
A. Gelbukh, A. de Albornoz, and H. Terashima (Eds.): MICAI 2005, LNAI 3789, pp. 554 – 564, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Organizing Large Case Library by Linear Programming

Caihong Sun1, Simon Chi Keung Shiu2, and Xizhao Wang3

1 Information School, Renmin University of China, Beijing, 100872, P.R. China
caihongsun@vip.sina.com

2 Computing Department, The Hong Kong Polytechnic University,
Hung Hum, Kowloon, Hong Kong

csckshiu@comp.polyu.edu.hk
3 College of Mathematics and Computer, Hebei University,

Baoding City, Hebei Province, 071002, P.R. China
wangxz@mail.hbu.edu.cn

Abstract. In this paper we proposed an approach to maintain large case library,
which based on the idea that a large case library can be transformed to a
compact one by using a set of case-specific weights. A linear programming
technique is being used to obtain case-specific weights. By learning such local
weights knowledge, many of redundant or similar cases can be removed from
the original case library or stored in a secondary case library. This approach is
useful for case library with a large number of redundant or similar cases and the
retrieval efficiency is a real concern of the user. This method of maintaining
case library from scratch, as proposed in this paper, consists of two main steps.
First, a linear programming technique for learning case-specific weights is used
to evaluate the importance of different features for each case. Second, a case
selection strategy based on the concepts of case coverage and reachability is
carried out to select representative cases. Furthermore, a case retrieval strategy
of the compact case library we built is discussed. The effectiveness of the
approach is demonstrated experimentally by using two sets of testing data, and
the results are promising.

1 Introduction

Nowadays, with information exploding, how to help users to locate the information
what they need is a big challenge for the information providers, educators. Recently,
how to build an efficient case library are proposed and discussed a lot by many
researchers, especially with the rapid growth of case-based reasoning (CBR) systems
both in research area and commercial use in e-business. Maintaining case libraries
become more important when case-based reasoning (CBR) systems are being used to
solve wide range of problems. Large-scale CBR systems are becoming more
prevalent, with case library sizes ranging from thousands [1] to millions of cases [2].
With the increasing growth of the size of a case base, case retrieval takes longer time
and case base maintenance, which is defined as the process of refining a case base to
improve the system’s performance [3], has become an active research topic. Various
case base maintenance problems have been addressed in the past few years. To
provide maintenance support at the case level, [4] suggested a competence preserving

 Organizing Large Case Library by Linear Programming 555

deletion approach. Competence (or coverage) is the range of target problems that a
given system can solve, and is also a fundamental evaluation criterion of CBR system
performance. In [5], the authors presented a new model of case competence, and
demonstrated a way in which the proposed model of competence can be used to assist
case authors. Authors in [6] used data mining techniques in a novel role of a back-end
technology for CBR systems, i.e., the acquisition of cases and discovery of adaptation
knowledge. [7] used advanced AI techniques such as neural networks and fuzzy
methods to acquire features’ importance and eliminate irrelevant features in a given
dataset. One important concept in the CBR community is to distinguish the salient
features from all the features in the dataset; feature selection methods can reduce the
task’s dimensionality when they eliminate irrelevant features [8]. In [7,8,9], for each
feature, a value can be assigned to indicate the degree of importance of this feature. In
[10] the authors introduced the local weight concept while investigating weighted
fuzzy production rules in which a local weight is assigned to each proposition of a
rule to indicate the degree of importance of the proposition in the antecedent
contributing to its consequent. In this paper, we use the local weight concept to select
representative cases from a large case library. A local weight called case-specific
weight is assigned to each feature of each case to indicate the degree of importance of
the feature contributing to its case.

Nearest neighbor (NN) algorithms are techniques used to solve Pattern Recognition
and Classification problems. Nowadays NNs is used for case retrieval in CBR
systems 12]. [11] demonstrated that even if cases are not explicitly classified into a set
of finite groups (classes), the solution space can often be clustered into a collection of
sets and each set contains similar solutions. The NN classification procedure is very
straightforward: given a set of classified examples, which are described as points in
an input space, a new unclassified example is assigned to the known class of the
nearest example. Many researchers [13,14,15] use local metrics to compute the
“nearest” relation while others use global metrics. In our paper, we use case-specific
weight to compute the “nearest” relation. In order to ignore the noisy data and
improve the retrieval efficiency of CBR systems, we propose a method to maintain
the case base by selecting representative cases based on the coverage and reachability
concepts. After applying the maintenance process, the case base contains fewer cases,
and many noisy cases were deleted.

We establish an approach to transfer the original large case library to a small one
with the purpose that it can significantly improve the retrieval efficiency and the
performance of the system. Furthermore, the computational complexity of acquiring
local specified feature weights is relative small when comparing with neuro-fuzzy
feature learning. The approach integrates learning case-specific weight, computing
case competence and selecting seed cases into a framework of case base maintenance.
The maintaining methodology has two main steps. First, a linear programming
technique is used to learn case-specific weights and evaluate the importance of
different features for each case. Second, a case selection strategy based on the
concepts of case coverage and reachability is used to select representative cases.
Furthermore, based on the framework of case maintenance, we discuss a case retrieval
strategy and a case addition strategy. In order to demonstrate the effectiveness of this
approach, two experiments using the Pima Indians Diabetes and the Australian Credit
Approval are carried out. The results show that the two testing case bases can be

556 C.H. Sun, S.C.K. Shiu, and X.Z. Wang

reduced by 89.96% and 90.04% respectively. The training set overall accuracy of the
two smaller case bases is 100%, and the testing set overall accuracy is 73.48% and
79.71% respectively.

2 Approach of Maintaining a Case Library

Consider a case library where an individual case is represented as (Problem,
Solution). The problem is assumed to be an n-dimensional vector

),,,(21 nppp L where each component corresponds to a feature (attribute) of the

case library. The solution, without losing generality, is regarded as a cluster symbol
taking values of 0 and 1 where 0 denotes positive class and 1 negative class. In other
words, all cases in the case library are categorized into two classes. They are the

positive class X with the individual case),,,(21 nxxxx L= , and the negative

class Y with the individual case),,,(21 nyyyy L= .

Assume that, for each feature, a distance measure has been defined. The distance

measure for the j-th feature is denoted by jρ , i.e., jρ is a mapping from jj FF ×

to),0[∞ (where jF denotes the range of the j-th feature) with the properties:

(1) 0),(=bajρ if and only if a = b;

(2)),(),(abba jj ρρ = and

(3)),(),(),(bccaba jjj ρρρ +≤

Usually the distance measure depends on the specific domains. In this paper, we
define the distance measure as follows:

(1) ||),(babaj −=ρ if a and b are real numbers;

(2)
⎩
⎨
⎧

=
≠

=
baif

baif
baj 0

1
),(ρ if a and b are symbols.

We now define the distance measure between two cases. For any pair of cases

),,,(21 nxxxx L= and),,,(21 nyyyy L= , the distance measure is defined as

∑ =
= n

j jjj yx
M

yxd
1

),(
1

),(ρ (1)

where M is such a positive number to scale that the value range of the distance
measure into [0, 1]. Usually, the number M can be determined by

),(max , yxodM YyXx ∈∈= . (2)

and .),(),(
1∑ =

= n

j jjj yxyxod ρ

 Organizing Large Case Library by Linear Programming 557

After introducing the distance measure, our methodology, which consists of two
major phases, will be described in sub-sections 2.1 and 2.2 respectively. Furthermore,
based on maintenance framework, section 2.3 will discuss about case retrieval
strategy.

2.1 Phase One - Learning Case-Specific Weights

In this section, a feature evaluation function is defined. The smaller the evaluation
value, the better the corresponding case-specific weights. Thus we would like to find
the weights such that the evaluation function attains its minimum by using a linear
programming technique. We formulate this optimization problem as follows. We first
introduce a new distance measure based on case-specific weight, called pseudo-
distance.

For any given case),,,(21 npppp L= , its case-specific weight refers to a vector

),,,()()(
2

)(
1

)(p
n

ppp wwww L= where each component is non-negative real number.

When no confusion occurs, the superscript (p) can be omitted.
By incorporating the case-specific weight into the distance measure, a pseudo-

distance measure for a pair of cases),,,(21 nxxxx L= and),,,(21 nyyyy L= can

be defined as

∑ =
=

n

j jjj
x

jx yxwyd
1

)(),()(ρ (3)

Where)(x
jw is the case-specific weight corresponding to the j-th component of case x.

This measure is called pseudo-distance because the symmetry)()(xdyd yx =

generally does not hold. Here we denote)(yd x as the distance from y to x.

For a fixed case Xpppp n ∈=),,,(21 L with case-specific weight vector

),,,(21 nwwww L= , we consider the following function:

()∑ ∈ −−
−

= ⎟
⎠

⎞
⎜
⎝

⎛
Xx xpdxpdxpdxpdnwwwpE)(),(),(1)(

1
),,2,1(

β

β
L (4)

Where β is a constant in (0,1). The two measures,),(xpd and)(xd p are regarded

as the old and new distance from case x to case p respectively. Noting that

∑ ∈ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=
∂

∂
Xxnp

p

xpdwwwE
xd

),(
1

1

1
),,,(

)(21 ββ
β

L (5)

We have

(1) if β<),(xpd then),,,(21 np wwwE L monotonically increases with respect to

)(xd p ; and

(2) if β>),(xpd then),,,(21 np wwwE L monotonically decreases with respect to

)(xd p .

558 C.H. Sun, S.C.K. Shiu, and X.Z. Wang

It implies that, when β<),(xpd ,)(xd p approaches its minimum (or

when β>),(xpd ,)(xd p approaches its maximum), the evaluation function (4)

monotonically approaches its minimum. Thus, we expect that, by minimizing the
evaluation function (4),)(xd p becomes small (when β<),(xpd) or big (when

β>),(xpd). If the parameter β is regarded as a threshold, then β<),(xpd

(β>),(xpd resp.) can be interpreted as that the old distance from x to p is relatively

“small” (“big” resp.). By minimizing function (4), we expect that the new distance
from x to p,)(xd p , becomes smaller (bigger resp.). It is clear that the objective of

minimizing function (4) is to make the case classification decision easy. In other
words, under the principle that “The smaller the distance between cases, the more
possibly the two cases belonging to the same cluster”, the decision for determining
whether two cases belonging to the same cluster in the new distance measure is easier
than in the old distance measure.

We now focus on the minimization of function (4) under certain conditions. Let
),(xpdc = and

),(jjjj pxρχ = (5*)

Then, from equation (4), (1) and (3), we have

),,,(21 np wwwE L = ()() ()∑ ∑∑∈ == ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−Xx

n

j jj

n

j jj cwcw
11

1
1

χχ
β

β

= ()∑ ∑∈ = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−Xx j

n

j jj wcc
1

1
1

χχ
β

β
 = j

n

j j wk∑ =1
 (6)

Where ()∑ ∈ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−
=

Xx jj cck χ
β

β
1

1
, nj ,,2,1 L= . (6*)

It is no meaning minimizing (6) if without any constraints. Suppose that the case
library YX ∪ has no conflicted cases, i.e., there exist no two cases Xx ∈ and

Yy ∈ such that yx = . The shortest distance (in old measure) from the positive case

p to the negative set Y is given by:

),(min ypdYyp ∈=ε (7)

Thus, the inequality 0>pε holds. We hope that, in new pseudo-distance

measure, the distance from p to each negative y is not less than pε . That is,

),(min)(min ypdyd YypYy ∈∈ ≥ (8)

We attempt to find a set of case-specific weights for the case p such that the
function (6) achieves minimum subject to the constraint (8). This is an optimization

 Organizing Large Case Library by Linear Programming 559

problem with constraints. Noting that equation (8) is equivalent to pp yd ε≥)(for all

cases Yy ∈ , and ∑ =
=

n

j jjjjp ypwyd
1

),()(ρ , the optimization problem becomes

the following linear programming problem:

min),,,(21 np wwwE L = j

n

j j wk∑ =1

 s.t. pj

n

j jp wyd εα ≥=∑ =1
)(, Yy ∈

 njw j ,,2,110 L=≤≤

(9)

Where jk is given by equations (6*), jα is defined as),(jjjj ypρα = , and pε is

specified by equation (7).

2.2 Phase Two - Representative Cases Selection Strategy

This phase aims to select representative cases from positive class X according to the
case-specific weights obtained in phase one. Our selection strategy is based on a
coverage concept.

After solving the linear programming (9), we can obtain a set of case-specific

weights),,,()()(
2

)(
1

p
n

pp www L for each positive Xpppp n ∈=),,,(21 L . Using this

set of case-specific weights, we define the coverage of a positive case. Let p be a
given positive case, q be an arbitrary case, we say p covers q if

pp qd ε<)((10)

where pε is specified by equation (7). The coverage of p, Coverage(p), is defined as

})(|{)(pp edepCoverage ε<= (11)

From equation (7) we know that a positive example covers a negative example is
impossible. In other words, the coverage of a positive case is a subset of X. Similarly,
we can define the reachablity of p as

})(|{)(Re pe pdepyachibillit ε<= (12)

The coverage of a case p represents the generalization capability of this case. The
bigger the number of cases in its coverage, the more representative the selected case
p. On the other hand, the reachability of a case p represents the degree to which p can
be covered by another case. From equation (11) and (12), we can determine both the
coverage and the reachability for each positive case p. The current objective is to
select a set of positive cases with their case-specific weights such that the selected
cases can cover the entire positive set X. In fact, the selected cases can exclude the
entire negative set Y.

560 C.H. Sun, S.C.K. Shiu, and X.Z. Wang

There is always a trade-off between the number of cases to be stored in the case
library of a Case-Based Expert System and the performance of retrieval efficiency.
The larger the case library, the more the problem space covered. However, it would
also downgrade the system performance if the number of cases grows to an
unacceptable high level. We expect the number of the selected representatives to be as
small as possible. Thus our selection strategy is described as:

“Finding a set of positive cases which can cover the entire positive set X such that
the number of this set of cases attains minimum.”

Finding an exact algorithm for our optimal selection problem is not realistic, since
it is a NP-hard problem. An intuitive and powerful heuristic algorithm is described as
follows.
The set R is initialized to be empty.

1. For each case p in X, determine Coverage(p) and Reachability(p) by equations
(11) and (12).

2. Find case p* such that *)(pCoverage =)(pCoverageMax Lp∈ . If there exists

more than one case such that the maximum is reached, then select a case p** from
them such that *)*(Re pachability = *)(Re* pachibilityMin p . If there exists

more than one case such that the minimum is reached, select one randomly.
3. Put *}{pRR ∪= and *)(pCoverageLL −= , if =L 0 then stop else goto 1.

Consequently, the set R is approximately regarded as the set of selected representative
cases.

2.3 Case Retrieval Strategy

After the above two phases, we obtain a case library with a group of representative
positive cases and a group of representative negative cases, together with a case
specific weight with each case. When a test case comes, we use Nearest Neighbor
(NN) algorithm to retrieve cases in the new case library. Here we modify the NN
algorithm a little, i.e. use pseudo-distance given in equation (3) to compute distance
between the test case and each representative cases (with case specific weights) in the
obtained compact case library.

2.4 An Example

There is a case base with 10 cases, each case has 4 attributes, 6 cases belong to
positive class X, and the other 4 cases belong to negative class Y. Without losing
generality, we consider case 1 to 6 as class X, and case 7 to 10 as class Y. Now we
use this sample case base to demonstrate our approach.

Learning the specific weight of case p (a positive case). First we use Equation (7)

to compute pε , then for a given constant β in (0,1), apply case p (here p=1,2,…,6)

and negative cases (i.e. case 7 – case 10) in class Y to linear programming problem
specified as equation (9). After solving this linear programming problem, we get a
specific weight for case p.

 Organizing Large Case Library by Linear Programming 561

Now we’ve got a set of specific weights for each positive case. Then we apply
these weights to the heuristic algorithm described in section 2.2 to obtain the selected
representative cases.

3 Experimental Analyses

This section presents the experimental analysis of our methodology on two real-world
problems, i.e. the Pima Indians Diabetes (PID)1 and the Australian Credit Approval
(ACA)2 problems. The PID data consist of 8 attributes with numeric values (The 8
attributes are “ Number of times pregnant”, “Plasma glucose concentration a 2 hours
in an oral glucose tolerance test”, “Diastolic blood pressure (mm Hg)”, “Triceps skin
fold thickness (mm)”, “2-Hour serum insulin (mu U/ml)”, “Body mass index (weight
in kg/(height in m)^2)”, “Diabetes pedigree function” and “Age (years)”.), two classes
(one is positive and the other is negative), and 768 instances. The ACA data consists
of 14 attributes, two classes (one is positive and the other is negative) and 690
instances. Among the 14 attributes, 6 are numerical and 8 are categorical.

For the whole PID database we randomly select 70% for training and the other
30% for testing, for the whole ACA database we randomly select 80% for training
and other 20% for testing. Table 1 shows the distribution of training and testing data
of the PID and ACA datasets.

Table 1. Distribution of Training and Testing for PID and ACA

PID database ACA database

Total Training Testing Total Training Testing
Positive 538 346 154 383 308 75

Negative 230 192 76 307 244 63

Total 768 538 230 690 552 138

After applying our approach mentioned in section 2 to PID database (β=0.4) and

ACA database ((β=0.3), the training and testing accuracy are shown in Table 2.

Table 2. PID and ACA Experimental Results

 Representatives Deletion Rate Training
Accuracy

Testing
Accuracy

PID 54 89.96% 100% 73.48%
ACA 55 90.04% 100% 79.71%

1 Taken from UCI Machine Learning Repository, see website http://www.ics.uci.edu/~mlearn/

MLRepository.html
2 The dataset can be downloaded from http://www.liacc.up.pt/ML/statlog/datasets/australian/

australian.doc.html

562 C.H. Sun, S.C.K. Shiu, and X.Z. Wang

We also compare the number of selected representatives and training/testing
accuracy by using case-specific weights and without using case-specific weights. We
also test with different threshold β values. The comparison results are shown in
Figures 1 and 2 for PID and ACA respectively. From the experimental results, one
may see that by introducing the case-specific weights, the deletion rate and testing
accuracy are better than without using weights. In addition, the selection of a good
threshold β can base on the distribution of the old distance in the training sets, i.e.,
identifying a threshold to indicate if the old distance is small or big.

The result shows that the size of case bases after using our maintenance process
can be reduced by almost 90% if case-specific weights are introduced. The training
accuracy could be 100%, and the testing accuracy could attain 75% or more. Since the
size of a case base is significantly reduced, the retrieval efficiency of the case base
system could greatly be increased.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

N
W 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

No Weight and Different Beta Value

Deletion Rate

Testing Accuracy

Fig. 1. PID Experiment Analysis on no weights and different Beta value

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

NW 0.2 0.3 0.4 0.5 0.6 0.7

No Weight and Different Beta value

Deletion Rate
Testing Accuracy

Fig. 2. ACA Experiment Analysis on no weights and different Beta value

 Organizing Large Case Library by Linear Programming 563

4 Summary and Future Works

In this paper, we have developed a methodology of maintaining CBR systems by
introducing the case-specific weight concept. The main idea is to transform a large
case library to a small one by using a set of case-specific weights, which are obtained
by solving linear programming problems. The experimental results show that both
testing accuracy and retrieval efficiency of the CBR systems are increased. Besides, it
shows that the computational cost of maintenance process is not high. Future works
include (1) performing a computational complexity analysis and compare
computational costs with other case base maintenance approaches, (2) extending this
approach to solve multiple classes problems and non-classification problems (such as
predication problem), (3) comparing the linear programming case-specific weight
learning algorithm with weight learning algorithms, and (4) investigating the case
addition strategy of our approach for on-line or periodic updates, and (5) comparing
the retrieval efficiency with C4.5.

References

1. Cheetham, W. , Graf, J.: Case-Based Reasoning in Color Matching, Advances in Case-
Based Reasoning, the second International Conference on Case-Based Reasoning,
ICCBR(1997) 1-12.

2. Deangdej, J., Lukose, D., Tsui, E., Beinat, P. , Prophet, L. : Dynamically creating indices
for two million cases: A real world problem. Advances in Case-Based Reasoning, the third
European Workshop, EWCBR (1996) 105-119.

3. Leake, D.B., Wilson, C.: Categorizing Case-Base Maintenance: Dimensions and
Directions. Advances in Case-Based Reasoning, 4th European Workshop, EWCBR
(1998) 196-207.

4. Smyth, B. , Keane, M.T.: Remembering to Forget: A Competence-Preserving Case
Deletion Policy for Case-based Reasoning systems. Proceedings of the fourteenth
International Joint Conference on Artificial Intelligence, IJCAI (1995) 377-382.

5. Smyth, B., Mckenna, E.: Modeling the Competence of Case-bases. Advances in Case-
Based Reasoning, 4th European Workshop, EWCBR(1998) 208-220.

6. Anand, S.S, Patterson, D., Hughes, J. , Bell, G.: Discovering Case Knowledge using Data
Mining. in D. A. Second Pacific Asia Conference, Australia, PAKDD (1998) 25-35.

7. Basak, J., De, R. K. ,Pal, S. K: Unsupervised feature selection using a neuro-fuzzy
approach. Pattern Recognition Letters, 19 (1998) 998-1006.

8. Wettscherck, D., Aha, D.W.: Weighting Features. Case-based Reasoning Research and
Development, First International Conference, ICCBR (1995) 347-358.

9. Aha, D. W.: Feature weighting for lazy learning algorithms. In H. Liu & H. Motoda (Eds.)
Feature Extraction, Construction and Selection: A Data Mining Perspective, Norwell MA:
Kluwer (1998).

10. Yeung, D. S. , Tsang, E. C. C.: Weighted Fuzzy Production Rules. Fuzzy Sets and
Systems 88 (1997) 299-313.

11. Avesani, P., Perini, A. , Ricci, F.: Interactive case-based planning for forest fire
management, Applied Artificial Intelligence (1998).

564 C.H. Sun, S.C.K. Shiu, and X.Z. Wang

12. Blanzieri, E., Ricci, F.: Probability Based Metrics for Nearest Neighbor Classification and
Case-Based Reasoning. Advances in Case-Based Reasoning, the third European
Workshop, EWCBR (1996) 14-28.

13. Aha, D. W., Goldstone, R. L.: Learning attribute relevance in context in instance-based
learning algorithms. In proceedings of the Twelfth Annual Conference of the Cognitive
Science Society, pp141-148, Cambridge, MA, (1990).

14. Short, R. D. , Fukunaga K.: A new nearest neighbor distance measure. In proceedings of
the fifth IEEE International Conference on Pattern Recognition,, Miami veach, FL(1980)
81-86.

15. Racci, F. ,Avesani P.: Learning a local similarity metric for case-based reasoning. In the
first international Conference on Case-Based Reasoning, ICCBR (1995) 301-312.

	Introduction
	Approach of Maintaining a Case Library
	Phase One - Learning Case-Specific Weights
	Phase Two - Representative Cases Selection Strategy
	Case Retrieval Strategy
	An Example

	Experimental Analyses
	Summary and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

