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by Maximizing Fuzzy Entropy
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Abstract—When fuzzy IF–THEN rules initially extracted from
data have not a satisfying performance, we consider that the rules
require refinement. Distinct from most existing rule-refinement ap-
proaches that are based on the further reduction of training error,
this paper proposes a new rule-refinement scheme that is based
on the maximization of fuzzy entropy on the training set. The
new scheme, which is realized by solving a quadratic program-
ming problem, is expected to have the advantages of improving
the generalization capability of initial fuzzy IF–THEN rules and
simultaneously overcoming the overfitting of refinement. Experi-
mental results on a number of selected databases demonstrate the
expected improvement of generalization capability and the pre-
vention of overfitting by a comparison of both training and testing
accuracy before and after the refinement.

Index Terms—Classification, fuzzy entropy, fuzzy IF–THEN
rules, maximum entropy principle, parametric fuzzy IF–THEN
rules, rule-based reasoning.

I. INTRODUCTION

KNOWLEDGE acquisition or extraction is regarded as the
bottleneck of expert system development in the artifi-

cial intelligence field. Knowledge may be expressed in differ-
ent forms such as mappings, graphics, tables, neural networks,
rough sets, especially fuzzy IF–THEN rules. So far, fuzzy IF–
THEN rules are the most commonly used representation tools
of knowledge with uncertainty and have wide applications to
computational intelligence [1].

So far, a large number of approaches to fuzzy IF–THEN rule
generation from numerical and nominal data for classification
have been proposed in recent decades. It is difficult to give a
complete survey on fuzzy rule generation/extraction. The fol-
lowing is a brief and incomplete summary on this topic.

1) Fuzzy rules for classification can be extracted from data
through a simple heuristic procedure [2]–[6], where the
heuristic information plays a key part in the rule extraction.

2) The induction approach of the fuzzy decision tree, which
first generates a decision tree and then converts the tree
into a set of fuzzy IF–THEN rules, is important for fuzzy
rule extraction [7], [8].

3) Fuzzy rules for classification can be generated by using
the neuro-fuzzy technique [9]–[13]. In [14], the authors
give a survey on this technique.
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4) Fuzzy rules can also be generated and evaluated by using
genetic algorithms [15]–[19], [47].

5) Fuzzy rule extraction can be conducted by using the rough
set technique in which fuzzy upper/lower approximations
and the fuzzy core are used to generate fuzzy attribute
reduction [20].

6) Other techniques such as data mining [21], [22], simulated
annealing [23], hierarchical partitioning [24], support vec-
tor machines [25], B-spline approximation [26], etc., can
be used.

Weighted fuzzy rules incorporate several parameters into the
fuzzy rules, which aims to enhance the representation power of
fuzzy rules. The key issues for weighted rules are how to deter-
mine the weight values by using a soft computing method and
not an experience-based method. From literature, one can find
many investigations on the weighted fuzzy rules. The following
is brief survey on weighted fuzzy rules.

The certainty grade is considered to be the rule weight, and
the effect of the weight for improving the performance of classi-
fication is investigated in detail [27], and furthermore, a method
of rule weight specification is developed through heuristic al-
gorithms [28]. A type of fuzzy weighted additive rules are dis-
cussed in [29], and the optimization technique is suggested to
access the weights. This type of weighted additive rules are de-
veloped further in [30], and a quadratic programming is given
to obtain the weights. With respect to the weight specification,
the authors in [31] propose to train a neural network, while
the authors in [32] propose to use of the receiver operating
characteristics analysis. Weighted fuzzy rules have had many
real applications. For example, the authors in [33] propose a
new weighted fuzzy reasoning algorithm and further apply it
to the engineering domain. Yeung and Tsang in [34] incor-
porate the concept of local and global weight into the fuzzy
rules that the representation power of fuzzy rules get further
enhanced.

Due to many uncertain factors such as the insufficiency of
training data and limitations of the methods of rule extraction,
fuzzy IF–THEN rules extracted from data by using the previous
one or some methods are not likely to have a satisfying perfor-
mance. In this case, one can consider that the extracted fuzzy
IF–THEN rules require a refinement. For example, we can map
a set of fuzzy IF–THEN rules into a neural network. The param-
eters in the IF–THEN rules correspond to connection weights of
the neural network, and therefore, the refinement of IF–THEN
rules can be completed by training the neural network [11], [35].
This type of refinement aims at minimizing the error function on
the training set via training the neural network. It is really helpful
to improve the training accuracy, but our new experiments show
that this type of refinement is likely to lead to an overfitting. One
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of the reasons for overfitting may be that we have adopted the
refinement criterion of training error minimization. The over-
fitting phenomenon refers to the fact that the generalization
capability has been downgraded although the training accuracy
is significantly improved. Motivated by changing the refinement
criterion to improve the generalization capability, we propose in
this paper a new refinement scheme based on the fuzzy entropy
maximization, instead of the training error minimization. As a
type of criterion of information, the (fuzzy) entropy maximiza-
tion principle has been widely applied to many fields such as
pattern recognition and image processing [36], [37].

Now, we analyze the training process in which fuzzy
IF–THEN rules are used for classification problems. Consider
a two-class problem, and suppose that two very similar objects
are selected for training, object A belongs to class 1, and ob-
ject B belongs to class 2. When we would like to generate a
set of fuzzy IF–THEN rules from a training set including ob-
jects A and B, most existing algorithms assume that the target
output is (1,0) for object A and is (0,1) for object B. Since
the two objects are very similar, we consider the assumption of
target-output-being-crisp nonreasonable. Due to the similarity
between objects A and B, it may be reasonable that we consider
that the degree of object A belonging to class 1, which is un-
necessarily 1, is bigger than the degree of object A belonging
to class 2, which is unnecessarily 0. We may suppose that the
target output for object A is, say, (0.6,0.4), instead of (1,0). In
this situation, the classification uncertainty exists inherently for
the two objects. This paper makes an attempt to recover and uti-
lize this type of inherent classification uncertainty information
during the process of refinement of fuzzy IF–THEN rules.

The following is our main idea for the refinement of fuzzy
IF–THEN rules. Suppose that we have extracted a set of initial
fuzzy IF–THEN rules from a training set by using a given train-
ing algorithm in which a Boolean vector is considered the target
output, and the set of initial fuzzy IF–THEN rules need to refine.
Then, a group of parameters, called global weights, are incorpo-
rated into the set of fuzzy IF–THEN rules. The reasoning results
of the fuzzy IF–THEN rules will be changing with diverse val-
ues of parameters. We attempt to adjust these parameters such
that the fuzzy entropy of actual outputs of the fuzzy IF–THEN
rules on the training set attains maximum. The adjustment is
subject to a number of constraints that indicate that a training
object after refinement has a correct output of crisp class if
the training object can be classified correctly before refinement.
Those constraints imply that the training accuracy will not re-
duce after refinement. It is worth noting that the fuzzy entropy
maximization implies a fuzzification of Boolean vectors, which
tries to recover and utilize the inherent classification uncertainty
information lost in the training process. The fuzzy entropy max-
imization application to refining parameters of fuzzy IF–THEN
rules, which is realized in this paper by solving a quadratic pro-
gramming problem, is expected to improve the fuzzy IF–THEN
rules generalization capability.

The rest of this paper is organized as follows. Section II gives
a globally weighted fuzzy IF–THEN rule-reasoning algorithm.
Section III addresses the parameter refinement based on fuzzy
entropy maximization, derives the parameter-solving problem

as a quadratic program, and gives the procedure of parameter
refinement. Section IV experimentally demonstrates the gen-
eralization capability improvement after parameter refinement,
and the last section concludes this paper.

II. GLOBALLY WEIGHTED FUZZY IF–THEN
RULES REASONING

According to Zadeh’s initial definition of generalized modus
Ponens [38], the reasoning model of fuzzy IT-THEN rules is
described as

A fuzzy IF–THEN rule: IF ‘x is A’ THEN ‘y is B’

A given fact: ‘x is A*’
A conclusion: ‘y is B*’.

There are many approaches to achieve a fuzzy classification
result by matching an object to a set of fuzzy rules. For example,
one can achieve the fuzzy classification by using nonlinear re-
gression represented as a Takagi–Sugeno fuzzy model recently
published in [46]. It is easy to check that different reasoning
mechanism directly influences the results of fuzzy classifica-
tion. In this paper, we focus on a type of globally weighted fuzzy
production rules (WFPRs) [34] and its corresponding reasoning
mechanism. A WFPR is a parametric fuzzy IF–THEN rule with
the conjunctive form

∧n
j=1(Vj = Aj ) ⇒ (U = C) , g

where Vj (j = 1, 2, . . . , n) and U are variables; Aj (j =
1, 2, . . . , n) and C are fuzzy values of these variables (in other
words, Aj (j = 1, 2, . . . , n) are fuzzy sets); the parameter g is
a real number in [0,1] denoting the global weight of the rule
R; and ∧ denotes the conjunction AND. WFPRs degenerate to
fuzzy IF–THEN rules in commonsense when the global weight
g is ignored.

Consider a set of m WFPRs: S = {Ri, i = 1, 2, . . . ,m} and
a given fact, the reasoning model that slightly modifies the gen-
eralized modus Ponens is described as follows:

A set of WFPRs:

Ri : ∧n
j=1(Vj = A

(i)
j ) ⇒ (U = C) , gi , i = 1, 2, . . . , m

A given fact: (Vj = Bj ) j = 1, 2, . . . , n

A conclusion: U = D,CF(D)

where gi represents the global weight assigned to the ith rule
Ri and CF(D) is the certainty factor of the conclusion. It is
worth noting that the m rules have the same consequent C. It is
possible that the jth proposition of the antecedent of the ith rule
(i.e., Vj ) is missing. In this case, the membership function of

A
(i)
j is defined as const 1.
How to draw the conclusion U = D, CF(D): The following

is a scheme to draw the conclusion and to evaluate its certainty
factor. We call the scheme globally weighted reasoning [39].

A. Globally Weighted Reasoning Algorithm

Step A1) For an observed object B = (B1 , B2 , . . . , Bn ) and
each IF–THEN rule Ri within S, the membership of the attribute
value Bj belonging to A

(i)
j is calculated by a

(i)
j = A

(i)
j (Bj ),
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where A
(i)
j (·) denotes its membership function. The overall

degree of matching object B to rule Ri , ai , is defined as

ai =
1
m

(min1≤j≤na
(i)
j ), i = 1, 2, . . . ,m (1)

where m is the number of fuzzy IF–THEN rules.
Step A2) The conclusion’s certainty factor CF(D) is given by

CF(D) =
∑m

i−1
(aigi) (2)

It is easy to see that certainty factor of conclusion is a linear
combination of the global weight parameters g1 , g2 , . . . , gm .

For classification problems, the reasoning result D is ex-
actly equal to C, and the value given in (2) denotes the de-
gree of truth of the object belonging to class C. If there are
K classes (corresponding to K sets of fuzzy IF–THEN rules)
and Ck represents the label of the kth class (1 ≤ k ≤ K), then
the computed result in (2) refers to the degree of truth of some
class, which is denoted by xk (k = 1, 2, . . . ,K). The normal-
ized form of the inferred result is defined as (d1 , d2 , . . . , dk ),
where dk = xk/Max1≤j≤K xj (k = 1, 2, . . . ,K).

When a crisp inferred result is needed, one can take the con-
sequent with maximum dk (1 ≤ k ≤ K). One problem is that
the algorithm cannot give a crisp decision if there exists more
than one maximum dk (1 ≤ k ≤ K). In that situation, we need
another defuzzification method to determine the crisp decision.

We now consider a classification problem with K classes. Let
Ω = {x1 , x2 , . . . , xN } be a training set from which a set of
initial fuzzy IF–THEN rules S = {Ri, i = 1, 2, . . . ,m} have
been extracted. (One can find many approaches to fuzzy IF–
THEN rule extraction from references, but this paper does not
discuss the specific fuzzy IF–THEN rule extraction methods.)
Suppose that the set of extracted IF–THEN rules have not sat-
isfying performance and, therefore, require a refinement. There
exist a number of refinement methodologies, e.g., the Tsang
et al. work [35] in which a set of fuzzy IF–THEN rules are
mapped into a neural network with the parameters of fuzzy
IF–THEN rules corresponding to the connection weights of the
neural network, and then, the refinement is conducted by train-
ing the neural network. This paper proposes a new refinement
viewpoint that basically results from the fuzzy entropy maxi-
mization principle.

Considering the global weights of the set of weighted
fuzzy IF–THEN rules as a number of parameters to be re-
fined, we propose the reasoning scheme in Fig. 1, where
{gi, i = 1, 2, . . . ,m} denotes the global weights. The value
of CFk , representing the possibility of the object xi belonging
to the kth class (1 ≤ k ≤ K) is dependent on the global weight
(g1 , g2 , . . . , gm ), that is

CFk = CFk (g1 , g2 , . . . , gm ) .

We now give an example to illustrate how CFk (1 ≤ k ≤ K)
dependent on (g1 , g2 , . . . , gm ).

Fig. 1. Reasoning process for an object.

Example 1: Consider the following four fuzzy IF–THEN rules:

where V1 , V2 , and V3 are three variables, and the fuzzy sets (Big)
and (Small) are defined as

Big(x) =




1, x ≥ 1
x, x ∈ (0, 1)
0, x ≤ 0

Small(x) =




0, x ≥ 1
1 − x, x ∈ (0, 1)
1, x ≤ 0.

Suppose that A = (0.6, 0.7, 0.2) is an object to be classified.
Matching object A to rules 1 and 2 according to the globally
weighted reasoning algorithm [i.e., (1) and (2)], we have

CF1 =
0.6g1 + 0.2g2

2
.

Similarity, matching object A to rules 3 and 4, we obtain

CF2 =
0.2g3 + 0.3g4

2
.

Therefore, the classification result of object A matching rules
1–4 is (

0.6g1 + 0.2g2

2
,
0.2g3 + 0.3g4

2

)

which is obviously dependent on (g1 , g2 , g3 , g4). Before weight
refinement, the weight vector (g1 , g2 , g3 , g4) is regarded as
(1,1,1,1), which results in a classification result (0.4, 0.25), and
therefore, the crisp decision is that object A belongs to class 1.
After weight refinement, the weight (g1 , g2 , g3 , g4)will change.
For example, if the refined weight vector (g1 , g2 , g3 , g4) is (0.2,
0.3, 0.6, 0.8), then the classification result will be (0.09, 0.18),
and the crisp decision is that object A belongs to class 2, which
shows that the result of crisp classification for an object to be
classified is really dependent on the value of weight.
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Fig. 2. Classification result for (g1 , g2 , g3 , g4 ) = (0.5, 0.5, 0.5, 0.5).

The following example 2 illustrates that the change of global
weights will have much impact on the classification boundary.

Example 2: Consider the following four globally weighted fuzzy IF–THEN
rules

where the membership functions of fuzzy sets Big and Small are
defined as Example 1. We now use these four rules with different
global weights and the globally weighted reasoning algorithm
proposed in (1) and (2) to classify each point in [0, 1] × [0, 1] and
then to observe the classification boundary. The classification
results for four groups of weights are shown in Figs. 2–5, where
sign + denotes class C1 , and sign – denotes class C2 . From
Figs. 2–5, one can see that the global weights have a significant
impact on the classification boundary of reasoning results.

The current focus is what criterion will be used to determine
global weights (g1 , g2 , . . . , gm ) and how will they be deter-
mined? Noting that each training object has a crisp target clas-
sification and an actual classification output can be obtained by
matching the object to the set of fuzzy IF–THEN rules when
(g1 , g2 , . . . , gm ) are known, one traditional approach to refine-
ment is to adjust the values of (g1 , g2 , . . . , gm ) such that the
difference between the target classification and the actual output
is as small as possible. Refinement method based on training-
error-reduction is commonly used. This type of refinement can
certainly improve (at least does not reduce) the training accu-
racy. However, this approach to refinement is very likely to lead
to an over fitting and is not helpful to improve the inductive
capability of this set of fuzzy IF–THEN rules. This paper pro-
poses using the maximum fuzzy entropy as a criterion to refine
parameters g1 , g2 , . . . , gm .

III. PARAMETER REFINEMENT BASED ON FUZZY

ENTROPY MAXIMIZATION

As a type of criterion of information, the fuzzy entropy max-
imization principle has been widely applied to many fields such
as pattern recognition and image processing [35]–[37]. This pa-

Fig. 3. Classification result for (g1 , g2 , g3 , g4 ) = (0.5, 0.37, 0.24, 0.63).

Fig. 4. Classification result for (g1 , g2 , g3 , g4 ) = (0.35, 0.65, 0.5, 0.5).

Fig. 5. Classification result for (g1 , g2 , g3 , g4 ) = (0.32, 0.73, 0.45, 0.57).

per will apply this principle to the parameter determination of
rule-based fuzzy reasoning.

Definition: Let A be a fuzzy set defined on a space X with
the membership function A(x) and F(X) be the set of all fuzzy
sets defined on X. A mapping from F(X) to [0,1], H(A) is called
fuzzy entropy of A if H(A) satisfies [35], [36] the following:

1) H(A) attains its minimum iff ∀x ∈ X,A(x) = 0 or
A(x) = 1.

2) H(A) attains its maximum iff ∀x ∈ X,A(x) = 1/2.
3) When A is more fuzzy than B, i.e.,

∀x ∈ X, 1/2 ≥ A(x) ≥ B(x) or

1/2 ≤ A(x) ≤ B(x), H(A) ≥ H(B).

4) H(A) = H(X − A) for all A ∈ F (X).
There are many functions H(·) satisfying the conditions (1)–

(4). For example, similar to Shannon’s entropy [40], the fuzzy
entropy of a finite fuzzy set A = (µ1 , µ2 , . . . , µT ) [41] can be
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defined as

Hf (A) = −
T∑

j=1

(µj ln µj + (1 − µj ) ln(1 − µj )) (3)

which represents a type of fuzziness of the fuzzy A. It is easy to
check that (4), shown below, satisfies the aforementioned four
conditions, and therefore, (4) is a quite simple fuzzy entropy
function

Ef (A) =
T∑

j=1

(µj (1 − µj )). (4)

This paper will use (4) as our fuzzy entropy definition for
discussion. When the membership µj of a fuzzy set A is equal
to 0.5 for all j, the fuzzy entropy of the fuzzy set attains the
maximum. In this case, the fuzzy set A has the maximum fuzzi-
ness. The fuzzy entropy maximization implies that, for drawing
a fuzzy set as our conclusion, we prefer a fuzzy set with bigger
fuzziness to other fuzzy sets. In other words, we consider that
an event with much uncertainty (fuzzy entropy) will bring us
more information when it occurs.

Maximum fuzzy entropy principle: Consider a reasoning pro-
cess that includes a number of parameters to be determined.
With respect to a given fact, the reasoning conclusion will be
a parametric fuzzy set, which implies that the reasoning con-
clusion will be changing with diverse parameters. We prefer
the parametric fuzzy set with maximum fuzzy entropy (to other
fuzzy sets) as our reasoning conclusion, subject to the given
constraints. The fuzzy entropy maximization can be realized by
parameter adjustment.

Why does the fuzzy entropy maximization can improve the
classification accuracy? The following is an intuitive explana-
tion.

Suppose that we have a classification problem with n class
and A is an object to be classified.

Without any additional information for classification avail-
able, a most reasonable classification result for A should be
that the possibility of A belonging to each one of the n classes
is equal (i.e., 1/n), which can be achieved by maximizing the
entropy of A.

If some additional information for classification is available
(i.e., there exists a training set in which each example’s class
is known), then to get a reasonable and fair classification for
A, we should maximize the entropy of A subject to some con-
straints, each constraint represents that a training example can
be classified correctly. These constraints mean that the available
information for classification has been utilized and that the re-
maining uncertain information for classification is handled by
maximum entropy. The reasonable and fair classification for A
is expected to lead a precision increase.

Since A is an object remaining to classify, we have to com-
plete the entropy maximization of A via training set’s entropy
maximization.

Unfortunately, thus far we cannot give a formal mathematical
formulation for the earlier explanation. It will be considered as
an important issue for further study.

Fig. 6 is an outline of weight-refinement procedure.

Fig. 6. Outline of weight-refinement procedure.

Consider Fig. 1 where the reasoning result for a training object
xi is {CF(i)

1 ,CF(i)
2 , . . . ,CF(i)

K }. Each CF(i)
j denotes the possi-

bility with which the object xi belongs to the jth class. Noting
that each CF(i)

j is a function of parameters (g1 , g2 , . . . , gm ) that
remain to be determined, we have

CF(i)
j = CF(i)

j (g1 , g2 , . . . , gm ) . (5)

Then, the fuzzy entropy of the reasoning result with respect
to object xi can be expressed as

Ef (xi ; g1 , g2 , . . . , gm )

=
K∑

j=1

(CF(i)
j (g1 , g2 , . . . , gm )(1 − CF(i)

j (g1 , g2 , . . . , gm ))).

(6)

The fuzzy entropy on the training set is defined as

Ef (g1 , g2 , . . . , gm ) =
N∑

i=1

Ef (xi ; g1 , g2 , . . . , gm ). (7)

Our parameter-refinement method attempts to maximize the
fuzzy entropy (7) subject to a number of constraints that we
formulate as follows.

From Fig. 1, we know that each training object xi

matching to a set of fuzzy IF–THEN rules with m pa-
rameters {gi, i = 1, 2, . . . ,m} will lead to a consequent
{CF(i)

1 ,CF(i)
2 , . . . ,CF(i)

K } dependent on the parameters. We
first consider a special case in which all parameters are equal
to 1. This case corresponds to the initial (nonrefined) fuzzy IF–
THEN rules extracted from the data set. Matching xi to the set
of fuzzy IF–THEN rules with m parameters being equal to 1,
we obtain a consequent denoted by {d(i)

1 , d
(i)
2 , . . . , d

(i)
K }, that is

d
(i)
j = CF(i)

j (1, 1, . . . , 1) (7a)
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for j = 1, 2, . . . ,K. Supposing that xi belongs to the jth class,
we then define an index set I as

I =
{

i

∣∣∣∣1 ≤ i ≤ N, d
(i)
ji

> max
p �=ji

d(i)
p

}
(8)

representing the training objects that can be classified correctly
by the initial fuzzy IF–THEN rules, and then, we can mathe-
matically formulate our parameter refinement problem as the
programming problem with constraints, shown in (9) at the bot-
tom of the page, where the index set I is defined as (8). It is
noted that the number of constraints in (9) is equal to the num-
ber of objects that can be correctly classified by the initial fuzzy
IF–THEN rules extracted from training set.

From the globally weighted reasoning algorithm given in Sec-
tion II, we know that CF(i)

j (g1 , g2 , . . . , gm ) is a linear combina-
tion of parameters (g1 , g2 , . . . , gm ). Therefore, (9) is a quadratic
programming problem with linear constraints. We now derive
its standard mathematical form.

Suppose m initial IF–THEN rules are classified K group
(where K is the number of classes) and the kth group has rk

IF–THEN rules with the same consequent. The parameter vec-
tor is defined as

G = (g1 , g2 , . . . , gm )T

= (g1 , g2 , . . . , gr1 ; gr1 +1 , gr1 +2 , . . . , gr1 +r2 ;

. . . ; gr1 + ···+rK −1 +1 , . . . , gm )T

=
(
GT

1 ;GT
2 ; · · · ;GT

K

)T
. (10)

The superscript T denotes the transpose of a matrix or a
vector throughout this paper. According to the globally weighted
reasoning algorithm given in Section II [i.e., (1)], we match the
ith training object to the K groups of initial IF THEN rules and
then obtain a matching result, which is denoted by

Ai = (ai1 , ai2 , . . . , aim )T

= (ai1 , ai2 , . . . , air1 ; ai(r1 +1) , . . . , ai(r1 +r2 ) ;

. . . ; ai(r1 + ···+rK −1 +1) , . . . , aim )T

=
(
AT

i1 ;A
T
i2 ; . . . ;A

T
iK

)T
(11)

from which the index set I is determined by (8). According to
the globally weighted-reasoning algorithm given in Section II,
the objective function in (9) can be expressed as

Ef (g1 , g2 , . . . , gm )

=
N∑

i=1

K∑
k=1

(
GT

k Aik

(
1 − AT

ikGk

))

=
K∑

k=1

(
GT

k

(
N∑

i=1

Aik

)
− GT

k

(
N∑

i=1

AikAT
ik

)
Gk

)

= −GT AG + BT G (12)

where the matrix A and the vector B are defined as

A =




N∑
i=1

Ai1A
T
i1

N∑
i=1

Ai2A
T
i2

. . .
N∑

i=1
AiK AT

iK




m×m

,

B =




N∑
i=1

Ai1

N∑
i=1

Ai2

...
N∑

i=1
AiK




m×1

. (13)

Noting that the consequent of matching the ith training object
to the initial set of fuzzy rules (i.e., weighted fuzzy rules with all
global weights being 1) is denoted by {d(i)

1 , d
(i)
2 , . . . , d

(i)
K }, we

suppose ji = arg max1≤j≤K d
(i)
j . Then, the constraints given in

(9) can be expressed as

GT
ji

Aiji
> GT

k Aik , 1 ≤ k �= ji ≤ K, i ∈ I. (14)

In matrix form, the previous constraints can be rewritten as


(C1)(K−1)×m

(C2)(K−1)×m

...

(CL )(K−1)×m




L(K−1)×m




G1

G2

...

GK




m×1

>




0

0
...

0




m×1

(15)
where L = |I|, and for each i ∈ I

(Ci)(K−1)×m =




−AT
i1 0 · · · AT

iji
· · · 0

0 −AT
i2 · · · AT

iji
· · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · AT

iji
· · · −AT

iK


 .

(16)
Summarizing the previous derivations, we give the following

parameter-refinement procedure.
Parameter-refinement procedure:

Step 1) extracting a set of fuzzy IF–THEN rules from a given
training-set according to a given learning algorithm;




Max


 Ef (g1 , g2 , . . . , gm )

=
N∑

i=1

K∑
j=1

(
CF(i)

j (g1 , g2 , . . . , gm )(1 − CF(i)
j (g1 , g2 , . . . , gm ))

) 
 ,

Subject to CF(i)
ji

> maxp �=ji
CF(i)

p , i ∈ I

(9)
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Step 2) dividing these rules into K groups (where K is the
number of classes) so that rules in one group have the
same consequent;

Step 3) for each group, matching training objects to the initial
IF–THEN rules to obtain the vector Ai (11);

Step 4) expressing the parameter vector as (10) and determin-
ing the index set I by (8);

Step 5) determining the integer ji for each i ∈ I according to
ji = arg max1≤j≤K d

(i)
j , which is defined as (7a);

Step 6) solving the quadratic programming problem given by
the quadratic objective function (12) subject to linear
constraints (15) to get these parameters.

Since the maximum fuzzy entropy is attained on candition
that all output components are 0.5, one may argue about how
to determine the exact class when we use the maximum fuzzy
entropy principle to adjust these weights, which leads to such a
case that most class outputs are 0.5. Actually, since the number
of training objects is much bigger than the number of rules
(weights) and many constraints exist, it is almost impossible
that the weight adjustment based on maximum entropy brings
about such a result that all class outputs are 0.5. Our experiments
in Section IV testify to this fact.

IV. EXPERIMENTAL DEMONSTRATION

A. Generating the Initial Fuzzy IF–THEN Rules

We use fuzzy decision tree induction to generate a set of initial
fuzzy IF–THEN rules. What technique is used to generate the
initial IF–THEN rules is unimportant since our focus in this
paper is the rule refinement after rule generation. The complete
algorithm for generating fuzzy decision trees can be found in
many references [7], [8]. Here, we outline the main steps of
generation procedure:

1) fuzzifying the continuous attributes to get a number of
linguistic terms;

2) choosing a heuristic to generate a fuzzy decision tree; and
3) converting this tree into a set of fuzzy IF–THEN rules.
In our experiments, the heuristic is selected as the well-known

fuzzy ID3 and the linguistic terms (fuzzy sets) are selected as
normal fuzzy numbers with the following form:

f(x) =
{

e−(x−c)2 /r 2
, x > c

e−(x−c)2 /l2 , x ≤ c
(17)

where c is the center, and r and l are determined by solving

e−(x−c1 )2 /r 2
∣∣∣
x=(c1 +c2 )/2

= e−(c2 −x)2 /l2
∣∣∣
x=(c1 +c2 )/2

=
1
2
(18)

for any two adjacent centers c1 and c2 (c1 < c2). It results in
r = l = (c2 − c1)/2

√
ln 2.

In this way, if we use n centers c1 < c2 < · · · < cn (n ≥ 2)for
a continuous attribute, then n normal membership functions
f1 , f2 , . . . , fn will be expressed as

f1(x) = exp
(
−4 ln 2(x − c1)2

(c2 − c1)2

)
(19)

fj (x) =




exp
(
−4 ln 2(x − cj )2

(cj − cj−1)2

)
, x > cj

exp
(
−4 ln 2(x − cj )2

(cj+1 − cj )2

)
, x ≤ cj

j = 2, 3, . . . , n − 1 (20)

fm (x) = exp
(
−4 ln 2(x − cn−1)2

(cn − cn−1)2

)
. (21)

B. Databases Selected for Demonstration

The nine databases employed for our experiments are ob-
tained mainly from user–computer interface (UCI) machine
learning database repository [42]. Their features are briefly de-
scribed as follows.

1) Iris plant data: This database is created by Fisher [43]. It
contains 150 objects with four numerical attributes. The
predicted attribute has three values; one class is linearly
separable from the other two.

2) Mango leaf data: This set is used by Pal [44] to investi-
gate the automatic feature extraction based on fuzzy tech-
niques. It provides the information on different kinds of
mango-leaf with 18 numerical attributes for 166 patterns
(objects). It has three classes representing three kinds of
mango.

3) Wine data: It contains 178 examples with three classes
(class A—59; class B—71; class C—48) and 13 numerical
attributes [42].

4) Image segmentation data: It contains 2310 instances with
seven classes and 19 numerical attributes [42].

5) Thyroid gland data: This set contains 215 objects of three
different kinds of thyroid grand [42]. Each object consists
of five numerical attributes.

6) Pima India diabetes data: This database contains 768 ob-
jects related to the diagnosis of diabetes [42] (500 positive
and 268 negative). It has eight numerical attributes.

7) Glass identification database: This database has 214 in-
stances related to seven classes of glass [42]. Each instance
has nine numerical attributes. In our experiments, we con-
sider the first class as the positive and the other six classes
as the negative.

8) Auto-mpg data: This database has 398 instances and nine
attributes. In our experiments, we only use the five numer-
ical attributes and one integer-valued attribute [42]. The
mpg attribute is regarded as the class attribute. Moreover,
since the attribute horsepower has six missing values, we
only use 392 of 398 instances.

9) Sonar database: This database contains 208 patterns, 111
patterns belonging to metal class, and 97 patterns belong-
ing to rock class [42]. Each pattern is a set of 60 numbers
ranging from 0.0 to 1.0.

C. Experimental Procedure

We use the cross-validation procedure. Each database is ran-
domly partitioned into ten disjoint subsets, and the size of each
subset is m/10, where m is the number of examples of the dataset.
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TABLE I
AVERAGED TRAINING AND TESTING ACCURACY BEFORE AND AFTER THE

REFINEMENT FOR THE SELECTED NINE DATABASES

The procedure is then run ten times, each time using different
one of these subsets as the validation (testing) set and com-
bining the other nine subsets for the training set. The training
and testing accuracies are then averaged. For each time, the
experimental procedure is the following.

1) Generate a set of initial IF–THEN rules from the training
set according to the fuzzy decision tree induction men-
tioned in Section IV-A.

2) Calculate the training accuracy (the percentage of train-
ing examples that can be classified correctly by the initial
IF–THEN rules) and the testing accuracy (the percent-
age of testing examples classified correctly) by us-
ing the globally weighted reasoning algorithm given in
Section II, where all global weights are equal to 1.

3) Acquire the parameters (global weights) for all initial
IF–THEN rules by using the parameter-refinement pro-
cedure proposed in Section III.

4) Calculate the training accuracy and the testing accuracy
by using the globally weighted reasoning algorithm given
in Section II, where all global weights are from Step 3.

The experimental results (averaged training and testing accu-
racies for the ten times) are summarized in Table I.

D. Experimental Results and Analysis

From Table I, we can see that, for each dataset, the testing
accuracy after the refinement is bigger than the testing accu-
racy before the refinement while keeping the training accuracy
nondecreased. For example, the testing accuracy of glass identi-
fication data takes an average value as 0.68 before the refinement
and 0.74 after the refinement, which makes an increase of 6%.
Meanwhile, the testing accuracy of thyroid grand data is also
increased on average by 5%, etc. The magnitude of increase is
different, depending on the individual databases. For example,
the increase is little for the database wine. We analyzed the
database of wine and found that there exist many points that are
very similar but with different classes. Compared with the best
results published in [16], we consider decision tree induction
nonsuitable for this dataset.

Moreover, one can learn that, before the refining, the testing
accuracy of sonar signal data is 0.75, although the training ac-

curacy is 0.85, which implies that the over-fitting phenomenon
has happened. After incorporating global weights into the if-then
rules and refining them according to the maximum fuzzy entropy
principle, the testing accuracy has been greatly improved. This
means that our method can avoid the over-fitting phenomenon
to a great extent. Finally, we can pay attention to the fact that
the training accuracy of all databases is not reduced after the
refinement, which is guaranteed by the constraints given in (15).

Remark: This technique first requires a fundamental rule-
generation algorithm-A. The outputs of the algorithm-A are a
set of rules with parameters. In this paper, the algorithm-A is
selected as the basic fuzzy decision induction that is a simple ap-
proach to fuzzy rule generation without further data preprocess-
ing and genetic optimization. It is possible that the performance
of algorithm-A on some specific datasets is worse than the re-
sults published such as in [16], [19], and [46]. This technique
then applies a parametric refinement scheme to refine outputs
of algorithm-A. After the refinement, we expect a significant
improvement in learning accuracy. Mainly, this paper focuses
on this improvement. However, it is possible that our results
after the refinement are still worse than the results published
such as in [16], [19], and [46] on some specific datasets. The
reason is that our results are strongly dependent of the initially
selected algorithm-A. If the published results (generated rules)
are considered as the outputs of our algorithm-A, we may get
the better results than (at least not worse than) the published
ones after the parametric refinement.

The focus of this paper is the improvement of performance
before and after refining algorithm-A (not the algorithm-A it-
self). It is worth noting that the algorithm-A can be anyone that
can generate fuzzy IF–THEN rules from data.

E. Experimental Comparison Between Two Approaches to
Weight Refinement Based on the Fuzzy Entropy Maximum and
Training Error Reduction

This section provides an experimental comparison between
two approaches to weight refinement. One is the entropy-
maximum-based approach proposed in this paper, while the
other is the training error-reduction-based approach, which is
realized by genetic algorithm (GA) [45]. A brief introduction
for GAs is placed in the Appendix.

In our experiments, the fitness function f (g1 , g2 , . . . , gm )
is defined as the training accuracy with respect to the weight
parameters. The evaluation of f (g1 , g2 , . . . , gm ) is described as
follows.

Given weights g1 , g2 , . . . , gm ⇒ A set of weighted fuzzy IF–
THEN rules ⇒ A training set and the globally weighted reason-
ing algorithm ⇒ Training accuracyf (g1 , g2 , . . . , gm ) .

Following Table I, the experimental results are summarized
in Table II, where the population size is M = 500, Ω = [0, 1]m ,
and the mutation probability is pm = 0.01. It is worth noting
that, since f (1, 1, . . . , 1) denotes the initial training accuracy,
we suppose that the point (1, 1, . . . , 1) is within the population
of every generation. It implies that the evolution process will
not lead to a decrease of accuracy.
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TABLE II
EXPERIMENTAL RESULT OF WEIGHT-REFINEMENT METHOD BASED ON

TRAINING ERROR REDUCTION FOR THE SELECTED NINE DATABASES

Comparing the last column of Tables I and II, we find that,
with respect to the testing accuracy (i.e., the generalization ca-
pability), the approach based on fuzzy entropy maximum is
superior to the approach based on the training error reduction.
From the last column of Table II, one can see that, for databases
sonar signal data and Pima diabetes data, the over-fitting phe-
nomenon has already occurred.

Over fitting is a well-known problem in the neural networks-
related literature. Normally, there are two methods to overcome
the over-fitting problem in feed-forward neural network training
[48]. One is the weight-decay training, and the other is to provide
a set of validation data while training.

Our proposed method is a rule-based technique that efficiently
prevents the over fitting while refining the rule weights. It is quite
different from the neural-network-based techniques. To conduct
a brief comparison for the two different techniques, a medical
image database of computerized tomography (CT) diagnosis
is selected. The database has 16 features and 290 cases with
normal and abnormal classes.

The result of comparison shows that each of them can over-
come the overfitting. Our rule-based method needs to 1) deter-
mine a number of linguistic terms for each attribute; 2) generate
a decision tree; 3) convert the tree into a set of fuzzy rules;
and 4) solve a quadratic programming problem for parameter
refinement while the NN-based method needs to use gradient
descent technique (with weight decay constraints) to train. With
respect to the computational complexity, the experiment shows
that the running time of our approach (132 s) is slightly longer
than the NN-based approach (119 s) for this dataset. The com-
putational complexity for solving the quadratic programming
problem (12)–(15) needs to reduce for large databases.

Without a theoretical comparison, it is hard to say which
technique is significantly better than the other for preventing
over-fitting problems.

F. Experimental Comparisons for Balancing the Training
Accuracy and Generalization

Since it is widely accepted that the training error-
minimization method is not enough to optimize classifiers, an

TABLE III
RULE POSTPRUNING APPROACH

TABLE IV
OUR PROPOSED APPROACH

additional popular approach to avoiding the overfitting in deci-
sion tree induction, i.e., the rule postpruning [48], is selected
in this section for comparison with our proposed approach. The
method of rule postpruning is briefly described as follows:

1) fuzzifying the continuous attributes to get a number of
linguistic terms;

2) for a given training set, choosing ID3 as a heuristic to grow
the tree until the training data is fit as well as possible;

3) converting the learned tree into an equivalent set of fuzzy
IF–THEN rules by creating one rule for each path from
the root to a leaf;

4) pruning each rule by removing any preconditions that re-
sult in increasing its learning accuracy;

5) after pruning, the remaining rules are considered as a new
classifier.

The nine selected databases are again used for the comparison.
The experimental procedure is described in Section IV-C for our
proposed approach and is described earlier for the rule postprun-
ing approach. The experimental results show that, for improving
the learning accuracy and preventing over fitting, our proposed
approach is slightly superior to the rule postpruning approach,
which is slightly superior to the training error-reduction-based
approach. However, for the computational complexity, the rule
postpruning approach is the best. To some extent, it means that
our achievements for accuracy improvement are at the price of
increasing computational complexity.

Tables III and IV, where the number of preconditions is the
average value of cross validation, show the experimental results
for the Pima diabetes data set and the auto-mpg data.

Another experimental comparison is conducted between our
proposed approach and the SEE5, which is a popular com-
mercial rule-generation software in which two parameters (the
interval center and the leaf-standard) are used to balance the
training accuracy and the generalization. SEE5 is the extended
version of C4.5 [49] and generates crisp IF–THEN rules. The
parameter of leaf-standard in SEE5 has the following features.
If the leaf-standard is very high, then the rules generated will
be many, and the training accuracy will be high, which possibly
leads to an overfitting. If the leaf-standard is low, then the rules
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TABLE V
COMPARISON WITH SEE5

generated will be few, and the training accuracy will be low. In
SEE5, this parameter has been optimized by some optimization
techniques to balance the training accuracy and the rule num-
ber (generalization), and users need not to set up the value of
this parameter. So far, the rules generated by SEE5 have been
considered to be one of the best results for an inductive learning
problem.

The antecedents of rules generated by SEE5 consist of a num-
ber of propositions such as (a ≤ x ≤ b), where x is a numerical
attribute. In order to compare it with our proposed refinement
approach, we need to fuzzify such propositions. The proposition
(a ≤ x ≤ b) is fuzzified as a triangular membership function:

f(x) =




1 − 1
2

2x − a − b

b − a
, if

a + b

2
≤ x ≤ 3b − a

2

1 − 1
2

a + b − 2x

b − a
, if

3a − b

2
≤ x ≤ a + b

2

0, otherwise.

The main idea for the previous fuzzification is that the mem-
bership in the support area is greater than or equal to 0.5.

The experimental results are shown in Table V. The results im-
ply that SEE5 is preventing overfitting by setting up a relatively
low leaf-standard. It is difficult for SEE5 to find a boundary
value of leaf-standard so that the over fitting will occur once
the boundary is exceeded. Furthermore, Table V shows that the
parameter leaf-standard in SEE5, which balances the training
accuracy and the generalization, is not the best. By using our
proposed approach, the generalization capability can be further
improved while keeping the rule number unchanged.

V. CONCLUSION

Improving the generalization capability of fuzzy if-then rules
extracted from training sets is very important for a rule-based
classification system. This paper proposes an approach to the
refinement of parametric fuzzy if-then rules based on fuzzy
entropy maximization, rather than based only on the training
error reduction. Its main features can be described as follows.

1) The uncertainty information that may be lost in the classi-
fication process can be sufficiently utilized by maximizing
the fuzzy entropy.

2) The hard classification (partition) can be softened by max-
imizing the fuzzy entropy.

3) While improving the testing accuracy and keeping the
simplicity of rules, the proposed approach can effectively
avoid the overfitting due to the use of maximum entropy.

APPENDIX

GENERAL PROCEDURE OF A GA FOR

OPTIMIZATION OF FUNCTIONS

In this Appendix, we briefly recall the general procedure of a
GA for the optimization of functions. Let f (x1 , x2 , . . . , xn ) be
a real function defined on Ω ⊂ Rn . The function f can be very
complicated and noncontinuous, but f is bounded. The GA is
usually used to solve the following optimization problem:

Max(x1 ,x2 ,...,xn )∈Ωf (x1 , x2 , . . . , xn ) .

The function f is called fitness function in the GA. We now
briefly recall the GA as follows.
Step 1. Initializing a population: This step first requires us to

specify a parameter M (the population size) and then
randomly select M n-dimensional vectors in Ω. In our
experiments, M = 500. Let G denote the population.
Each element of G is called a chromosome.

Step 2. Coding each chromosome: For each (x1 , x2 , . . . , xn ) ∈
G, the binary code is used. It means that each chromo-
some is a 0–1 string.

Step 3. Creating new chromosomes by mating current chro-
mosomes: This step is completed by reproduction,
crossover, and mutation (where the crossover rate is
1.00 and the mutation probability is 0.01).

Step 4. Generating the population of next generation: The M
parents and their M children are placed together to form
a set of 2M chromosomes. From this set, we choose the
first M chromosomes with highest fitness values as the
population of next generation.

Step 5. If the evolution attains a specified number of genera-
tions, then stop and return the best chromosome, else
go to step 3.
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