
[10], where the number of linguistic terms is given in advance.

Let be the considered data set. We intend to clusterinto
linguistic terms . For simplicity, we assume

the type of membership to be triangular. An iteration algorithm
for obtaining these linguistic terms is selected from [27].

In our experiments, the number of linguistic terms for each
attribute of the five databases is taken to be three, the param-
eter specified in Section II-B for reducing the fuzziness in
training process is set to 0.35 and the leaf criterion is taken
to be 0.75. The learning accuracy, computational complexity,
and the robustness are used to compare the performance of the
three methods. The learning accuracy includes training accuracy
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TABLE VI
SUMMARY OF EXPERIMENTS FORTHREEHEURISTICS: I—FUZZY ID3 HEURISTIC, II—Y UAN AND SHAW’S HEURISTIC, III—OUR PROPOSEDHEURISTIC

TABLE VII
EXPERIMENTAL RESULTS FORTHREE HEURISTICS: I—FUZZY ID3 HEURISTIC, II—Y UAN AND SHAW’S HEURISTIC, III—OUR PROPOSEDHEURISTIC) AND TWO

DATABASES (WHERE 30%OF EXAMPLES ARE CHANGED TO BELONGING TO MORETHAN ONE CLASS WITH DIFFERENTPOSSIBILITY)

and testing accuracy, the complexity is regarded as the num-
bers of nodes and leaves, and the robustness refers to the pre-
diction accuracy by dropping an attribute (with smallest impor-
tance to classification) from the extracted rules. For each consid-
ered database, 50% of cases are uniformly and randomly chosen
as the training set and the remaining 50% of cases are held
for testing. This procedure is repeated six times for the given
cut standard 0.35 and the leaf standard 0.75. The number
of nodes, the number of leaves, the training accuracy, and the
testing accuracy are regarded as the average of the six. These
targets are considered due to the following reasons.

a) The number of nodes represents the complexity degree
of the generated tree (the complexity of extracted fuzzy
rules), which is closely related to the time-complexity and
space-complexity. The number of leaves corresponds to
the number of extracted fuzzy rules. It is reasonable to
argue that a simple tree is considered to be superior to a
complex one [1], [20].

b) The training accuracy and the testing accuracy are the
two most important factors for fuzzy decision trees. The
training accuracy refers to the correctness rate of testing
the training set by the extracted rules. Usually the training
accuracy of the crisp learning without noise can attain
100% but the fuzzy learning cannot. The testing accuracy
represents the capability of predicting classes of novel ex-
amples.

The experimental results are summarized in Table VI.
An important aspect of inductive learning is the sensitivity

to imperfection and imprecision in the data. One type of
imperfection in our experiments is the lack of attributes. We
consider the testing accuracy by deleting the attribute with
minimal degree of importance contributing to classification.
The result is listed in the last column of Table VI.

To check the capability of handling ambiguity of
classification, we select two databases in which 30% of
cases are changed to belonging to more than one class with
different possibility. That means the classification distribu-
tion is no longer a probability distribution but a possibility
distribution. For example, the classification for an example
can become (0.60, 0.95, 0.00, 0.00) in which each component
denotes the possibility of belonging to the corresponding class
and the sum of all components is no longer equal to 1. (In

[27], the authors have illustrated this situation clearly). The
experimental results are shown in Table VII where the number
of linguistic terms is taken to be four.

C. Discussions

We analyze the experimental results shown in Tables VI and
VII. The classification result of an example is a distribution

where m is the number of classes. When the
classification of examples is a probability distribution (

), the number of total nodes and the number
of leaves for fuzzy ID3 heuristic are less than that of the other
two heuristics. The reason is that the tree induced by fuzzy ID3
heuristic tends to generate leaves on average as early as possible.
From Table VII, one can see that, when the classification of ex-
amples is a possibility distribution ( ), the learning
performance of Yuan and Shaw’s heuristic is better than the
other two. It is because Yuan and Shaw’s heuristic is based on
the reduction of ambiguity of the possibility distribution.

Since there are a lot of real-world learning problems in
which the classification is a probability distribution rather than
a possibility distribution, fuzzy ID3 is applied to real-world
problems more widely than Yuan and Shaw’s heuristic.

Regarding the training accuracy and the testing accuracy, our
method is better than fuzzy ID3 which is better than Yuan and
Shaw’s method. The reason may be that the weight is included
in our method and the operator pair (+,) has the performance
better than the pair (min, max) for numerical attributes. It is
worth noting that the learning accuracy depends heavily on the
number of linguistic terms used in the tree generation. One may
notice that except for Iris data the performance on other four
databases is poor. In fact, it results from the small number of
linguistic terms (three) and the lower leaf-standard (0.75). Gen-
erally raising the number of linguistic terms can improve the
learning accuracy, but simultaneously increases the complexity
of the tree (the number of nodes). When the number of linguistic
terms of each attribute for the five databases increases to four or
five, the learning accuracy which is better than the results shown
in Table VI can be obtained.

From the last three columns of Table VI, one can see that, for
the accuracy by dropping an attribute with small importance,
our method is better than the other two. That shows, to some
extent, the robustness of the set of fuzzy rules generated by our
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heuristic. It seems that, in the aspect of robustness, the heuristic
information of degree of importance of attribute contributing to
classification introduced in our method is more important than
the heuristic information of fuzzy entropy or ambiguity used in
the other two methods.

VI. CONCLUDING REMARKS

In this paper, three heuristic algorithms for generating fuzzy
decision trees have been compared and analyzed. It is hard to
say which heuristic is the best but some remarks in particular
aspects can be given. For Fuzzy ID3, the main strengths are
that the algorithm can generate a relatively small tree without
much computation effort. For Yuan and Shaw’s method, the
main strengths are that the algorithm can effectively handle
the nonspecificity existing in classification. For our proposed
heuristic, the main strengths are that the algorithm can generate
weighted fuzzy rules with high learning accuracy. Synthesizing
the comparative results in previous sections, we have the
following nonrigorous relationships where the notations I, II,
and III represent fuzzy ID3, Yuan and Shaw’s heuristic, and
our proposed method, respectively.

In applicability, I II and III
In complexity, I II III
In comprehensibility, II III I
In learning accuracy, III I II
In handling of classification ambiguity, II I and III
In robustness, III I and II

One may choose an appropriate heuristic for a particular
problem according to the above comparative strengths and
weaknesses of the three.

APPENDIX

Proof of Proposition 1: For the first function, one can
directly check that, for each and ,

which implies the first function is convex concerning each
variable on (0,1]. A convex function attains its minimum at
the extremes hence the first part of Proposition 1 is valid.
To prove the second part, we can consider the function

in the area

without losing generality. Noting that the function g can be
written as , it is easy
to check that in the considered area g gets its minimum only at
(1,0, , 0), which completes the proof.

Proof of Proposition 2: The validity of this proposition
can be given by solving and noting

.
Proof of Proposition 3: Consider the learning problem

formulated in the Section II-A where the classification is
assumed to be crisp. Given a linguistic term of attribute

, we examine the degree of importance of and the

fuzzy entropy on (as a node). The degree of importance

of is determined in terms of the classification change

caused by removing . For each case, a fuzzy set defined

on can be given by ,

fixed and fixed in which is defined in Definition 7
when and is 1 when . (In the crisp case, denotes
the set of cases having the same attribute values as e except

). Based on , a frequency vector
can be determined by
where Ci represents theth class . Let

and , then
for each case e, a pair is given. This proposition
assumes that all cases e is distributed
uniformly. Noting that the degree of importance of is

, thus for each
case , its degree of importance is biggest when its class is
and is smallest when its class is . Noting the uniform
distribution of , the crisp classification and
Proposition 2, we have the consequent that either the biggest or
the smallest degree of importance of corresponds to the

node which has the maximum classification entropy.
If the classification is fuzzy then the frequency vector

fails to be a probabilistic distribution but a
possibilistic distribution. Similar to the above derivation, we
can complete the proof by paying attention to Proposition 2.
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