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Abstract. In this paper we proposed an approach to maintain large case library, 
which based on the idea that a large case library can be transformed to a 
compact one by using a set of case-specific weights. A linear programming 
technique is being used to obtain case-specific weights. By learning such local 
weights knowledge, many of redundant or similar cases can be removed from 
the original case library or stored in a secondary case library. This approach is 
useful for case library with a large number of redundant or similar cases and the 
retrieval efficiency is a real concern of the user. This method of maintaining 
case library from scratch, as proposed in this paper, consists of two main steps.  
First, a linear programming technique for learning case-specific weights is used 
to evaluate the importance of different features for each case. Second, a case 
selection strategy based on the concepts of case coverage and reachability is 
carried out to select representative cases. Furthermore, a case retrieval strategy 
of the compact case library we built is discussed. The effectiveness of the 
approach is demonstrated experimentally by using two sets of testing data, and 
the results are promising. 

1   Introduction 

Nowadays, with information exploding, how to help users to locate the information 
what they need is a big challenge for the information providers, educators. Recently, 
how to build an efficient case library are proposed and discussed a lot by many 
researchers, especially with the rapid growth of case-based reasoning (CBR) systems 
both in research area and commercial use in e-business. Maintaining case libraries 
become more important when case-based reasoning (CBR) systems are being used to 
solve wide range of problems. Large-scale CBR systems are becoming more 
prevalent, with case library sizes ranging from thousands [1] to millions of cases [2]. 
With the increasing growth of the size of a case base, case retrieval takes longer time 
and case base maintenance, which is defined as the process of refining a case base to 
improve the system’s performance [3], has become an active research topic. Various 
case base maintenance problems have been addressed in the past few years. To 
provide maintenance support at the case level, [4] suggested a competence preserving 
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deletion approach. Competence (or coverage) is the range of target problems that a 
given system can solve, and is also a fundamental evaluation criterion of CBR system 
performance. In [5], the authors presented a new model of case competence, and 
demonstrated a way in which the proposed model of competence can be used to assist 
case authors. Authors in [6] used data mining techniques in a novel role of a back-end 
technology for CBR systems, i.e., the acquisition of cases and discovery of adaptation 
knowledge. [7] used advanced AI techniques such as neural networks and fuzzy 
methods to acquire features’ importance and eliminate irrelevant features in a given 
dataset. One important concept in the CBR community is to distinguish the salient 
features from all the features in the dataset; feature selection methods can reduce the 
task’s dimensionality when they eliminate irrelevant features [8]. In [7,8,9], for each 
feature, a value can be assigned to indicate the degree of importance of this feature. In 
[10] the authors introduced the local weight concept while investigating weighted 
fuzzy production rules in which a local weight is assigned to each proposition of a 
rule to indicate the degree of importance of the proposition in the antecedent 
contributing to its consequent. In this paper, we use the local weight concept to select 
representative cases from a large case library. A local weight called case-specific 
weight is assigned to each feature of each case to indicate the degree of importance of 
the feature contributing to its case.  

Nearest neighbor (NN) algorithms are techniques used to solve Pattern Recognition 
and Classification problems. Nowadays NNs is used for case retrieval in CBR 
systems 12]. [11] demonstrated that even if cases are not explicitly classified into a set 
of finite groups (classes), the solution space can often be clustered into a collection of 
sets and each set contains similar solutions. The NN classification procedure is very 
straightforward: given a set of classified examples, which are described as points in 
an input space, a new unclassified example is assigned to the known class of the 
nearest example. Many researchers [13,14,15] use local metrics to compute the 
“nearest” relation while others use global metrics. In our paper, we use case-specific 
weight to compute the “nearest” relation. In order to ignore the noisy data and 
improve the retrieval efficiency of CBR systems, we propose a method to maintain 
the case base by selecting representative cases based on the coverage and reachability 
concepts. After applying the maintenance process, the case base contains fewer cases, 
and many noisy cases were deleted.  

We establish an approach to transfer the original large case library to a small one 
with the purpose that it can significantly improve the retrieval efficiency and the 
performance of the system. Furthermore, the computational complexity of acquiring 
local specified feature weights is relative small when comparing with neuro-fuzzy 
feature learning. The approach integrates learning case-specific weight, computing 
case competence and selecting seed cases into a framework of case base maintenance. 
The maintaining methodology has two main steps. First, a linear programming 
technique is used to learn case-specific weights and evaluate the importance of 
different features for each case. Second, a case selection strategy based on the 
concepts of case coverage and reachability is used to select representative cases. 
Furthermore, based on the framework of case maintenance, we discuss a case retrieval 
strategy and a case addition strategy. In order to demonstrate the effectiveness of this 
approach, two experiments using the Pima Indians Diabetes and the Australian Credit 
Approval are carried out. The results show that the two testing case bases can be  
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reduced by 89.96% and 90.04% respectively. The training set overall accuracy of the 
two smaller case bases is 100%, and the testing set overall accuracy is 73.48% and 
79.71% respectively. 

2   Approach of Maintaining a Case Library 

Consider a case library where an individual case is represented as (Problem, 
Solution). The problem is assumed to be an n-dimensional vector 

),,,( 21 nppp L where each component corresponds to a feature (attribute) of the 

case library. The solution, without losing generality, is regarded as a cluster symbol 
taking values of 0 and 1 where 0 denotes positive class and 1 negative class. In other 
words, all cases in the case library are categorized into two classes. They are the 

positive class X with the individual case ),,,( 21 nxxxx L= , and the negative 

class Y with the individual case ),,,( 21 nyyyy L=  . 

Assume that, for each feature, a distance measure has been defined. The distance 

measure for the j-th feature is denoted by jρ  , i.e.,  jρ  is a mapping from jj FF ×   

to ),0[ ∞ (where jF  denotes the range of the j-th feature) with the properties: 

(1) 0),( =bajρ  if and only if a = b; 

(2) ),(),( abba jj ρρ =  and 

(3) ),(),(),( bccaba jjj ρρρ +≤  

Usually the distance measure depends on the specific domains. In this paper, we 
define the distance measure as follows: 

(1) ||),( babaj −=ρ  if a and b are real numbers; 

(2) 
⎩
⎨
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=
≠

=
baif

baif
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),(ρ  if a and b are symbols.  

We now define the distance measure between two cases. For any pair of cases 

),,,( 21 nxxxx L=  and ),,,( 21 nyyyy L= , the distance measure is defined as  

∑ =
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j jjj yx
M

yxd
1

),(
1

),( ρ  (1) 

where M is such a positive number  to scale that the value range of the distance 
measure into [0, 1]. Usually, the number M can be determined by 

),(max , yxodM YyXx ∈∈= . (2) 

and .),(),(
1∑ =

= n

j jjj yxyxod ρ  
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After introducing the distance measure, our methodology, which consists of two 
major phases, will be described in sub-sections 2.1 and 2.2 respectively. Furthermore, 
based on maintenance framework, section 2.3 will discuss about case retrieval 
strategy. 

2.1   Phase One - Learning Case-Specific Weights 

In this section, a feature evaluation function is defined. The smaller the evaluation 
value, the better the corresponding case-specific weights. Thus we would like to find 
the weights such that the evaluation function attains its minimum by using a linear 
programming technique. We formulate this optimization problem as follows. We first 
introduce a new distance measure based on case-specific weight, called pseudo-
distance. 

For any given case ),,,( 21 npppp L= , its case-specific weight refers to a vector  

),,,( )()(
2

)(
1

)( p
n

ppp wwww L=  where each component is non-negative real number. 

When no confusion occurs, the superscript (p) can be omitted.  
By incorporating the case-specific weight into the distance measure, a pseudo-

distance measure for a pair of cases ),,,( 21 nxxxx L=   and ),,,( 21 nyyyy L=  can 

be defined as  

∑ =
=

n

j jjj
x

jx yxwyd
1

)( ),()( ρ  (3) 

Where )(x
jw  is the case-specific weight corresponding to the j-th component of case x. 

This measure is called pseudo-distance because the symmetry )()( xdyd yx =  

generally does not hold. Here we denote )(yd x  as the distance from y to x. 

For a fixed case Xpppp n ∈= ),,,( 21 L  with case-specific weight vector 

),,,( 21 nwwww L= , we consider the following function: 
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Where β  is a constant in (0,1). The two measures, ),( xpd  and )(xd p  are regarded 

as the old and new distance from case x to case p respectively.  Noting that  
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We have 

(1) if  β<),( xpd then ),,,( 21 np wwwE L monotonically increases with respect to 

)(xd p  ; and 

(2) if β>),( xpd  then ),,,( 21 np wwwE L  monotonically decreases with respect to 

)(xd p  . 
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It implies that, when β<),( xpd , )(xd p  approaches its minimum (or 

when β>),( xpd  ,   )(xd p approaches its maximum), the evaluation function (4) 

monotonically approaches its minimum. Thus, we expect that, by minimizing the 
evaluation function (4), )(xd p  becomes small (when β<),( xpd ) or big (when 

β>),( xpd ). If the parameter β  is regarded as a threshold, then β<),( xpd   

( β>),( xpd  resp.) can be interpreted as that the old distance from x to p is relatively 

“small” (“big” resp.). By minimizing function (4), we expect that the new distance 
from x to p, )(xd p  , becomes smaller (bigger resp.).  It is clear that the objective of 

minimizing function (4) is to make the case classification decision easy. In other 
words, under the principle that “The smaller the distance between cases, the more 
possibly the two cases belonging to the same cluster”, the decision for determining 
whether two cases belonging to the same cluster in the new distance measure is easier 
than in the old distance measure. 

We now focus on the minimization of function (4) under certain conditions. Let 
),( xpdc =  and 

),( jjjj pxρχ =  (5*) 

Then, from equation (4), (1) and (3), we have 
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It is no meaning minimizing (6) if without any constraints.  Suppose that the case 
library YX ∪  has no conflicted cases, i.e., there exist no two cases Xx ∈  and 

Yy ∈  such that yx = . The shortest distance (in old measure) from the positive case 

p to the negative set Y is given by: 

),(min ypdYyp ∈=ε  (7) 

Thus, the inequality 0>pε  holds.  We hope that, in new pseudo-distance 

measure, the distance from p to each negative y is not less than pε . That is,    

),(min)(min ypdyd YypYy ∈∈ ≥  (8) 

We attempt to find a set of case-specific weights for the case p such that the 
function (6) achieves minimum subject to the constraint (8). This is an optimization 
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problem with constraints.  Noting that equation (8) is equivalent to pp yd ε≥)(  for all 

cases Yy ∈ , and ∑ =
=

n

j jjjjp ypwyd
1

),()( ρ , the optimization problem becomes 

the following linear programming problem: 

min ),,,( 21 np wwwE L = j

n

j j wk∑ =1
 

             s.t.  pj

n

j jp wyd εα ≥=∑ =1
)( , Yy ∈                     

                    njw j ,,2,110 L=≤≤  

(9) 

Where jk  is given by equations (6*), jα  is defined as ),( jjjj ypρα = , and pε  is 

specified by equation (7). 

2.2   Phase Two - Representative Cases Selection Strategy 

This phase aims to select representative cases from positive class X according to the 
case-specific weights obtained in phase one. Our selection strategy is based on a 
coverage concept. 

After solving the linear programming (9), we can obtain a set of case-specific 

weights ),,,( )()(
2

)(
1

p
n

pp www L  for each positive Xpppp n ∈= ),,,( 21 L . Using this 

set of case-specific weights, we define the coverage of a positive case. Let p be a 
given positive case, q be an arbitrary case, we say p covers q if  

pp qd ε<)(  (10) 

where pε  is specified by equation (7). The coverage of p, Coverage(p), is defined as 

})(|{)( pp edepCoverage ε<=  (11) 

From equation (7) we know that a positive example covers a negative example is 
impossible. In other words, the coverage of a positive case is a subset of X.  Similarly, 
we can define the reachablity of p as 

})(|{)(Re pe pdepyachibillit ε<=  (12) 

The coverage of a case p represents the generalization capability of this case. The 
bigger the number of cases in its coverage, the more representative the selected case 
p. On the other hand, the reachability of a case p represents the degree to which p can 
be covered by another case. From equation (11) and (12), we can determine both the 
coverage and the reachability for each positive case p. The current objective is to 
select a set of positive cases with their case-specific weights such that the selected 
cases can cover the entire positive set X. In fact, the selected cases can exclude the 
entire negative set Y. 
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There is always a trade-off between the number of cases to be stored in the case 
library of a Case-Based Expert System and the performance of retrieval efficiency. 
The larger the case library, the more the problem space covered. However, it would 
also downgrade the system performance if the number of cases grows to an 
unacceptable high level. We expect the number of the selected representatives to be as 
small as possible. Thus our selection strategy is described as: 

“Finding a set of positive cases which can cover the entire positive set X such that 
the number of this set of cases attains minimum.” 

Finding an exact algorithm for our optimal selection problem is not realistic, since 
it is a NP-hard problem. An intuitive and powerful heuristic algorithm is described as 
follows. 
The set R is initialized to be empty. 

1.  For each case p in X, determine Coverage(p) and Reachability(p) by equations 
(11) and (12).  

2.  Find case p* such that *)( pCoverage  = )( pCoverageMax Lp∈ . If there exists 

more than one case such that the maximum is reached, then select a case p** from 
them such that *)*(Re pachability = *)(Re* pachibilityMin p . If there exists 

more than one case such that the minimum is reached, select one randomly. 
3. Put *}{pRR ∪=  and *)( pCoverageLL −= , if =L 0 then stop else goto 1. 

Consequently, the set R is approximately regarded as the set of selected representative 
cases. 

2.3   Case Retrieval Strategy 

After the above two phases, we obtain a case library with a group of representative 
positive cases and a group of representative negative cases, together with a case 
specific weight with each case. When a test case comes, we use Nearest Neighbor 
(NN) algorithm to retrieve cases in the new case library. Here we modify the NN 
algorithm a little, i.e. use pseudo-distance given in equation (3) to compute distance 
between the test case and each representative cases (with case specific weights) in the 
obtained compact case library. 

2.4   An Example  

There is a case base with 10 cases, each case has 4 attributes, 6 cases belong to 
positive class X, and the other 4 cases belong to negative class Y. Without losing 
generality, we consider case 1 to 6 as class X, and case 7 to 10 as class Y. Now we 
use this sample case base to demonstrate our approach.   

Learning the specific weight of case p (a positive case).  First we use Equation (7) 

to compute pε , then for a given constant β in (0,1), apply case p (here p=1,2,…,6) 

and negative cases (i.e. case 7 – case 10) in class Y to linear programming problem 
specified as equation (9).  After solving this linear programming problem, we get a 
specific weight for case p.  
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Now we’ve got a set of specific weights for each positive case. Then we apply 
these weights to the heuristic algorithm described in section 2.2 to obtain the selected 
representative cases.  

3   Experimental Analyses 

This section presents the experimental analysis of our methodology on two real-world 
problems, i.e. the Pima Indians Diabetes (PID)1 and the Australian Credit Approval 
(ACA)2 problems. The PID data consist of 8 attributes with numeric values (The 8 
attributes are “ Number of times pregnant”, “Plasma glucose concentration a 2 hours 
in an oral glucose tolerance test”, “Diastolic blood pressure (mm Hg)”, “Triceps skin 
fold thickness (mm)”, “2-Hour serum insulin (mu U/ml)”, “Body mass index (weight 
in kg/(height in m)^2)”, “Diabetes pedigree function” and “Age (years)”.), two classes 
(one is positive and the other is negative), and 768 instances. The ACA data consists 
of 14 attributes, two classes (one is positive and the other is negative) and 690 
instances. Among the 14 attributes, 6 are numerical and 8 are categorical.  

For the whole PID database we randomly select 70% for training and the other 
30% for testing, for the whole ACA database we randomly select 80% for training 
and other 20% for testing. Table 1 shows the distribution of training and testing data 
of the PID and ACA datasets. 

Table 1. Distribution of  Training and  Testing for PID and ACA 

PID database ACA database  

Total Training Testing Total Training Testing 
Positive 538 346 154 383 308 75 

Negative 230 192 76 307 244 63 

Total 768 538 230 690 552 138 

 
After applying our approach mentioned in section 2 to PID database (β=0.4) and 

ACA database ((β=0.3), the training and testing accuracy are shown in Table 2. 

Table 2. PID and ACA Experimental Results 

 Representatives Deletion Rate Training 
Accuracy 

Testing 
Accuracy 

PID 54 89.96% 100% 73.48% 
ACA 55 90.04% 100% 79.71% 

                                                           
1  Taken from UCI Machine Learning Repository, see website http://www.ics.uci.edu/~mlearn/ 

MLRepository.html 
2  The dataset can be downloaded from http://www.liacc.up.pt/ML/statlog/datasets/australian/ 

australian.doc.html 
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We also compare the number of selected representatives and training/testing 
accuracy by using case-specific weights and without using case-specific weights. We 
also test with different threshold β values. The comparison results are shown in 
Figures 1 and 2 for PID and ACA respectively. From the experimental results, one 
may see that by introducing the case-specific weights, the deletion rate and testing 
accuracy are better than without using weights. In addition, the selection of a good 
threshold β can base on the distribution of the old distance in the training sets, i.e., 
identifying a threshold to indicate if the old distance is small or big.  

The result shows that the size of case bases after using our maintenance process 
can be reduced by almost 90% if case-specific weights are introduced. The training 
accuracy could be 100%, and the testing accuracy could attain 75% or more. Since the 
size of a case base is significantly reduced, the retrieval efficiency of the case base 
system could greatly be increased.  
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Fig. 1. PID Experiment Analysis on no weights and different Beta value  
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Fig. 2. ACA Experiment Analysis on no weights and different Beta value 
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4   Summary and Future Works 

In this paper, we have developed a methodology of maintaining CBR systems by 
introducing the case-specific weight concept. The main idea is to transform a large 
case library to a small one by using a set of case-specific weights, which are obtained 
by solving linear programming problems. The experimental results show that both 
testing accuracy and retrieval efficiency of the CBR systems are increased. Besides, it 
shows that the computational cost of maintenance process is not high. Future works 
include (1) performing a computational complexity analysis and compare 
computational costs with other case base maintenance approaches, (2) extending this 
approach to solve multiple classes problems and non-classification problems (such as 
predication problem), (3) comparing the linear programming case-specific weight 
learning algorithm with weight learning algorithms, and (4) investigating the case 
addition strategy of our approach for on-line or periodic updates, and (5) comparing 
the retrieval efficiency  with C4.5. 
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