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A b s t r a c t - - I n  this paper, we focus our discussion on the parameterization reduction of soft sets and 
its applications. First we point out that the results of soft set reductions offered in [1] are incorrect. 
We also observe that the algorithms used to first compute the reduct-soft-set and then to compute 
the choice value to select the optimal objects for the decision problems in [1] are not reasonable and 
we illustrate this with an example. Finally, we propose a reasonable definition of parameterization 
reduction of soft sets and compare it with the  concept of attributes reduction in rough sets theory. 
By using this new definition of paxameterization reduction, we improve the application of a soft set 
in a decision making problem found in [1]. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - S o f t  set, Rough set, Fuzzy set, Parameterization reduction, Choice value, Attribute 
reduction. 

1 . I N T R O D U C T I O N  

Many prac t ica l  problems within fields as diverse as economics, engineering, environment ,  social 

science, and medical  science involve d a t a  t ha t  contain uncertaint ies .  These uncerta int ies  cannot  

be handled  using t rad i t iona l  ma themat i ca l  tools bu t  may  be deal t  wi th  using a wide range of 

exist ing theories such as probabi l i ty  theory, theory  of fuzzy sets [2], theory  of intui t ionis t ic  fuzzy 

sets [3], theory  of vague sets [4], theory  of interval ma themat ics  [5], and theory  of rough sets [6]. 
However, as pointed out  in [7] t ha t  all of these theories have their  own difficulties. In  [1,7] 

the  authors  suggested t ha t  one reason for these difficulties may  be due to the  inadequacy of 

the  theories '  pa rameter iza t ion  tools. Consequently, Molodtsov posi ted  the  concept of soft set 

as a new ma themat i ca l  tool  for dealing with  uncerta int ies  t ha t  was free from the  difficulties 

t ha t  have t roub led  the usual  theoret ica l  approaches [7]. He pointed out  several directions for 
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the applications of soft sets. In [1] Maji et al. presented an application of soft sets that,  in 
combination with rough sets, addressed a decision-making problem. The problem is represented 
in the form of an information table and the reduction of the knowledge representation system in 
rough set theory to define the reduct-soft-set of a soft set is employed. They then proposed an 
algorithm to select the optimal choice object. Their algorithm uses fewer parameters to select 
the optimal objects for a decision problem. However, in the decision-making problem in [1], 
there is a straightforward relationship between the decision values of objects and the conditional 
parameters, i.e., the decision values is computed with respect to the conditional parameters. This 
is quite different to the case of rough sets while in rough set theory the decision attributes are 
not computed according to the conditional attributes. When dealing with their decision-making 
problem in [1], the authors did not pay more attention to this basic difference between rough 
sets and soft set. Although their idea of parameterization reduction is meaningful, it may leads 
to some ineluctable problems. There are two problems in their approach. First, the result of the 
computing reduction in their example is incorrect. Second, their algorithms to first compute the 
reduct-soft-set and then to compute the choice value to select optimal objects for decision making 
is not reasonable as it means that  the optimal choice objects could be changed after the reduction 
of a soft set. The application of weighted soft sets in [1] also suffers from the same two problems. 
These statements will be analyzed in detail. In this paper, we address all of these problems and 
then present a new definition of parameterization reduction of soft sets and use this to improve 
the applications in [1]. We also compare this new definition of parameterization reduction with 
the concept of attributes reduction in rough set theory. The idea of our new definition of the 
parameterization reduction of soft set is similar to the idea of attributes reduction found in rough 
set theory but is applied to different methods. 

This paper is organized as follows. Section 2 presents basic definitions of soft and rough sets. 
Section 3 analyses the material put forward in [1]. In the last section, we propose a new definition 
of parameterization reduction of soft sets and improve the applications in [1]. 

2. P R E L I M I N A R I E S  

In this section, we present the notion of soft sets in [7] and some definitions of rough sets. 

Let U be an initial universe set and let E be a set of parameters. 

DEFINITION 2.1. (See [7].) A pair ( F, E) is called a soft set (over U) if ~nd only if  F is ~ mapping 
of E into the set of all subsets of the set U. 

In other words, the soft set is a parameterized family of subsets of the set U. Every set F(¢), 
¢ E E,  from this family may be considered as the set of G-elements of the soft set (F,E),  or 
as the set of c-approximate elements of the soft set. As an illustration, some examples such 
as fuzzy sets and topological spaces were listed in [7]. The way of setting (or describing) any 
object in soft set theory differs in principle from the way it is used in classical mathematics. In 
classical mathematics, we construct a mathematical model of an object and define the notion of 
the exact solution of this model. Usually the mathematical model is too complicated that  we 
cannot find the exact solution. We therefore introduce the notion of approximate solution and 
calculate that  solution. In soft set theory, we have the opposite approach to this problem. The 
initial description of the object has an approximate nature, and we do not need to introduce the 

notion of exact solution. 
The absence of any restrictions on the approximate description in soft set theory makes it in 

practice very convenient and easy to apply. We can use any parameterization with the help of 

words and sentences, real numbers, functions, mappings, and so on. 
Assume that  we have a binary operation, denoted by *, for subsets of the set U. Let (F, A) 

and (G, B) be soft sets over U. Then, the operation * for soft sets is defined in the following 
way: (F, A) * (G, B) = (H, A x B), where g(a ,  fl) = F(a)  * G(/3), a E A, t3 E B, and A x B is 

the Cartesian product of the sets A and B. 
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This definition takes into account the individual nature of any soft set. 

DEFINITION 2.2. (See [8].) A knowledge representation system can be formulated as a pa/r 
S = (U, A), where U is a nonempty finite set called the universe, and A is a nonempty finite set 
of primitive attributes. 

Every primitive attribute a E A is a total function a : U --* Va, where V~ is the set of values of 
a, called the domain of a. 

DEFINITION 2.3. (See [8].) With every subset of attributes B C A, we associate a binary relation 
IND(B), called an indiscernibility relation, defined by 

IND(B) = {(x, y) e U × U: a(x) = a(y), Ya E B}. 

Obviously, IND(B) is an equivalence relation and IND(B) = [']~eB IND(a). 

Suppose V~ = 1 2 ,~(~)~ {Za,Ea,...,Ea j'. Define F~ : Va ~ P(U) as Fa(Sia) = {x E U :  a(x) = ~a}, 
then (Fa, Va) is a soft set. SupposeA = {a l , a2 , . . . , am},  then S - (U,A) can be expressed 
as a soft set (F, Vol × yo~ × . . .  × v ~ )  = (Fol,V~I) n (Fo~, Vo~) n . . .  n (Fo~,  Ya~).  For every 

(Pl,P2,.. .  ,Pro) E V~ × V, 2 × .. .  × V~.., F(pl ,p2, . . . ,p ,~)  = F~I(pl) NF~2(p2) n . . .  n F ~ ( p ,  O. 
All nonempty sets of F(pl ,P2, . . .  ,Pro) form the collection of the equivalence classes of IND(A). 
Thus, the soft set can be applied to express a knowledge representation system. 

DEFINITION 2.4. (See [8].) Let R be a family of equivalence relations and let A e R. We say 
that A is dispensable in R / f I N D ( R )  = IND(R - {A}); otherwise A is indispensable in R. The 
family R is independent ff each A E R is indispensable in R; otherwise R is dependent. Q c Pis 
a reduction of P if Q is independent and IND(Q) = IND(P), that is to say Q is the minimal 
subset of P that keeps the classification ability. The set of all indispensable relations in P wi11 be 
called the core of P, and will be denoted as CORE(P).  Clearly, CORE(P) = RRED(P), where 
RED(P) is the family of all reductions of P. 

DEFINITION 2.5. (See [i].) For two soft sets (F, A) and (G, B) over a common universe U, we 
say that (F, A) is a soft subset of (G, B) if 

(i) A c B, 
(ii) V s E A, F(¢), and G(s) are identical approximations. 

We write (F, A) C (G, B). 

3. A N A L Y S I S  O F  T H E  A P P L I C A T I O N  O F  S O F T  S E T  I N  [1] 

In [1], Majiet al. presented an application of soft set theory in a decision making problem with 
the help of rough approach. The problem is described as follows. 

Let U= {hi, h2, h3, ha, h~, h6} be a set of six houses, E = {expensive; beautiful; wooden; cheap; 
in green surroundings; modern; in good repair; in bad repair}, be a set of parameters. 

Consider the soft set (F, E)  which describes the 'attractiveness of the house', given by 

(F, E) = {expensive houses = ¢, beautiful houses = {hi, h2, h3, h4, hh, h6}, 

wooden houses = {hi, h2, h6}, modern houses = {hi, h2, h6}, 

houses in bad repair =- {h2, h4, hh}, cheap houses = {hi, h2, h3, h4, hh, h6}, 

houses in good repair = {hi, h3, h6}, houses in green surroundings = {hi, h2, h3, h4, h6}}. 

Suppose that, Mr. X is interested in buying a house on the basis of his choice parameters 
'beautiful', 'wooden', 'cheap', 'in green surroundings', 'in good repair', etc., which constitute the 
subset P = {beautiful, wooden, cheap, in green surroundings, in good repair} of the set E. That  
means, out of available houses in U, he is to select that house which qualifies with all (or with 
maximum number of) parameters of the soft set P.  
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Table 1. 

U el  e2 e3 e4 e5 

h i  1 1 1 1 1 

h2 1 1 1 1 0 

h3 1 0 1 1 1 

h4 1 0 1 1 0 

h5 1 0 1 0 0 

h6 1 1 1 1 1 

To solve this problem, the soft set (F, P) is firstly expressed as a binary table as shown below. 
If hi E F(ej)  then h~j -= 1, otherwise hij -- 0, where h~j are the entries in Table 1. 

Thus, a soft set can now be viewed as a knowledge representation system where the set of 
attributes is replaced by a set of parameters. 

Consider the tabular representation of the soft set (F, P). If Q is a reduction of P,  then the 
soft set (F, Q) is called the reduct-soft-set of the soft set (F, P).  

The choice value of an object hi C U is c~, given by c~ ~- ~--~j hij, where hij are the entries in 
the table of the reduct-soft-set. 

The algorithm presented in [1] for Mr. X to select the house he wishes is listed as follows. 

1. Input the soft set (F, E), 
2. Input the set P of choice parameters of Mr. X which is a subset of E,  
3. Find all reduct-soft-sets of (F, P),  
4. Choose one reduct-soft-set say (F, Q) of (F, P), 
5. Find k, for which Ck = max c~. 

Then hk is the optimal choice object. If k has more than one value, then any one of them 
could be chosen by Mr. X using his option. 

In [1], it is claimed that {el, e2, e4, e5} and {e2, e3, e4, es} are two reductions of P =  {ez, e2, e3, e4, 
es}. But {el, e2, e4, es} and {e2, e3, e4, es} are not really the reductions of P =  {el, e2, e3, e4, es}. 
Our following computing results will illustrate this. 

Suppose Rp is the indiscernibility relation induced by P = (el ,  e2, e3,e4, e5}, then the parti- 
tion defined by Rp is ({hi,  h6}, {h2}, {h3}, {h4}, {hs}}. If we delete {el, ca} from P, then the 
indiscernibility relation and the partition are invariant, so both of el and ea are dispensable in P 
by Definition 2.4. If we delete one of (e2, ea, es} from P, then the indiscernibility relation and the 
partition would be changed, thus all of these three parameters are indispensable. For example, 
suppose we delete {e2) from P, then the partition is changed to ({hi ,  h3, h6}, {h2, h4}, {h~}}. So 
by Definition 2.4, we know {e2, e4, es} is in fact the reduction of P -- {el, e2, e3, e4, es). From 
table 1 we can also conclude that el and e3 are not relevant and will not affect the choices of the 
house since they take the same values for every house. 

On the other hand, in this algorithm they compute the reduction of the soft set in Step 3 before 
computing the choice value in Step 5, which would lead to two problems. First, after reduction, 
the objects that take max choice value may be changed, so it is possible that the decision after 
reduction is not the best one. Second, since the reductions of soft set are not unique, it is possible 
that there would be a difference between the objects that take max choice value obtained using 
different reductions. In these two cases, the choice object may not be optimal or may be quite 
difficult to select. Furthermore, even if these two problems do not appear in the example presented 
in [1], it is highly possible that they appear in other situations. The following example illustrates 

this. 

EXAMPLE 3.1. Suppose we have a soft set (F, E) with the tabular representation displayed in 

Table 2. 

Clearly, c2 -~ 5 is the biggest choice value, thus h2 takes the max choice value and will be the 
optimal choice object. Suppose RE is the indiscernibility relation induced by E, then the partition 
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el e2 e3 e4 e5 e6 e7 

1 0 1 1 1 0 0 

0 1 i 1 0 1 1 

0 0 1 0 1 0 1 

1 0 1 1 0 0 0 

1 0 1 0 0 i 0 

0 1 1 1 1 0 0 

induced by RE is {{hi}, {h2}, {h3}, {h4}, {hh}, {h6}}. The partition obtained from {el, e4, e5} is 
invariant. If we delete one of {el, e4, eh} then the partition is changed, so {el, e4, eh}  is a reduction 
of (F, E). For example, if we delete el from {el, e4, eh}, then the partition will be changed to 
{{h,, h6}, {h2, h4}, {h3}, {hh}}. Similarly we can examine that  {e2, e4, e~} is the reduction of 
(F, E). For {el, e4, eh}, hi takes the max choice value and will be the optimal choice object 
with respect to {el, e4, eh}, while h6 takes the max choice value for {e2, e4, eh} and will be the 
optimal choice object with respect to {e2, e4, eh}. This means that the optimal object is changed 
after reduction(the optimal choice object is not h2) and that different reductions decide different 
optimal objects. If we select the choice objects according to {el, e4, eh} and {e2, e4, e~}, we will 
miss the real optimal one. In other words, both of the predicted dil~culties do in fact appear. 

As Example 3.1 shows that the algorithm presented in [1], which first computes the reduct- 
soft-set then computes the choice value, is not error-free. For the application found in [1] the 
choice values of objects are obtained by the number of parameters the object belongs to, thus 
there is a straightforward relationship between the choice values and the conditional parameters. 
But for the rough set theory there is no such kind of straightforward relationship between the 
decision attributes and the conditional attributes, i.e., the decision attributes values are not briefly 
computed by the conditional attributes values. This statement is the key difference between soft 
sets and rough sets. In [1], they make the choice values as the decision parameter and try to 
find minimal subset of conditional parameter set by using reduction in rough set theory to keep 
the optimal choice object. However, the attributes reduction in rough set theory is designed to 
find a minimal attributes set that retains the classification ability of the indiscernibility relation. 
Since choice values in soft set is not decided by the classification ability of the indiscernibility 
relation, the attributes reduction can not be applied to reduce the number of parameters to keep 
the optimal choice objects in soft set. Otherwise it is possible that the optimal choice object 
may be changed after reduction as indicated by Example 3.1. If the parameters set E is divided 
into two parts, i.e., E -- E1 t2 E2, where E1 is the conditional parameters set and E2 is the 
decision parameters set, here E2 is not computed by El,  that is to say there is no straightforward 
relationship between E1 and E2, and either E1 and E2 induce indiscernibility relation or partition 
on the universe, then E1 and E2 can be viewed as conditional and decision attributes in rough set 
theory respectively. We can find the minimal subset of E1 to keep the classification ability of E1 
relative to E2 invariant. This is just the concept of relative reduction in rough set theory [8] and 
is totally different from the decision-making problem in [1]. In [1] the authors did not distinguish 
between these two cases. One should notice in the soft set as shown in Table 1 that no matter how 
the parameters are reduced, hi and h6 could be selected as optimal objects. So this application 
problem is a very special case and the method of  introducing reduct-soft-set in [1] is meaningless 
to deal with this application problem, which could only result in possibly misleading/wrong final 
decision. 

In Section 3.5 of [1], a weighted table of a soft set is presented by having d~j = wj x hij instead 
of 0 and 1 only, where h~j are the entries in the table of the soft set and wj are weights of ej. 
The weighted choice value of an object hi E U is ci, given by ci -- ~ j  dij. By imposing weights 
on his choice parameters, Mr. X could now use the following revised algorithm for arriving at his 
final decisions. 
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REVISED ALGORITHM FOR SELECTION OF THE HOUSE. 

1. Input the soft set (F, E) 
2. Input the set P of choice parameters of Mr. X which is a subset of E 
3. Find all reduct-soft-sets of (F, P) 
4. Choose one reduct-soft-set say (F, Q) of (F, P)  
5. Find weighted table of the soft set (F, Q) according to the weights decided by Mr. X 
6. Find k, for which ck ----- maxc~ 

Then hk is the optimal choice object. If k has more than one value, then any one of them 
could be chosen by Mr. X using his option. 

Clearly this revised algorithm still suffers from the same two problems discussed earlier. 
This analysis seems to show that soft set theory is quite different from rough set theory and 

that attributes reduction in rough set theory usually cannot be applied to the decision problems 
as mentioned in [1]. In Section 4, we introduce the parameterization reduction of soft sets to deal 
with the decision problems in [1]. 

4.  P A R A M E T E R I Z A T I O N  R E D U C T I O N  O F  S O F T  S E T S  

Suppose U = {hl, h2 , . . . ,  h~}, E = {el, e2 , . . . ,  era}, (F, E) is a soft set with tabular represen- 
tation. Define fE(h~) = ~ h~j where hij are the entries in the table of (F, E). Denote ME as 
the collection of objects in U which takes the max value of rE. For every A C E, i f M s - A  = ME, 
then A is called a dispensable set in E, otherwise A is called an indispensable set in E. Roughly 
speaking, A c E is dispensable means that the difference among all objects according to the 
parameters in A does not influence the final decision. The parameter set E is called independent 
if every A C E is indispensable in E, otherwise E is dependent. B c E is called a reduction 
of E if B is independent and MB = ME, i.e., B is the minimal subset of E that keeps the 
optimal choice objects invariant. Clearly, after the reduction of the parameter set E, we have 
less parameters and the optimal choice objects have not been changed. 

The reduction of parameter sets in soft set theory and attributes reduction in rough set theory 
are in some ways similar to the approach of finding minimal parameters sets or attributes sets 
in decision-making but they use different methods. In rough set theory, as indicated by Defini- 
tion 2.4, they define single dispensable attribute while in soft set theory we cannot define a single 
dispensable parameter as the dispensable attribute. This is because in soft set the decision value 
rE(hi) is computed by the number of parameters that h~ takes the value of 1, the optimal choice 
objects is obtained by the order of rE(hi). Although a single parameter may influence the order of 
rE(hi), it is possible there is another parameter, such that these two parameters do not influence 
the order of fE(hi). That is for a parameter e E E satisfying ME-{e} ~ ME, it is possible that 
there exists an e / E E, such that ME-{e,e'} = ME. For instance, in Example 3.1 ME ---- {hi, h6}, 
ME-{e2} = {hi, h3, h6} and Ms-{e2} ~ ME, but Ms_{el,e2 } -- {hl, h6} --- ME. This case is 
not shared by rough set theory, i.e., in rough set theory if an attribute is indispensable, any set 
of attributes containing this attribute will also be indispensable. This means that without this 
set the ability of the knowledge representation system for solving classification problems will be 
changed. 

However, in rough set theory the attributes reduction is designed to keep the classification 
ability of conditional attributes relative to the decision attributes. There is not straightforward 
connection between the conditional attributes and the decision attributes. But for the soft set, the 
connection between the decision values and the conditional parameters are straightforward, i.e., 
the decision values axe computed by the conditional parameters, and the reduction of parameters 
is designed to offer minimal subset of the conditional parameters set to keep the optimal choice 
objects. Now we know that the problems tackled by attributes reduction in rough set theory and 
parameters reduction in soft set theory are different and their methods are also different, which 
has been analyzed in previous paragraph. Thus the reduction of parameter sets in soft set theory 
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and the reduction of attributes in rough set theory are different tools for different purposes. In 
general, one cannot be applied in the place of the other. 

For the soft set in Table 1, if we delete el, e3 and e 4 from P, then the optimal choice objects are 
unchanged. If we delete any subset of P which include at least one of e2 and es, then the optimal 
choice objects will be changed. For example, if we delete {e2, e4) from P,  then the optimal choice 
objects will be {hi, ha, h6}. For {e2, es} the optimal choice objects are not changed. Thus the 
soft set in Table i has a parameter reduction {e2, e5}. This means {e2, es} are the key parameters 
in Mr. X's selection of a house. However, {e2, es) is not the attributes reduction of P and the 
attributes reduction {e2, e4, e5) is not the parameter reduction of P since it is not the minimal 
parameter set to maintain the optimal choice objects. 

In what follows, we employ our Example 3.1 to illustrate our idea of parameterization reduction. 
As we mentioned before, for the soft set of Example 3.1, the optimal choice object is h2. By 
our definition of parameterization reduction we can examine that  {e2, e6) and {e6, eT} are two 
parameterization reductions (not all) of E since they agree to the optimal choice object as h2, 
but they are really not the attributes reductions of E since they induce different partitions. 
As analyzed in previous section, we know {e2, e4, es} is an attributes reduction of E, but it is 
really not the parameterization reduction of E since it presents another optimal choice object h6. 
Thus the analysis of the soft set in Table 1 and Example 3.1 confirm the difference between the 
parameterization reduction of soft sets and attributes reduction of rough sets. 

For the weighted soft sets, we just need to change h~j to wj × hij in the soft set table, then it is 
possible to propose a similar idea for presenting the reduction of parameter sets for weighted soft 
sets and this can be applied to improve the decision problem with the weighted soft set in [1]. 

In a fixed-decision problem where the final decision is unknown, the parameter reduction 
has only one application, i.e., to present the key parameters. However, if we want to discover 
knowledge from a data set using a soft set with tabular representation where the decision attribute 
is given, the parameter reduction can offer optimal parameter sets for newly input/testing objects. 
This is due to the fact that the complexity of computing the decisions can be reduced by the 
action of attributes reduction in rough set theory. We shall consider this in an upcoming paper. 

5. C O N C L U S I O N  

The purpose of this paper is to point out some incorrect and unreasonable statements in [1]. 
The idea in [1] of employing the attributes reduction in rough set theory to reduce the number of 
parameters to compute the optimal objects seems meaningless. If  their algorithms are applied to 
other similar decision problems, they will fail. In order to solve these problems, we have proposed 
a new definition of parameter reduction for soft sets and have used it to improve the application 
of soft sets to the decision making problem in [1], the basic difference between parameterization 
reduction of soft sets and attributes reduction in rough sets is also mentioned. The parameter 
reduction presented in this paper may well play an important role in some knowledge discovery 
problems. 
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