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Abstract

Detecting multiple and various network intrusions is essential to maintain the reliability of network services. The problem of network intrusion
detection can be regarded as a pattern recognition problem. Traditional detection approaches neglect the correlation information contained in
groups of network traffic samples which leads to their failure to improve the detection effectiveness. This paper directly utilizes the covariance
matrices of sequential samples to detect multiple network attacks. It constructs a covariance feature space where the correlation differences
among sequential samples are evaluated. Two statistical supervised learning approaches are compared: a proposed threshold based detection
approach and a traditional decision tree approach. Experimental results show that both achieve high performance in distinguishing multiple
known attacks while the threshold based detection approach offers an advantage of identifying unknown attacks. It is also pointed out that
utilizing statistical information in groups of samples, especially utilizing the covariance information, will benefit the detection effectiveness.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The fact that various attacks are increasing at a surprising
rate indicates the importance of detection systems. It is reported
that there have been 10,000 new viruses or variants of existing
viruses in the year of 2004 and there is at least one new attack
spotted every hour [1]. It is highly demanded for the detection
tools to effectively distinguish multiple known and unknown
attacks.

A number of intrusion detection techniques have been pro-
posed in the literature to maintain the reliability of networks.
They can be largely classified into two categories: misuse detec-
tion and anomaly detection. Misuse detection techniques signal
intrusions when the observed activities in an information sys-
tem match the pre-built rules or signatures of known intrusions.
Anomaly detection techniques determine intrusions when the
subject’s observed behaviors exhibit a significant variation from
its norm profile. Compared with misuse detection, anomaly
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detection techniques offer an advantage of identifying unknown
attacks [2].

As a main problem, the capability of distinguishing multiple
known attacks as well as unknown attacks directly manifests
the effectiveness of an intrusion detection system. This prob-
lem can be regarded as a multi-class classification problem in
pattern recognition. The applications of the pattern recognition
approaches in intrusion detection can be found in the examples
such as artificial neural network [3–5], support vector machine
[6,7], nearest neighbor rules [8], clustering [9–11], decision tree
[12,13], data mining [14] and so on. The detailed surveys of
pattern recognition techniques employed in intrusion detection
have been published in the literature [15–18]. Besides, there are
also some intrusion detection systems based on immunological
approaches [4,19].

Almost all the existing pattern recognition approaches in
intrusion detection utilize the differences of the first-order
statistics to classify different intrusions. For example, Ye et al.
utilize T 2 and �2 test values of the system events to evaluate
the difference between the observed audit events and the mean
of the normal audit events in order to detect intrusions [20]. A
data mining model proposed by Lee makes use of the first-order
features such as service, flag, duration, etc. to compute the
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association rules and frequent episodes for intrusion detection
[14]. The inputs of the neural network based detection ap-
proaches are the first-order features such as the distribution
of 100 frequently used commands in NNID (Neural Network
Intrusion Detector) [3]. In a hidden Markov model [21], the
frequency of each command is utilized as the basic probability
of each state.

However, “some intrusion detection techniques intrinsically
ignore the coherent relations and dependencies of the features
which often result in high false positive rate” [22]. On the
other hand, many intrusions in information systems manifest
themselves by the correlation changes [23,24]. Therefore, this
paper utilizes the covariance matrices to discover the effects of
relations and dependencies among features on distinguishing
multiple attacks. It mainly focuses on the discussion of the
utilization of covariance matrix—the second-order statistics in
the intrusion detection systems in terms of effectiveness, that is,
the detector should “detect a substantial percentage of known
and unknown intrusions, while still keeping the false alarm rate
at an acceptable level” [25]. The main contributions of this
paper are:

• It utilizes statistical covariance matrix of sequential samples
in the problem of multiple classification. Different from the
PCA (Principal Component Analysis) or uncorrelated LDA
(Linear Discriminant Analysis) approaches where the corre-
lations among features are eliminated before classification;
the classifiers in this paper directly utilize the correlations
during classification. Classifying multiple classes by means
of covariance matrix differences among sample groups is a
contribution to pattern recognition.

• It proposes a threshold based algorithm to utilize the covari-
ance matrices of sequential samples in the detection. By mea-
suring the covariance differences along each dimension of
the covariance feature space under the predefined threshold
matrix, the approach provides a new tool to classify multiple
classes in the covariance feature space.

• It investigates the effectiveness of intrusion detection in
covariance feature space. It analyzes the performance
improvement by utilizing the covariance information in
groups of samples in the detection and compares the per-
formance of two typical statistical supervised detection
approaches.

The rest of the paper is organized as follows. Section 2 pro-
vides the background of the paper. It introduces the behav-
ior of typical network intrusions—DoS (Denial-of-Service)
attacks and explains the benefits of the covariance based
detection against the traditional mean based detection ap-
proaches. Section 3 defines the problem of intrusion detection.
It describes the covariance feature space and gives the prob-
lem representation in details. Section 4 presents the thresh-
old based detection approach and decision tree approach.
Section 5 presents and compares the experimental results of
two detection approaches in details. It also discusses how to
determine a sequence length in practice. Section 6 draws a
conclusion.

2. Background

In this paper, we mainly discuss the utilization of covariance
matrix in the intrusion detection systems. As the second-order
statistics, a covariance matrix holds two types of information:
one is the information contained in a group of samples; the
other is the correlation information among the observed fea-
tures. In this section, we will explain the benefits of utilizing
the covariance based detection from two aspects: one is the
performance improvement by utilizing groups of samples in
the detection; the other is the advantage of effectively distin-
guishing different classes in the case where the mean based
detection approaches fail.

The network traffic can be characterized in terms of se-
quences of discrete data with temporal dependency [8,23,24].
When we segment the observed temporal sequences into dif-
ferent and consecutive time fragments or intervals, we will ob-
tain groups of samples. Each time interval corresponds to each
group of samples. Our basic idea is to label such groups of
samples.

In a typical DoS attack, many slaves send packets to the
victim at about the same time that last for a period of time
under the control of a master. It is clear that the groups of
samples within that particular period should be labeled as a
particular DoS attack rather than the normal class. Statistically
speaking, the network exhibits the normal behavior in most
of operation time. Therefore, there are more chances to label
groups of samples as the normal class rather than any abnormal
class.

In order to explain the basic principle clearly, we introduce
the following simple mathematical examples.

Assume the network samples are i.i.d. Given two random
populations X(l) ∼ N(�(l), �

2
(l)), l = 1, 2, such as �(1) ��(2),

which represent two different classes—normal and abnormal
classes, respectively. The purpose is to find which population
that a group of n samples belong to, if these n samples xt , t =
1, 2, . . . , n come from one population independently.

To solve the above problem, traditional mean based detec-
tion approaches normally label a group of n samples in a way
of sample by sample; while the covariance based detection
approach proposed in this paper utilizes the statistical informa-
tion contained in groups of samples to classify such a group
of n samples.

2.1. Detection by samples

Normally speaking, the mean based detection approaches
will employ a distance based classifier to label a sample y
according to the following rules:

if d(y, X(1))�d(y, X(2)), y ∈ X(1),

if d(y, X(2)) < d(y, X(1)), y ∈ X(2), (1)

where

d(y, X(l)) = |y − �(l)|/�(l) (l = 1, 2). (2)
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Let

�∗ = �(1) · �(2)

�(1) + �(2)

+ �(2) · �(1)

�(1) + �(2)

. (3)

We will obtain

if y��∗ ⇔ d(y, X(1))�d(y, X(2)), y ∈ X(1),

if y > �∗ ⇔ d(y, X(2)) < d(y, X(1)), y ∈ X(2). (4)

The probabilities of correctly classifying a sample into its pop-
ulation will be⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1 =
∫ �∗

−∞
(1/(

√
2��(1))) exp

[
−1

2

(
x − �(1)

�(1)

)2
]

dx,

p2 =
∫ +∞

�∗
(1/(

√
2��(2))) exp

[
−1

2

(
x − �(2)

�(2)

)2
]

dx,

(5)

where p1 is the probability that a sample which comes from
the population X(1) is correctly classified into X(1). p2 is the
probability that a sample which comes from the population X(2)

is correctly classified into X(2). Clearly p1 = p2.
The probabilities of incorrectly classifying a sample into its

population will be:⎧⎪⎪⎨
⎪⎪⎩

f1 =
∫ +∞

(�(2)−�(1))/(�(1)+�(2))

(1/
√

2�) exp

(
−1

2
x2
)

dx,

f2 =
∫ (�(1)−�(2))/(�(1)+�(2))

−∞
(1/

√
2�) exp

(
−1

2
x2
)

dx,

(6)

where f1 is the probability that a sample which comes from
the population X(1) is wrongly classified into the population
X(2). f2 is the probability that a sample which comes from the
population X(2) is wrongly classified into the population X(1).
Clearly f1 = f2.

In order to obtain the probability of correctly classifying a
group of n samples, we introduce a random variable Bk . Let
Bk=1 represent xk is correctly classified while Bk=0 represent
xk is wrongly classified (k=1, 2, . . . , n). We define a binomial
random variable W =∑n

k=1 Bk .
The detection precision rate that m samples are correctly

classified will thus be

P(W = m) = Cm
n pm(1 − p)n−m, (7)

where p is the probability of correctly labeling a sample and
m = 0, 1, 2, . . . , n.

According to Eqs. (5)–(7), we can calculate the detection
precision rate of the traditional classification approaches. For
example, if two populations are normally distributed as{

�(1) = 0,

�(1) = 12,

{
�(2) = 10,

�(2) = 18.
(8)

According to Eqs. (5) and (6) (where �∗ = 4), by looking into
the standard normal distribution table, we can obtain that the
probability of correctly classifying a sample is p1 =p2 = 0.63.
The probability of wrongly classifying a sample is f1 = f2 =
0.37. Therefore, the precision rate of correctly classifying a
group of n samples will be P(W = n) = pn

1 = 0.63n. The error

rate of incorrectly classifying a group of n samples will be
P(W = 0) = (1 − p1)

n = 0.37n.
Note that{E(W) = np1 = 0.63n,

D(W) = np1(1 − p1) = 0.37 × 0.63n,
(9)

where E(W) and D(W) are the expected value and the variance
of the binomial random variable W, respectively. Eq. (9) ex-
plains that approximately 0.63n samples will be correctly clas-
sified while others will be incorrectly classified. We can hardly
improve the detection precision rate even we know that a group
of n sequential samples come from the same population.

2.2. Detection by groups

The proposed covariance matrix based approach utilizes the
statistical information in groups of samples. Simply speaking,
for a group detection method to solving the above problem, we
can firstly define a random variable

z = 1

n

n∑
t=1

xt , xt ∈ X(l), t = 1, 2, . . . , n.

Obviously,

Z(l) = 1

n

n∑
t=1

xt ∼ N

(
�(l),

1

n
�2

(l)

)
, l = 1, 2.

Then, we classify a group of samples represented by z according
to the following rules:

if z��∗, z ∈ X(1),

if z > �∗, z ∈ X(2), (10)

where

�∗ = �(1) · �(2)

�(1) + �(2)

+ �(2) · �(1)

�(1) + �(2)

. (11)

The detection precision rates will thus be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 =
∫ �∗

−∞

(
1

/(√
2�

1√
n
�(1)

))

× exp

[
−1

2

(
x − �(1)

1/
√

n�(1)

)2
]

dx,

q2 =
∫ +∞

�∗

(
1

/(√
2�

1√
n
�(2)

))

× exp

[
−1

2

(
x − �(2)

1/
√

n�(2)

)2
]

dx,

(12)

where q1 is the probability that a group of n samples which
come from the population X(1) are correctly classified into X(1).
q2 is the probability that a group of n samples which come
from the population X(2) are correctly classified into X(2).
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The detection error rates will be:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 =
∫ +∞

�∗

(
1

/(√
2�

1√
n
�(1)

))

× exp

[
−1

2

(
x − �(1)

1/
√

n�(1)

)2
]

dx,

r2 =
∫ �∗

−∞

(
1

/(√
2�

1√
n
�(2)

))

× exp

[
−1

2

(
x − �(2)

1/
√

n�(2)

)2
]

dx,

(13)

where r1 represents the probability that a group of n samples
which come from the population X(1) are incorrectly classified
into the population X(2). r2 represents the probability that a
group of n samples which come from the population X(2) are
incorrectly classified into the population X(1).

It is clear that the performance is different between the
sample-by-sample detection method and group detection
method when we compare three Eqs. (5), (7) and (12). For the
same example mentioned in Eq. (8) in Section 2.1, if n = 100,
the precision of the group detection method will be

q1 = q2 =
∫ 4/(

1
10 ×12)

−∞

(
1√
2�

)
exp

(
−1

2
x2
)

dx = 0.9995658

while precision of the sample-by-sample detection method will
be P(W = 100) = 0.63100 = 8.5912e − 021; the error rate of
the group detection method will be

r1 = r2 =
∫ +∞

4

⎛
⎜⎝ 1

1

10
×12

√
2�

⎞
⎟⎠ exp

⎡
⎢⎣−1

2

⎛
⎜⎝ x

1

10
×12

⎞
⎟⎠

2⎤
⎥⎦ dx

= 0.0004342

while the error rate of the sample-by-sample detection method
will be P(W = 0) = 0.37100. If n = 16, the precision of the
group detection method will be

q1 = q2 =
∫ 4/(

1
4 ×12)

−∞

(
1√
2�

)
exp

(
−1

2
x2
)

dx = 0.90824

while precision of the sample-by-sample detection method will
be P(W = 16) = 0.6316 = 6.1581e − 004.

2.3. Discussions

The comparison results show that the group detection
method achieves a much higher detection rate than the tra-
ditional sample-by-sample detection method in solving the
proposed problem. For the traditional sample-by-sample de-
tection method, E(W) = 0.63n determines that it can only
correctly classified approximately 63 samples from a total of
100 samples in the way of sample by sample. In contrast, the
group detection method will correctly classify a total of 100
samples with the probability of over 99.9%.

Comparing Eqs. (5), (7) and (12), we can obtain the relation
between the traditional sample-by-sample detection method and
group detection method in terms of the probability of correctly
classifying a group of n samples

q > p > P(W = n), if n > 1, (14)

where q is the probability of correctly classifying a group of n
samples, p is the probability of correctly classifying a sample
xt (t = 1, 2, . . . , n), and P(W = n) is the probability of cor-
rectly classifying a group of n samples in the way of sample
by sample.

In the above comparisons, we use the mean based classifi-
cation as an example to show the performance difference be-
tween the traditional sample-by-sample detection method and
the group detection method. We can also use the covariance as
an example to show the performance improvement by utiliz-
ing groups of samples. Its explanation will be more complex,
however, the principle is the same. In fact, Eq. (15) shows that
when we use the covariance matrix in the detection, the per-
formance will also be improved when the sequence length n is
greater than 2�2.

In the following part, we will use the covariance as an ex-
ample to show that the covariance matrix based detection ap-
proach provides an advantage of effectively distinguishing dif-
ferent classes in the case where the mean based detection ap-
proaches fail.

Let us consider such a case where the means of two popula-
tions are close to each other. For example, there are two popula-
tions X(l) ∼ N(�(l), �

2
(l)), l=1, 2 with �(1)=�(2)=0 and �(1) �=

�(2). The purpose is to determine which population a group of
n samples belong to, if these n samples xt , t = 1, 2, . . . , n are
from one population independently.

To solve this problem, we cannot utilize the mean based
classification approaches. Since �∗ in the determination rules
(4) is equal to �(l) (l = 1, 2), the probability of either correctly
or incorrectly determining any sample will be 50%. The 50%
precision rate has no any sense for classification.

In contrast, the covariance based detection approach will
succeed in solving such a problem. In detail, we define a new
variable S(l) =∑n

t=1(xt/�(l))
2. Since independent sample xt ∼

N(0, �2), where t = 1, 2, . . . , n, S(l) will have a �2(n) distri-
bution with its mean E(S(l)) = n and its variance D(S(l)) = 2n.
Let Y(l) = (�2

(l)/n)S(l), we will obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E(Y(l)) = E

(
�2

(l)

n
S(l)

)
= �2

(l),

D(Y(l)) = D

(
�2

(l)

n
S(l)

)
= 2n

(
�2

(l)

n

)2

= 2�2
(l)

n
× �2

(l).

(15)

The variance of a group of n samples is

y = 1

n

n∑
t=1

x2
t . (16)

Clearly s = (n/�2)y is a sample from the population S ∼
�2(n). Therefore, the distance between y and the population
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X(l), (l = 1, 2) will be

d(y, X(l)) = |y − E(Y(l))|/
√

D(Y(l)) = |y − �2
(l)|/(�2

(l)

√
2/n).

(17)

Let ϑ∗ = 2�2
(1)�

2
(2)/(�

2
(1) + �2

(2)), we obtain the following de-
termination rules:

if y�ϑ∗ ⇔ d(y, X(1))�d(y, X(2)), y ∈ X(1),

if y > ϑ∗ ⇔ d(y, X(1)) > d(y, X(2)), y ∈ X(2). (18)

Therefore, the precision rates of classifying a group of n sam-
ples are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = P(y�ϑ∗) =
∫ 2n�2

(2)
/(�2

(1)
+�2

(2)
)

0

1

2n/2�(n/2)

×e−s/2s(n/2)−1 ds,

p2 = P(y > ϑ∗) =
∫ +∞

2n�2
(1)

/(�2
(1)

+�2
(2)

)

1

2n/2�(n/2)

×e−s/2s(n/2)−1 ds,

(19)

where p1 is the probability that a group of n samples from
population X(1) are correctly classified into X(1), p2 is the
probability that a group of n samples from population X(2) are
correctly classified into X(2).

The classification error rates are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1 = 1 − p1 =
∫ +∞

2n�2
(2)

/(�2
(1)

+�2
(2)

)

1

2n/2�(n/2)
e−s/2s(n/2)−1 ds,

f2 = 1 − p2 =
∫ 2n�2

(1)
/(�2

(1)
+�2

(2)
)

0

1

2n/2�(n/2)
e−s/2s(n/2)−1 ds,

(20)

where f1 is the probability that a group of n samples from the
population X(1) are incorrectly classified into the population
X(2), p2 is the probability that a group of n samples from the
population X(2) are incorrectly classified into the population
X(1).

Let us give an example. Assume two normally distributed
populations as follows,{

�(1) = 0,

�(1) = 2,

{
�(2) = 0,

�(2) = 8.
(21)

When n = 20, we can obtain that detection precision rates are
p1=0.993 and p2=0.999, and the error rates are f1=0.007 and
f2 = 0.001, respectively. However, any mean based classifier
will fail since the two populations have the same means.

In the above discussions, we use the presumed parameters
such as mean and variance in the calculation. These parameters
can be estimated in real applications. The probability distribu-
tions in the mentioned examples are much simpler than that of
real applications, however, they help us understand the benefit
of utilizing the covariance information in groups of samples to
improve the effectiveness of the detection.

3. Problem definition

3.1. Covariance feature space

Assume p physical features f1, . . . , fp are provided to de-
scribe an observation and we can obtain xl

1, xl
2, . . . , xl

n in n ob-
servations during Tl . The covariance matrix of the n samples
in Tl denoted as Ml is given by

Ml =

⎛
⎜⎜⎜⎜⎜⎝

�f l
1f l

1
�f l

1f l
2

· · · �f l
1f l

p

�f l
2f l

1
�f l

2f l
2

· · · �f l
2f l

p

...
...

. . .
...

�f l
pf l

1
�f l

pf l
2

· · · �f l
pf l

p

⎞
⎟⎟⎟⎟⎟⎠ , (22)

where

�f l
uf l

v
= cov(f l

u, f
l
v) = 1

n

n∑
k=1

(f l,k
u − �f l

u
)(f l,k

v − �f l
v
),

�f l
u
= E(f l

u) = 1

n

n∑
k=1

f l,k
u

and l is the number of time intervals, such as T1, T2, . . . , Tl, . . .

1� l�∞.
The covariance matrix Ml describes the network status dur-

ing Tl by means of measuring the correlativity among the net-
work features f1, . . . , fp. Basically, the features f1, . . . , fp

can be directly obtained from the network monitoring devices
[26–28]. For example, the features can be the packet number
every second or the frequencies of the different source IP ad-
dresses usage and so on, which can be directly recorded by the
statistical model provided in current routers or switches. There
are also some special features proposed by the experienced net-
work experts. These special features can be obtained through
a simple pre-processing on the statistical information provided
by the monitoring devices. The examples of these features are
the number of connections to the same service or the percentage
of connections that have “SYN” errors to the same host [29].

In conceptual terms, a sample can be regarded as a point
in the feature space. As a sample, a covariance matrix can
be regarded as a point in the covariance feature space. Each
dimension of the covariance feature space gives the coordi-
nate of the point along each axis of the space. If p features
f1, . . . , fp are utilized to describe an observation, then each
covariance matrix will provide the correlation information in a
total of p∗(p + 1)/2 measurements (because a covariance ma-
trix is symmetric). Each measurement or each dimension of the
covariance feature space gives the coordinate of the point by
means of the correlation between each pair of features.

Fig. 1 illustrates that a covariance matrix Ml is viewed as a
point in a p∗(p + 1)/2-dimensional covariance feature space.
The detection or the classification itself is described as a trans-
formation that maps the point Ml into one of the classes in a
c-dimensional decision space, where c is the number of classes
to be distinguished.
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Classification

c-dimensional 
decision space 

p*(p+1)/2-dimensional 

covariance feature space 

Ml

Fig. 1. Illustration of the classification in covariance feature space.

3.2. Problem representation

We take a view of intrusion detection problem as a statistical
multi-classification problem in pattern recognition.

Assume we are given a set of training samples {x1,1, x1,2, . . . ,

x1,t1 , x2,1, x2,2, . . . , x2,t2 , . . . , . . . , xR,1, xR,2, . . . , xR,tR } and
its corresponding set of classes {�1, �2, . . . ,�R}, where
{x1,1, x1,2, . . . , x1,t1} belongs to class �1, {x2,1, x2,2, . . . , x2,t2}
belongs to class �2 and {xr,1, xr,2, . . . , xr,tr } belongs to class
�r , tr is the number of training samples in �r and 1�r �R.
Let us use the symbol dr ∈ {�1, �2, . . . ,�R} to represent
the label of a sample xr,i (1� i� tr ), where xr,i having p
features f1, . . . , fp is the ith sample in class �r , and dr is
the target output. In order to evaluate the correlation differ-
ences among features, we construct the covariance matrix
training set {(yr,i , dr )}T

i=1, where yr,i is the covariance matrix
of n samples xi

r,1, xi
r,2, . . . , xi

r,n, r (1�r �R) is the number
of training classes, i is the sequence number and dr is the
class label of n samples xi

r,1, xi
r,2, . . . , xi

r,n. Therefore, the
whole training set in the covariance feature space will be
{y1,1, y1,2, . . . , y1,	t1/n
, y2,1, y2,2, . . . , y2,	t2/n
, . . . , . . . , yR,1,
yR,2, . . . , yR,	tR/n
}, where the covariance matrices in
{y1,1, y1,2, . . . , y1,	t1/n
} have the label d1, the covariance ma-
trices in {y2,1, y2,2, . . . , y2,	t2/n
} have the label d2 and the
covariance matrices in {yr,1, yr,2, . . . , yr,	tr /n
} have the la-
bel dr , 1�r �R and 	t1/n
 + 	t2/n
 + · · · + 	tR/n
 = T .
The aim of the classification is to compute a classifier, such
as f (d|�f1f1�f1f2 . . . �fn−1fn�fnfn), that can correctly label
as many samples as possible. When we present an unknown
sample e.g. yT +1 = (�T +1

f1f1
, �T +1

f1f2
, . . . , �T +1

fn−1fn
, �T +1

fnfn
)′ as the

input, the output of pattern recognition system is a dT +1,
which represents the class that yT +1 belongs to, e.g., either
one of already known classes provided in the training stage
(e.g. normal class or known attacks) or an unknown attack.
Fig. 2 demonstrates the samples and the covariance features
used in the covariance feature space.

3.3. Training and testing data

The data set we use is KDDCUP 99 data set which can be
found at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html. It is constructed on the basis of the raw data of TCP dump

Fig. 2. Samples and features in p ∗ (p + 1)/2 dimensional covariance feature
space.

from 1998 DARPA evaluations [29] for the purpose of network
intrusion detector competition. The testing data in KDDCUP
99 data set are not labeled, which makes it difficult to evalu-
ate the performance of different detection techniques. Hence,
we use the training data set for both training and testing in our
study. A covariance matrix mainly reflects the correlation in-
formation of a sequence of data which satisfies the DoS attacks
initiation where tons of packets from one type of DoS attacks
comes within a short time. Therefore, we select all of the DoS
attack samples from the whole training set of KDDCUP 99 as
the data used in our experiments. We use 3

5 randomly selected
data as the training set and use the rest 2

5 data as the testing
set. The training set and testing set are disjoint. Table 1 gives
a description of the data used in our experiments. In order to
investigate the effect of different sequence lengths on the clas-
sification performance, we also test different sequence lengths
in the experiments. As mentioned in Section 3.1, the samples in
the covariance feature space are covariance matrices, therefore,
we also list different covariance matrix samples under differ-
ent sequence lengths of n = 10 (in the column Cov_Len1_10),
n=50 (in the column Cov_Len2_50) and n=150 (in the column
Cov_Len3_150) in Table 1, respectively. The samples in the col-
umn Cov_Len1_10 and Cov_Len2_50 use the non-overlapped
sequences while the samples in the column Cov_Len1_150 use
the overlapped sequences by sliding 50 samples once a time.
Let us take the normal class as an example. The original sam-
ple number of the normal class is 972,780. The 3

5 training set
will contain a total of 583,668 original samples as shown in the
column of Original. The number of corresponding covariance
matrix samples will be 58,366 in the training set with sequence
length n = 10 as described in the column of Cov_Len2_10.
Similarly, the training set with sequence length n=50 will con-
tain a total of 11,673 covariance matrices as described in the
column of Cov_Len3_50. If we use sequence length 150 and
slide 50 original samples once a time, we will obtain a total
of 11,671 covariance matrices as described in the column of
Cov_Len3_150. Totally, the KDDCUP 99 data set contains six
different types of DoS attacks as listed in Table 1. The last DoS
attack type “land” only has 21 samples. Since it is not always
possible to formulate a classification model to learn the detec-
tor with insufficient training data [14], we neglect the “land”
attack in the experiments. Similarly, we also neglect the “pod”
attack in the detection when the sequence length is set to 150.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 1
Multiple DoS attack samples used in the experiments

Type Total Original Cov_Len1_10 Cov_len2_50 Cov_len3_150

Train Test Train Test Train Test Train Test

Normal 972,780 583,668 389,112 58,366 38,911 11,673 7782 11,671 7780
Neptune 1,072,017 643,211 428,806 64,321 42,880 12,864 8576 12,862 8574
Smurf 2,807,886 1,684,732 1,123,154 168,473 112,315 33,694 22,463 33,692 22,461
Back 2203 1322 881 132 88 26 17 24 15
Pod 264 159 105 15 10 3 2 Null Null
Teardrop 979 588 391 58 39 11 7 9 5
Land 21 Null Null Null Null Null Null Null Null

3.4. Features used

As described in Section 3.1, the features used in the de-
tection are the covariances among p physical features. There
are a total of 41 features provided in the KDDCUP data set.
Among them, some features describe the audit information in
host audit logs, which is mainly used in detecting host based
intrusions such as U2R or U2L intrusions [14]. The others
describe the network connection and traffic information which
are called time based features [14]. Therefore, we employ a
total of 9 time based features as the physical features to detect
the DoS attacks in our experiments. These 9 time based traffic
features measure the TCP connection statistics in 2 s, which
can be statistically calculated on the monitored network traffic
using a packet capturing program such as TCPDUMP. The fea-
tures include count, srv_count, serror_rate, srv_serror_rate,
rerror_rate, srv_serror_rate, same_srv_rate, diff_srv_rate and
srv_diff_host_rate. A detailed description of the meaning
of each feature can be found in Ref. [14] or the webpage
of http://kdd.ics.uci.edu/databases/kddcup99/task.html. Conse-
quently, the dimension of the covariance feature space in our
experiments will be (9∗(9 + 1)/2) = 45.

4. Detection approaches

In order to investigate the performance of different detectors
in detecting different types of attacks in the covariance fea-
ture space, we employ two statistical pattern recognition ap-
proaches. One is the threshold based detection approach where
the classification boundaries are determined by the threshold
matrices, the other is the traditional decision tree approach.
The reasons why we compare the performance of these two
approaches are that: (i) both are typical supervised statistical
pattern recognition approaches and (ii) the classification bound-
aries in both approaches have specific meanings. They can mea-
sure the covariance differences on each dimension of the co-
variance feature space by either a threshold or a rule.

In this section, we describe the basic idea of threshold based
approach and the decision tree approach. We will compare and
discuss the experimental results of these two techniques for
intrusion detection in the covariance feature space in the next
section.

4.1. Threshold based approach

Suppose that we have samples from R already known classes:
�1, �2, . . . ,�R . For each class �r (1�r �R), its training set
consists of all the covariance matrices calculated on the sam-
ple sequences of equal, fixed length n. For instance, we ob-
tain a total of l covariance matrices in the training set of
class �r as {M1

r , M2
r , . . . , Ml

r}, where each covariance ma-
trix Mi

r (1� i� l) describes the correlation among samples in
the sequence Ti . In order to evaluate the differences between
two covariance matrices, we define a dissimilarity function
Dist(A, B)= (duv)p×p between two covariance matrices A and
B as follows:

∀auv ∈ A ∀buv ∈ B, duv = |auv − buv|. (23)

The center of training covariance matrices in each class is uti-
lized to construct the class profile. Given a new Mj , the thresh-
old based classifier will assign it the class label according to
the following classification algorithm:{

if ∃r, � Dist(Mj , E(�r ))��r , then Mj ∈ �r ,

else ∀r, � Dist(Mj , E(�r )) >�r , then Mj ∈ unknown attack,

(24)

where r is the training class label, 1�r �R, E(�r ) is the ex-
pectation of training class �r , �r is the settled threshold matrix
for class �r .

As we know, each element in a covariance matrix reflects the
correlation between two features. The threshold matrix �r will
measure correlation differences among all the observed features
between an observed covariance matrix and the profile of each
class. If all difference matrices among the observed covariance
matrix and already known class’ profiles exceed the ranges
within which the corresponding threshold matrices restricts, an
unknown attack will be signaled.

The aim of the threshold based approach is to find a suitable
threshold matrix for each training class where each element in
the threshold matrix can provide a reasonable range to cover
the variance of the covariance changes in the same class on the
one hand and to keep the samples from other classes outside
on the other hand. Therefore, a total of R threshold matrices
�r 1�r �R are required to obtain for R already known classes
�1, �2, . . . ,�R in the training stage. In order to settle a prac-
tical threshold �r for each class �r 1�r �R, we employ the

http://kdd.ics.uci.edu/databases/kddcup99/task.html
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Chebyshev’s Inequality P(|X − E(X)| < 	)�1 − D(X)/	2 as
follows:

For each element �f l
uf l

v
in a training covariance matrix Ml ,

we will obtain

∀(u, v), P (|�f l
uf l

v
− E(�f l

uf l
v
)| < 	)�1 − D(�f l

uf l
v
)/	2, (25)

D(�f l
uf l

v
) = 1

s

s∑
l=1

(�f l
uf l

v
− �fufv )

2, (26)

where �f l
uf l

v
is the covariance between feature fu and fv ,

E(�f l
uf l

v
) is the expected value of �f l

uf l
v

in class �r , s is the
total number of sequences of length n in class �r .

Let 	 = 3
√

D(�f l
uf l

v
) and 	 = 4

√
D(�f l

uf l
v
) respectively, we

will obtain

∀(u, v), P (|�f l
uf l

v
− �fufv | < 3

√
D(�f l

uf l
v
))�1 − 1

9 , (27)

∀(u, v), P (|�f l
uf l

v
− �fufv | < 4

√
D(�f l

uf l
v
))�1 − 1

16 . (28)

Eqs. (26)–(28) provide a solution to determine the value of
each element in the threshold matrix �r , subject to the detection
probability of each class. For example, if the requirement of
the probability of correctly detecting �r is 88.89%, the lower

bound of the threshold matrix should be set to 3
√

D(�f l
uf l

v
)

as indicated in Eq. (27). Similarly, if the requirement of the
probability of correctly detecting �r is 93.75%, the lower bound

of the threshold matrix should be set to 4
√

D(�f l
uf l

v
) as indicated

in Eq. (28).

4.2. Decision tree approach

The decision tree approach presented in this paper is mainly
used for performance evaluation in the covariance feature space,
hence we only briefly introduce its principle and theory in this
section. The details of the decision tree theory can be found in
Ref. [30].

Decision tree is a statistical classification approach which
encodes a classifier in a form of a tree. The aim of the decision
tree techniques is to find a tree that can correctly assign labels to
the samples in the training set. The knowledge represented by
the tree can be expressed into rules which make the decision tree
easy to understand and presentable to non-specialists. A typical
greedy algorithm to construct a decision tree is in a top-down
recursive divide-and-conquer manner. At start, all the training
samples are at the root and attributes (features) are categorical.
Then the examples are partitioned recursively based on selected
attributes. Test attributes are selected on the basis of a heuristic
or statistical measure. Many different approaches can be used
to construct a decision tree. In this paper, we utilize commercial
software See5 to construct a decision tree to detect intrusions
in covariance feature space. The decision tree’s optimizations,
such as obtaining a small size of the tree and compressing
classification rules, have already been provided by See5.

Fig. 3. Examples of sub-tree in the covariance feature space.

Fig. 4. A rule-like implementation of the classification algorithm.

A decision sub-tree we obtained in the intrusion detection in
the covariance feature space is exemplified in Fig. 3, where the
sequence length is set to 10.

Since different sequence lengths correspond to different
training sets, the constructed decision trees and the classifi-
cation rules will be different with different sequence lengths.
However all the constructed trees have the same forms as
shown in Fig. 3. The number in the bracket is the number of
samples which have been assigned the class label. For example,
the second line in Fig. 3 shows that 844 covariance matrices
have been assigned as the normal class under the rule of “if
�f7f8 � − 0.0071 and �f1f7 > − 5.054, then Normal Class”.

5. Result comparisons and discussions

This section describes the results obtained by applying the
threshold based and decision tree approaches to detect the nor-
mal class and five different types of DoS attacks as described
in the previous section, in order to evaluate the performance of
intrusion detection in covariance feature space.

5.1. Threshold based approach results

In the experiments, we apply the following sequential rule-
like technique to implement the classification algorithm as de-
scribed in Eq. (24). Firstly, we order all the known classes in the
training set based on the number of samples. For instance, we
obtain R ordered classes as �1, �2, . . . ,�R such that class �1
contains the largest number of samples while �R contains the
smallest number of samples. Then the classifier will determine
the label of a test sample according to the procedure in Fig. 4.
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Table 2
Detection results of threshold based approach with sequence length n = 10 and threshold based on 3

√
D(�f l

uf l
v
) principle

Normal Neptune Smurf Back Pod Teardrop Unknown attack

Normal 32,109 87 210 0 0 0 6505
Neptune 8 39,717 0 0 0 7 3148
Smurf 0 0 111,022 0 0 0 1293
Back 80 0 1 1 0 0 6
Pod 10 0 0 0 0 0 0
Teardrop 9 0 3 0 0 23 4

Table 3
Detection results of threshold based approach with sequence length n = 50 and threshold based on 3

√
D(�f l

uf l
v
) principle

Normal Neptune Smurf Back Pod Teardrop Unknown attack

Normal 6235 0 0 0 0 0 1547
Neptune 0 7611 0 0 0 0 965
Smurf 0 0 21,772 0 0 0 691
Back 14 0 0 1 0 0 2
Pod 2 0 0 0 0 0 0
Teardrop 0 0 0 0 0 5 2

Table 4
Detection results of threshold based approach with sequence length n = 150 and threshold based on 3

√
D(�f l

uf l
v
) principle

Normal Neptune Smurf Back Pod Unknown attack

Normal 6135 0 0 0 0 1645
Neptune 0 7702 0 0 0 872
Smurf 0 0 21,773 0 0 688
Back 4 0 0 6 0 5
Teardrop 0 0 0 0 1 4

Tables 2–4 summarize the detection results of the threshold
based detection approach, which employs 3

√
D(�f l

uf l
v
) princi-

ple of Chebyshev’s Inequality as described in Eq. (27) on differ-
ent covariance matrix data sets of Cov_Len2_10, Cov_Len2_50
and Cov_Len3_150, respectively.

In order to show different performance of the threshold based
approach as an intrusion detector, we employ different perfor-
mance indices such as detection rate, false positive rate, and
false negative rate detector. We also employ the performance
indices of classification precision rate and classification error
rate to show the performance of the threshold based approach
as a multiple classifier. The results are given in Table 5, where
the column 3D means the threshold matrices are settled based
on 3

√
D(�f l

uf l
v
) principle and the column 4D means the thresh-

old matrices are settled based on 4
√

D(�f l
uf l

v
) principle.

The high detection rates and high classification precision
rates in Table 5 show that the threshold based detection ap-
proach is effective in distinguishing multiple attacks in the co-
variance feature space. Table 5 also shows that classification
precision rate increases with the increase of the threshold value.
Since each element in the threshold matrix restricts the range of
the covariance changes in the same class, these results satisfy

the mechanism of the threshold based approach. We also find
out that with the increase of the sequence length, the detection
rate and classification precision rate also increase whereas the
false positive rate, false negative rate and classification error
rate decrease, which indicate that the more samples are used to
calculate a covariance matrix, the more accurate the multiple
classification is in the covariance feature space.

5.2. Decision tree results

Similar experiments have been made by employing the See5
software on the same data sets as described in Table 1. The
experimental results are presented in Tables 6–8 , respectively.

In order to reflect the performance differences of the deci-
sion tree approach with different sequence lengths, we compare
the performance of the decision tree approach with different
sequence lengths as described in Table 9.

Table 9 shows that the decision tree approach achieves
very high detection rates and very low false positive and false
negative rates in detecting multiple intrusions in covariance
feature space. It is also shown that the detection rate and
classification precision rate increase with the increase of
the sequence length whereas the false positive rate, false
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Table 5
Performance comparisons under different thresholds and sequence lengths

Cov_Len1_10 Cov_Len2_50 Cov_Len3_150

3D (%) 4D (%) 3D (%) 4D (%) 3D (%) 4D (%)

Detection rate 98.91 97.88 99.95 99.94 99.99 99.95
Classification precision rate 94.91 95.29 94.19 96.87 91.71 96.60
False positive rate 17.27 11.05 19.88 9.23 21.14 10.33
False negative rate 1.09 2.12 0.05 0.06 0.01 0.05
Classification error rate 5.09 4.71 5.81 3.13 8.29 3.40

Table 6
Detection results of decision tree with sequence length n = 10

Normal Neptune Smurf Back Pod Teardrop

Normal 38,655 13 231 12 0 0
Neptune 20 42,860 0 0 0 0
Smurf 0 0 112,315 0 0 0
Back 15 0 1 72 0 0
Pod 8 0 0 0 2 0
Teardrop 0 0 6 0 0 33

Table 7
Detection results of decision tree with sequence length n = 50

Normal Neptune Smurf Back Pod Teardrop

Normal 7782 0 0 0 0 0
Neptune 0 8576 0 0 0 0
Smurf 0 0 22,463 0 0 0
Back 0 0 0 17 0 0
Pod 2 0 0 0 0 0
Teardrop 0 0 7 0 0 0

Table 8
Detection results of decision tree with sequence length n = 150

Normal Neptune Smurf Back Pod

Normal 7780 0 0 0 0
Neptune 0 8574 0 0 0
Smurf 0 0 22,461 0 0
Back 0 0 0 15 0
Teardrop 0 0 5 0 0

Table 9
Performance comparisons under different sequence lengths

Cov_Len1_10 (%) Cov_Len1_50 (%) Cov_Len1_150 (%)

Detection rate 99.97 99.97 99.98
Classification precision rate 99.84 99.98 99.99
False positive rate 0.66 0.00 0.00
False negative rate 0.03 0.01 0.00
Classification error rate 0.16 0.02 0.01

negative rate and classification error rate decrease with the
increase of the sequence length. The above results also
indicate that the more samples are used to calculate a

covariance matrix, the more accurate the multiple classifica-
tion is for the decision tree classifier in the covariance feature
space.
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Table 10
Performance comparisons of different detection approaches using the same sequence length

Threshold (%) Decision tree (%)

Detection rate 99.95 99.98
Classification precision rate 96.60 99.99
False positive rate 10.33 0.00
False negative rate 0.05 0.00
Classification error rate 3.40 0.01

Table 11
Detection results of threshold based approach in identifying unknown attack

New attack Detection rate of detecting an unknown attack as an unknown attack
(number of samples)

3
√

D(�f l
2f l

1
) principle (%) 4

√
D(�f l

2f l
1
) principle (%)

Neptune (8574) 100 100
Smurf (22,461) 100 100
Back (15) 73.33 6.67
Teardrop (5) 100 100

5.3. Result comparisons and discussions

We compare the experimental results of the threshold based
approach and the decision tree approach using the same se-
quence length n = 150 in Table 10 , where the threshold ma-

trices are settled according to 4
√

D(�f l
uf l

v
) principle.

Table 10 shows that the experimental results of decision tree
approach are either better than or comparable to that of the
threshold based detection approach in detecting multiple intru-
sions in the covariance feature space, since both approaches
achieve a high detection rate and a high classification precision
rate. However, the decision tree approach achieves a lower false
positive rate and a lower false negative rate. The reasons that
the decision tree is better than the threshold based approach are
due to: (i) the commercial software See5 provides an optimal
process in constructing the decision tree, whereas the threshold
based approach only provides a heuristic threshold determina-
tion algorithm and (ii) the KDDCUP data set is constructed by
means of data mining approaches [14], which is more suitable
for a decision tree approach. As we know, many flaws exist in
the KDD data set as discussed in Ref. [31], but to our best of
knowledge, the KDDCUP 1999 contains many labeled attacks
which can serve as a benchmark to evaluate different intrusion
detection methodologies.

As an intrusion detector, the capability of identifying the
unknown attacks is another important performance indicator.
Although decision tree can achieve a high detection rate for
the known classes, it cannot identify any unknown classes. In
order to demonstrate the performance of the threshold based
approach in identifying the unknown attacks, we simulate the
unknown attacks through a leave-one-out approach. Let us take
the Neptune attack as an example. In the leave-one-out detec-
tion experiments, we delete all the samples of Neptune attack
in the training set but still keep the samples of Neptune attack

in the testing set. That is, the 3
5 samples which are originally

used in the training set as described in Table 1 are deleted while
the rest 2

5 samples in the testing set are still kept. Therefore,
Neptune attack will be served as an unknown attack in the test-
ing stage because the detector will not get any information of
Neptune attack in the training stage. Table 11 summarizes the
detection results of threshold based approach in identifying un-
known attacks where the sequence length is set to 150. The
first column indicates the unknown class which is not included
in the training set but appears in the testing set.

Table 11 shows that the threshold based approach achieves
a very high detection rate in detecting the unknown attacks,
especially in detecting the unknown attacks which contains
large number of samples such as Neptune and Smurf.

In the experiments, we use two detection approaches and
employ different sequence lengths to evaluate the detection
performance in the covariance feature space. The experimental
results show that the covariance can be a good feature to be
used to classify multiple and various DoS attacks. In practice,
how to determine a suitable sequence length will be a prob-
lem. In fact, the sequence length determines how many the
monitored packets will be enough to embody the covariance
characteristics of the network traffic. It can be determined
through training. In details, we can extract the data with dif-
ferent sequence lengths from the collected normal traffic trace
and compare the average covariance matrix difference be-
tween the sequential data and the whole data set. Among all
sequential data with different lengths, we can determine such
a sequence length where the average difference between the
sequential data and the whole trace levels off relatively within
a small range. Since the sequential data with such a length
can embody the statistical covariance characteristics of whole
trace with a little gap, it can be settled as a practical sequence
length.
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6. Conclusions

This paper directly utilizes the covariance matrices of sam-
ple sequences to detect multiple and various attacks. With
respect to the behavior of typical DoS network intrusions,
it firstly analyzes the difficulties that traditional mean based
detection approaches fail to improve the effectiveness and ex-
plains that a better detection performance can be achieved by
utilizing the statistical information contained in groups of net-
work samples. By constructing a covariance feature space, a
detection approach can thus utilize the correlation differences
of sequential samples to identify multiple network attacks.
Two typical statistical detection approaches are evaluated to
detect multiple attacks in the covariance feature space. One
is the proposed threshold based detection approach where the
classification boundaries are determined by the corresponding
threshold matrices while the other is the traditional decision
tree approach. A public data set which contains all different
types of DoS attacks is used for the evaluations. The exper-
imental results show that both approaches are effective in
distinguishing multiple known attacks in the covariance feature
space. Compared with the decision tree, the threshold based
approach offers an advantage of identifying the unknown at-
tacks with a high detection rate. The high performance of
both approaches in the covariance feature space verifies that
different network intrusions have different correlation statis-
tics which can be directly utilized in the covariance feature
space to distinguish multiple and various network intrusions
effectively.

It is also pointed out that the covariance based detection
will succeed in distinguishing multiple classes with near or
equal means while any traditional mean based classification
approach will fail. In summary, despite some open problems
such as what the favorite feature set is and how to determine
a suitable sequence length and so on, utilizing the covariance
information directly in the detection will improve the detec-
tion effectiveness. It will be worth a wider study to help the
understanding of the characteristics of different network in-
trusions and to be applied into other applications in pattern
recognition.
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