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Abstract In pattern classification problem, one trains a clas-
sifier to recognize future unseen samples using a training
dataset. Practically, one should not expect the trained classi-
fier could correctly recognize samples dissimilar to the train-
ing dataset. Therefore, finding the generalization capability
of a classifier for those unseen samples may not help in
improving the classifiers accuracy. The localized generaliza-
tion error model was proposed to bound above the general-
ization mean square error for those unseen samples similar to
the training dataset only. This error model is derived based on
the stochastic sensitivity measure(ST-SM)of the classifiers.
We present the ST-SMS for various Gaussian based classifi-
ers: radial basis function neural networks and support vector
machine in this paper. At the end of this work, we compare the
decision boundaries visualization using the training samples
yielding the largest sensitivity measures and the one using
support vectors in the input space.

Keywords Generalization error · Stochastic sensitivity
measure · Support vector machine with gaussian kernel ·
Radial basis function neural network · Support vector ·
Most sensitive vector · Decision boundary visualization

1 Introduction

One trains a classifier to deal with a pattern classification
problem. The training accuracy of this classifier indicates
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how good it learnt from the training dataset. However, how
good will this classifier performs for the future unseen sam-
ples? Therefore, this is important to know the generalization
capability of the classifier. Unfortunately, one does not have
the knowledge of neither the real input–output mapping func-
tion nor the real distribution of the input features. In current
literatures, analytical models and empirical cross-validations
are the two most widely adopted techniques to estimate the
generalization capability of the classifier. In this work, we
focus on the classifiers with Gaussian kernel functions, i.e.,
radial basis function neural network (RBFNN) and support
vector machine (SVM).

Empirical cross-validation splits the training dataset into
K disjoint sets. K RBFNNs with M number of hidden neurons
being trained. The i th RBFNN is trained using all the disjoint
sets except the i th one and it is left for finding the validation
error of this RBFNN. The average of all these K validation
error is used to estimate the generalization error for RBFNN
with M hidden neurons. The beauty of this method is that
true target outputs are used in the validation sets. However,
the RBFNN M hidden neurons may yield a high variance in
the generalization error. That is, one does not know the upper
bound of the generalization error for the final classifier that
has been trained. This is because the variance of the valida-
tion error may be very large even though the average of them
is very small [4].

On the other hand, analytical models are usually derived
based on the bias–variance dilemma [3] and are functions of
training error and number of effective parameters of the clas-
sifier. The number of effective parameters for linear classifier
could be found accurately. However, for nonlinear classifi-
ers, usually only a very loose upper bound could be found
and VC-dimension is one of the bounds of it [2]. The upper
bounds of the VC-dimensions of RBFNN (h(RBFNN)) and
SVM (h(SVM)) are

h(RB F N N ) < 4M log2 (24eM Z), (1)

h(SV M) < min (r/m, n) + 1, (2)

where M, Z, r, m and n denote the number of hidden neurons,
the maximum value of input, the radius of the hypersphere
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which contain all the training samples in the kernel space,
the width of the margin and the number of dimensions of
the kernel space. One may notice that (1) grows quickly with
respect to the M. Furthermore, with probability 1 − η the
generalization error bound for all unseen samples in terms of
mean square error (MSE; Rtrue) is given by [8]

Rtrue ≤ Remp + (Bε/2)

(
1 +

√
1 + (

4Remp/Bε
))

, (3)

and

ε ≤ 4[ln (2l/h) + 1]/(l/h) + [− ln (η/4)]/ l, (4)

where l, B, Remp, η denote the number of training samples,
the maximum value of the MSE, the training error and the
confidence of the bound. One may find that the VC-dimen-
sion is only a function of the number of hidden neurons, but
not their values. Therefore, two RBFNNs with the same num-
ber of hidden neurons yielding the same training error for the
same training dataset will have the same generalization error
bound. However, these two RBFNNs may not yield the same
generalization capability in general.

In practice, a classifier trained using training dataset
should not be expected to working well for unseen samples
which are totally different from the training dataset. For those
unseen samples, the classifier outputs are usually unreliable
and the classification results are expected to be bad for those
unseen samples [9]. In [5], a localized generalization error
model was proposed. Only the unseen samples which are
similar to the training dataset are considered. Their MSE
for a particularly trained classifier is bounded above by this
localized generalization error model. Importantly, classifiers
with the same number of effective parameters but different
values of the parameters will produce different values using
this error model.

The major component of the localized generalization er-
ror model is the stochastic sensitivity measure (ST-SM) of
the trained classifier. In this paper, the novel ST-SM for SVM
with Gaussian kernel is presented. Therefore, the localized
generalization error model is extended from RBFNN [5] to
SVM. The selection of the number of hidden neurons is a
significant research issue in RBFNN. Therefore, an architec-
ture selection method was proposed in [5] and experimen-
tal results will also be presented in this work. Furthermore,
we visualize the decision boundaries of classifiers using the
training samples yielding the large ST-SM. This visualiza-
tion is compared with the one using support vectors in input
space.

Section 2 introduces the localized generalization error
model. The ST-SMs for RBFNN and SVM are presented
in Sect. 3. The experimental results of pattern classification
using RBFNN trained using the localized generalization error
are given in Sect. 4. Sect. 5 presents the decision boundaries
visualization using both the support vectors and the most
sensitive vectors. We conclude this work in Sect. 6.

2 Localized generalization error model

We bound above the generalization error for unseen samples
which are similar to the training dataset only [5]. We de-
note this set of unseen samples by the Q-union and this is
the union of all Q-neighborhoods. In particular, the bth Q-
neighborhood is defined as the set of all unseen samples
which sup-norm from the bth training sample (X(b)) is smaller
than Q

S(b)
Q = {X : |�xi | ≤ Q ∀i = 1, 2, . . . , N }, (5)

where �X = X−X(b) = (�x1, �x2, . . . , �xN )′, N denotes
the number of input features.

One may notice that the Q value is an arbitrary real num-
ber and thus this could be very small or very large. When the
Q value approaches zero, the Q-union approaches the train-
ing dataset. In contrast, when the Q value approaches infinity,
the Q-union approaches the entire input space. The localized
generalization error (RSM ) is defined as:∫
SQ

( fθ (X) − F(X))2 p(X)dX, (6)

where p(X), fθ and F denote the probability density function
of the inputs, the classifier with parameter set θ and the true
unknown input–output mapping function. In this work, the
MSE is of particular interest because it is widely adopted in
neural network training. Moreover, both neural network and
SVM are real-valued output classifiers, if one minimizes only
the classification error, many classification decisions will be
indecisive [1]. For example, we have a classifier outputting
0 and 1 for class 1 and 2 decisions. If only the classification
error is minimized, the classifier outputs are most likely to be
around the 0.5 and just fall to the correct region slightly. In
contrast, one could quantitatively evaluate classifiers trained
by minimizing the MSE. For the same training classification
accuracy, the classifier yielding smaller MSE could be bet-
ter than the one yielding larger MSE. This is because the one
yielding smaller MSE is supposed to be better in approximat-
ing the unknown true input–output mapping function. With
probability 1 − η, we have [5]:

RSM(Q) ≤ 1

l

l∑
b=1

∫

S(b)
Q

( fθ (X) − F(X))2
(

1/(2Q)N
)

d �X

+B
√

ln η/(−2l)

≤
(√

Remp +
√

E
(
(�y)2) + A

)2

+B
√

ln η/(−2l)

= R∗
SM(Q), (7)

where E((�y)2), A and 1/(2Q)N denote the stochastic sen-
sitivity of the classifier (ST-SM), the maximum difference
between all the known F(X) and the probability density
of the unseen samples in the Q-neighborhood, respectively.
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The training error could be found after we trained the classi-
fier and the constant A could be determined after we fixed the
training dataset. The last term vanishes when the number of
training samples approaches infinity. The major component
of the R∗

SM is the ST-SM which is defined as the expectation of
the squared differences between training and unseen samples
within the Q-union. This is a general concept which appli-
cable to any classifier with real-valued output. In this work,
we show the ST-SMs for two widely adopted Gaussian-based
classifiers: RBFNN and SVM. The localized generalization
error model could be applied to RBFNN (SVM) by plugging
in the ST-SM for RBFNN (SVM) into Eq. (7).

2.1 Stochastic sensitivity measure of RBFNN

The functional form of the RBFNN using Gaussian activation
function is defined as

fθ (X) =
M∑

j=1

w j exp

(∥∥X − U j
∥∥2

−v2
j

)
+ β, (8)

where β, M, w j , v j and U j denote the bias term, the num-
ber of hidden neurons, connection weights between the j th
hidden neuron and the output, the width and center values
of the j th hidden neuron, respectively. We do not have the
knowledge about the distribution of the unseen samples and
thus uniform distribution is applied in the computation of the
ST-SM. Such that, all of the unseen samples have the same
chance to occur in future in our model. Furthermore, we make
no assumption on the distribution of the inputs. By the cen-
tral limit theorem, the sum of random variables tends to a
normal distribution. That is, the inputs to the hidden neurons
(s j = ‖X(b) − U j‖2 and s∗

j = ‖X(b) + �X − U j‖2) could
be assumed to have normal distributions and therefore the
output of the hidden neurons have log-normal distributions.
By using these assumptions, we have the ST-SM for RBFNN
to be defined as [5]

E
(
(�y)2)

= E

⎛
⎜⎝

⎡
⎣ M∑

j=1

w j exp

(
s∗

j

−2v2
j

)
−

M∑
j=1

w j exp

(
s j

−2v2
j

)⎤
⎦

2
⎞
⎟⎠

=
M∑

j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϕ j

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

exp

⎛
⎝4

∑N
i=1 σ 2

�xi

(
σ 2

xi
+ (

μxi − u ji
)2 + 0.2σ 2

�xi

)
2v4

j

− 2
∑N

i=1 σ 2
�xi

2v2
j

⎞
⎠

− 2 exp

⎛
⎝

∑N
i=1 σ 2

�xi

(
σ 2

xi
+ (

μxi − u ji
)2 + 0.2σ 2

�xi

)
2v4

j

−
∑N

i=1 σ 2
�xi

2v2
j

⎞
⎠ + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≈
M∑

j=1

ϕ j

⎛
⎝

∑N
i=1 σ 2

�xi

(
σ 2

xi
+ (

μxi − u ji
)2 + 0.2σ 2

�xi

)
v4

j

⎞
⎠ (9)

=
M∑

j=1

ϕ j

⎛
⎝

∑N
i=1

Q2

3

(
σ 2

xi
+ (

μxi − u ji
)2 + 0.2 Q2

3

)
v4

j

⎞
⎠

= 1

3
Q2

M∑
j=1

υ j + 0.2

9
Q4 N

M∑
j=1

ζ j , (10)

whereϕ j = (
w j

)2 exp
((

Var
(
s j

)/
2v4

j

)
−

(
E

(
s j

)/
v2

j

))
,

E
(
s j

) = ∑N
i=1

(
σ 2

xi
+ (

μxi − u ji
)2

)
,ζ j = ϕ j/v

4
j ,

V ar
(
s j

) = ∑n
i=1

(
E

[(
xi − μxi

)4
]
−(

σ 2
xi

)2+4E
[(

xi −μxi

)3
]

×(
μxi +u ji

) +4σ 2
xi

(
μxi + u ji

)2
)

,

υ j = ϕ j

(∑N
i=1

(
σ 2

xi
+ (

μxi − u ji
)2

)/
v4

j

)
, μi and σ 2

xi

denote the mean and variance of the i th input feature, u ji

denotes the i th input feature of the j th center and σ 2
�xi

de-
notes the variance of the �xi . Furthermore, we assumed �xi
has a uniform distribution, therefore σ 2

�xi
= (2Q)2/12 =

Q2/3.
One may notice that the RBFNN ST-SM increases when-

ever the complexity of the RBFNN output increases. For
example, if the RBFNN outputs fluctuate a lot for a small
change in the input values, the RBFNN ST-SM will be large.
On the other hand, the RBFNN ST-SM will be zero if the
output of the RBFNN does not change for any change in the
input values. One may observe from Eq. (7) that even though
the ST-SM is zero, the generalization error will still be large
if the training error is high. Therefore, a RBFNN with good
generalization capability should yield small values in both
training error and ST-SM. This indicates that the RBFNN
learns the training dataset well and has good consistency in
classifying the samples.
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2.2 Stochastic sensitivity measure of SVM

The SVM training minimizes the structural risk rather than the
empirical risk (training error) as RBFNN does. However,
the localized generalization error model (R∗

SM) works with
a trained classifier and is transparent to the training algo-
rithm of the classifier. Therefore, we could apply the R∗

SM to
the SVM as long as we concern the MSE of the SVM. As
mentioned before, the generalization error bound for entire
input space may not be helpful in evaluation of classifiers.
For example, when one trains a classifier to distinguish ani-
mal images, this is helpless to evaluate this classifier using
images of building [6]. The functional form of the SVM using
Gaussian kernel function is defined as [8].

fθ (X) =
M∑

j=1

α j y j exp

(∥∥X − X j
∥∥2

−c

)
+ β, (11)

where X j , α j , y j and c denote the j th support vector, the Lag-
range multiplier for the j th support vector, the target output
of the j th training sample, the width of the Gaussian kernel,
respectively. In Eq. (10), M denotes the number of support
vectors. One may notice that the functional forms of RBFNN
and SVM with Gaussian kernel are the same after changing
some of the variables. Furthermore, the SVM with Gauss-
ian kernel was applied to find the centers for RBFNN in
[7]. This was proved that the SVM outperforms the RBFNN
for binary classification problem in [7], however the exper-
imental results in [6], showed that this may not be true for
multiclass problems. The ST-SM for the SVM with Gaussian
kernel is defined as

E
(
(�y)2) =

M∑
j=1

(
α j y j

)2 exp

⎛
⎝2Var

(
k j

)
c2 −

2E
(

k j

)
c

⎞
⎠

×

⎛
⎜⎜⎝

4
∑N

i=1
Q2

3

(
σ 2

xi
+

(
μxi −x ( j)

i

)2+0.2 Q2

3

)

c2

⎞
⎟⎟⎠,

(12)

where k j = ∥∥X−X( j)
∥∥2

, Var
(
k j

) = ∑N
i=1

(
ED

[(
xi −μxi

)4
]

− (
σ 2

xi

)2 + 4ED

[(
xi − μxxi

)3
](

μxi − x ( j)
i

)
+4σ 2

xi

(
μxi −

x ( j)
i

))
, E

(
k j

) = ∑N
i=1

(
σ 2

xi
+

(
μxi − x ( j)

i

)2
)

and x ( j)
i

denotes the i th feature value of the j th support vector.
One could find the localized generalization error bound

for the SVM with Gaussian kernel by substituting Eq. (11)
into Eq. (7). The SVM ST-SM shows the expectation of the
squared output differences between training and unseen sam-
ples within the Q-union. By comparing Eqs. (3) and (7), one
may notice that the ST-SM serves as an alternative metric to
the VC-dimensions for measuring the complexity of the SVM.

By using the R∗
SM, we evaluate a generalization error bound

which is different from the conventional one adopted in SVM.
The generalization error in SVM evaluated via VC-dimen-
sion is a bound for the entire input space, while the R∗

SM eval-
uates the generalization error for SVM in a neighborhood of
the training samples in the input space. Furthermore, this may
be not very meaningful to discuss the neighborhood in the
kernel space because it is an unknown and extremely high
dimensional space. The VC-dimension of SVM with Gauss-
ian kernel easily reaches infinity. Remarkably, the R∗

SM works
in the input space directly and this may be more meaningful
to know how much difference between unseen and training
samples that could be allowed for a given threshold of gen-
eralization error upper bound.

Although the SVM has a sound theoretical foundation, its
training requires ad-hoc selection of parameters, e.g. the type
of kernel function and the width of the Gaussian kernels. In
practice, cross-validation is adopted to repeatedly search for
the optimal parameters within a given search space and either
the validation error or training error is used as the objective
function. The proposed localized generalization error model
for SVM could serve as an alternative objective function for
one to minimize during the search of the optimal parameters
for SVM. In Sect. 3, one will find that the RBFNN found by
minimizing the R∗

SM outperforms the one minimizing cross-
validation error, in terms of both higher testing accuracies
and faster training. On the other hand, a more efficient way
may be combining the localized generalization error model
with the support vector selection and margin optimization in
the training of SVM. However, more works are needed to
build the training algorithm and related theoretical works, so
we may leave it as our future work.

2.3 Selection of the optimal number of hidden neurons
for RBFNN

The selection of the optimal number of hidden neurons is
an open problem in RBFNN training. In [5], we proposed a
method using the R∗

SM to select the optimal number of hidden
neurons for RBFNN. The maximum coverage classifier with
selected generalization (MC2SG) maximizes the Q value for
a given threshold of the R∗

SM. For two RBFNNs with differ-
ent number of hidden neurons f1 and f2, f1 yields R∗

SM = a
using Q1 while f2 yields R∗

SM = a using Q2. If Q1 < Q2,
by the definition of Q-union, classifier f2 cover more unseen
samples with the same generalization error when comparing
with the classifier f1. Thus, the classifier f2 yields a better
generalization capability.

However, the selection of the number of support vectors
is well established in SVM training and thus this may not be
helpful to use the R∗

SM for it. On the other hand, we com-
pare the RBFNN trained using MC2SGwith standard SVM
in Sect. 3. In Sect. 4, we compare the support vectors with
sensitive-most vectors (SMV) in decision boundaries visu-
alization. The SMVs are the set of training samples which
yield large R∗

SM values.
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Table 1 Average classification accuracy (%) for testing datasets over ten independent runs

Datasets Methods MC2SG 5-CV 10-CV Squen_MSE Squen_01 SQRT(l) l SVM

Breast cancer 97.29 96.99 96.92 97.10 96.43 97.26 93.18 96.62
Heart disease 83.24 82.41 81.37 79.17 60.37 82.59 83.43 84.05
Pima diabetes 79.40 75.86 75.55 72.68 54.37 77.53 32.94 76.69

Table 2 Total training time over ten independent runs

Datasets Methods MC2SG 5-CV 10-CV Squen_MSE Squen_01 SQRT(l) l SVM

Breast cancer 1 3360 10127 1 13 1 18 20
Heart disease 2 101 314 36 29 1 2 5
Pima diabetes 13 2806 8241 707 1012 1 25 51

Table 3 Average number of hidden neurons and support vectors over ten independent runs

Datasets Methods MC2SG 5-CV 10-CV Squen_MSE Squen_01 SQRT(l) l SVM

Breast cancer 2.1 25.1 27.8 2.0 42.8 19.0 350.0 76.8
Heart disease 8.8 11.3 16.5 52.5 51.8 12.0 135.0 104.2
Pima diabetes 22.0 54.0 57.2 275.2 291.6 20.0 384.0 236.6

3 Experimental results for pattern classification
problems

Three real world datasets from the UCI machine learning
repository are used to compare the classification accuracies
between the RBFNN trained using MC2SG and SVM with
Gaussian kernel. All of them are binary classification prob-
lems. Ten independent runs are performed for each of the
datasets and 50% of samples are selected as the training
dataset in each run. The SVM is trained with parameter opti-
mized using cross-validations. Moreover, the experimental
results are also compared with six widely adopted architec-
ture selection techniques for RBFNN: two cross-validation
methods, two sequential learning methods and two ad-hoc
choices of the number of hidden neurons. As suggested in
[4], five-folds (5-CV) and ten-folds (10-CV) cross-valida-
tions are used in the experiments. The “Sequen_MSE’ and
“Sequen_01” methods are to add hidden neurons until, respec-
tively, the training MSE < 0.025 and the classification error is
minimized. The ad-hoc method denoted by l is the number of
training samples which uses every training sample as a cen-
ter of RBFNN hidden neuron. The ad-hoc method “SQRT(l)”
method is to select the number of hidden neurons so that it is
equal to the square root of the number of training samples.

Table 1 presents the average testing accuracy of ten inde-
pendent runs for all the methods. One may notice that the
RBFNNs trained using MC2SG outperform the RBFNNs
trained using other methods. The sequential learning method
Squen_01 performs worse than ad-hoc choice of SQRT(l).
This reinforces our thinking that minimizing the classifica-
tion error only may not be a good choice for real-valued
output classifiers. Some of the training samples may have
a classification decisions which are just passing the deci-
sion threshold. The ad-hoc choice of using all training sam-
ples as RBFNN’s center performs worst in breast cancer
and pima diabetes. This is because the RBFNNs have too

large complexity and try to memorize the training samples
rather than learning the input–output mapping function. On
the other hand, the performance of the RBFNNs trained us-
ing MC2SG is worse than SVM in the experiments of the
heart disease dataset by 0.8% on average. On the other hand,
the MC2SG performs better than SVM in the experiments
using the other two datasets by 0.4 and 1.8%, respectively.
The experimental results show that the RBFNN trained using
MC2SGis comparable to SVM even in binary classification
problems.

The total running times for MC2SGfor ten independent
runs in experiments for all the three datasets are the second
fastest among all the methods (Table 2). The ad-hoc choice of
selecting the number of hidden neurons to be the square root
of the number of training samples is fast because no selection
of parameter is needed. Selecting the number of hidden neu-
rons using cross-validation methods is very time consuming
and infeasible for large datasets.

Table 3 shows the average number of hidden neurons
selected by various methods and the SVM column shows the
number of support vectors for the Gaussian kernel SVM. One
may notice that the numbers of support vectors are large in
all the experiments. On the other hand, the MC2SG meth-
ods finds RBFNNs with fewer number of hidden neurons,
but higher testing accuracies. The large numbers of support
vectors indicate that the samples in the datasets have many
overlapping between two classes. The SVMs need to project
the training samples to a much higher dimensional feature
space where the samples from different class are linearly
separable.

4 Decision boundaries visualization

Every training sample contributes to the R∗
SM. For a given Q

value, one could evaluate the generalization error for unseen
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samples around the bth training sample (X(b)) by feeding
in the X(b) into the ST-SM equation instead of the whole
dataset. That is, the mean values of the training dataset are
replaced by the feature values of X(b) and all the variance of
inputs equal to zero. In Eq. (7), both the constants and train-
ing error are fixed after we trained the classifier, The R∗

SMof
a training sample depends only on the ST-SM. Therefore, we
denote the set of training samples which yields large ST-SM
by SMV. The sample yielding a large value in ST-SM indi-
cates that the classifier outputs around this sample fluctuate
a lot. One may expect this sample located near to one of the
decision boundaries in the input space of the classifier.

On the other hand, support vectors (SV) of SVM are de-
fined to be the set of training samples which allocated nearest
to the decision boundary between two classes. This is based
on the assumption in SVM that the samples from the two
classes are linearly separable in the projected kernel space.

One may notice that both SVs and SMVs are the sets
of training samples which allocated nearest to the decision
boundaries of the classifier. However, the SVs are found in
the kernel space which is projected by the kernel functions
and usually has a dimension much larger than the original
input space. In contrast, the SMVs are found in the original
input space. More importantly, the SMV does not require the
assumption of linearly separability because the SMVs are
those samples which yields large ST-SM. In [7] and the fol-
lowing figures show that the SVs for SVM using Gaussian
kernel surround the clusters rather than locating on the deci-
sion boundaries when we plot them in the input space. In con-
trast, the SMVs visualize the decision boundaries between
classes.

We use two three-class problems from the UCI machine
learning repository to demonstrate the differences between
the SVs and SMVs. We plot only two features for each data-
set to facilitate the visualization. These features are selected
if they visually separating the classes. The UCI IRIS dataset
consists of three classes and one of the class is linearly separa-
ble. Figure 1 shows the distribution of the samples in various
classes with the third and fourth features. For the SVMs, the

Fig. 1 Distribution of the samples for UCI IRIS dataset

one-against-all method is adopted to deal with the multiclass
problem.

From Fig. 2, one may observe that the SMVs describe the
decision boundaries very well. However, the SVs in Fig. 3
surround the samples in each class rather than describing the
decision boundaries in the input space.

Figure 4 describes the distribution of the samples in the
7th and 12th features of the UCI wine dataset. One may find
that this dataset is more complicated when compared with the
UCI IRIS dataset. The SMVs, again, excellently describe
the decision boundaries in Fig. 5. In contrast to the SMVs, the
SVs in Fig. 6 seem to be randomly distributing all around the
input space.

These figures show that the SMVs could visualize the
decision boundaries of the classifier in the input space. In a
two-dimensional space, one could find the decision bound-
aries by human eye and draw the intuitive decision bound-
aries. However, when the number of features is larger than 3,
this is very difficult to visualize it by human. The SMVs pro-
vide a systematic way to visualize the decision boundaries of
the classifier. These decision boundaries indicate the region
of the input space where the classifier changes its decisions.

Fig. 2 Distribution of the SMVs (Shaded Points) for UCI IRIS dataset

Fig. 3 Distribution of the SVs (Shaded Points) for UCI IRIS dataset
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Fig. 4 Distribution of the samples for UCI wine dataset

Fig. 5 Distribution of the SMVs (shaded points) for UCI wine dataset

Fig. 6 Distribution of the SVs (shaded points) for UCI wine dataset

However, one may notice that the decision boundaries of the
classifier may not be the same one to the decision bound-
aries in the real unknown input–output mapping function.
Moreover, these decision boundaries may change when the
parameters in the classifier change due to the change in deci-
sion made by the classifier changes.

The major drawback of using SMVs is that one needs to
determine the number of SMVs. In the experiments described
in this section, we select the one-third of samples which yield
the largest ST-SM, i.e., R∗

SM, values. This is an important
future work to find an automatic problem independent method
to select the number of SMVs.

5 Conclusion

In this paper, we described the localized generalization er-
ror models for Gaussian-based classifiers. In particular, we
demonstrated this model using the RBFNN and SVM with
Gaussian kernel. Furthermore, this model could be easily
extended to other Gaussian-based classifier by defining the
corresponding ST-SM. Moreover, the localized generaliza-
tion error model of RBFNN was adopted to select the opti-
mal number of hidden neurons for RBFNN. The resulting
RBFNNs were compared with standard SVMs and found
comparable testing accuracies for binary classification prob-
lems.

On the other hand, we visualized the decision boundaries
of classifiers in the input space using the localized general-
ization error model. This helps in better understanding the
trained classifier. Furthermore, this is an interesting future
research topic of applying the SMV to find a multiclass SVM
to replace the multiple binary SVMs for solving multiclass
classification problems.

Acknowledgements This research work is supported by the Hong
Kong Research Grant Council under the Grant B-Q944 and the Hong
Kong Polytechnic University Research Grant GT-891.

References

1. Anthony M, Bartlett PL (1999) Neural network learning: theoretical
foundations. Cambridge University Press, Cambridge

2. Bartlett PL, Williamson RC (1996) The vapnik-chervonenkis dimen-
sion and pseudodimension of two-layer neural networks with dis-
crete inputs. Neural Comput 8:653–656

3. Geman S, Bienenstock E (1992) Neural networks and the bias/var-
iance dilemma. Neural Comput 4:1–58

4. Hastie T, Tibshirani R, Friedman J (2001) The element of statistical
learning. Springer, Berlin Heidelberg Newyork

5. Ng WWY, Yeung DS, Wang D, Tsang ECC, Wang XZ (2005a)
Localized generalization error and its application to RBFNN train-
ing. In Proceedings of international conference on machine learning
and cybernetics:4667–4673

6. Ng WWY, Dorado A, Yeung DS, Pedrycz W and Izquierdo E
(2005b) Image classification with the use of radial basis function
neural networks and the minimization of localized generalization
error. Pattern Recogn (in press)

7. Scholkopf B, Sung KK, Berges CJC, Girosi F, Niyogi P, Poggio T
Vapnik V (1997) Comparing support vector machines with Gauss-
ian kernels to radial basis function classifiers. IEEE Trans. Signal
Process 45:2758–2765

8. Vapnik V (1998) Statistical learning theory. Wiley-Interscience
Publication, New York

9. Chakraborthy D and Pal NR (2003) A Novel training scheme for
multilayered perceptrons to realize proper generalization and incre-
mental learning. IEEE Trans. on Neural Networks:1–14



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


