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Abstract. Dot product kernels are a class of important kernel in the theory of sup-
port vector machine. This paper develops a method to construct the mapping that 
map the original data set into the high dimensional feature space, on which the in-
ner product is defined by a dot product kernel.  Our method can also be applied to 
the Gaussian kernels. Via this mapping, the structure of features in the feature 
space is easy to be observed, and the linear separability of data sets in the feature 
space is studied. We obtain that any two finite sets of data with empty overlap in 
the original space will become linearly separable in an infinite dimensional feature 
space, and a sufficient and necessary condition is also developed for two infinite 
sets of data in the original data space being linearly separable in the feature space, 
this condition can be applied to examine the existences and uniqueness of the hy-
perplane which can separate all the possible inputs correctly. 

1   Introduction 

Support vector machine(SVM) is a new learning theory presented by Vapnik[1,2]. 
From the pattern recognition viewpoint, it can briefly be stated as follows. When a 
given sample set K  is linearly separable, the separating hyperplane with the maximal 
margin, the optimal separating hyperplane, is constructed in the original space. When 
the sample set is linearly non-separating, the input vectors are mapped into the high-
dimensional feature space through some kernel functions. Then in this high-
dimensional feature space an optimal separating hyperplane is constructed. The inner 
product in the high-dimensional feature space is just the employed kernel, so the com-
plex computing of inner product in the high-dimensional feature space is avoided. 
This is one of the advantages of SVM. SVM has been shown to provide higher per-
formance than traditional learning machines[3] and has been introduced as powerful 
tools for solving classification problems, at mean time the research on its theory and 
applications has drawn more and more attention in recent years.  

However, if we only consider the computing of the inner product in the feature space, 
the kernel is enough, it is unnecessary to consider the mapping from the original data set 
to the feature space. But if we want to know more about the SVM, for example, analysis 
of the shape of mapped data in the feature space, consideration of the construction of 
features, and selection of optimal kernels with better generalization properties, the map-
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ping from the original data set to the feature space can not be ignored. In the existing 
statistical learning theory[6], there are mainly two approaches to obtain the mapping 
from the original data set to the feature space. One is to employed the well known Mer-
cer Theorem, by this way the mapping is constructed as a vector whose entries are HN  

eigenfunctions of an integral operator, and the kernel corresponds a dot product in HNl2 . 

Another approach is to consider the Reproducing Kernel Hilbert Space, by this way 
each pattern is turned to a function on the domain. In this sense, a pattern is now repre-
sented by its similarity to all other points in the input domain. 

However, for the first approach, sometimes it is very difficult to compute the ei-
genvalues and eigenfunctions of an integral operator defined by a kernel even they 
really exist. For the second approach, the structures of features are difficult to observe 
since the image of every input pattern is a function and not a vector. All of these two 
approaches are mainly designed from the mathematical viewpoint to ensure the exis-
tence of such mapping, they are too abstract to be applied to analysis practical prob-
lems. Thus an intuitive and general method to construct the mapping from the original 
data set to the feature space with legible feature structure is clearly necessary from 
both of the theoretical and practical viewpoints. 

As well known, dot product kernels are an important class of kernels in common use. 
The well known dot product kernels in the theory of SVM are homogeneous polynomial 
kernels, inhomogeneous polynomial kernels. Both the homogeneous polynomial kernels 
and inhomogeneous polynomial kernels map the original data set into a finite dimen-
sional polynomial space(feature space) and the structures of features are clear(there is a 
whole field of pattern recognition research studying polynomial classifiers[4]). By using 
of the power series expansion of a dot product kernel, we can develop a mapping from 
the original dataset into a polynomial space(may not be finite dimensional) for every dot 
product kernel. Via this mapping, the structures of features are clear. This method can 
also be applied to the Gaussian kernels. Furthermore, the linear separability of data set is 
also investigated. It can be proven the images of any finite data set are linear independ-
ent in the feature space relative to certain dot product kernels, this implies any two finite 
subclasses of the original data set are linear separable in the feature space. We also 
develop a sufficient and necessary condition for two infinite subclasses of the original 
data set being linear separable in the feature space, this condition offer a theoretical 
characterization to examine the existences and uniqueness of the hyperplane which can 
separate all the possible inputs correctly.  

This paper is organized as follows. In section 2 we mainly review some basic con-
tent of kernels in SVM. In section 3 the method of constructing mapping for dot 
product kernels is developed. In section 4 we mainly discuss the separability of infi-
nite sets in the feature space via our proposed mapping.  

2   Kernels for SVM  

In this paper we only consider the binary classification problem. Let 

}1,1{)},(),...,,{( 11 −+×⊂ n
ll Ryxyx  be a training set, A  is the sample set with label 

1+ and B  is the sample set with label 1− . A  and B  are called linear separable in 
nR  if there is a hyperplane 0, =+>< bxw  and 0>δ such that δ>+>< bxw,  for 
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Ax ∈  and δ−<+>< bxw,  for Bx ∈ (this definition is also suitable when A  and 

B  are infinite set), clearly 0),( >BAd holds when A  and B  are linear separable, 

and the separating hyperplane with the maximal margin, the optimal separating hy-

perplane, could be constructed in nR . If A  and B  are not linear separable in nR , 
the SVM learning approach projects input patterns ix  with a nonlinear function 

)(: xx Φ→Φ  into a higher dimension space Ζ  and, then, it separates the data in Ζ  

with a maximal margin hyperplane. Therefore, the classifier is given by 

))(()( bxwsignxf T +Φ=  and parameters w  and b  are obtained through the minimi-

zation of functional 2

2

1
)( ww =τ  subject to 1),( ≥+>< bxwy ii  for all li ,...,1= . 

Since the solution of the linear classifier in Ζ  only involves inner products of vectors 
)( ixΦ , we can always use the kernel trick[6], which consists on expressing the inner 

product in Ζ  as an evaluation of a kernel function in the input space 
),()(),( yxkyx >=ΦΦ< . By this way, we do not need to explicitly know )(⋅Φ  but just 

its associated kernel ),( yxk . When expressed in terms of kernels, the classifier results 

∑ =
+=

l

i iii bxxkysignxf
1

)),(()( α , where coefficients }{ iα  are obtained after a QP 

optimization of functional ∑ =
−−><−=

l

i iii ybwxwbwL
1

2
}1],{[

2

1
),,( αα  which 

can be solved by the KKT complementarity conditions of optimization theory[3]. 
However, if we not only consider the computing of inner product in the feature 

space, but also aim to present deep insight to SVM such as analysis of the shape of 
mapped data in the feature space, consideration of the construction of features, and 
selection of optimal kernels with better generalization properties, we must deal with 
the mapping from original dataset into the feature space. As pointed in [6], there are 
mainly two approaches to develop the mapping. One is the utilization of the well 

known Mercer theorem. Suppose X is a nonempty set and )( 2XLk ∞∈ is a kernel, 

then the integral operator )()(: 22 XLXLTk →  defined as 

∫=
χ

µ )'()'()',())(( xdxfxxkxfTk  is positive definite. Let )(2 XLj ∈ψ  be HN  nor-

malized orthogonal eigenfunctions of kT associated with the eigenvalues 0>jλ , then 

)',( xxk corresponds to a dot product in HNl2 with HNlX 2: →Φ  defined as 

HNjjj xx ,...,1))(()( ==Φ ψλ . For this method, sometimes it is very difficult to com-

pute the eigenvalues and eigenfunctions of kT even they really exist. 

Another approach is utilizing the Reproducing Kernel Hilbert Space. We can de-
fine a map from X  into the space of functions mapping X  into R , denoted as 

}:{ RXfR X →= , via ),'()( xxkx =Φ , Xx ∈' , the feature space is spanned by 

k and is a Reproducing Kernel Hilbert Space. Clearly ),'()( xxkx =Φ  is a function 

and not a vector, and the structures of features are hardly to be observed.  
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Two kinds of kernels are always applied in SVM. They are translation invariant 
kernels and dot product kernels. The translation invariant kernels are independent of 
the absolute position of input x  and only depend on the difference between two in-
puts x  and 'x , so it can be denoted as )'()',( xxkxxk −= . The well known translation 

invariant kernel is the Gaussian radial basis function kernel )
2

'
exp()',(

2

2

σ
xx

xxk
−

−= , 

other translation invariant kernels include −nB splines kernels[7], Dirichlet ker-

nels[6] and Periodic kernels[6]. A second important family of kernels can be effi-
ciently described in term of dot product, i.e., )',()',( ><= xxkxxk . The well known dot 

product kernels are Homogeneous Polynomial Kernels pxxxxk >=< ',)',( , inhomo-

geneous Polynomial Kernels pcxxxxk )',()',( +><=  with 0≥c . Both Homogene-

ous Polynomial Kernels and inhomogeneous Polynomial Kernels map the input set 
into a finite dimensional Polynomial space. In [11] we have also considered a class of 

infinite Polynomial kernels on a compact subset nU  of the open unit ball 

}1:{ <∈ xRx n  , defined as 
p

p

c
xx

xx
xxk

)',1(

',1
)',(

><−
><−= , for every nUxx ∈', , 

}1{−∈ Np , via an infinite Polynomial kernel, the input dataset is projected into an 

infinite dimensional Polynomial space. 

3   The Mapping for Dot Product Kernels  

In this section we will focus on developing a general method to construct the mapping 
from the original dataset into the feature space for the dot product kernels. This 
method is also suitable to deal with the Gaussian kernels. We can prove if the feature 
space is an infinite dimensional Polynomial space, then any two finite sets of data in 
the original space will become linearly separable in the feature space.  

For the dot product kernels, the following theorem is always useful.  

Theorem 1.[8] A function )',()',( ><= xxkxxk  defined on an infinite dimensional 

Hilbert space, with a power series expansion ∑∞

=
=

0
)(

n

n
ntatk  is a positive definite 

kernel if and only if for all n , we have 0≥na . 

This theorem implies many kinds of dot product kernels can be considered in SVM. 

Suppose )',()',( ><= xxkxxk  is a dot product kernel on nRX ⊂ with the power 

series expansion ∑∞

=
><=><

0
',)',(

n

n
n xxaxxk . For every Xx∈ , define nC  to 

map Xx∈  to the vector )(xCn  whose entries are all possible n th degree ordered 

products of the entries of x , and define kΦ  by compensating for the multiple occur-

rence of certain monomials in nC  by scaling the respective entries of nΦ with the 

square roots of their numbers of occurrence. Then, by the construction of nC  and 
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nΦ , we have n
nnnn xxxxxCxC >>=<ΦΦ>=<< ',)'(),()'(),( . This fact can be 

found in [6] and is well known for the Homogeneous Polynomial Kernels 
pxxxxk >=< ',)',( . 

Define )),...,(),...,(,()( 110 xaxaax nn ΦΦ=Φ , then we have 

)',()'(),( xxkxx >=ΦΦ< . Clearly xx =Φ )(1  holds, this implies if 01 ≠a , 

then )(xΦ is the extension of x by adding features and keeps all the original entries 

of x , thus )(xΦ  keeps the original information of x . This statement is a goodness 

of our proposed Φ . The entries of )(xΦ is constructed by the entries of x , thus the 

structure of the appending features are clear and easy to be analyzed since these ap-
pending features are constructed by the original features. The feature space with re-
spect to )',( xxk  can be selected as the Hilbert space spanned by )(XΦ .  

First we consider the properties of the above proposed Φ when the feature space is 

finite dimensional. If there is Nn ∈0  such that 0=na  when 0nn > , then we have 

∑ =
><= 0

0
',)',(

n

n

n
n xxaxxk , thus )',( xxk is just the weighted sum of some Ho-

mogeneous Polynomial Kernels, and the feature space is a finite dimensional Homoge-

neous Polynomial Kernels. However, for nxxxxk >=< ',)',( , it is possible that Φ  is 

not a one to one mapping, i.e., different inputs may have the same image, which is 
clearly unreasonable. This statement can be illustrated by the following example. 

Example 2. If 2=n , and ),( 21 xxx = , then )2,,()()( 21
2
2

2
12 xxxxxx =Φ=Φ . For 

two different inputs )1,1( −=x , )1,1(−=y , clearly yx ≠ , but )()( yx Φ=Φ . If x  and 

y  belong to different classes, then every separating hyperplane in the feature space 

relative to the kernel 2',)',( >=< xxxxk can not distinguish x  and y . Similar cases 

will appear frequently when n is an even. If we select a weighted sum form kernel 

predigest satisfying 01 ≠a , then the entries of x  is a part of )(xΦ , thus we can 

avoid this case. 
By using of our proposed Φ , we have the following useful theorem. 

Theorem 3. Suppose Xxx m ⊂},...,{ 1  satisfying 0≠ix , ji xx ≠  if ji ≠ , then 

there is a dot product kernel ∑ =
><= 0

0
',)',(

n

n

n
n xxaxxk such that 

)(),...,( 1 nxx ΦΦ  are linear independent. 

Proof. Suppose ),...,,( 21 iniii aaax = , ∑ −

=
><= 1

0
',)',(

m

n

nxxxxk , then )',( xxk  

is a dot product with expression 
><−

><−=
',1

',1
)',(

xx

xx
xxk

m

. 
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Let 1
21 ...)( −+++= n

iniii xaxaaxf , mi ,...,1= . If ji ≠ , then ji xx ≠ , we 

have )(xfi
and )(xf j

are two different equations. By the algebraic basic theorem we 

know every 0)()( =− xfxf ji has finite roots. Thus there exists Nn ∈0  

such that any two of },...,1:)({ 0 minfi =  are different. Let 

)}(),...,(,1{ 0
1

0 nfnf m
iii

−=β , mi ,...,1= , then we have mβββ ,..,, 21  are linear in-

dependent.  

Suppose 0)(...)()( 2211 =Φ++Φ+Φ mm xxx ααα , then 0...
1 21

21 =∑ =
nl

in

m

i

l
i

l
ii aaaα , 

1...21 −≤+++ mlll n , }0{,...,, 21 UNlll n ∈ , we have 0)( 01
=∑ =

nf n
i

m

i iα , 

this implies 0...11 =++ mmβαβα , thus every 0=iα  and )(),...,( 1 nxx ΦΦ  are 

linear independent. 

In the proof of Theorem 3 we choice the kernel as 
><−

><−=
',1

',1
)',(

xx

xx
xxk

m

 in or-

der to predigest the proof. However, every kernel ∑ =
><= 0

0
',)',(

n

n

n
n xxaxxk sat-

isfying 10 −≥ mn  and 0>na  for 1−≤ mn satisfies the condition in Theorem 3.  

Suppose Φ is a mapping relative to a kernel )',( xxk such that )(),...,( 1 nxx ΦΦ  

are linear independent, A and B are two nonempty subsets of X  and φ=BAI  , 

then we have )()()( BAX ΦΦ=Φ U and φ=ΦΦ )()( BA I . )(),...,( 1 nxx ΦΦ  

are linear independent implies any element in the convex hull of one class cannot be 
the convex combination of the elements of another class, this implies the two convex 
hulls of A and B have empty overlap, notice these two convex hulls are compact, 
so )}(),...,({ 1 lxx ΦΦ  and )}(),...,({ 1 ml xx ΦΦ +  are linear separable in the feature 

space. Thus we can derive the following fact. 

Theorem 4. Suppose }1{)},(),...,,{( 11 +×⊂ Xyxyx ll
, }1{)},(),...,,{( 11 −×⊂++ Xyxyx mmll  , 

then there is a mapping relative to a dot product kernel which map X  into a finite dimen-
sional Polynomial space such that these two classes are linear separable in the feature 
space. 

Suppose ∑∞

=
><=><

0
',)',(

n

n
n xxaxxk satisfies for every Nn ∈0  there exists 

0nn > such that 0>na , without losing universality, we assume every 0>na , 

i.e., every coefficient in its power series is positive, for example, Vovk’s infinite 

polynomial kernel 1))',(1()',( −><−= xxxxk [6]and our proposed infinite poly-

nomial kernel 
p

p

c
xx

xx
xxk

)',1(

',1
)',(

><−
><−= [11]. The following theorem implies the 

feature space relative to such kernels  is infinite dimensional. 
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Theorem 5. Suppose Xxx m ⊂},...,{ 1  satisfies 0≠ix for mi ,...,2,1= , ji xx ≠  

if ji ≠ , Φ is the mapping relative to ∑∞

=
><=><

0
',)',(

n

n
n xxaxxk such that 

every 0>na , then )(),...,( 1 nxx ΦΦ  are linear independent.  

Proof. Suppose ),...,,( 21 iniii aaax =  and )(),...,( 1 mxx ΦΦ  are linear dependent, 

then there exists mααα ,...,, 21  satisfying at least one of them is not equal to zero and 

0)(...)()( 2211 =Φ++Φ+Φ mm xxx ααα  holds. Thus we have 

0...
1 21

21 =∑ =
nl

in

m

i

l
i

l
ii aaaα  where }0{,...,, 21 UNlll n ∈ .  

Let 1
21 ...)( −+++= n

iniii xaxaaxf , mi ,...,1= . Then there exists Nn ∈0 such 

that any two of },...,1:)({ 0 minfi =  are different. Let 

)}(),...,(,1{ 0
1

0 nfnf m
iii

−=β , mi ,...,1= , then we have mβββ ,..,, 21  are linear 

independent. But by 0...
1 21

21 =∑ =
nl

in

m

i

l
i

l
ii aaaα  we have 0...11 =++ mmβαβα , this is 

a contradiction. Thus we have )(),...,( 1 nxx ΦΦ  are linear independent.  

For Xxx m ⊂},...,{ 1 , Theorem 3 implies there exists a finite dimensional feature 

space such that the images of },...,{ 1 mxx are linear independent in this feature space, 

while Theorem 5 implies the images of },...,{ 1 mxx  are linear independent in the 

feature space relative to a kernel satisfying every coefficient in its power series is 
positive, so these two theorems are different. For the kernel satisfying every coeffi-
cient in its power series is positive, similar to Theorem 4 we have the following result. 

Theorem 6. Suppose }1{)},(),...,,{( 11 +×⊂ Xyxyx ll , }1{)},(),...,,{( 11 −×⊂++ Xyxyx mmll , 

then they are linear separable in every feature space relative to a kernel satisfying 
every coefficient in its power series is positive.  

However, as pointed in section 2, for a fixed kernel )',( xxk , the feature space is 

not uniqueness. The following theorem implies the selection of feature space does not 
influence the linear independence of a finite class of data in the feature space.  

Theorem 7. Suppose Xxx m ⊂},...,{ 1  satisfies 0≠ix for mi ,...,2,1= , ji xx ≠  if 

ji ≠ , then the Gram matrix )),(( ji xxkM =  has full rank for a dot product kernel 

)',( xxk  satisfying every coefficient in its power series is positive.  

Proof. If ))(),(()),(( >ΦΦ<== jiji xxxxkM  has not full rank, then there  

exists mααα ,...,, 21  satisfying at least one of them is not equal to zero  

such that ∑ =
>=ΦΦ<

m

l ill xx
1

0)(),(α , mi ,...,1= . So we have 
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∑ =
>=ΦΦ<

m

l llii xx
1

0)(),( αα , mi ,...,1=  which implies 

∑∑ ==
>=ΦΦ<

m

l ll

m

i ii xx
11

0)(,)( αα , thus 0)(
1

=Φ∑ =

m

i ii xα  and 

)(),...,( 1 nxx ΦΦ  are linear dependent. Hence >ΦΦ=<><= )(),(),( jiji xxxxkM  

has full rank. 
If 'Φ  is another mapping that project X  into a different feature space, then it is 

easy to prove )('),...,('),(' 21 mxxx ΦΦΦ  are linear independent by )),(( ji xxkM =  

has full rank.  
For two dot product kernels 1k  and 2k , suppose 1Φ  and 2Φ  are mappings rela-

tive to 1k  and 2k  respectively, we have the following straightforward but useful 

theorem. 

Theorem 8. If 2Φ  is the extension of 1Φ , then )(),...,( 111 nxx ΦΦ  are linear inde-

pendent implies  )(),...,( 212 nxx ΦΦ  are linear independent. 

Our proposed method to construct mapping for dot product kernels can be ap-
plied to the Gaussian kernels on the surface of the unit ball. Suppose every Xx ∈  

is an unit vector, i.e., 1=x , then ><−>=−−=<− ',22',''
2

xxxxxxxx , thus 

the Gaussian kernels )
2

'
exp()',(

2

2

σ
xx

xxk
−

−=  have an equivalence expression as 

dot product kernels as )
1',

exp()',(
2σ

−><= xx
xxk , and we can construct the map-

ping for the Gaussian kernels by its power series by our proposed method. In [6] it 
has been pointed the Gaussian Gram Matrices are full rank, i.e., if GΦ is the map-

ping relative to a Gaussian kernel, then )(),...,( 1 mGG xx ΦΦ  are linear dependent 

for Xxx m ⊂},...,{ 1 , this statement is very important for analysis of  the properties 

of Gaussian kernels . By Theorem 5 we can also get this conclusion and we propose 
a new straight proof for this result, our proof is different with the original one  
in [13].  

For a finite data set Xxx m ⊂},...,{ 1 , )(),...,( 1 nxx ΦΦ  are linear independent 

implies any binary partition of },...,{ 1 mxx are linear separable in the feature space. 

So )(),...,( 1 nxx ΦΦ  being linear independent is a sufficient condition of 

},...,{ 1 mxx being linear separable in the feature space and clearly not a necessary 

condition. This sufficient condition illustrates the rationale of the kernel trick in SVM. 
However, it seems this sufficient condition is too strong since we always just need to 

separate two subsets of },...,{ 1 mxx in stead of separating all its possible binary parti-

tions. The equivalence description of linear separability of a binary classifications 
problem by using of kernel is a meaningful problem. 
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4   On the Linear Separability of Infinite Data Sets in Feature 
Space  

In this section we mainly discuss the linear separability of infinite data sets in feature 
space. At first glance, it is unnecessary to consider infinite data sets since the data 
sets we deal with in practical problems are all finite. This opinion is from the view-
point of designing algorithm for practical applications. If we consider the classifica-
tion problem from the theoretical viewpoint, the following three arguments indicate 
it is meaningful to investigate the linear separability of infinite data sets.  

First, separating two finite sets linearly is equivalence to separating their convex 
hulls linearly, and their convex hulls are infinite sets, so we have implicitly consid-
ered the linear separability of special infinite data set when separating finite sets line-
arly. Second, most feature values are real valued, this implies the possible data may 
be infinite even the samples are infinite, for instance, if we take stature as a feature 
with value range 0.5 to 2.5 meter, then every number between 0.5 and 2.5 is possible 
to be the stature of somebody. So after we construct a learning machine based on 
finite independent and identically distributed samples, the possible data we deal with 
by this machine is always drown from an infinite set and we can not exactly forecast 
its detail structure, i.e., exact values of the possible data taking for every feature, this 
also need to take account of all possible cases drown according to a probability distri-
bution. At last, for a practical binary problem, certainly we desire to know the exis-
tence and uniqueness of optimal hyperplane that can separate all the possible data 
without misclassification, this also inspires us to consider all the possible data.  

Thus it is necessary to investigate the linear separability of infinite data sets at least 
from the theoretical viewpoint, and such investigation can offer guidance to improve 
algorithm for practical problems.  

For any two finite data sets, by our discussion in Section 3 there must exists a  fea-
ture space relative to a dot product kernel such that they are linear separable in feature 
space, and the optimal hyperplane in the feature space is always available. For the 
infinite data set this statement may not hold, we have the following sufficient and 
necessary condition to characterize the linear separability of  two infinite data sets.  

Theorem 9. Suppose nRX ⊂  is compact and BAX U= , φ=BAI . Then there 

exists a feature space relative to a dot product such that )(AΦ and )(BΦ are linear 

separable in feature space if and only if the crowed point sets of A  and B have empty 
overlap, i.e., the boundary points set of A  and B  is empty. 

Proof.  Without losing universality, we assume X  is a subset of the open unit ball. 

We select Vovk’s infinite polynomial kernel 1))',(1()',( −><−= xxxxk in the follow-

ing proof, Φ  is the mapping relative to 1))',(1()',( −><−= xxxxk . 

⇒  Since X  is compact, we know the crowed points of X  are still in X , thus the 
crowed points of )(XΦ are still in )(XΦ  by )(XΦ  is compact. If the crowed point 

sets of A  and B have nonempty overlap, then the crowed point sets of )(AΦ and 
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)(BΦ also have nonempty overlap by Φ  is continuous, this implies 

0))(),(( =ΦΦ BAd , so )(AΦ and )(BΦ can not be linear separable in feature space. 

⇐  Suppose the crowed point sets of A  and B have empty overlap. Clearly A  
and B are compact, this implies )(AΦ and )(BΦ are compact in the feature space in 

case of Φ  being continuous. By Theorem 5 the overlap of convex hulls of )(AΦ and 

)(BΦ are empty, thus they are linear separable in the feature space and )(AΦ and 

)(BΦ are linear separable in the feature space.   

Other kernels ∑∞

=
><=><

0
',)',(

n

n
n xxaxxk satisfies for every Nn ∈0  there ex-

ists 0nn > such that 0>na can also be employed to prove this theorem. 

For a binary pattern recognition problem, if  there is a hyperplane which can not 
only separate the training simple but also can classify every possible data properly, 
i.e., it can separate all the possible data of two classes without misclassification, we 
call this binary pattern recognition problem can be totally solved. Theorem 9 develops 
a sufficient and necessary condition under which a binary pattern recognition problem 
is possible to be solved totally, i.e., for every sample of one class, there exists a suffi-
cient small neighborhood of this sample satisfying none sample of another class is in 
this neighborhood. Thus we can conclude that for a binary pattern recognition prob-
lem, if it can be solved totally, then generally the selection of optimal separating hy-
perplane is not unique, if it can not be solved totally, then the optimal separating hy-
perplane does not exist. The following figure illustrates our idea of Theorem 5. 

 

Fig. 1. If X  is compact and BAX U= , φ=BAI , all the possible data are in X . If the 

crowed point sets of A  and B have empty overlap, then )(AΦ and )(BΦ  are linear separable 

in the feature space as shown in above figure. Since every separating hyperplane can classify all 
the possible input data without misclassification as the three lines in the figure, each of them 
can be selected as an optimal separating hyperplane. 

As pointed out in [12], since one has to make assumptions about the structure of 
the data(otherwise no generalization is possible), it is natural to assume that two 
points that are close are likely to belong to the same class, informally, we want similar 
inputs to lead to similar output[6]. Most classical classification algorithms rely, im-
plicitly or explicitly, on such an assumption(e.g. nearest-neighbors classifiers, and the 
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simplest possible justification for large margins in SVM in [6]). Applying this as-
sumption to the binary pattern recognition problems, it just implies the crowed points 
of the two classes have an empty overlap, thus the optimal separating hyperplane in 
the feature space always exists and is not unique.  

If the binary pattern recognition problems do not satisfy this assumption, i.e., the 
two classes have conjunct crowed points, then the optimal separating hyperplane that 
can separate all the data without misclassification is not available. By this way, in an 
infinite dimensional feature space relative to a dot product kernel, two classes of data 
distribute along the different sides of the crowed points, and the best separating hy-
perplane should pass through the crowed points. We employ the following simple 
example to illustrate our idea. 

Example 3. Suppose we have two tangent ellipses as two classes, thus the tangent 
point is the conjunct crowed point. If we want to separate them by a line, then clearly 
the tangent is the best selection. The following figure can explain this example 
straightforward.  

 

Fig. 2. To separate two tangent ellipses by a line, clearly the tangent is the best selection 

Clearly the conjunct points may not be unique, and the number of conjunct points 
will influence the selection of separating hyperplane. We omit detail discussion on 
this topic here and will focus on it in detail in another paper.  
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