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Abstract. This paper develops an infinite polynomial kernel ck  for support vec-
tor machines. We also propose a mapping from an original data space into the 
high dimensional feature space on which the inner product is defined by the infi-
nite polynomial kernel ck .  Via this mapping, any two finite sets of data in the 
original space will become linearly separable in the feature space. Numerical ex-
periments indicate that the proposed infinite polynomial kernel possesses some 
properties and performance better than the existing finite polynomial  
kernels. 

1   Introduction 

Support vector machine (SVM) is a new learning theory presented by Vapnik [1,2]. 
From the pattern recognition viewpoint, it can briefly be stated as follows. When a 
given sample set K  is linearly separable. The separating hyperplane with the maxi-
mal margin, the optimal separating hyperplane, is constructed in the original space. 
When the sample set is linearly non-separating, the input vectors are mapped into the 
high-dimensional feature space through some kernel functions. Then in this space an 
optimal separating hyperplane is constructed. The inner product in the high-
dimensional feature space is just the employed kernel, so the complex computing of 
inner product in the high-dimensional feature space is avoided. This is one of the 
advantages of SVM. SVM has been shown to provide higher performance than tradi-
tional learning machines [3] and has been introduced as powerful tool for solving 
classification problems. In the mean time the research on SVM theory and applica-
tions has drawn more and more attention in recent years. As well known that kernel is 
one of the most important concepts in the theory of SVM and many efforts have been 
concentrated to the research of kernels. The well known kernels in the theory of SVM 
are homogeneous polynomial kernels, inhomogeneous polynomial kernels, Gaussian 

radial basis function kernels, sigmoid kernels and −nB spline kernels. Both the ho-

mogeneous polynomial kernels and inhomogeneous polynomial kernels map the 
original data set into a finite dimensional polynomial space (feature space) and the 
structures of features are clear (there is a whole field of pattern recognition research 
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studying polynomial classifiers [4]), but it is possible that for a fixed polynomial 
kernel there exists a data set which is not separable in the feature space relative to this 
kernel since the feature space is finite dimensional. In the mean time the Gaussian 
radial basis function kernels map the original data set into an infinite dimensional 
space and any finite data set is linear separable in the feature space with respect to this 
kernel [5], but the structures of the features relative to the Gaussian radial basis func-
tion kernels are difficult to analysis. This statement suggests us to consider infinite 
polynomial kernels for SVM. In this paper we propose an infinite polynomial kernel 
on the open unit ball and study the map with respect to this kernel which map the 
original data set into the feature space, we also prove that by this map the images of 
any finite data set are linear independent in the feature space, this implies any two 
finite subclasses of the original data set are linear separable in the feature space. Our 
experiment indicates that this infinite polynomial kernel can really reduce the number 
of support vectors thus it possesses better properties than the finite polynomial kernel. 
Thus this kernel can be applied to solve practical problems.  

The rest of this paper is organized as follows. A brief review of the theory of SVM 
will be described in Section 2. The infinite Polynomial Kernels in the open unit ball 
will be derived in Section 3. Experiments are presented in Section 4. Some conclud-
ing remarks are given in Section 5. 

2   Kernels for SVM  

Let }1,1{)},(),...,,{( 11 −+×⊂ n
ll Ryxyx  be a training set. The SVM learning ap-

proach projects input patterns ix  with a nonlinear function )(: xx Φ→Φ  into a 
higher dimension space Ζ  and, then, it separates the data in Ζ  with a maximal margin 
hyperplane. Therefore, the classifier is given by ))(()( bxwsignxf T +Φ=  and 

parameters w  and b  are obtained through the minimization of functional 
2

2

1
)( ww =τ  subject to 1),( ≥+>< bxwy ii  for all li ,...,1= . Since the solution of the 

linear classifier in Ζ  only involves inner products of vectors )( ixΦ , we can always 
use the kernel trick[6], which consists on expressing the inner product in Ζ  as an 
evaluation of a kernel function in the input space ),()(),( yxkyx >=ΦΦ< . This way, 

we do not need to explicitly know )(⋅Φ  but just its associated kernel ),( yxk . When 
expressed in terms of kernels, the classifier results 
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can be solved by the KKT complementarity conditions of optimization theory [3]. 

From the above analysis it is clear that the kernel play a key role in the application 
of SVM, thus a deep insight to the structure of kernels is both of theoretical and prac-
tical important. There are two approaches to characterize the kernel [6]. First it can be 
believed as inner product in a Reproducing Kernel Hilbert Space [6]. On the other 
hand it is a symmetric real-valued function satisfying the well known Mercer Theo-
rem [6]. The latter statement is always employed to examine a function to be a kernel. 
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Two kinds of kernels are always applied in SVM. They are translation invariant ker-
nels and dot product kernels. The translation invariant kernels are independent of the 
absolute position of input x  and only depend on the difference between two inputs 
x  and 'x , so it can be denoted as )'()',( xxkxxk −= . The well known translation 

invariant kernel is the Gaussian radial basis function kernel )
2

'
exp()',(

2

2

σ
xx

xxk
−

−= , 

other translation invariant kernels are −nB splines kernels [7], Dirichlet kernels [6] 
and Periodic kernels [6]. A second, important family of kernels can be efficiently 
described in term of dot product, i.e., )',()',( ><= xxkxxk . The well known dot prod-

uct kernels are Homogeneous Polynomial Kernels pxxxxk >=< ',)',( , inhomogene-

ous Polynomial Kernels pcxxxxk )',()',( +><=  with 0≥c . Both Homogeneous 
Polynomial Kernels and inhomogeneous Polynomial Kernels map the input set into a 
finite dimensional Polynomial space. This implies it is possible that two classes of 
inputs may be non-separable in the feature space for a fixed Polynomial Kernel. For 
the dot product kernels, the following theorem is always useful.  

Theorem 1. [8] A function )',()',( ><= xxkxxk  defined on an infinite dimensional 

Hilbert space, with a power series expansion ∑∞

=
=

0
)(

n

n
ntatk  is a positive definite 

kernel if and only if for all n , we have 0≥na . 

This theorem implies that many kinds of dot product kernels can be considered in 
SVM. 

3   The Infinite Polynomial Kernels in the Open Unit Ball 

Since both Homogeneous Polynomial Kernels and inhomogeneous Polynomial Ker-
nels map the input set into a finite dimensional Polynomial space and they cannot 
linearly separate all the data set in the feature space, they are not very satisfied at least 
from the theoretical viewpoint even they perform well in some practical problems. In 
this paper, to overcome the above weakness, we consider a class of infinite Polyno-

mial Kernels in the open unit ball }1:{ <∈= xRxU n
n  which can make any finite 

data set in nU  linear separable in the high dimensional feature space. 

Theorem 2. For every nUxx ∈', , }1{−∈ Np , define 
p
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then ck  is a kernel.  

Proof. By nUxx ∈',  we have 1', <>< xx . Let 
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)',( >< xxkc  is a kernel. 
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k = . For every nUx∈ , define kC  to 

map nUx∈  to the vector )(xCk  whose entries are all possible k th degree ordered 

products of the entries of x , and define kΦ  by compensating for the multiple occur-

rence of certain monomials in kC  by scaling the respective entries of kΦ with the 

square roots of their numbers of occurrence. Then, by the construction of kC  and 

kΦ , we have k
kkkk xxxxxCxC >>=<ΦΦ>=<< ',)'(),()'(),( .  

Define )),...,(),...,(,1()( 11 xaxax kk ΦΦ=Φ , then we have 

)',()'(),( xxkxx c>=ΦΦ< . The feature space with respect to )',( xxkc  can be 

selected as the Hilbert space generated by )( nUΦ . The following theorem implies 

this space is infinite dimensional. 

Theorem 3. Suppose nm Uxx ⊂},...,{ 1  satisfying ji xx ≠  if ji ≠ , then 

)(),...,( 1 nxx ΦΦ  are linear independent.  

Proof. Suppose ),...,,( 21 iniii aaax =  and )(),...,( 1 mxx ΦΦ  are linear dependent, 

then there exists mααα ,...,, 21  satisfying at least one of them is not equal to zero and 

0)(...)()( 2211 =Φ++Φ+Φ mm xxx ααα  holds. Thus we have 
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that any two of },...,1:)({ 0 minfi =  are different. Let 
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iii

−=β , mi ,...,1= , then we have mβββ ,..,, 21  are linear 

independent. But by 0...
1 21
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m

i

l
i

l
ii aaaα  we have 0...11 =++ mmβαβα , this is 

a contradiction. Thus we have )(),...,( 1 nxx ΦΦ  are linear independent.  

Furthermore by Theorem 3 we have the following conclusions. 

Theorem 4. Suppose }1{)},(),...,,{( 11 +×⊂ nll Uyxyx , 

}1{−×⊂ nU , then )(),...,( 1 lxx ΦΦ  and  in

 the feature space. 

Proof. )(),...,( 1 nxx ΦΦ  are linear independent implies any element in the convex 

hull of one class cannot be the convex combination of the elements of another class, 
this implies the two convex hulls have empty overlap, notice these two convex hulls 
are compact, so )(),...,( 1 lxx ΦΦ  and )(),...,( 1 ml xx ΦΦ +  are linear separable in the 

feature space. 
Thus for any finite data set the optimal hyperplane in the feature space is always 

available.  

)(),...,( 1 ml xx ΦΦ +

)},(),...,,{( 11 ++ mmll yxyx

 are linear separable
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Theorem 5. Suppose nm Uxx ⊂},...,{ 1  satisfying ji xx ≠  if ji ≠ , then the Gram 

matrix >ΦΦ=<><= )(),(),( jijic xxxxkM  has full rank.  

Proof. If >ΦΦ=<><= )(),(),( jijic xxxxkM  has not full rank, then there 

exists mααα ,...,, 21  satisfying at least one of them is not equal to zero such that 
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)(),...,( 1 nxx ΦΦ  are linear dependent. Hence 

>ΦΦ=<><= )(),(),( jijic xxxxkM  has full rank. 

The feature space with respect to )',( >< xxkc  is not uniqueness, and Theorem 5 

indicates that the selection of feature space(mapping) does not influence the linear 
independence of a finite class of data in the feature space. By the proof of Theorem 3 
we can easily get the following conclusion for the finite Polynomial kernels. 

Theorem 6. Suppose }1{)},(),...,,{( 11 +×⊂ nll Uyxyx , 

}1{

)},(),...,,{( 11

−×
⊂++

n

mmll

U

yxyx

, then there exists Np ∈  such that their images are linear separable in

 the feature space with respect to the kernel pxx >< ',  or pxx )1',( +>< . 

The feature space with respect to every finite Polynomial kernel can be embed-
ded into the feature space with respect to the kernel )',( xxkc  as a subspace, this 

means there has more different features in the feature space with respect to the kernel 
)',( xxkc  to be applied to pattern recognition and all these features are constructed 

by the entries of the input vector. Thus the kernel )',( xxkc  possesses the advantages 

of Gaussian radial basis function kernels and Polynomial kernels, i.e., it can linearly 
separate any finite data set and constructions of features are clear, we hope it may 
perform well in practical problems than the finite Polynomial kernels, we will exam-
ine this statement by the experiments in the following section. 

4   Experiments 

In this section, for the purpose of examining infinite polynomial kernel, we would like 
to select four databases from machine learning repository (UCI). For these databases, 
the performance based on new kernel in previous section and finite polynomial kernel 
will be summarized and compared. Optdigits database includes 5620 cases with 10 
classes, 1119 cases are randomly selected to demonstrate. Since the SVM is only for 
two-class classification problems in this paper, we unite the cases to one class, which 
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belong to class (0,2,4,6,8), and the remaining cases are used as the other class. The 
four databases’ characters are shown in table 1. Applying SVM Toolbox 
(http://www.isis.ecs.soton.ac.uk/isystems/kernel/svm.zip) to the original data of the 
four selected databases, one can obtain the optimal separating hyper-planes. The re-
sults of these experiments are given in table 2 to 13, where 80% of the databases are 
randomly selected as the training sets and the remaining 20% as the testing sets. For 
different types of kernels, the tables show the parameters and the corresponding per-
formance. It is worth noting that the experimental results also depend on the many 
parameters chosen in the SVM Toolbox. 

From tables 2,4,6,8, one can see that the training and testing accuracy are indeed 
enhanced using infinite polynomial kernel. However, the improvement is not signifi-
cant. We speculate that the reason is that (1) the data is not enough and (2) database is 
linear separable very much.  

Table 1. The characters of databases 

Database Name 
Number of 
samples 

Number of 
features 

Category of 
features 

rice 105 5 Numerical 
sonar 208 60 Numerical 
pima 768 8 Numerical 

optdigits 1119 64 Numerical 

Table 2. Experiment results for rice database 

 infinite polynomial kernel finite polynomial kernel 

P 
Training 
Accuracy 

Testing 
Accuracy 

SV 
Number

Training 
 Accuracy 

Testing 
Accuracy 

SV 
Number 

2 100 93.75 70 100 90.625 73 
4 100 93.75 69 100 93.75 73 
8 100 96.875 58 100 93.75 72 
16 100 96.875 32 100 96.875 40 
32 100 96.875 18 100 96.875 17 
64 100 96.875 8 100 96.875 9 

Table 3. Percentage of common support vector for various kernels for rice database 

P 2 4 8 16 32 64 

Infinite polynomial 
kernel 

100 100 100 100 94.4 100 

Finite polynomial ker-
nel 

95.9 94.5 80.6 80.0 100 88.9 
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From tables 3,5,7,9, one important feature was observed: two types of kernels 
use approximately the same set of support vectors, but the number of support vectors 
for infinite polynomial kernel is small in a way(only two cases happen that the num-
ber of support vectors for infinite polynomial kernel is bigger than  the number of 
support vectors for finite polynomial kernel), this implies the number of support vec-
tors is really reduced by the infinite polynomial kernel. Noticed that for the support 
vectors machines, less support vector means better performance of the SVM, so SVM 
with infinite polynomial kernel developed in this paper have better properties than SV 
machines with finite polynomial kernel. 

Table 4. Experiment results for sonar database 

 infinite polynomial kernel finite polynomial kernel 

P 
Training 

Accuracy 
Testing  

Accuracy 
SV 

Number 
Training 

Accuracy 
Testing  
Accuracy 

SV 
Number 

2 100 78.571 159 100 78.571 161 
4 100 80.952 124 100 78.571 129 
8 100 80.952 91 100 78.571 93 
16 100 83.333 69 100 80.952 69 
32 100 78.571 65 100 78.571 67 
64 100 85.714 67 100 85.714 67 

Table 5. Percentage of common support vector for various kernels for sonar database 

P 2 4 8 16 32 64 

Infinite polynomial 
kernel 

99.4 100 100 100 100 100 

Finite polynomial ker-
nel 

98.1 96.1 97.8 100 97 100 

Table 6. Experiment results with infinite polynomial kernel for pimar database 

 infinite polynomial kernel finite polynomial kernel 

P 
Training 

Accuracy 
Testing     

Accuracy 
SV 

Number 
Training 

Accuracy 
Testing   

Accuracy 
SV 

Number 

2 76.384 80.519 562 74.675 78.631 614 
4 76.221 80.519 561 74.675 79.268 614 
8 76.71 80.519 562 75.974 80.126 614 
16 77.036 80.519 560 77.036 80.519 560 
32 77.036 80.519 560 76.873 80.519 560 
64 77.036 80.519 557 76.873 80.519 614 
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Table 7. Percentage of common support vector for various kernels for pima database 

P 2 4 8 16 32 64 
Infinite polynomial 

kernel 
100 100 100 100 100 100 

Finite polynomial ker-
nel 

91.5 91.4 91.5 100 100 90.7 

Table 8. Experiment results with for optdigit database 

 infinite polynomial kernel finite polynomial kernel 

P 
Training 

Accuracy 
Testing   

Accuracy 
SV 

Number 
Training 

Accuracy 
Testing   

Accuracy 
SV 

Number 
2 96.745 94.737 262 95.398 92.982 891 
4 99.327 96.491 219 98.653 94.982 234 
8 100 96.053 891 99.888 96.053 891 
16 100 96.491 139 100 96.491 142 
32 100 96.053 891 100 96.053 116 
64 100 96.053 891 100 96.053 891 

Table 9. Percentage of common support vector for various kernels for optdigit database 

P 2 4 8 16 32 64 

Infinite polynomial 
kernel 

100 97.7 100 100 100 100 

Finite polynomial ker-
nel 

29.4 91.5 100 97.9 13 100 

5   Conclusion 

The purpose of this paper is to present infinite polynomial kernel for SVM. By our 
theoretical analysis this kernel possesses better properties than the existing finite 
polynomial kernel. Our experiments results almost support our opinion. The infinite 
polynomial kernel can be applied to practical problems. Further research to the prop-
erties and applications of infinite polynomial kernel will be our future work. 
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