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Abstract. Support Vector Machines (SVMs) are learning machines that can 
perform binary classification (pattern recognition) and real valued function ap-
proximation (regression estimation) tasks. An inverse problem of SVMs is how 
to split a given dataset into two clusters such that the maximum margin between 
the two clusters is attained. Here the margin is defined according to the separat-
ing hyper-plane generated by support vectors. This paper investigates the in-
verse problem of SVMs by designing a parallel genetic algorithm. Experiments 
show that this algorithm can greatly decrease time complexity by the use of par-
allel processing. This study on the inverse problem of SVMs is motivated by 
designing a heuristic algorithm for generating decision trees with high generali-
zation capability. 

1   Introduction 

Support vector machines (SVMs) are a classification technique of machine learning 
based on statistical learning theory [1, 2]. Considering a classification problem with 
two classes, SVMs are used to construct an optimal hyper-plane that maximizes the 
margin between two classes. According to Vapnik statistical learning theory [1, 3], 
the maximum of margin implies an extraordinary generalization capability and good 
performances of SVM classifiers [4, 5]. So far, SVMs have already been successfully 
applied to many real fields. This paper aims to make preparation for SVM’s applica-
tion to decision tree generation. 

Given a training set, a general procedure for generating a decision tree can be 
briefly described as follows: 

The entire training set is first considered as the root node of the tree. Then the root 
node is split into two sub-nodes based on appropriate heuristic information. If the 
instances in a sub-node belong to one class, then the sub-node is regarded as a leaf 
node, else we continue to split the sub-node based on the heuristic information. This 
process repeats itself until all leaf nodes are generated. The most popular heuristic 
information used in the decision tree generation is the minimum entropy. This heuris-
tic information has many advantages such as small leaf numbers and less computa-
tional effort. However, it has a serious disadvantage – the poor generalization  
capability. 
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The investigation into the inverse problem of SVMs is motivated by designing a 
new decision tree generation procedure to improve the generalization capability of 
existing decision tree programs based on minimum entropy heuristic. Due to the rela-
tionship between the margin of SVMs and the generalization capability, the split with 
maximum margin may be considered as the new heuristic information for generating 
decision trees.  

This paper has the following organization; Section 2 briefly reviews the basic con-
cept of support vector machines. Section 3 proposes the inverse problem of SVMs 
and designs a parallel genetic algorithm to solve this problem. Section 4 gives some 
experiment results to demonstrate the feasibility and effectiveness of the parallel ge-
netic algorithm, especially in the way of time complexity. And the last section briefly 
concludes this paper. 

2   Support Vector Machines 

2.1   The Basic Problem of SVMs 

Let { }1 1 2 2( , ), ( , ), , ( , )N NS x y x y x y= L be a training set, where n
ix R∈ and 

{ 1,1}iy ∈ −  for 1,2, ,i N= L . The optimal hyper-plane of S is defined 

as ( ) 0f x = , where 
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where C is a positive constant. The constant 0b  is given by  
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Substituting (2) for 0w  in (1), we have  

( )0
01

( )
N

i i ii
f x y x x bα

=
= ⋅ +∑  (5) 



 A Parallel Genetic Algorithm for Solving the Inverse Problem 873 

We can identify separability of two subsets by checking whether the following ine-
qualities  

( )0 1; 1,2, ,i iy w x b i N⋅ + ≥ = L  (6) 

hold well[1]. 
A procedure to compute a maximum margin for two subsets is described below. 

Procedure 1. The constant C in equation (3) is selected to be large at first. 

Step 1. Solve the quadratic programming (3). 
Step 2. Determine the separating hyper-plane (5) according to (4). 
Step 3. Check the separability between two subsets according to inequalities (6). 
Step 4. Let the margin be 0 if the two subsets are not separable. 

Step 5. Compute the maximum margin according to ( )0 01 w w⋅  for the separable 

case where the vector w is determined by (2). 

2.2   Generalization in Feature Space 

In practice, the performance of SVMs based on the previous section may not be very 
suitable for the nonlinear-separable cases in the original space. To improve the per-
formance and to reduce the computational load for the nonlinear separable datasets, 
Vapnik [1] extended the SVMs from the original space to the feature space. The key 
concept of the extension is that a SVM first maps the original input space into a high-
dimensional feature space through some nonlinear mapping, and then constructs an 
optimal separating hyper-plane in the feature space. Without any knowledge of the 
mapping, the SVM can find the optimal hyper-plane by using the dot product function 
in the feature space. The dot function is usually called a kernel function. According to 
the Hilbert-Schmidt theorem [1], there exists a relationship between the original space 
and its feature space for the dot product of two points. That is  

1 2 1 2( ) ( , )z z K x x⋅ =  (7) 

where it is assumed that a mapping Φ  from the original space to the feature space 

exists, such that 1 1( )x zΦ =  and 2 2( )x zΦ = , and 1 2( , )K x x  is conventionally 

called a kernel function satisfying the Mercer theorem [1]. Usually the following three 
types of kernel functions can be used: polynomial with degree p, radial basis function 

and sigmoid function [1]. Replacing the inner product ( )1 2x x⋅  in (5) with the kernel 

function ( )1 2,K x x , the optimal separating hyper-plane becomes the following 

form: 

( )0
01
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It is worth noting that the conclusion of section 2.1 is still valid in the feature space if 

we substitute ( )1 2,K x x  for the inner product ( )1 2x x⋅ . 
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3   An Inverse Problem of SVMs and Its Solution Based on Genetic 
Algorithms 

For a given dataset for which no class labels are assigned to instances, we can ran-
domly split the dataset into two subsets. Suppose that one is the positive instance 
subset and the other is the negative instance subset, we can calculate the maximum 
margin between the two subsets according to Procedure 1 where the margin is equal 
to 0 for the non-separable case. Obviously, the calculated margin depends on the 
random split of the dataset. Our problem is how to split the dataset such that the mar-
gin calculated according to Procedure 1 attains the maximum. 

It is an optimization problem. We mathematically formulate it as follows: 

Let { }1 2, , , NS x x x= L  be a dataset and n
ix R∈  for 1,2, ,i N= L , 

{ }| is a function from to {1, 1}f f SΩ = − . Given a function f ∈Ω , the dataset 

can be split into two subsets and the margin can then be calculated by Procedure 1. 
We denote the calculated margin (the functional) by Margin( )f . Then the inverse 

problem is formulated as 

( )Maximum Margin( )f f∈Ω  (9) 

Due to the exponentially increased complexity, it is not feasible to enumerate all 
possible functions in Ω  for calculating their margins according to Procedure 1. It is 
difficult to give an exact algorithm for solving the optimization problem (9). Here we 
can design a genetic algorithm to solve (9). 

First, we briefly review the main steps of a general simple genetic algorithm [9]. 

Procedure 2. A general procedure of genetic algorithms for solving an optimization 
problem with several variables: 

Step 1. Determine the encoding mechanism for representing the optimization prob-
lem’s variables. 

Step 2. Initialize the population, which contains a number of encoded samples 
(called chromosomes) based on the encoding mechanism. 

Step 3. Specify the fitness function, which normally takes the values in [0, 1] and is 
defined in the set of all chromosomes. 

Step 4. Select parents (chromosomes) from the current population according to 
their fitness values.  

Step 5. Produce their offspring via the crossover operation, which usually means to 
partially exchange genes of two parent chromosomes. 

Step 6. Conduct mutation operation, i.e., genes of the offspring chromosome 
change with a certain probability. 

Step 7. Consider all offspring as the new population and check whether a termina-
tion criterion is reached. If yes, go to step 8, else, go to step 4. 

Step 8. Stop. 
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Then, we can design a genetic algorithm to solve the proposed inverse problem of 
SVMs according to the above Procedure 2.  

Procedure 3. A general procedure of genetic algorithms for solving the proposed 
inverse problem of SVMs: 

Step 1. Each function f ∈Ω  corresponds to a binary partition of the dataset S. 

Therefore each f can be viewed as a N-dimensional vector such as 100011101L01 
with N bits. Each bit taking value 0 or 1 is regarded as a gene corresponding to an 
instance in S. Thus, each chromosome (a bit string such as 100011101L01) consist-
ing of N genes represents a function in Ω  where, if a bit is 1, it means that the corre-
sponding instance is positive; and a value 0 represents that the corresponding instance 
is negative. The fixed length of each chromosome’s coding is N, the number of in-
stances of the initial dataset. 

Step 2. Given an integer M denoting the size of the population, uniformly generate 
N random numbers (0 or 1), which constitute a chromosome. Repeat M times and 
hence generate M chromosomes. 

Step 3. Noting that each chromosome can determine a training set given in Section 
2, we define the fitness value for each chromosome as the margin value computed by 
Procedure 1. Here the fitness value is 0 if the chromosome corresponds to a non-
separable training set, and is the real margin of the SVM if the chromosome corre-
sponds to a separable training set. 

Step 4. Reproduction. This is a process in which individual strings are copied in 
terms of their fitness values. In traditional textbook manner, the reproduction is con-
ducted by a technique of roulette-wheel parent selection, which indicates that the 
probability with which an individual is selected is proportional to its fitness value. 
This technique can be implemented algorithmically as follows [7]: 

(1) Let the population be{1,2, , }ML and ( )f j  denotes the fitness value of the j-th 

individual. Compute 
1

( ) ( 1,2, , )
i

i j
s f j i M

=
= =∑ L . 

(2) Generate a random number α  uniformly distributed in the interval [0, Ms ]. 

(3) Return the first individual whose fitness value plus the values of fitness of the 
previous individuals are greater than or equal to α . That is, this step returns the k-th 

individual with the property 1k ks sα− < ≤ . 

The reproduction is used to generate M parent candidates. We suppose that the M 
parent candidates contain the individual with the highest fitness. (If not, we can spec-
ify the individual with the highest fitness as a candidate). 

Step 5. Crossover.  Reproduction results in a mating pool consisting of M parent 
candidates. Then 2M  pairs of parents are randomly selected from the pool. The 

crossover site (a bit position) is also selected randomly. The crossover happens with 

probability cp  for each selected pair.  This crossover operator leads to 2M  pairs of 

offspring, i.e., M new chromosomes. 
Step 6. Mutation. It means that a bit of an offspring chromosome is replaced with a 

randomly chosen bit. The mutation is performed with probability mp  for each chro-

mosome. 

A Parallel Genetic Algorithm for Solving the Inverse Problem  SVMsof
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Step 7. Calculate the M parents’ fitness values and place them with their M chil-
dren to form a set of 2M chromosomes. Sort the 2M chromosomes based on their 
fitness values from big to small, and then choose the first M chromosomes with the 
highest fitness values as the population of the next generation. 

Step 8. The predefined maximum number of generations, T, is chosen as the termi-
nation criterion. If the generation number is less T then go to Step 4; else go to Step 9. 

Step 9. Output the first chromosomes and its fitness value. According to this chro-
mosome, in which value 1 corresponds to a positive instance and value 0 corresponds 
to a negative instance, the final partition (split) of the initial dataset is obtained. And 
the outputted fitness value is the maximum margin. Stop. 

The decision function f obtained through the above algorithm denotes the optimal 
or approximately optimal solution of problem (9) when the parameters in GA are 
selected properly. In addition, it is worth mentioning that genetic algorithms cannot 
be guaranteed to obtain the optimal solution every time, so it is expected they will 
have a big probability for obtaining the optimal or approximately optimal solution. To 
raise the probability of obtaining the optimal solution, one needs to increase the popu-
lation size or the maximum number of generations, which obviously is at the price of 
increased running time. 

One main reason that the proposed genetic algorithm has large time complexity is 
the process of solving quadratic programs; that is, calculating each chromosome’s 
fitness value. How to reduce the time complexity of the algorithm (for large databases 
especially) is a very important issue to be investigated. Here we use the method of 
parallel processing on Linux Clusters to solve this problem. 

Procedure 4. A parallel procedure of genetic algorithms for solving the proposed 
inverse problem of SVMs: 

Step 1. Choose the same encoding mechanism as Procedure 3. Specify the penalty 
factor C, the maximum number of generations MaxG, the population size M, the 

crossover probability cp , the mutation probability mp  and the fixed length of each 

chromosome’s coding N, which is the number of instances of the initial dataset.  
Step 2. Let the master process generate M chromosomes as the first population on 

the master node of Linux Clusters. 
Step 3. Calculate each chromosome’s fitness value on slave nodes by parallel 

method, that is, the margin value computed by Procedure 1. We describe it in detail 
by pseudo codes as follows: 

for i = 1 to numtask par-do 
calculate each chromosome’s fitness value; 

end for 
This is a parallel statement, where numtask is the number of chromosomes proc-

essed by every slave process on the corresponding slave node, and i is the number of 
slave processes (slave node). It is important that a synchronization mechanism is used 
in order to avoid any problems when parallel computation is completed. 

Step 4. Reproduction. This is the same as Procedure 3; however, it is only done on 
the master node. The reproduction will generate another set of M parent candidates, 
which are put into the buffer called a mating pool. 
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Step 5. Crossover. This operation is just for the M candidates from the mating 
pool, and is done on the master node. 

Step 6. Mutation. It is also for the M candidates and is done on the master node. 
Step 7. Calculate the M candidates’ fitness values as in Step 3. In succession, sort 

the 2M chromosomes based on their fitness values from big to small, and then choose 
the first M chromosomes with the highest fitness values as the population of the next 
generation. 

Step 8. If the generation number is less MaxG then go to Step 4; else go to Step 9. 
Step 9. Output the final result, the first chromosome and its fitness value, i.e., the 

best chromosome and the maximum margin. Stop. 

Here our parallel algorithm is a global single-population master-slave genetic algo-
rithm [8]. In a master-slave genetic algorithm there is a single population (just as in a 
simple genetic algorithm), but the process to get each chromosome’s fitness value, 
which consumes more time, is distributed among slave nodes and done by means of 
parallel processing. Since in this type of parallel genetic algorithm, selection and 
crossover consider the entire population, it is also known as a global parallel genetic 
algorithm. 

4   Experimental Results 

Experimental environment refers to Table 1(a) & (b). 
To verify the effectiveness of the parallel genetic algorithm, we construct a small 

dataset with 20 2-dimensional points (Table 2). The parameters specified in the paral-
lel algorithm are shown in Table 3. Table 4 is the experimental results of the above 
dataset on the original space for the parallel genetic algorithm, which shows the rela-
tionship between the running time and the number of computing nodes. From Table 4 
one can see that the running time of the parallel genetic algorithm is significantly 
reduced with the number of computing nodes increased.  

A well-known dataset called Iris [9] is selected to verify the advantage of the paral-
lel algorithm. We used 50 samples of the dataset (25 from the second class and an-
other 25 from the third class) for the verification. Table 5 shows the running time 
change with the increase of computing nodes. From Table 5 we observe that the run-
ning time rapidly decreases with the computing nodes. The decrease is significant, 
because the process to get each chromosome’s fitness value, which has larger time 
complexity, is done by means of parallel processing. 

Table 1(a). Node devices configuration 

CPU                                                           Intel Pentium 4 Xeon 3.06GHz ×2 

Memory                                                                     512MB DDR 
Bus                                                                                  PCI-X 
Disk                                                                               80G IDE 

A Parallel Genetic Algorithm for Solving the Inverse Problem  SVMsof
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Table 1(b). Cluster configuration 

No. of  computing nodes                                                         16 
No. of  management nodes                                                       2 
Network                                                           100M-Ethernet, 2G-Myrinet 
Operating system                                                             Redhat 9.0 
Programming environment                                                MPICH 

Table 2. A small dataset 

Case Feature1 Feature2            Case Feature1 Feature2 
1 0.116 0.710                  11 0.422 0.306 
2 0.248 0.860                  12 0.574 0.396 
3 0.362 0.798                  13 0.748 0.308 
4 0.254 0.642                  14 0.560 0.194 
5 0.116 0.532                  15 0.598 0.308 
6 0.150 0.852                  16 0.656 0.512 
7 0.188 0.760                  17 0.626 0.562 
8 0.282 0.750                  18 0.766 0.436 
9 0.168 0.640                  19 0.780 0.562 
10 0.358 0.640                  20 0.666 0.398 

Table 3. Parameters in genetic algorithm 

POPSIZE=90                                                                       Size of population 
PC=0.7                                                                             Probability of crossover 
PM=0.6                                                                             Probability of mutation 
NB=0.3                                                                            Gen mutation proportion 
MAXGENERATION=20                                                  Maximum generation 
C=100                                                                                      Penalty factor 

Table 4. Experimental results on the original space of the dataset (Table 2) 

No. of computing nodes Time (minutes) The best margin 
3 9.567 0.421 
6 5.825 0.421 

15 4.507 0.421 

Table 5. Running time with an increase of computing nodes in the Iris dataset 

No. of computing nodes 3 6 9 10 15 

Time (minutes) 69.971 35.185 28.956 27.125 22.048 
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5   Concluding Remarks 

Motivated by design of a new heuristic procedure of generating decision trees with 
higher generalization capability, a genetic algorithm can be used to solve an inverse 
problem of SVMs, but its time complexity is larger. To overcome this disadvantage, 
this paper proposes an improved version, the parallel genetic algorithm, which can 
reduce time complexity significantly. 
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