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Abstract. Due to the existence of redundant features, the Radial-Basis Function 
Neural Network (RBFNN) which is trained from a dataset is likely to be huge. 
Sensitivity analysis technique usually could help to reduce the features by de-
leting insensitive features. Considering the perturbation of network output as a 
random variable, this paper defines a new sensitivity formula which is the limit of 
variance of output perturbation with respect to the input perturbation going to 
zero. To simplify the sensitivity expression and computation, we prove that the 
exchange between limit and variance is valid. A formula for computing the new 
sensitivity of individual features is derived. Numerical simulations show that the 
new sensitivity definition can be used to remove irrelevant features effectively. 

1  Introduction 

As a sort of neural networks, the Radial-Basis Function Neural Network (RBFNN) is 
usually used to approximating a very complex and smooth function. In its basic form, 
the structure of RBFNN involves three layers, i.e., the input layer, the hidden layer and 
the output layer, with entirely different roles. The input layer accepts the information 
from the environment; the second layer (the only hidden layer) applies a nonlinear 
transformation to the accepted information; and the output layer supplies the response 
of the network. The input layer is made up of sensory units, the hidden layer nonlinear 
neurons, and the output layer pure linear neurons [1].  

RBFNNs are able to approximate any smooth function within the required accuracy. 
According to RBFNN�s training procedure, the hidden layer keeps adding neurons one 
by one until the required accuracy is reached. The network obtained is likely to be very 
huge. It is due to the high dimension of the hidden space when the training data have 
redundant information. If the redundant information could be deleted before training, 
the network size and performance would be improved. Sensitivity analysis of the 
network consequently arises and becomes one of the most important means for re-
dundant information removal of neural networks [2�5]. 

The sensitivity analysis of neural networks has been investigated for over 30 years. 
During this period, a number of useful methodologies were put forward to investigate 
the sensitivity of Multilayer Perceptrons (MLP) [3�6]. One of the most popular tech-
niques is to delete redundant inputs of MLPs using partial derivative [3, 4]. Another 
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popular technique is to consider the weight perturbation [5, 6]. For example, Piché [6] 
investigated the effects of weight errors upon a statistical model of an ensemble of 
Madalines instead of the effects upon specific known networks.  

Recently, the investigation of sensitivity analysis for RBFNNs has been found [7]. 
Sensitivity analysis plays an extremely important role in removing irrelevant features 
and improving the performance of RBFNNs. Due to the simplicity and the good ap-
proximation property of RBFNNs, the study on RBFNN�s sensitivity has attracted 
more and more research fellows [8]. 

This paper aims at giving a new definition of sensitivity of RBFNNs. Considering 
the perturbation of network output as a random variable, this paper defines a new 
sensitivity formula which is the limit of variance of output perturbation with respect to 
the input perturbation going to zero. The exchange of limit and variance is proved here 
to be valid. A formula for computing the new sensitivity of individual features is 
derived. Numerical simulations show that the new sensitivity definition can be used to 
remove irrelevant features effectively.  

2  A New Sensitivity Definition 

Here we focus on a new definition of sensitivity: sensitivity based on variance of output 
perturbation. Statistically, the variance of one random variable measures the deviation 
from its center.  

A trained RBFNN can be expressed as follows: 
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where n is the number of features, m the number of centers, ( )1 2, , ,j j nju u u!  the j-th 

center, jv  the spread of the j-th center, and 
jw  the weight of the output layer, 
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where 1 2, , , nx x x!  are n independent random variables with a joint distribution 

1 2( , , , )nx x xΦ ! , ( )Var y  means the variance of random variable y, and the input 

perturbation x∆  is a real variable (not a random variable). 
Similarly, the sensitivity definition for other features can be given.  
If the limit works before the integral (i.e., Var) in Eq. (2), the definition can be 

simplified by using the partial derivative expression: 
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Mathematically, it is a very important Limit-Integral exchange problem. 
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Theorem. The limit operation and the variance operation in Eq.(2) can be exchanged, 
that is, 
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where the function f is defined as Eq.(1) and ( )1 2, , , nx x x x= !  is a random vector 

with the density function ( )xϕ . The first and second order moments of the random 

vector x  are supposed to be finite. 
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According to Eq.(1), the function kg  can be expressed as  
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We now first prove  
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Noting that the right of Eq.(10) is independent of k and the first order moments of x are 
supposed to exist, we have     
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which results in the correctness of Eq. (7), according to the integral convergence 
theorem. 
 

Similar to the proof of Eq. (7), we can prove that 
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and { }k∆  is an arbitrary sequence going to zero, we complete the proof of the theo-

rem. 
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3  The Computational Formula of Sensitivity for RBFNNs 

To numerically calculate the new sensitivity for each feature, the following equations 
are followed. Noting that 
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and  Eq.(4), we have 
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Eq.(17) can also be expressed as 
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where 1 2, , , nx x x!  are supposed to be independent normal distributions with means 

1 2, , , nµ µ µ! and variances 
1 2, , , nσ σ σ!  respectively. Similarly, the computational 

formula for computing other features sensitivity can be derived. 
For irrelevant feature deletion, we need the following formula 
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It is the expectation of output�s partial derivative with respect to individual features. 
The feature deletion policy takes the following steps. First, sort the features by sensi-
tivity in descending order. Second, choose the features with the smallest sensitivity 
constituting a set A. Third, select the features with the smallest expectation from A to 
eliminate. 

A number of simulations are conducted on some UCI databases. The simulation 
result shows that the training and testing accuracy can be kept if features with small 
sensitivity are deleted. Without losing any accuracy, Table 1 shows the results of 
deleting features according to our feature deletion policy. It is worth noting that, for the 
irrelevant feature deletion, we use both the variance (i.e., the sensitivity) and the ex-
pectation of the partial derivative. One question is whether or not the expectation is 
important for the irrelevant feature deletion? It remains to be studied further. 



86      Xizhao Wang and Chunguo Li 

Table 1. The sensitivity simulations using UCI databases for input feature selection. 

Database Total Feature 
Number 

Eliminated Feature 
Number 

Sonar 60 12 
Wine 13 3 
Zoo 13 4 

Ionosphere 34 5 

4  Conclusions 

A new sensitivity definition for RBFNNs is given and a formula for computing the new 
sensitivity is derived in this paper. The simulation result shows that the training and 
testing accuracy can be kept if features with stable and small expectation are deleted for 
most selected datasets.  
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