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Abstract

This correspondence proposes an approach to learning weights of weighted fuzzy if–then rules. According to a given T-S norm-based

reasoning mechanism, this approach first maps a set of weighted fuzzy if–then rules into a feed-forward T-S norm network in which

connection weights are just the weights of weighted fuzzy if–then rules, and then trains the T-S norm neural network by a derived

gradient descent algorithm. Numerical experiments show that the proposed approach is feasible and quite effective. The main

contribution of this correspondence is that the mapping relationship between a set of weighted fuzzy if–then rules and a T-S norm neural

network is discovered so that the difficult problem of weight acquisition in weighted fuzzy if–then rules can be converted into the training

of a T-S norm neural network. A comparison between our T-S norm neural network system and a similar model (NEFCLASS) is made.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy if–then rules are the essential way to uncertain
knowledge representation. Fuzzy if–then rules can be
extracted from data via many existing inductive learning
techniques such as fuzzy decision tree [12,16], genetic
algorithm [17], artificial neural network [9,8] and rough set
techniques [10], and they also can be presented by
knowledge engineers. Usually initially extracted fuzzy
if–then rules not have a satisfying testing accuracy, and,
therefore, they need to be further refined. The main merit
of fuzzy if–then rules is their concise representation form
and comprehensibility, while the main defect is the poor
reasoning accuracy. To overcome this defect and keep the
merits simultaneously, the concepts of local weight [4,15,1]
and global weight [14] have been incorporated into the
fuzzy if–then rules, called weighted fuzzy if–then rules.
However, the determination of these weights is quite
e front matter r 2007 Elsevier B.V. All rights reserved.

ucom.2007.01.005

ing author.

esses: wangxz@hbu.cn, xizhaowang@ieee.org
difficult since the weights are usually related to domain
knowledge.
On the other hand, the artificial neural networks

adopting numerical computations with fault-tolerance,
massively parallel computing and trainable property are
shown to be able to ease the knowledge acquisition
problems [18]. The combinations of fuzzy logic and neural
networks capture the advantages of these two fields. There
are already lots of papers which have been published
concerning the integration of fuzzy systems and fuzzy
neural networks (e.g. [9,8,4,1,6,3]), while most of these
researches have been proposed for the extracting of fuzzy
rules, the revising of the membership functions of the
linguistic values of input and output linguistic variables or
the reduction and combination of the initial fuzzy rules.
For example, NEFCLASS [8] presents a neuro-fuzzy
system for the classification of data, which is based on a
generic model of a fuzzy perceptron and uses a supervised
learning algorithm based on fuzzy error back-propagation.
This correspondence proposes an approach to learning

weights of weighted fuzzy if–then rules by discovering the
mapping relationship between a set of weighted fuzzy
if–then rules and a T-S norm neural network. According to

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.01.005
mailto:xizhaowang@ieee.org
mailto:xizhaowang@ieee.org


(3) Talgebraic ¼ ab, Salgebraic ¼ aþ b� 2ab.
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a given T-S norm-based reasoning mechanism, this
approach first maps a set of weighted fuzzy if–then rules
into a feed-forward T-S norm network, which has three
layers (linguistic term layer, rule layer and classification
layer) with the connection weights exactly being the
weights included in the weighted fuzzy if–then rules, and
each node in rule layer is T-norm neuron while each
classification layer node is S-norm neuron node, then trains
the T-S norm neural network by deriving an improved
gradient descent algorithm. Furthermore, the major
difference between NEFCLASS [8] and our proposed one
is that our approach is to tune the weights in fuzzy rules
while NEFCLASS is to adjust membership of fuzzy sets in
rule antecedents. We have made a detailed comparison
between NEFCLASS model and T-S norm neural network
in Section 6. Numerical experiments show that the
proposed approach is feasible and quite effective.

Definition 1. A conjunctive weighted fuzzy if–then rule has
the following form:

R : IF ðV1 is A1½Lw1�Þ AND � � �AND ðV n is An½Lwn�Þ

THEN U is B; ½Gw�, ð1Þ

where V 1;V2; . . . ;V n and U are attributes (features),
A1;A2; . . . ;An and B are attribute values represented by
fuzzy sets, Lwi ð1pipnÞ denotes the local weight of
proposition ðV i is AiÞ, Gw denotes the global weight of
the rule R, both local weights and global weights are
supposed to belong to [0,1]. The local weights are to
indicate the relative degree of importance of propositions
in antecedents contributing to its consequent, and the
global weights are to show the relative degree of
importance of a rule within a rule group.

Let F : ðV 1 is A�1Þ; . . . ; ðV n is A�nÞ be a given fact, then we
have the following reasoning form:

R : IF ðV1 is A1 ½Lw1�Þ AND � � �AND ðVn is An ½Lwn�Þ

THEN U is B; ½Gw�,

Given fact F : ðV 1 is A�1Þ; . . . ; ðV n is A�nÞ,

Conclusion : U is B�, ð2Þ

where B� is the reasoning conclusion which refers to
the classification in this correspondence. Let G ¼ fR1;
R2; . . . ;Rmg be a set of weighted fuzzy if–then rules. Each
one has the following form:

Ri : IF ðV1 is A
ðiÞ
1 ½Lw

ðiÞ
1 �Þ AND � � �AND ðV n is AðiÞn ½LwðiÞn �Þ

THEN U is BðiÞ; ½Gwi�,

where n is the number of attributes. (We make the
appointment that if V j does not appear in the above rule
then we have to delete the term ðV j ¼ A

ðiÞ
j ½Lw

ðiÞ
j �Þ from the

rule.) In this paper, a given fact F is represented in the form
ðA�1;A

�
2; . . . ;A

�
nÞ, where A�j ðj ¼ 1; 2; . . . ; nÞ not only can be

fuzzy sets such as ‘high’, ‘media’, ‘small’, etc., but also can
be continuous real numbers. Suppose there are totally K

classes denoted by C1;C2; . . . ;CK , and the result of
matching F against the rule set G is fp1; p2; . . . ; pKg where
pi denotes the membership degree with which F belongs to
class Ci. To introduce an fuzzy reasoning algorithm based
on T-S norm, we first recall the definition of T-S norm:

Definition 2. A T norm refers to a mapping T : ½0; 1�2!
½0; 1� with the properties:
(T1)
 Tða; 1Þ ¼ a;

(T2)
 apb) Tða; cÞpTðb; cÞ;

(T3)
 Tða; bÞ ¼ Tðb; aÞ and

(T4)
 Tða;Tðb; cÞÞ ¼ TðTða; bÞ; cÞ.
An S norm is a mapping S : ½0; 1�2! ½0; 1� with the
properties:
(S1)
 Sða; 0Þ ¼ a;

(S2)
 apb) Sða; cÞpSðb; cÞ;

(S3)
 Sða; bÞ ¼ Sðb; aÞ and

(S4)
 Sða;Sðb; cÞÞ ¼ SðSða; bÞ; cÞ.
For T-S norm representation, according to (T4) and
(S4), we make the following appointments:

Tm
p¼1ðapÞnTða1;T

m
p¼2ðapÞÞ; Sm

p¼1ðapÞnSða1;S
m
p¼2ðapÞÞ. (3)

There have been many forms to represent the T norm
and S norm. Here we list commonly used three. More
details about the T-S norm can be found in Ref. [7]:
(1)
 Tmin½a; b� ¼ minfa; bg, Smax½a; b� ¼ maxfa; bg;
(2)

TDombi½a; b� ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1�aÞ=aÞpþðð1�bÞ=bÞpp
p ,

SDombi½a; b� ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p pp

p ,
p40;
1þ ða=ð1�aÞÞ þðb=ð1�bÞÞ
It is worth noting that [7]

ðTDombi;SDombiÞ ! ðTmin;SmaxÞ when p! 0 and

ðTDombi;SDombiÞ ! ðTalgebraic;SalgebraicÞ when p! 1.

One can see that the cases (1) and (3) can be regarded as
the special case of (2). Due to the use of parameter p in (2),
there is much flexibility for the reasoning based on T-S
norm. It means that the reasoning based on T-S norm can
be regarded as a general form of approximate reasoning for
classification.

2. T-S norm-based reasoning algorithm A

Input F—an observed fact, G—a set of weighted fuzzy
if–then rules. Output: classification vector fp1; p2; . . . ; pKg.
Using the symbols in Definition 1, for a given T norm and
S norm ðT;SÞ, the reasoning algorithm is described as follows:
For each Ri , do
Step 1: Computing the similarity between A

ðiÞ
j and A�j ,

denoted by SM
ðiÞ
j , in two cases. (1) A is a number and B is a

fuzzy set. In this case, the similarity degree is considered as
the membership of A-belonging-to-B. (2) A and B are two
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fuzzy sets. In this case, the similarity is

SM
ðiÞ
j ¼ ð1þDMÞ�1, (4)

where DM is a distance function, e.g., Euclidean distance.
Step 2: Computing the overall similarity SM ðiÞ by

SM ðiÞ ¼ T
1pjpn

ðLw
ðiÞ
j � SM

ðiÞ
j Þ. (5)

Step 3: Computing the classification vector
fp1; p2; . . . ; pKg by

pk ¼ S
1pipm

fGwinSM ðiÞjBðiÞ ¼ Ckg ðk ¼ 1; 2; . . . ;KÞ. (6)

When a crisp class is required, the class corresponding to
the maximum pk will be selected.
3. Mapping a set of fuzzy if–then rules to a T-S norm neural

network

A set of fuzzy if–then rules can be mapped into a T-S
norm network according to a given T-S norm-based
reasoning mechanism (specified in algorithm A). Fig. 2
shows such a network, which has three layers (linguistic
term layer, rule layer and classification layer) with the
connection weights exactly being the weights included in
the weighted fuzzy if–then rules. And the activation
function of the nodes in rule layer is T norm while that
of the nodes in classification layer is the S norm. Let
L0;L1;L2 denote the number of nodes in the linguistic term
layer, rule layer and classification layer, respectively. Then
we have

Linguistic term layer fy
ð0Þ
i ji ¼ 1; 2; . . . ;L0g, (7)

Rule layer y
ð1Þ
j ¼ TL0

i¼1ðLwijy
ð0Þ
i Þ; j ¼ 1; 2; . . . ;L1, (8)

Classification layer

y
ð2Þ
k ¼ SL1

j¼1ðGwjky
ð1Þ
j Þ; k ¼ 1; 2; . . . ;L2, ð9Þ

where y
ðwÞ
l denotes the output of the lth node of the wth

layer corresponding to the given sample, the inputs of
the network are a record of the training set, i.e., an
n-dimensional vector where n is the feature number. It is
obvious that L0 ¼ n. We compute the values of y

ð0Þ
i via the

formulas in step 1 of algorithm A. Then the error function
can be expressed as

E ¼
1

2

XN

n¼1

XL2

k¼1

ðyk � y
ð2Þ
k Þ

2
¼
XN

n¼1

1

2

XL2

k¼1

ðyk � y
ð2Þ
k Þ

2

 !

¼
XN

n¼1

En, ð10Þ

where fy1; y2; . . . ; yL2
g is the expected output of the sample,

N denotes the number of samples.
4. Training the T-S norm neural network by an improved

gradient descent algorithm

We want to complete the training by minimizing the
above error function via the improved gradient descent
technique. In this paper, if Tmin and Smax were selected as
the activation functions, the partial derivatives of Tmin and
Smax are defined as [2]

qSmaxða; bÞ

qa
¼

1 if aXb;

a if aob;

(
qTminða; bÞ

qa
¼

1 if apb;

b if a4b:

�

(11)

The formulas for adjusting the weights are the following:

Lwij  1 if Lwij � a
qEn

qLwij

X1

Lwij  Lwij � a
qEn

qLwij

if Lwij � a
qEn

qLwij

40

Lwij  0 if Lwij � a
qEn

qLwij

p0

9>>>>>>>>=
>>>>>>>>;
, (12)

Gwjk  1 if Gwjk � b
qEn

qGwjk

X1

Gwjk  Gwjk � b
qEn

qGwjk

if Gwjk � b
qEn

qGwjk

40

Gwjk  0 if Gwjk � b
qEn

qGwjk

p0

9>>>>>>>>=
>>>>>>>>;
, (13)

where a and b are the learning rates for local weights and
global weights, respectively, and the adjustment magni-
tudes in Eqs. (12), (13) are derived as follows:

qEn

qGwjk

¼ ðy
ð2Þ
k � ykÞy

ð1Þ
j

qS

qa
ðGwjky

ð1Þ
j ;S

L1
p¼1
paj

ðGwjk � y
ð1Þ
p ÞÞ, (14)

qEn

qLwij

¼
q

qLwij

1

2

XL2

k¼1

ðyk � y
ð2Þ
k Þ

2

 !

¼
XL2

k¼1

ðy
ð0Þ
i Gwjkðy

ð2Þ
k � ykÞAjkBijÞ, ð15Þ

where

Ajk ¼
q
qa

SððGwjky
ð1Þ
j Þ;S

L1
p¼1
paj

ðGwpk; y
ð1Þ
p ÞÞ, (16)

Bij ¼
q
qa

TððLwij � y
ð0Þ
i Þ;T

L0
q¼1
qai

ðLwqj ; y
ð0Þ
q ÞÞ. (17)

In our experiment, the TDombi and SDombi have been
selected as the activation functions:

q
qa

Tða; bÞ9
q
qa

TDombiða; bÞ

¼
ððð1� aÞ=aÞp þ ðð1� bÞ=bÞpÞð1�pÞ=p

ð1� aÞp�1

ð1þ ððð1� aÞ=aÞp þ ðð1� bÞ=bÞpÞ1=p
Þ
2apþ1

,

ð18Þ
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Table 2

Training and testing accuracy before and after refinement for the selected

five databases

Database

name

Original results Final results

Training

accuracy

Testing

accuracy

Training

accuracy

Testing

accuracy

Bupa 0.65 0.61 0.73 0.73

Pima 0.74 0.72 0.80 0.81

Haberman 0.75 0.75 0.83 0.82

Glass 0.69 0.64 0.79 0.76

Sonar 0.83 0.76 0.89 0.88
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q
qa

Sða; bÞ9
q
qa

SDombiða; bÞ

¼
ðða=ð1� aÞÞp þ ðb=ð1� bÞÞpÞð1�pÞ=pap�1

ð1þ ðða=ð1� aÞÞp þ ðb=ð1� bÞÞpÞ1=p
Þ
2
ð1� aÞpþ1

.

ð19Þ

The detailed process of the improved gradient descent
algorithm is as follows:

Step 1: Create a T-S norm neural network according to a
set of initially fuzzy if–then rules, and uniformly distrib-
uted random numbers are drawn from [0,1] to initialize all
network connection weights.

Step 2: Until the termination condition is met, Do
For each object in training set, Do
Propagate the input forward through the network:
0.9

0.85

(1)
Tab

Surv

Data

Bup

Pim

Hab

Glas

Sona

0.8

0.75u
ra

c
y

Input the object to the network and compute the
output yðiÞu ði ¼ 0; 1; 2Þ of every unit u in the network.
Propagate the errors backward through the network:
0.7A
c
c

(2)
0.65e
s
t 
For each network output unit k, calculate qEn=qGwjk

according to (14), (19).

n
/T
(3)
0.6

ra
i

For each hidden unit j, calculate qEn=qLwij according
to (15)–(18).
0.55T
(4)
 Update the value of Lwij ,Gwjk according to (12), (13).
0.5

0.45

0.4
0 1 2 3 4 5

P

6 7 8 9 10

Train Accuracy

Test Accuracy

Fig. 1. The train/test accuracy of Sonar with the change of p.
During the iteration, we select such a restriction that the
weight is regarded as 1 (or 0) if the weight is bigger than 1
(or less than 0) to ensure the weight values being in the
interval [0,1]. We have conducted a lot of experiments with
respect to the restriction. The experimental results show, to
some extent, that the restriction affects the convergence.
We leave it as a further investigated issue.
5. Experimental demonstration

Many experiments have been conducted for this
demonstration. Here we report five cases. These databases
are selected from UCI machine learning repository [11] to
demonstrate our proposed approach to weight refinement
(Table 1). For each database, 50% examples are randomly
selected for training and the remaining 50% for testing.

The experimental results are shown in Table 2 from
which one can clearly see that there is a significant
improvement for the learning rate, particularly for the
testing accuracy. In our experiments, the parameter p is set
to be 2. Experiments show that the reasoning result is not
le 1

ey of the selected databases

base No. of examples No. of attributes No. of classes

a 345 6 2

a 768 8 2

erman 306 3 2

s 814 9 7

r 208 60 2
sensitive to the parameter p. An illustration can be found in
Fig. 1.
One may argue that the learning accuracy improvement

of fuzzy if–then rules can be achieved via many existing
techniques such as adjusting the learning parameters in the
fuzzy decision tree induction, why this method is preferred?
The main reason is that the current approach does not
increase the number of initial rules but only adjusts the
weight parameters, which has less chance to lead to over-
fitting. We select an optimized decision tree approach [13],
which is to first generate the same initialized fuzzy rules (as
used in this paper) and then optimize the tree structure for
the fuzzy rule improvement, to be compared with the
proposed method. The comparison is listed in Table 3.
Furthermore, in order to show the feasibility of the T-S

norm network (Fig. 2), we quote 4 fuzzy if–then rules
extracted in [5] corresponding to the IRIS data. These
rules will be regarded as 4 initial weighted fuzzy if–then
rules (with local weights 1 and global weights 1) and are
shown as follows:
R1:
 IF hPL is SM½Lw1�i and hPW is SM½Lw2�i THEN
Setosa ½Gw1�,
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Table 3

Comparison between optimized decision tree (ODT) approach and T-S

norm network

Bupa Pima Haberman Glass Sonar

ODT approach Train accuracy 0.75 0.79 0.80 0.81 0.85

Test accuracy 0.73 0.76 0.78 0.75 0.82

T-S norm network Train accuracy 0.73 0.80 0.83 0.79 0.89

Test accuracy 0.73 0.81 0.82 0.76 0.88

input (i=1,2,…, L0)

… 

… 

GwjkLwij

T-norms Neural cell S-norms Neural cell

output (k=1,2,…, L2)hide (j=1,2,…, L1)

… 

Fig. 2. A T-S norm neural network.
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R2:
 IF hPL is MED½Lw3�i and hPW is MED½Lw4�i THEN
Versicolour ½Gw2�,
R3:
 IF hPL is LRG½Lw5�i and hPW is LRG½Lw6�i and
hSL is MED½Lw7�i THEN Virginica ½Gw3�,
R4:
 IF hPL is LRG½Lw8�i and hPW is LRG½Lw9�i and
hSW is MED½Lw10�iTHEN Virginica ½Gw4�.
Table 4

Comparison of the network architecture between NEFCLASS model and

T-S norm neural network
Using the initial rules to test 150 examples of IRIS data
according to T-S norm-based fuzzy reasoning, the classi-
fication accuracy is 82%. Then refine the 4 fuzzy rules via
the proposed method, i.e., adjust the values of local weights
and global weights. The refined fuzzy if–then rules have
been followed.
Network

architecture

NEFCLASS T-S norm neural network

Connection Each connection between Lwij is the connection
R�1:

weights from units xi 2 U1 and Rr 2 U2 weight between the ith
IF hPL is SM½0:81�i and hPW is SM½0:99�i THEN
Setosa [0.68],
input units to rule is a fuzzy set mðiÞj , labelled input unit and jth rule
R�2:
 units
with a linguistic term A

ðiÞ
j .

unit, which is exactly the

ith local weight of the jth
IF hPL is MED½1:0�i and hPW is MED½0:92�i THEN
Versicolour [0.32],
These may be terms like
weighted fuzzy production
R�3:
small, medium, large, etc.
rule, and Lwij is a scalar
IF hPL is LRG½1:0�i and hPW is LRG½0:69�i and
hSL is MED½0:68�i THEN Virginica [0.82],
Connection W ðR; cÞ 2 f0; 1g for all Gw is the connection

R�4:
weights from rule R 2 U2, c 2 U3

jk

weight between the jth rule
IF hPL is LRG½0:38�i and hPW is LRG½0:95�i and
hSW is MED½0:76�i THEN Virginica [1.0].
units to output

units
unit and kth output unit,

which equals the global

weight of the jth weighted

fuzzy production rule and

Gwjk is a scalar
Let R�1–R�4 to test the same 150 examples of IRIS data, the
error ratio is 11.4%, that is to say, the classification
accuracy has been improved by 6.6%.
6. A comparison between NEFCLASS model and our T-S

norm neural network system

A NEFCLASS model was proposed ([8]) to learn fuzzy
rules via adjusting fuzzy member functions. The following
is a minute comparison between NEFCLASS model and
our system (Table 4).

Similarities: Both NEFCLASS model and our proposed
T-S norm neural network are a three-layer fuzzy percep-
tron network with the similar specifications:

U1 ¼ fx1; . . . ;xng input layer,

U2 ¼ fR1; . . . ;Rkg rule layer,

U3 ¼ fc1; . . . ; cmg output layer.

Both the two methods define for each rule unit u 2 U2 a
propagation function NETu to calculate the net input
netu ¼ Tu02U1

fW ðu0; uÞðou0 Þg where T is a t norm, W ðu0; uÞ is
the connection weight from input unit u0 to rule unit u. In
addition, both methods complete the learning procedure by
adjusting some parameters of the fuzzy production rules.

Difference: (1) Net architecture: The connection weights
of NEFCLASS are fuzzy sets while the connection weights
of our proposed network are real numbers.
(2) Objectives: The NEFCLASS model aims to learn

fuzzy rules like:

if x1 is m1 and x2 is m2 and . . . and xn is mn

then the pattern ðx1; x2; . . . ; xnÞ belongs to class i,

where m1; . . . ;mn are fuzzy sets, each mj is tunable. The
learning process is to tune those mj ðj ¼ 1; . . . ; nÞ (i.e., their
three parameters). While our T-S norm network system is
to learn the weights of weighted fuzzy production rules
like Eq. (1), in which local weights and global weights
are attached and the fuzzy sets Aj ðj ¼ 1; . . . ; nÞ are
nonadjustable. The learning process is to adjust the local
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weights and global weights rather than those fuzzy sets
Aj ðj ¼ 1; . . . ; nÞ.

(3) Network input: The input of NEFCLASS is the
continuous-valued number while the input of our system is
the similarity degrees of attribute values matching fuzzy
rules.

(4) Learning algorithm of the network: In our T-S norm
neural network system, the propagation functions, i.e., the
T norm and S norm, are nondifferentiable, so we define a
type of derivative of T norm and S norm, respectively, and
then determine a gradient descent-based fuzzy error back-
propagation algorithm to train the network. During the
training, both the weights from input units to rule units
(local weights) and the weights from rule units to output
units (global weights) are adjusted. While in NEFCLASS
model, a fuzzy error back-propagation algorithm, which is
not based on the gradient descent technology, is used to
train the NEFCLASS model, and only the weights (fuzzy
sets) between the input units and rule units are changed. It
is realized by adjusting the incorporated three parameters
in the triangular membership functions. The connection
weights from rule units to output units remain 1 through-
out the learning process.

(5) Experimental evaluation on IRIS data set: The
NEFCLASS model had been used to obtain rules and
fuzzy sets from IRIS data set [8], and the network, with 4
input, 3 hidden and 3 output units, was able to learn the
training set completely and it classified 5 of the 75 test
patterns incorrectly, i.e., the classification rate on the test
set was 93%. To compare the two methods, we also use our
T-S norm neural network system to refine the extracted
fuzzy rules from IRIS data set. Firstly, 5 initial fuzzy rules,
with all weights equal 1.0, are extracted via the fuzzy
decision tree methodology [16], and the training rate is
91% while the testing rate is 87%. Secondly, we use the
proposed T-S norm network system to learn the local
weights and global weights. After the refinement, these
weighted fuzzy production rules classify only 2 training and
6 testing patterns incorrectly, i.e., the testing accuracy
is 92%.

7. Conclusion and future work

This correspondence proposes an approach to learning
weights of weighted fuzzy if–then rules by training a T-S
norm neural network. The approach combines both the
merit of simple representation and comprehensibility of
fuzzy if–then rules and the merit of enhancement of neural
network learning capability. The mapping relationship
between a set of weighted fuzzy if–then rules and a T-S
norm neural network is discovered in this correspondence,
and, therefore, the difficult problem of weight acquisition
in weighted fuzzy if–then rules can be converted into the
training of T-S norm neural networks. An improved
gradient descent algorithm is derived to train the neural
network. Experiments show that, under the condition that
the number of rules is not increasing, the learning/testing
accuracy of a set of fuzzy if–then rules can be improved
significantly after the weight refinement.
The further research work will focus on the following

three points. (1) Improve the training algorithm with
respect to the restriction that weights belong to [0,1],
including the time complexity and the over-fitting phenom-
enon. (2) Study whether the reasoning is strongly
dependent on the change of T-S norms (since there are
many different T-S norms) and further study the T-S norm
sensitivity to its parameters.
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