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ARTICLE INFO ABSTRACT

Keywords: A new fusion approach of selecting an optimal bandwidth for re-substitution entropy esti-
lnformat‘ion.entropy ) mator (RE) is presented in this study. When approximating the continuous entropy with
Re-substitution entropy estimator density estimation, two types of errors will be generated: entropy estimation error

Probability density estimation
Optimal bandwidth
Integrated mean square error
Discretization

(type-I error) and density estimation error (type-II error). These two errors are all strongly
dependent on the undetermined bandwidths. Firstly, an experimental conclusion based on
24 typical probability distributions is demonstrated that there is some inconsistency
between the optimal bandwidths associated with these two errors. Secondly, two different
error measures for type-I and type-II errors are derived. A trade-off between type-I and
type-II errors is a fundamental and potential property of our proposed method called
RE; ;. Thus, the fusion of these two errors is conducted and an optimal bandwidth for
RE|,y is solved. Finally, the experimental comparisons are carried out to verify the estima-
tion performance of our proposed strategy. The discretization method is deemed to be the
necessary preprocessing technology for the calculation of continuous entropy traditionally.
So, the nine mostly used unsupervised discretization methods are introduced to give com-
parison of their computational performances with that of RE;,;. And, five most popular
estimators for entropy approximation are also plugged into our comparisons: splitting data
estimator (SDE), cross-validation estimator (CVE), m-spacing estimator (mSE), m,-spacing
estimator (m,SE), and nearest neighbor distance estimator (NNDE). The simulation studies
on 24 different typical density distributions show that RE;,;; can obtain the better estima-
tion performance among the involved methods. Meanwhile, the estimation behaviors of
different entropy estimation methods are also revealed based on the comparative results.
The empirical analysis demonstrates that RE;,;; is more insensitive to data and a better gen-
eralizable way for the estimation of continuous entropy. RE,; makes it possible for a handy
optimal bandwidth to be derived from a given dataset.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

How to measure the amount of information contained in a certain application domain was a confused and arduous topic
until the Shannon entropy [1,2] had been put forward. The Shannon entropy quantifies the amount of information needed to
be measured [3]. This landmark breakthrough gives birth to information theory [4] which is developed by Shannon to find
the fundamental randomness or uncertainty associated with a random variable. The concept of Shannon entropy is the cen-
tral role of information theory which is based on probability theory and statistics. Shannon entropy plays the important roles
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over a wide range of machine learning applications, such as, decision tree [5-7], neural language processing [8], text cate-
gorization [9], feature selection [10,11], image processing [59], and so on.

In the learning problems, the variables may be discrete and continuous. The “discrete” refers to the variables taking on
categorical values. The “continuous” refers to the variables taking on numerical values (integer or real). It is well acknowl-
edged that Shannon entropy can be implemented sophisticatedly and efficiently for the discrete variables as the following
Eq. (1):

H(X) = => p(x)In[p(x))], 1)
i=1

where, let X be a discrete random variable taking a finite number of possible values x;,x,,...,x, with probabilities

n

p(x1),p(X2),...,p(xn), respectively such that p(x;) > 0,i=1,2,...,nand }_;_,;p(x;) = 1. In(u), u > 0 is the natural logarithm
which is the logarithm to the base e, where e is an irrational constant approximately equal to 2.718281828. Note that
pIn(p) = 0 when p = 0. However, many learning tasks [12-15] are often involved with the continuous variables. The math-
ematical formula for continuous variables can be summarized as follows by extending the discrete entropy to continuous

case:

HOO =~ [ oo 2

where, let X be a continuous random variable taking the probability density function f(X) such that j’f;“ f(X)dx = 1. From the
Eq. (2), we can find that there are two main handicaps when the entropy computation for continuous variables is imple-
mented: the unknown of probability density function and the evaluation of integral paradigm. In order to bridge over these
difficulties, the academic world has made many positive attempts and advanced a number of representative ways.

In many practical applications [7,20,25,31], the main strategy for handling the entropy computation of continuous vari-
ables is to discretize the continuous variables into discrete ones and then calculate the discrete entropy according to the Eq.
(1). In statistics and machine learning, discretization refers to the process of converting or partitioning continuous attributes,
features or variables to discretized or nominal attributes, features, or variables. Over the years, many discretization methods
have been proposed and tested to show that discretization helps improve the performance of learning methods and helps
understand the learning result. One of taxonomies is to classify primary discretization methods into supervised discretiza-
tion and unsupervised discretization, where supervised discretization uses the class or label information to select the dis-
cretization cut points and unsupervised discretization determines the cut points without the usage of class or label
information. In the setting of entropy estimation without class information provided, supervised discretization may not
be competent to implement the entropy computation for continuous variables. So, unsupervised discretization is considered
as a capable candidate to carry out the continuous entropy computation.

In our study, nine common unsupervised discretization methods are introduced and employed as the competitors. Equal
width discretization (EWD) [16] and equal frequency discretization (EFD) [17] are two mostly used and simplest methods.
The experimental observations in numerous literatures [18-20] show that the satisfactory performances and reasonable
effectiveness of EWD and EFD are not affected by their directness and simplicity. K-means clustering discretization (KMCD)
[21] uses k-means clustering [22] to determine intervals for the discrete variables. Ordinal discretization (OD) [23,24] aims
at taking advantage of the ordering information implicit in the continuous variables, so the ordering information of contin-
uous variables is preserved when a transformation of discretized data is carried out. Fixed frequency discretization (FFD)
[25], non-disjoint discretization (NDD) [26], proportional discretization (PD) [27], and weight proportional discretization
(WPD) [28] are designed intentionally for managing the bias and variance generated during the discretization of continuous
variables. The gratifying experimental results have been reported when these four discretization methods are applied to
naive Bayesian classifier [29,30]. Mean value and standard deviation discretization (MVSDD) [31] are applied to feature
selection and the better experimental results are obtained when continuous variables are discretized by MVSDD.

However, the latest researches [25,57] have demonstrated that the loss of information will be generated as the conse-
quence of discretization. For example, two different continuous values may be represented with the same discrete value.
Then, the quantitative and ordinal differences will be lost. If the ignored information is used in the approximating mecha-
nism of continuous entropy, then the renewed approximating mechanism will be distinct and should be more accurate.

In addition to using the unsupervised discretization to implement the continuous entropy computation, some sophisti-
cated entropy estimators for continuous variables are accomplished to overcome the information loss of discretization meth-
ods and the handicaps encountered when computing the Eq. (2). The splitting data estimator (SDE) [34] and cross-validation
estimator (CVE) [35] are two main implementations of re-substitution estimator model (RE) [32,33] in which the evaluation
of integral is excluded and replaced by summation approximation of certain probability density function values. RE is a the-
oretical nonparametric estimation model with the mean square consistency. Under the given regularity conditions, RE are
the first and second consistencies [32,33]. The m-spacing estimator (m SE) [36] and m,-spacing estimator (m, SE) [37] are
two branches of estimates of entropy based on the sample-spacing which can be derived as a plug-in integral estimate using
a spacing density estimate. Nearest neighbor distance estimator (NNDE) [38] is one of the estimates of entropy based on
nearest neighbor distances. All of the above six entropy estimators try to approximate the unknown density function and
avoid the troublesome integral evaluation so that the continuous entropy can be calculated easily.
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In the mentioned-above sophisticated entropy estimators, RE is most widely used due to its theoretical mean square con-
sistency. And, the estimation performance of RE depends strongly on the selection of bandwidth [32,33]. Thus, motivated by
improving the estimation performance of RE via selecting an optimal bandwidth, we propose an entropy estimation strategy
in which two different types of estimation errors are fused and a new error measure is derived accordingly. Given 24 typical
density distributions, such empirical conclusion is firstly presented: in addition to the entropy estimation error named type-I
error, other kind of error called density estimation error (simply type-II error) is also generated in the process of continuous
entropy computation and there is always some inconsistency between the optimal bandwidths associated with these two
errors. These two errors are all heavily dependent on the bandwidth parameters and react upon each other. So, a trade-
off between type-I error and type-II error is considered as a fundamental and potential property of our proposed method
called REj, ;. Then, based on the theoretical consistencies of RE, a new and practical entropy estimation error measure is de-
signed for RE,,; in this paper. By minimizing the designed estimation error, the optimal bandwidth can be calculated. The
bandwidth selected by RE;,; balances the two generated errors. Finally, the simulation comparisons of SE,,; are carried
out with 14 different entropy estimation methods based on 24 probability distributions. The experimental results reflect
the following conclusions: (1) the optimal bandwidth used in RE,,; indeed performs better than the singled bandwidth
by minimizing type-I error. And, compared with the sophisticated SDE and CVE, SE,; can also obtain a satisfactory estima-
tion. The simulations confirm the validity and effectiveness of the derivation error measure; (2) the discretized estimators
are sensitive to the dataset size. It is not feasible to build the entropy estimation when facing with a large-scale dataset. With
the increase of dataset size, the estimated error will increase significantly. On the contrary, RE;,; can reduce the estimated
error with the augment of dataset size; (3) the overall performance of RE,;; also goes beyond the estimated behaviors of m
SE, m, SE, and NNDE. The application conditions of m SE, m, SE, and NNDE are also discussed by the experimental
comparisons.

The rest of the paper is organized as follows: In Sections 2 and 3, we summarize nine unsupervised discretization meth-
ods and 5 common entropy estimators. The Section 4 discusses the error generations in the process of entropy estimation
with re-substitution estimator. The proposed entropy estimation method RE,,; is brought forward in Section 5. In Section
6, the experimental simulations are carried out and the corresponding analyses to empirical observations are also presented.
Finally, we make a conclusion and outline the main directions for future research.

2. The typical discretization methods

To illustrate the method in question, we firstly introduce the number of denotations and explain their meanings:

X is a continuous random variable taking the probability density function f(X). x1,x,, ..., X, are n continuous observations
which obey the probability density f(X). The goal of discretization is to divide the domain of continuous variable into some
disjoint or non-disjoint intervals after sorting data in ascending or descending order so that every continuous observation
can keep the information relative to a categorical value [18,42,43]. The endpoints of interval are called cut points or split
points in the discretization context. In this section, we will review nine frequently-used unsupervised discretization methods
as follows.

2.1. Equal width discretization-EWD

When discretizing n continuous observations, EWD [16] divides the number space between X, and Xn.x into k intervals with
the equal width, where X, = min {X1,Xa,...,X,}, Xmax = Max{Xq,X2,...,Xy}, and k is a user predefined parameter. Thus, the
width of every interval is W = (Xmax — Xmin)/k and the corresponding cut points are Xmin + W, Xmin + 2W, ..., Xmin + (kK — 1)w. All
of the continuous observations in the ith interval [Xmin + (i — 1)W, Xmin +iw),i = 1,2, ..., k(Note that xm. is putinto the last inter-
val) correspond to the same categorical value xj(i = 1,2,...,k).

2.2. Equal frequency discretization-EFD

EFD [17] divides n continuous observations into k intervals so that each interval contains approximately the same number
of continuous observations, where k is a user predefined parameter. Thus, each interval contains [n/k|([u] denotes the
rounding of the element u to the nearest integers towards infinity) continuous observations with adjacent (possibly identi-
cal) values. Note that the identical continuous observations must be placed in the same interval. In fact it is not always pos-
sible to generate k equal frequency intervals and the number of continuous observations in the last interval is not always
equal to [n/k].

2.3. K-means clustering discretization-KMCD
KMCD [21] uses the k-means clustering technology [22] to determine the intervals for the continuous observations. The

parameter k needs to be determined beforehand. The continuous observations assembled into the same cluster correspond
to the same categorical identifier.
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2.4. Ordinal discretization-OD

OD [23,24] aims at taking advantage of the ordering information implicit in the continuous variables, so as not to make
values 1 and 2 as dissimilar as values 1 and 1000 [30,44]. In fact, the theme of OD is extending the current one-dimensional
variable into the multidimensional case. Let X = {X;,X,,...,X,} be the attribute which takes n continuous values. OD firstly
discretizes X by using some primary discretization method (e.g., EWD, EFD, or KMCD). Then, the discretized attribute
X" ={x;,x;,...,x;} can be obtained. In order to implement the intention of preserving the ordering information, k — 1 binary
attributes are introduced as the extended attributes of original continuous attribute X. The j-th binary attribute

X;(j=1,2,...,k—1) denotes the special split to discretized attribute X ={x,x;,...,%} X}:{{x;,...,xj},

{xfﬂ, . .,x;;}},j =1,2,...,k— 1. The following Fig. 1 explains the mechanism of OD in detail.

From Fig. 1 we can see that OD converts one continuous variable into multiple discretized cases. In the classification con-
text [23,24,30,45], the empirical results show that OD can improve the performance compared with the discretization tech-
nologies treating the ordered attributes as nominal quantities. However, unlike the classification application, it is really
confusing which binary attribute should be used to compute the continuous entropy approximately. So, in this study we
use the following formulas (3) to merge the k — 1 individual entropies for the sake of preserving the useful ordering
information:

SIH(X
H(X) ~ HX") = ’k%p (3)

2.5. Fixed frequency discretization-FFD

The basic principle of FFD [25,30] is similar to EFD’s. A sufficient interval frequency m = 30 is set to discretize the contin-
uous variable. The empirical results show when m = 30, it is commonly seemed as the minimum sample size for managing
the discretization bias and variance [25], the better performance can be obtained in naive Bayesian classifier context [25,30].
The amount of intervals in FFD is [n/m], where n is the number of continuous observations. The continuous observations in
an interval will be represented with the same qualitative identifier.

2.6. Non-disjoint discretization-NDD

The unique feature of NDD [25,26,30] is the non-disjoint (or overlapped) intervals allowing for generation. NDD forms a
series of overlapping intervals for the continuous observations and always locates an observation value toward the middle of
an interval. Firstly, the k' “atomic intervals” need to be generated and every “atomic interval” contains m’ continuous obser-
vations, where k' and m’ satisfy the following equation:

m =m/3, and K =n/m'. 4)

In NDD, the value of interval frequency m is also set to 30 [26] and n denotes the number of continuous observations. Actu-
ally, a total of [n/10] “atomic intervals” are constructed, and each one contains 10 continuous observations.

After the “atomic intervals” are formed, a total of k “actual intervals” can be constructed, where every “actual interval” is
designed by combining three consecutive atomic intervals. The formation of “actual interval” can be presented in Fig. 2. Let
the number of continuous observations be 100, viz. n = 100.

As a result, each actual interval has frequency equal to 30 by comprising three consecutive atomic intervals, and except in
the case of falling into the first or the last atomic interval, a continuous observation is always towards the middle of its cor-

The continuous attribute
X={x,x, %)

The discretized attribute
x*={xlxlx))

The 1-th binary attribute -+ The j-th binary attribute :----- The (k-1)-th binary attribute
x={{x(= 51 X5 ={{x 5 g5} X = bl

Fig. 1. The ordinal discretization.
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Fig. 2. The formation of actual intervals in NDD.

responding interval [25,26,30]. From the perspective of the whole set of continuous observations, the discretized intervals
(i.e., actual intervals) formed for two continuous observations might overlap with each other.

2.7. Proportional discretization-PD

By tuning the interval size and number, PD [25,27,30] wants to balance the discretization bias and variance [25]. As de-
scribed in Yang and Webb’s works [25,27,30], increasing interval size (decreasing interval number) will decrease variance
but increase bias. Conversely, decreasing interval size (increasing interval number) will decrease bias but increase variance.
PD aims to resolve this conflict by setting the interval size and number proportional to the number of training instances.
With increasing number of training instances, both discretization bias and variance tend to be decreasing. Bias can decrease
because the interval number increases. Variance can decrease because the interval size increases. The desired interval size is
m and the desired interval number is k, PD employs the following Eq. (5) to calculate m and k:

{mxk:n
m=k

; ()

where n is the number of continuous observations. As a result, the interval size m is equal to the interval number
k(m =k ~ /n).

2.8. Weight proportional discretization-WPD

WPD [28,29] is the improved version of PD [25,27,30]. It is credible that variance reduction can contribute more to lower
probability estimation error than bias reduction [46]. Thus, fewer intervals each containing more observations would be of
greater utility [46]. Accordingly, WPD weighs discretization variance reduction more than bias reduction by setting a min-
imum interval size m,;;, to make the probability estimation more reliable. Note that the increase of training data allows for
the increase of both the interval size m and the interval number k. Given the same definitions m and k as in Eq. (5), WPD
employs the following Eq. (6) to calculate m and k:

mxk=n
m— Mpin = k’

(6)

where, My, = 30 is the minimum interval size. The m,,;, is set to 30 as it can mitigate PD’s disadvantage on smaller datasets
by establishing a suitable bias and variance trade-off, meanwhile it still retains PD’s advantage on larger datasets by allowing
additional training data to be used to reduce both bias and variance. As a result, the interval size m can be approximated as

(30 + /900 + 4n)/2.
2.9. Mean value and standard deviation discretization-MVSDD

In Peng, Long, and Ding’s work [31], they used p + « - o to discretize the continuous observations in the framework of
feature selection, where u and ¢ are the mean value and standard deviation of continuous observations respectively,
o=0,0r0.5,or 1 [51]. That is to say, the cut points of discretized intervals are i — o x o and p + o x . The empirical results
show that the choice of o will have some influences on the ordering of selected features, but the selected features are almost
the same [31,47]. MVSDD is actually a very robust discretization way for selecting features. So, MVSDD is also employed as a
competitor in our study.

3. The existing continuous entropy estimators

In addition to calculate the continuous entropy with the discretization technologies [16,17,21,23,25-28,31] mentioned
above, many continuous entropy estimators are also studied widely. Now, five commonly used entropy estimators, splitting
data estimator (SDE) [34], cross-validation estimator (CVE) [35], m-spacing estimator (m SE) [36], m,-spacing estimator
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(my, SE) [37], and nearest neighbor distance estimator (NNDE) [38], will be presented as follows. Unlike the discretization
way, these entropy estimators evaluate the continuous entropy from the continuous observations directly.

3.1. Splitting data estimator (SDE) and cross-validation estimator (CVE)

The estimators SDE [34] and CVE [35] are the derivatives of RE [32]. RE depends on the following Eq. (7) to evaluate the

continuous entropy from the continuous observations xq,xz,...,X,:
1< -
Hpe = —= ) In[f(x; 7
e nz; [Fx). (7)

where, f, (X) is the estimated density function based on all n continuous observations. RE provides a theoretical model for
entropy estimation with density estimation approach. In Ahmad and Lin’s work [32], the consistencies of RE had been proved
under the regularity conditions: E[Hg; — H> — 0 as n — cc. Based on this theoretical nonparametric estimation model, SDE
[34] and CVE [35] are proposed. SDE calculates the continuous entropy according to the following procedures: Firstly, the
original dataset X ={x;,X,,...,x,} is partitioned into two parts: X = {X/|x; =Xy 1,i=1,2,...,|(n+1)/2|} and
X" = {X/|x! = xy;,i=1,2,...,|n/2]}, where [u] denotes that rounding the element u to the nearest integers towards zero.
Then, SDE employs Eq. (8) to compute the continuous entropy:

1 b2
Hspg = ——= ) In X! 8

SDE Ln/ZJ ; [f[(TH»])/ZJ( i )]7 ( )

where, f|(n:1)2/(X) = T e K (%) is the estimated density function by using Parzen window method [39] and

hspe is the bandwidth parameter. In our study, Gaussian kernel K(u) = \/% exp (f %) is employed. The entropy estimation
rule of CVE [35] is:

Hove = S Inff ), B
i=1

where, f,f(Xi):mZ};il<<%)(hC\/E is the bandwidth parameter) denotes the Kkernel density estimation of

xi(i=1,2,...,n) based on the other samples, and this is taken for cross-validation.

For the determination of bandwidth hspg and hcyg, a lot of theoretical studies [33-35] had been proposed to define their
properties. Due to the complex mathematical terms in the expression of mean square error, it always makes the choice of
optimal bandwidth impractical [33,35]. So, the approximation rules for bandwidth selection are given. For example, Joe
[33] considered the optimal bandwidth for CVE as:

heve = ¢-n7 V45 L IQR(X1, X2, . . ., Xn), € € [0.75,1], (10)
where, IQR(X1,X2, ..., X,) is the interquartile range [50] of dataset x1,x,, ..., X,. Gyorfi and Meulen [34] also put forward the
required bandwidth for SDE, viz. hspg — n=*, o < 1. In this study, we let the optimal bandwidth for SDE be:

hspe = ¢ - [(n+1)/2]7*° - IQR(X), ¢ € [0.75, 1], X = {X{|X; = Xpi1,i = 1,2, [(n + 1)/2]}. (11)

3.2. m-spacing estimator (mSE) and m,-spacing estimator (m, SE)

The spacing estimators [36,37] construct the density estimation based on the notion of “spacing”. The so-called “spacing”
can be established as the following steps. Firstly, the original dataset X = {x1,xs,...,X,} is sorted in the ascending order and the
ordering dataset is X = {X;,X,,...,X,}, where X; <X, < ... < X,. Then, X;,,, — X; is called a spacing or order m, or m-spacing
(1 <i<i+m < n).Based on the m-spacing, m SE [36] considers the entropy computation as Eq. (12) for the fixed m:

Hist = %nim [ (im — %)] = P(m) + In(m), (12)
i=1

where, W(u) is the digamma function [48] which is the logarithmic derivative of the gamma function I'(u) [48],
Y (u) = d[InI'(u)]/du. In the following comparison, without loss of generality, we let m=1 in the Eq. (12).
In order to decrease the asymptotic estimation variance, m, SE [37] computes the continuous entropy with mathematical
expression (13) by modifying Eq. (12) slightly:
1% [n_ _
Hose =5 310 (5, %0, (13)

i=1 n

where, m,, = n'/? is designed in our study.
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3.3. Nearest neighbor distance estimator (NNDE)

NNDE [38] is defined as the following Eq. (14) by considering the nearest neighbor methodology:
1 n
Hynoe = ﬁ;In(ncl,-) +1n2 + 7y, (14)

where, d; = minq <j< nllxi — x;|| denotes the nearest neighbor distance between x;(1 < i < n) and other datax;(1 <j < n,j#i),
J#i
ve is Euler-Mascheroni constant y; ~ 0.57722 [49].

4. Different error generations

The research objective of this work is to find a practical bandwidth selection rule for RE directly. As described above, the
estimation model of RE is Hgz = — —Z," ]ln[f x;)] based on the given dataset X = {x1,xs,...,X,}, where many technologies, for
example, SDE, CVE, mSE, m,SE, and NNDE, can be used to estimate the unknown density function. Here, we try to estimate
this problematic density with the following mathematical equation [40,41,60]:

1

Xi — 1 /% —x\° .
nhSEZK< hse > nhs};z\/ﬁ |: E( hse ]> ]7 (t=12...m). (13)

By bringing the Eq. (15) into Eq. (7), the entropy estimator can be summarized as follows:

Hge = 772111[[ Xi)] = ; {nhssz\/ﬁ { : <xxh:Exj> :|} (16)

From Eqgs. (15) and (16), we can see these two estimations are all dependent on the bandwidth hgz which imposes a direct
influence on density estimation and an indirect influence on entropy estimation. In order to quantify these influences, the
necessary measures should be introduced. The estimation errors can depict the corresponding estimation performances.
In Joe’s work [33], the mean square error is employed to measure the entropy estimation error. And, the L,-error criterion
is used in SDE by Gyorfi and Meulen [34]. Using the experiences of these two typical error criteria for reference, we employ
the following mean square error to evaluate the performance of entropy estimation:

flxi) =

= E[Hge(X) — HX))%. (17)
Meanwhile, the integrated squared error, given by

Ey = / F(X) — F(X)dx, (18)

is used as the criterion function to measure the density estimation error. The main reason that Ej; is used is that it can esti-
mate f(X) over the whole data space and measure the error between f(X) and f(X) globally. For the sake of convenience, we
note E; as type-I error and Ej as type-II error.

In order to display the influences of bandwidths on these two estimation errors more intuitively, an experimental sim-
ulation is carried out. In this experiment, 24 typical probability distributions are used as the testing pools. Table 1 itemizes
the detailed information of these 24 probability distributions, including the density functions, the continuous entropy values
[52], and the corresponding support intervals.

Our experiment is arranged as the following procedures:

Step 1: For every probability density in Table 1, 150 random samples are generated X = {xﬁ )P AL (p=1,2,...,24);

Step 2: Use Eq. (15) to estimate the density valuef(x?”, h) for each data point x§p>(i =1,2,...,150), and compute the error
between the estimated density value f(x,@, h) and the true density value f(xﬁp)>, noted as [f(xfp),h) ff(xfp)ﬂz,
(i=1,2,...,150);

Step 3: The density estimation error on dataset X7 = {x(l”),x(z”),.‘.,x(]”s)o},(p =1,2,...,24) is EY =5 fsf[f(xfp),h>f
F()P(p=1,2,...,24);

Step 4: Use Eq. (16) to estimate the entropy value Hg:(X®, h), (p = 1,2,...,24), and the entropy estlmatlon error between

the estimated entropy and the true entropy H(X(p),(p: 1,2,...,24), noted as EI = [He(XP, h) — HX®)))?,
(p=1.2....,24);



Table 1

The typical 24 probability distributions.

# Distribution Density function Continuous entropy value H(x f’xf X)In[f (x)]dx Support interval
1 Beta Flx) =% 15((' /x))ﬂ 4> 0,550 In[B(a, )] — (¢ — 1)W(2) — (B— HW(B) + (@ + f - 2)¥ (2 + ) 2P €[0,1]
2 Cauchy fx) =1 (x2+/ ) 1-0 In(4m2) X € (—o0,+00)
i-! _k ko b
3 Central Chi-Squared Fx) =25 /265 k=0 In2(k/2)] + (1 - %P (k/2) + & € [0, +c0)
4 Chi k k/2)] k=1 k € [0, +
f(x)_% k>0 In[F2] k1 g(k/2) + & [0, +c0)
5 Erlang F)=25"e" k=040 (1 - kWK + ln[”k} +k x € [0, +00)
6 Exponential f(x) = iexp(—ix),A =0 1-1In(2) x € [0,+00)
’ ' =T om0 IR BC )]+ (1= 5)W(E) — (1Y) + g () xel0reo)
B(FF) (nymn) 2
8 Frechet ) =2(@® %I a0, 0 1+% 49, +In(3)" x € (0,+00)
9 Gamma f(x) = xk-1 “5’1_‘(’2 k=000 k +Ino + In[I"(k)] + (1 — k)P (k) € [0,+00)
10 Gumbel flx) = %() z=exp[—(x— W)/B, L €R, B~ 0 In(B) + g+ 1 X € (—o0,+0)
11 Hyperbolic Secant f(x) = Lsech(Zx) (4/m)K? X € (=00, 40)
12 Laplace fx) %bexP( X~ u) LERD SO In(2b) +1 X € (—00, +00)
13 Logistic fx) =4 ech? &8, ueRs =0 In(s) + 2 X € (=00, +00)
14 Lognormal fx) = Xm]/_n p[ ]nx u ] LeR G20 %Jr%ln(mmz) +u x € (0,+00)
15 Normal Fox) = ZW _1_exp [ i ] LERG2>0 In(cv/2e) X € (—00, +00)
16 Pareto F) = 2% Xn = 0,0=0 In() +141 X € [Xm, +00)
17 Rayleigh fo) =% exp( 2”2) G0 1+ ln( ) +i € [0,+o0)
18 Semicircle F) = 2 VR — %2R~ In(nR) —1 €[-R,R]
19 Student’s-t fox (sz/,,) e 0 21 W (2 - (%)) + In[voB(3,%)] X € (=00, 400)
() =iz V-
20 Tri 1 2(x—a) b—ay 4 1 b
riangular Fo0 = {“’z(‘”f)”) a<x<c In(b59) +1 € [a, b
Tapo: CSX< b
21 T ted Normal s b $ - -
runcated Norma fox) = o s R aERbER G -0 In(022me) + 2 UL o = £, =02 7 = () — () cla.b]
22 Uniform fx) = ln(b - a) x € [a,b]
23 Von Mises fx) = E;;“;;(,;” JUERK>-O —k{L3 -+ Inf27l (k))° X€[-m. ]
24 Weibull fo =k® e wn* 5 0k>0 '5(1 7E) +In(f) +1 X €0, +00)

@ B(a, B) = Jy x*~1(1 —x)"'dx is the Beta function.

b W(X) = dIn[["(X)]/dx is the Digamma function, where I'(X) = Jo© u"'e"Udu is the Gamma function.

€ g is Euler-Mascheroni’s constant y; = —¥(1) =
K is Catalan’s constant G = > o (—=1)"/(2n + 1)?

e

0.57722.
~ 0.91597.

Ip(X) is the modified Bessel function of order 0, and I; (X) is the modified Bessel function of order 1.
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Fig. 3. Type-I error and Type-II error along parameter h change.
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Step 5: Set h ranging from 0.0001 to 5 in step of 0.0001. Repeat Steps 1-4 for different values of h and 100 times for each
value. The average values of type-I errors and type-II errors on the 100 repetitions are recorded respectively. The
main purpose of getting the average of 100 results is to reduce the randomness of data. The learning curves are
plotted in Fig. 3.

Fig. 3 also gives the parameter(s) used in every distribution. From these comparisons, two experimental observations can
be easily summarized: (1) with the increase of parameter h, all the type-I errors show the trends of first decrease and then
increase; (2) as h keeps increasing, all the type-II errors also hold the trends of first decrease and then increase. These two
observations reflect that there are optimal bandwidths that can make the type-I error and type-II error reach the correspond-
ing minimums. The optimal bandwidths h; and hy, for type-I error and type-II error are selected. However, we can find that
the inconsistent optimal bandwidths are conspicuous. Our purpose is to minimize the generated errors, including type-I er-
ror and type-I error, in the process of entropy calculation when density estimation technology is used in RE. The reason that
optimal bandwidth which minimizes the type-II error is not the best bandwidth selection for the entropy estimation error is

as follows.
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Fig. 3. (continued)

For the given dataset X = {x;,X,,...,x,} obeying the density function f(X), let h, =arg min,[(Hg — H)*] and
hy = arg minh{% S Ifx) —f(x,v)}z}. Because when n—oo, H=-1Y".In[f(x)] is the unbiased alternative
to H=— [7 f(X)In[f(X)]dx, and root-n is consistent [35],

n n 2 n 2
(Hee — HY? = f%zljln[f(xm - %zljlnvo«,-)] > {m]e] - mipeon}| - (19)
1= i=

)
Lo e

For Vie {1,2,....n}, f(x) = 5 50 K(52) = 5307, = exp [—% ("h;"’)z} =120 7 €XP [—% ("*;Xf')z]. With the increase of

parameter h, it is easy to verify that the value of the estimated f (x;) decreases monotonously. Then, in the process of h being
gradually increasing, we discuss the selections of h; and hy according to the following three cases:

Case I: Assume that hy = arg min, {}-1 S [f(x,-) _f(x,.)]z} such that f(x;, hy) — f(x;) = 0,Vi € {1,2,...,n}. And, Vh € H;,
where H; is the universe of discourse of the discussed parameter h, such that f(x;,hy) —f(x;) =0,
Vie{1,2,....n}. If 10 [ hn) — )P <150, [f(x,-,h,*l) - f(x,-)]z. then the inequality [Hgs(hy) — H? <
[Hge () — H]” holds.
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Fig. 3. (continued)

2 - -
Based on 130 1[fx,,hu) f(xl)] <1 ][f(x,, ) f(x,-)] , fxi,hy) = f(x) =0, and f(x;,hy) —f(x;) = 0,Vie
{1,2,...,n}, we can get the conclusion: hy > h; and f(x,-,hu) <f(xi, hy),vie {1,2,...,n}. Because if hy < hy, then,
forvie {1,2,...,n},

. . i.h ; R
f i, ) - (x,, hy) = (%, ha) — F(%) = F(xi hy) — (%) [f (xi, ) — @)1 = [F (i, hy) = f(x0))?

(o ) S - > s )~ P

:I»—‘

This is contradictory to the premise supposition 13" | IFxi, h) = Fx))? < IS if(x:, hy) — f(x) 2.
Because hy = hy, for Vi e {1,2,...,n},

F(xi,hu) < F(xi, ) = Inff (%, hu)] < In[f (%, b)) = Inff (x;, hu)] = In[f (x;)] < In[f (x;, hyp)] — In[f (x))]
= Z{In[f (xi, h)] — In[f (x;)]}
fxi, h") f(x:) = 0 = In[f(x;, hy)] — In[f (x))] = O

<Z{In[fxl, oy — ey’ ) —F ) - 0= I ] — Inif )] - 0

x nl {Z{In[f (%i, hu)] — In[f (x; }}}

i=1

o A 2
< % [Z{lﬂ[f(xu hy)] = lﬂ[f(xi)]}} = [Hpe(hu) — HI* < [Hge(hy) — HI”.
i=1

This result indicates that if hy = arg mlnh{ > 1[f(xl)ff(x,-)}z} such that f(x;, hy) —f(x;) = 0,Vi € {1,2,...,n}, then
hy = hy = arg miny[(Hge — H)?]. O
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f(x)]" ¢ such that fxi,hn) —f(x) < 0,Vi € {1,2,...,n}. And, Vh], € Ha,
*} (%, ) = £ (x) {1, . i

Case II: Assume that h; = arg mmh{ ST ][f(xl)
1) —f(x) <0,Vie

where H, is the universe of discourse of the discussed parameter h, such that f(x,
(1,2, I 1S (F(xi, ) — f(x)2 < 1300 1[f(x,, o) f(x,.)} , then the inequality [Hgs(hn) — HJ? < [Hge(h})—
HJ? holds.

Based on 1S, (f(x;, hu) — f(x)? <130 1[f(x,, o) f(xi)]z, fXi,hu) = f(xi) <0, and f(x;,hy) —f(x;) < 0,Vie
{1,2,...,n}, we can get the conclusion: h; < h; and f(xi,hll) >f(xi,hl*l),\ﬁ €{1,2,...,n}. Because if hy > hy, then,
forVvie {1,2,...,n},

Flxehu) < fxi, hy) = (% ) — F(x) < f (i, 1) — f(xi
23 =S =5 [ ) ]
=1 i=

~ A 2
This is contradictory to the premise supposition 1 S [f (x;, hu) — f(x:)]> <1321, [ (xi, hy) f(xi)] .
Because hy < hy, for Vie {1,2,...,n},

f(Xi,hll) >f(Xi, hy) = IH[A(X,'7 hll)] = In {A (Xi,hl*l)} = ln[f(x"’ hu)] — In[f(x;)] - In[A(X" )] ~ Infx)
= Zn:{[n[f(xi,hu)] = In[f(x;)]}
i1

fxi, hy) = f(x) < 0 = In[f(x;, hy)] — In[f(x;)] < O
n . f(xl, ) —fx) <0= [n[A( ﬁ)} —Inf(x;)] <0
- {In[ (x,-,hl*l)] — In[f(x;)] } =

2
X l {II][]"(X,7 hu)] — In[f( Xz)]}:|
n 2
<o { {ln[k("ivhﬁ)] - [n[f(xi)]}] = [Hre(hu) — H* < [Hge(hy) — H]".

ThlS result indicates that if hy = arg mmh{ S l[f(x,)—f(xi)]z} such that f(x;, hy) —f(x;) <0,Vie {1,2,...,n}, then

= hy = arg miny[(Hg; — H)?]. O

The mentioned-above two cases show that for the given dataset X = {x;,X,,...,X,} and its density function f(X), if there is a

universe H of discourse of the discussed parameter h such that all f(x;, h) — f(x;), Vi € {1,2,...,n} terms keep the same sign
for Vh € H, then the optimal bandwidth h, for type-I error can also be selected as the optimal bandwidth for type-II error.

Table 2
An example of case III.
flxa) fx2) hy hyy >~ hu
Fler, ) f(xz.hy) Flxa i) Flxa, i)
0.400 0.500 0.396 0.581 0.321 0.553
h]] h{IZ < h|[
Fxx, ) Fxa, ) Fx1, hipy) Flxa, hip)

0.500 0.600 0.435 0.616 0.437 0.651
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Case III: For hy = arg minh{%z?:l [Fx) —f(xi)}z}. if 3y, b,...,i} c{1,2,...,n} such that f(x;,hy)—f(x;)<0,Vie

{iy,12,...,i;} and f(xi,hll) —f(xi) = 0,Vie {1,2,...,n} — {i,ia,...,i}t < n, then for Vh; € Hs, where Hj is the uni-

~ 2
verse of discourse of the discussed parameter h, such that 13" [f (x;, hu) — f(x)]> <1321, [f(x,, ) f(xl-)] , then
the inequality [Hge(hu) — H)* < [Hge(hy)) — H]2 cannot always hold.

We set an example to explain this fact in Table 2: X R X R
From Table 2, we can see that when hy, > hy, then f(x;,hy,) < f(x1,hy) and f(x;, hy;) < f(xz,hy). The inequalities

Fexa, )
o1, ) — £ + O, ) — o) = 0.007 < [Fxa i) —£x)]” + [Fe i) — Fx)]” = 0,009,

But,

[{In[f(x1,hu)] - ln[f(xl)]} + {In [f(xz,hu)] - In[f(xz)]}]z —0.020

—f(x1) < 0 and f(x,, hy) — f(x;) = 0 hold. Then, 3h;, such that

- [{In[f(xl,h,*n)] - In[f(x1)]} + {In [f(xz, hl*“)] - In[f(xz)}}]z =0.014.

~ When hy, <hy, then f(x1,h}‘12)>f(x1,hu) and f(xz,hl*lz)>-f(x2,hn). The inequalities f(x;,hy) —f(x;) <0 and
f(x2,hn)

s, ) — £ + (v, ) — Fo )2 = 0.004 < [l i) —F(x)]” + [F e ti) — Fx)]” = 0.007.

But,

Density error

Density error

— f(x2) > 0 also hold. Then, 3hy;, such that

[{In[fxl,hn]—ln[f N} + {Inf (x2, hy)] — In[f (x, ]:0.013

1.4

1.2

0.4 i

<
0.2

= [{n[Fexr.hio)] ~ nfroa)} + {in[F e, bi)| - In[f(xz)]}]z ~0003. O

T
Case | Case Il Case Il
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[a] Normal density (x=0,6=1) , C,=0.02, C, =3.12

T T T T I T
. Case | Case lil
10
'
u § . .
E +
B I T T 7]
) H ! i 1 . .
[+ 00010 00020 00030 0.0040 00050 0.0060 0.0070 0.008 0.108 0217 *Ponn T T Y BT
| | | | 1 | | | |
[ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Parameter h

[b] Uniform density (a=0,b=1), ¢, =0.007, C, =0.218

Fig. 4. The formations of cut-points on two density distributions.
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After we have analyzed the different bandwidth selections for type-I error and type-II error, a graphical illustration is also
given to present the impacts of different h on the density error betweenf(x,-, h) and f(x;),i=1,2,...,n. The conclusion have

been discussed earlier that with the increase of parameter h, the value of the estimated f(x,,h),i =1,2,...,n decreases
monotonously. This will lead to the following cases: for the discussed h € (0, +cc), there are two cut-points C; and C, which
divide the interval (0, +o0) into three parts: (0,C;), (Cy,C3), and [Cy, +o0), such that (1) Vh € (0, Cl},f(x,»,h) —f(x)) >~ 0,Vie
{1,2,...,n} (Case 1); (2) Vh e [Cy,+o0), f(xi,h) —f(x;)) <0, Vie {1,2,...,n} (Case II); (3) Vhe (C1,Cy), Hir,ia,....i} C
{1,2,...,n} such that f(x;, h) — f(x;) < 0,Vi € {iy,a,...,i} andf(x,»,hn)ff(x,) =0,Vie{1,2,...,n} —{i1,ia,...,i;}t < n(Case
III). According to the previous discussions, we can know that if the optimal bandwidth hy; for type-II error falls into the inter-
val H;  (0,C4] or Hy C [Ca, +00), then this optimal bandwidth can also be chosen as the necessary parameter for type-I error.

However, if h; € H3 C (Cy,C,), then the conflict between these two optimal bandwidths will happen. In Fig. 4, two density
functions are employed to show the formations of cut-points. For every distribution, 50 data points are generated randomly.
For each data point x;(i = 1,2, ..., 50), the density error between f(x;, h) and f(x;), (i = 1,2, ..., 50) is computed and plotted in
Fig. 4. It shows that with the increase of h, the signs off(x,-, h) —f(x;)i e {1,2,...,n} terms all keep the trends of changing
from positive to negative. This reflects the different impacts on error measures will be generated. And, the cut-points to these
two distributions are also outlined in the figures.

When h; and hy cannot converge to the same approximated value, we try to tune the parameter selection in order to make
a trade-off between the generated errors in the process of entropy estimation. From the Eq. (16), we can know that the en-
tropy estimation relies on the density estimation. It makes the type-I error which is related to type-II error to some extent. In
view of amending the type-II error with type-I error, a new entropy estimator called RE,, is proposed. Selecting an optimal
bandwidth based on the trade-off between these two errors is considered as a fundamental and potential property of RE;, .

5. The proposed estimator-RE,

In the real application, the underlying density function is always unknown. In order to approximate the optimal band-
widths for the entropy and density estimations, the corresponding error criteria should be designed. We have provided
the theoretical error criteria for the type-I error and type-II error in Eqs. (17) and (18) respectively. Now, we will derive
the specific mathematical formulations in the following.

5.1. Type-I error
From Eq. (17), we know that the measure of type-I error can be described as follows:

= E[Hge — H? = E[+E(Hgg) — H]* = [E(Hg) — H]* + E[Hge — E(Hge)]* = [Bias(Hge)]* + Var(Hgg).

where, Bias(Hgg) and Var(Hge) are the estimated bias and variance of Hge respectively. The bias denotes that whether the esti-
mated values center on the real one. And, the variance expresses the measure of dispersion among the estimated values. A
good estimator must have both low bias and low variance [25].

Firstly, because the mathematical expression of bias term can be described as follows:

Bias(Hye) — E(Hye) — H — E{lilnmxin} - {;ilnv(xin}
i=1 i=1

= IS EINf )]}~ I ~u—Tu ] —%i{fﬂxﬁ = 1) = [fee) = 1]} 29
i=1 i

Xl

From the Eq. (15) we getf(x,) = ZJ 1 Jsz exp [—% ,1). Then, the form of Eq. (5.1) can be rewritten as:

P i
Bias(Hgg) = ——Z{E[fx,]— (x)}=—— Z{ {lhz { _<¥)2}}_f(xf)}, (21)

1

where,

)] - ) = [ |k (520000 |ay - Fixoe

f (xi — hz)]dz — f(x;

- /{K(zmxffhz)ff<x,>1}dz— { [ ~ haf (%) + S 2 x >+0<h2>ff<xf>]}dz

— _hf(x) / 2K(2)dz + §h 27 (x,) / 2K(2)dz + O(h?)
x / f(z)dz / ZK(z)dz = 0, / f(z)dz = 1%h2f”(xi) / 22K (z)dz + O(h?). (22)
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By bringing the Eq. (22) into Eq. (21), the other form of bias is obtained:

n

2 n
Bias(Hzz) = —%Z B " (x) / zzK(z)dz} o) = — g—nz { (%) / z21<(z)dz] +O(h). (23)
i=1

i=1

Then, the expression of variance term can be calculated as follows:
Var(Hye) = ElHre — E(Hre)]” = E(Hp; ) — [E(Hre)) (24)

We derive E(H§E> and [E(Hge)]? respectively:

n

n R 2 n R 2 . 2
E(H) =E{,11Zln[f(xf)}} :EE{ZM) - 11} =,32E{Zf(xf> - n}
i= i=1
=,3z’5{ [Zf %) *2'@ %) }—,}E{Zﬂxo

HZZE[F (x:)] + 2225[f x)f (%)) ——ZE[{" x)] + 1 (25)

i=1 j#i

ot o] - o) o -4

- HZEM]} - ZnZme,-)J + nZ]

2 n
2 B+ 1
i=1

and,

= SO+ 5 23 e e ) S )+ 1. (26)
Above all, through bringing the Eqs. (25) and (26) into equation (24), we can get
Var(Hg) = ZZ[ 20| — {EF Y] (27)
where,

EIF? ()] — {Ef ()]} = {hzﬂ hX}) { “ (Xihxj>]}2

-3 ] [ oo { | [ G m]a) 22

2
K(2)f (x; — hz)]dz}

JLEEE

— hz)]dz -

—

nh

=hh '/[I(Z(Z)f(xf — hz)|dz *%{E[f(xi)}}z% (EFon? = O(%) %

« / {KZ @) [f(x,») — hzf'(x) + %hzzzf”(xi) Lo )} }dz + o(%)
_ nl { Fx0) / K*(2)dz — hf (x) / 2K (2)dz + lhzf”(x,») / 2K (2)dz + O(hz)} +0 (%) . (28)

Because there are ;. [hf X;) fzK2 ] =0(}) and F h f” (%) f221<2 dz] O(}), the final expression of Var(Hgg) can be
written as:

Var(Hge) = 22{ fx / Kz )dz}+0(%>. (29)

Hence, after we have got the formulations of Bias(Hgg) and Var(Hgg) in Eqs. (23) and (29), the final expression of E; can be
described as:
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E——En[f”xz)/ z)dz] + O(h?) f(x) /K2 z)dz| +0 1
' 2n; i K(z)dz] + n2znh i) +O%ah
h4 n ,
:rmz{f(xi)/ 2K(2) } 3hz[ X; /K2 dz}+0( h>+0(h2). (30)
i=1

For Gaussian kernel K(u) = ﬁ exp (— %),szK( )dz =1 and fKZ Vdz = 37 S0, the Eq. (30) can also be represented as:
h4 n 2 )
_W{Z[ﬁ/(xin} 2\/'n3hz[f ]+o< h) +0(h?). (31)
=

5.2. Type-II error

By using the Eq. (18) to measure the density estimation error, the type-II error can be expanded as follows:

B = [ 00 - fo0Pdx = [00Pdx -2 [ foofooiax-+ [ 10007 (32)

From the above equation, we can see that the third term [ [f(X)]?dx is not related to the unknown parameter h. So, the
minimization of Ej is same as to minimize Ej:

E;;:/[f( dx—/[f P2dx z/v X)]dx. (33)

Noting that the second term in Eq. (33) satisfies the following derivation:

2 fiooseonae 261 0 = 335 o0l = 33 Sk ()]

%i{ e (3059Y)

_% (x,- ;Xj)2:|} 277:n2h ZZ{exp

i=1 j#i

] e

and,

fooora= | {33 zen{-5 (529"} o

a2 fmee 2 ) o

1

et (w25 e[ (5 ])e

i=1 j#i

:ﬁ;/{exp {_<X;1Xi)2” nnzhzzz/{exp

3 [ o[ { 67+ 6
anh anzhzz{e)(p {__(Xlg)(]) }} (3)

i=1 j#i

We can obtain the formulation of type-II error by bringing the equations (34) and (35) into Eq. (33):

e DB CIEC-U N B D B CHETC-O N

i=1 j#i i=1 j#i

2\/1—nh anzh{zz{e)(p{ ( ix’) ” Z‘FZZ{GXP {‘%(%)2”} (36)

i=1 j#i i=1 j#i
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1y 1y by _ \hy by h,
[a]l ni<n; [b] n-n;

Fig. 5. The boundary of optimal parameter hy,.
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Fig. 6. The learning curves of RE,.y, RE,, SDE, and CVE on 24 different densities.
5.3. REg
In subsection 5.1, the unknown density term is considered to be replaced with f(x;),i=1,2,...,n. So,

2f1 5 1 1 riexp 2
F1x) =f"(x) :d {thﬂfﬁs;p[ Sax ]} 2nnh3z{ { (X:;X;> ] ) {C%)Z 71}}'

i
Then, neglecting the terms O(-};) and O(h?) as h — 0 and nh — oo, we can get the type-I error function:

h4

F =4nz{i[f”<xf>]}2 enc LY
87m4h2 {ZZ{exp __<X’;XJ> ] ) KXIEX])Z _1”}2 2\/—71114h2 ZZexp{ ( th]) }

i=1 j=1 i=1 j=1

Hence, the estimation model of RE;,;; can be described as follows:

1< 1 &1 1 /% —x\> . e
Hgg,,, = _ﬁzm{nhlm ;\/T_n exp {_i < J) } }7 where hy.y = arg miny (Ey.q) = arg miny, (E; + Ej).

P hin

3441

37)

(39)
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The merged error Ejy=E +E; can converge to 0, when h—0 and nh— co. Let hj =arg min,(E) and
hy = arg miny (Ey). If hj = hy, that is to say, the same parameter h makes the errors E; and E; reach the minimizations simul-
taneously, so, this h can also minimize the error measure E,,;; = E; + E};. Under such circumstance, we can get the conclusion:
hyn = hf = hy. If by # hy, RE,y; intends to minimize the error sum between E; and Ej. The selected bandwidth h,,; attempts
to minimize the generated errors when the entropy estimation is carried out. From the mathematical formulation of
Ei.u = E; + Ej;, we can see that it is not practical to solve the optimal bandwidth by means of the derivative knowledge. Using
some optimization algorithm to search the required parameter is considered as a necessary technology. In our study, the
extremum of the merged error function was found by using the golden section method (GSM) [56]. In order to overcome
the uncertainty of more than one minimum, we check GSM by plotting the error criteria over some disjoint segments of
h values. However, in our following experiments, we find that for every dataset that we have tested, there is only a global
minimum in E,,y = E] + E};. Based on this empirical observation, we will set the upper and lower bounds for the required
bandwidth hy,y. The following derivations are considered:

8[El*(hlﬂl) + ETI(hH”)] 0= 8E*(hl+ll) BEII(hIHI)
oh N oh oh

Suppose h; < h;. Based on + aEr‘f)';l‘"‘) = 0, we can just derive %’;‘*”) = 0 and %’;‘*") =< 0. According to the geometric

interpretation of the derivative, we can see that there is no such h.; which satisfies hi.y < h; or hy < hi.y such that
9E] (’mn JE][ h]+l[

hi = arg ming (E; + E) = =0.

OE] (hy1)
oh

< 0 and = 0. This result can be interpreted in Fig. 5 as follows.

From the first plcture inFig. 5, we can see thatif h,; < hj, then we can get % h'*“) < 0and OEf‘é';'*") =< 0.And, if hy < hy,n, we can
get—L 2| h‘ w o 0and OE“(""“ = 0.The two derived results are all in conflict with 2 h“") + %’;“") = 0. So, the conclusion is developed:
hi < hM. < hy. The same derivation processes can also be obtained by referrmg the second picture in Fig. 5 when h; - h;;. In this
case, we can know hy; < hyy < h;. In conclusion, the boundary of candidate bandwidth h;,; can be summarized as:

min {h}, hy} < hir < max {hy, hy}.

6. The experimental demonstration

In this section, we want to verify the estimation performance of our proposed estimator-RE;, ;.. All our experiments are
conducted on a PC having the OS of Windows XP Professional with one Pentium 4 2.8 GHz processor and 1024 MB RAM.
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Fig. 6. (continued)
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Fig. 6. (continued)

The related algorithms are implemented with MATLAB 7.1. Our comparisons are divided into three parts: (1) compare RE,,
with SDE and CVE which are derived from RE; (2) compare RE;,;; with 9 typical discretization methods; (3) compare RE;
with three space based estimators: m SE, m, SE, and NNDE. And, based on the observed experimental results, the theoretical
analyses are also conducted.

6.1. Compare RE,,; with SDE and CVE

SDE [34] and CVE [35] are two classical derivatives of RE [32]. The computational formulations of SDE and CVE are listed
in Egs. (8) and (9), where the parameters hspr and hqe used in this experiment are computed according to the rules shown in
the equations (10) and (11) respectively. Let c = 1. Meanwhile, in order to demonstrate the effectiveness of the proposed
trade-off strategy, the entropy estimator RE, is also included. The mathematical expression of RE is:

Hgg, = — Z { Z \/ﬁ [; (X’ h x’) } }, where h; = arg miny (E;). (40)

Unlike RE},y;, the optimal bandwidth of RE, is obtained only by minimizing the entropy estimation error, viz. type-I error.
In fact, RE; is a more intuitive approach than RE,,y;, because the density estimation error (type-II error) is always neglected
when the kernel density estimation is used in the entropy estimation. However, through this experiment, we will get that the
adopted trade-off method RE,,; is more reasonable. The experimental procedures are arranged as follows:

Step 1: For every probability density listed in Table 1, n random samples are generated XV =
(0P (=12, 24);

Step 2: Compute the estimated entropies Hge, (X, hi,u), Hrg (X®, hi), Hspe (X, hspe), and Heve (X®, heve) by using four dif-
ferent estimators: RE,,;, RE;, SDE, and CVE;
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Fig. 6. (continued)

Step 3: Calculate the estimated errors:
RE(I+11) = [Hgg,,, (X®, hyyu) — HP)?, RE(I) = [Hgg, (X, hy) — H']?, SDE = [Hspg(X”, h) — H?']*, and CVE
— [HCVE(X(P)7 h) _ H(P)]Z7

where H? (p = 1,2,...,24) is the true entropy of the p-th density listed in Table 1;

Step 4: Set the size of dataset n ranging from 50 to 150 in step of 10. Repeat the following Steps 1-3 for different values of n
and 100 times for each value. The average values of RE(I + II),RE(I), SDE, and CVE terms on the 100 repetitions are
recorded respectively. The learning curves are plotted in Fig. 6.

From the experimental results on 24 different density distributions, we can summarize the following three observations:

(1) With the increase of dataset size, the estimated error of RE;,; keeps a more smooth decrease compared with SDE and
CVE. Though the learning curves corresponding to SDE and CVE also decline roughly with the increase of number of
data points, the variation trends of SDE and CVE are not stable. Even if the same density distribution is studied, the
changes of estimated errors are also drastic. This indicates that SDE and CVE are more sensitive to the used dataset;

(2) Compared with the sophisticated estimation methods (SDE and CVE), RE,,;; has obtained the better estimation perfor-
mance. Except that for the Frechet distribution (s = 1, « = 3), the estimated performances of RE,, are all satisfactory.
The main reason of the inferior performances of SDE and CVE is due to the fact that these two estimation strategies
cannot make use of all the information provided by the current dataset. From the descriptions mentioned above, we
can see that all n data are used to estimate the unknown density in RE [32], only | (n + 1)/2] data used in SDE [34], and
n — 1 data used in CVE [35]. Theoretically, these three estimators are all convergent when the size of dataset satisfies
the condition n — oo [32-34]. This means that only if the “very enough” samples are provided, these estimators can
obtain the same excellent performances and all make the estimations converge to the real one. However, in the many
real applications [7,25,31], this condition is not always held and the size of dataset is limited. For example, in our tests,
we set the amount of dataset ranging from 50 to 150. Then, under such dataset sizes, RE can make better use of the
available dataset, and provide more precise entropy estimation. Assume there are 5 random samples generated by
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Fig. 6. (continued)

normal distribution N (0,1): x; = 0.3935, x, = 3.7930, x; = 1.2048, x4 = 0.0780, and x5 = —0.6712. Certainly, 5
samples are far from enough for acceptable entropy estimation. We only want to use this typical example to illustrate
the estimation mechanisms of different methods. Besides, SDE can be seen as a special case of CVE: SDE uses
[(n+1)/2| samples to estimate the unknown entropy and CVE uses n — 1 samples. So, only the comparison between
RE and CVE is studied. The true entropy of N (0,1) is nearly 1.42 (Computed according to the rule in Table 1). The esti-
mation entropies of RE and CVE are 1.34 and 5.58, respectively. From this computational result, we can see that the
estimation of CVE is of so low accuracy (5.58 > 1.42), however, RE has indeed obtained an ideal estimation
(1.34~1.42). We think this result is acceptable because of such a few samples used. With the focus on the fourth sam-
ple x4 = 0.0780, we can compute that the density estimations of x4 are 0.37 and 0.19 corresponding to RE and CVE (The
true density value of x, = 0.0780 is nearly 0.39). The density estimation with inadequate information leads to the
worse estimation performance of CVE. Thus, the conclusion of this numeric example tells us that the entropy estimation
method which cannot make use of all the data information will lead to considerable estimation errors. From the com-
putational rules of SDE and CVE, we can see that the parameters h also play a role on their estimation performances.
Whether it is essential that the more appropriate bandwidths want to be chosen for SDE and CVE in this comparison?
In order to make clear this doubt, we also compare these three methods from the view of the whole approximation pro-
cess with the change of parameter h. Let h range from 0.0001 to 5 in step of 0.0001. For different values of h, the entropy
estimations are carried out based on 100 times of random repeated trials. On 24 different density distributions, all the
entropy estimations corresponding to different parameter h are averaged. The above processes are conducted repeatedly
under different dataset sizes n =50, 100, and 150. The experimental results are listed in Fig. 7:

From Fig. 7, we can see that the overall performance of RE is also better. Under the different dataset sizes, RE can obtain the

minimal estimation errors from these 24 typical density distributions. This observation also demonstrates the effectiveness

of entropy estimator listed in Egs. (15) and (16) from another perspective. It can lead to a more stable and data-insensitive

entropy estimator compared with SDE and CVE;

(3) The estimation performance of RE is improved by applying the optimal bandwidth h;,;. On 21 different distributions,
the performance of RE,;; surpasses RE,. This indicates that neglecting the density estimation error (type-II error) is not
an advisable strategy when the entropy estimation is carried out. We find that RE,,; is incapable of estimating the
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Fig. 7. The overall performances of RE, SDE, and CVE.

continuous entropies on Hyperbolic Secant, Truncated Normal, Uniform distributions. The tentative explanations of
this observation can be depicted as follows. In fact, the new strategy RE,,, of selecting optimal bandwidth can be rec-
ognized as the adjustment to the parameter determined by RE;. Only considering the type-I error is not enough for the
determination of optimal bandwidth. So, tuning the inadequate bandwidth based on trading off between type-I error
and type-II error seems to be a practicable solution. Through an additional simulation, this tuning can thus be pre-
sented and the reason of worse performances of RE;,; on Hyperbolic Secant, Truncated Normal, Uniform distributions



Table 3
The summarizations of Rmin, Rmax, Rave, hi, and hy,y.
n=>50 n=100 n=150
himin hmax have hy hyn Ponin Pimax have hy hin himin hmax have hy hyn
Positive distribution Beta 0.068 0.116 0.092 0.085 0.100 0.050 0.099 0.074 0.064 0.092 0.046 0.090 0.068 0.052 0.080
Chi 0.205 0.343 0.274 0.213 0.275 0.173 0.296 0.235 0.168 0.240 0.134 0273 0.204 0.143 0.219
Erlang 0.629 1.128 0.879 0.727 0.916 0.569 1.040 0.804 0.519 0.795 0.448 0.947 0.698 0.446 0.748
Gamma 0.487 0.780 0.634 0.480 0.660 0.378 0.708 0.543 0.382 0.558 0.343 0.651 0.497 0.318 0.529
Gumbel 0.757 1.300 1.028 0.762 1.018 0.625 1.158 0.891 0.556 0.891 0.593 1.129 0.861 0.468 0.792
Logistic 0.583 0.978 0.781 0.577 0.743 0.498 0.893 0.695 0.430 0.672 0.447 0.807 0.627 0.374 0.613
Normal 0.306 0.536 0.421 0.357 0.479 0.262 0.470 0.366 0.268 0.384 0.205 0.441 0.323 0.226 0.375
Student’s-t 0.361 0.664 0.513 0.399 0.521 0.386 0.614 0.500 0.274 0.443 0.295 0.572 0.433 0.249 0.421
Von Mises 0.158 0.290 0.224 0.185 0.243 0.123 0.257 0.190 0.142 0.215 0.107 0.242 0.174 0.115 0.200
Weibull 0.064 0.112 0.088 0.075 0.098 0.054 0.099 0.076 0.056 0.084 0.046 0.089 0.067 0.048 0.075
Negative distribution Hyperbolic 0.063 0.269 0.166 0.301 0.438 0.026 0.146 0.086 0.226 0.352 0.024 0.087 0.055 0.197 0.339
Truncated 0.116 0.216 0.166 0.206 0.219 0.076 0.162 0.119 0.152 0.183 0.066 0.140 0.103 0.127 0.166
Uniform 0.261 0.491 0.376 0.534 0.545 0.184 0.338 0.261 0.374 0.400 0.162 0.242 0.202 0.328 0.339
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Table 4
The comparison between RE;,;; and different discretization methods under dataset size n = 50.
RE(I+I[) EWD EFD KMCD oD FFD NDD PD WPD MVSDD
Stu Sco Squ Fre Stu Sco Squ Fre Stu Sco Squ Fre =0 =05 a=1
Beta 0.084 1978 1,555 2100 1.712 2013 1.635 2130 1.754 1976 1553 2109 1.681 0.613 0798 1.045 2.130 0.779 0815 1.213 1.024
Cauchy 0.544 1.774 1711 1716 0486 0.643 0511 0526 1.087 1.022 0.773 0.809 0573 2338 1.858 1.612 0526 1.878 2.025 1.998 2.189
Chi-Squared  0.195 0.320 0563 0234 0.252 0.195 0.143 0312 0481 0.148 0212 0266 0421 1313 1.020 0774 0312 1.040 1.038 0.633 1.170
Chi 0.117 0.792 0477 0921 0.698 0.946 0.674 1.063 0906 0.895 0.577 1.028 0.780 0.511 0.269 0.023 1.063 0.289 0.255 0.144 0.117
Erlang 0.102 0476 0726 0371 0505 0.266 0.538 0.149 0346 0.325 0.642 0208 0418 1.737 1481 1234 0.149 1500 1.473 1.069 1.356
Exponential  0.175 0455 0202 0.562 0497 0888 0.668 1.005 1.107 0.832 0496 0958 0965 0.624 0.327 0.081 1.005 0.347 0340 0.067 0.524
F 2.526 0414 0408 0409 0.676 1.082 1.033 1.199 2552 0.828 0.828 1.021 1574 0.626 0.133 0.113 1.199 0.153 0.398 0.520 0.615
Frechet 0.465 1.132 0799 1.258 0984 1217 0951 1334 1.163 1.149 0853 1.298 1.060 0.234 0.002 0.248 1.334 0.018 0.019 0414 0.192
Gamma 0.133 0.145 0336 0.124 0.158 0.102 0.151 0.219 0203 0.074 0.257 0175 0.165 1361 1.113 0867 0.219 1.133 1.101 0.705 0.974
Gumbel 0.130 0.663 0875 0551 0584 0382 0620 0265 0372 0457 0.729 0319 0438 1.872 1597 1351 0265 1.617 1594 1.196 1.513
Hyperbolic 0.183 0.503 0303 0.620 0.654 0.722 0.596 0839 0951 0.622 0465 0.757 0952 0.792 0493 0247 0839 0513 0478 0.116 0.445
Laplace 0.176 0216 0272 0.147 0212 0195 0.152 0312 0646 0.108 0.127 0231 0624 1333 1.020 0.774 0312 1.040 1.008 0.658 0.952
Logistic 0.134 0.344 0528 0256 0.277 0.112 0317 0005 0.210 0.201 0421 0109 0.227 1.610 1327 1.081 0.005 1347 1311 0928 1.218
Lognormal 0.240 0445 0545 0374 0.175 0469 0341 058 1.059 0376 0.189 0517 1.031 1.108 0.746 0499 0.586 0.766 0.797 0.461 1.057
Normal 0.112 0.341 0.090 0460 0340 0469 0254 0586 0478 0424 0.145 0555 0389 0984 0.746 0499 0.586 0.766 0.729 0.339 0.609
Pareto 0.274 0.798 0.632 0.905 1257 1.653 1529 1770 2297 1557 1338 1.698 2136 0.102 0438 0685 1770 0419 0371 0.702 0.148
Rayleigh 0.109 1.515 1.195 1.627 1409 1.639 1368 1.756 1551 1.603 1.264 1.737 1458 0.201 0424 0.671 1.756 0405 0.436 0.833 0.595
Semicircle 0.069 1235 0.761 1355 0.865 1.243 0.789 1360 0908 1.238 0.752 1340 0.891 0.143 0.028 0.275 1360 0.009 0.046 0.447 0.293
Student’s-t 0.152 0.195 0211 0.212 0217 0261 0.186 0378 0575 0.189 0.129 0299 0483 1255 0954 0.708 0378 0.974 0941 0.566 0.863
Triangular 0.085 0.644 0236 0777 0383 0.695 0336 0812 0471 0.671 0304 0778 0447 0.717 0.520 0274 0812 0.540 0.509 0.107 0.309
Truncated 0.073 1.195 0.718 1317 0.864 1205 0.727 1322 0.814 1.180 0699 1312 0.801 0.156 0.010 0.237 1322 0.029 0.008 0.408 0.267
Uniform 0.105 0.284 0249 0403 0.251 0.279 0223 0396 0249 0.255 0275 0386 0.248 1.062 0936 0690 0396 0.956 0.921 0.526 0.643
Von Mises 0.131 0.893 0667 1.010 0931 1.079 0881 1.196 1.165 1.006 0.759 1.135 1.037 0412 0.136 0.111 1.196 0.155 0.118 0.270 0.080
Weibull 0.115 1908 1.642 2.031 1.869 2036 1.790 2.153 2.019 1991 1.672 2115 1906 0577 0821 1.067 2.153 0.801 0.837 1.233 1.004
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Table 5

The comparison between RE;.; and different discretization methods under dataset size n=100.

RE(I+1I) EWD EFD KMCD OoD FFD NDD PD WPD MVSDD
Stu Sco Squ Fre Stu Sco Squ Fre Stu Sco Squ Fre a=0 =05 oa=1
Beta 0.046 2128 1.814 2341 1921 2198 1905 2428 2022 2123 1.824 2336 1942 0.603 1439 3015 2428 1269 0.817 1.218 1.038
Cauchy 0.868 1931 1.724 1.898 0201 0458 0.179 0.228 1916 1.107 0235 0731 0785 2410 1217 0359 0228 1387 1.998 2.094 2.257
Chi-Squared  0.153 0377 0367 0.264 0.082 0380 0293 0609 0720 0.281 0.223 0499 069 1357 0379 1.196 0.609 0.550 1.037 0.628 1.195
Chi 0.083 0915 0734 1.128 0936 1.131 0948 1361 1.162 1.054 0.883 1263 1.097 0532 0372 1948 1361 0.202 0.255 0.146 0.111
Erlang 0.094 0376 0488 0.174 0.231 0.080 0220 0.149 0.198 0.190 0.321 0.064 0.188 1.777 0840 0.736 0.149 1.010 1470 1.071 1.328
Exponential  0.133 0493 0372 0.687 0.741 1.073 0982 1303 1405 0973 0.888 1.190 1367 0658 0314 1.890 1303 0.144 0342 0.066 0.492
F 2.672 0.547 0503 0.517 0941 1267 1574 1496 3.440 0.862 1390 1.223 2043 0694 0508 2.083 1496 0.337 0.398 0538 0.614
Frechet 0411 1.203 1.048 1417 1257 1402 1213 1.632 1408 1317 1.145 1523 1379 0264 0.643 2219 1.632 0473 0.021 0419 0.197
Gamma 0.090 0.120 0.116 0.243 0.172 0.287 0.187 0516 0423 0.193 0.125 0.398 0371 1404 0472 1103 0.516 0.643 1.099 0.703 0.953
Gumbel 0.105 0.594 0631 0404 0328 0.197 0310 0.032 0.176 0321 0425 0.092 0.197 1914 0957 0619 0032 1.127 1589 1.193 1.506
Hyperbolic 0.200 0.491 0525 0.685 0910 0.907 0967 1.136 1346 0.760 0.806 0.995 1273 0843 0.148 1.723 1.136 0.023 0475 0.105 0.421
Laplace 0.145 0.197 0.083 0.191 0467 0380 0488 0609 1.053 0.231 0317 0453 0.893 1383 0379 1.196 0.609 0.550 1.005 0.654 0.976
Logistic 0.089 0339 0298 0.163 0.107 0.073 0.137 0303 0429 0.089 0.112 0.181 0342 1.657 0.686 0.890 0303 0856 1309 0.928 1.204
Lognormal 0.139 0539 0430 0423 0408 0.654 0739 0884 1526 0506 0.606 0.740 1481 1.176 0.105 1.471 0.884 0.275 0.801 0.460 1.086
Normal 0.087 0437 0321 0.642 0.527 0.654 0549 0884 0779 0.555 0451 0.785 0.706 1.032 0.105 1471 0.884 0.275 0.727 0327 0.572
Pareto 0.188 0.737 0753 0.902 1509 1.839 1948 2.068 2758 1.644 1.818 1910 2766 0076 1.079 2.655 2.068 0.909 0.376 0.706 0.099
Rayleigh 0.075 1595 1431 1.806 1.641 1.824 1.661 2.054 1.871 1.733 1590 1951 1.832 0.161 1.065 2.641 2.054 0.895 0.440 0.841 0.612
Semicircle 0.052 1383 1.018 1.597 1.092 1429 1.052 1.658 1.131 1366 1.015 1584 1.090 0.144 0.669 2.245 1.658 0499 0.047 0.448 0.284
Student’s-t 0.114 0.196 0.081 0.224 0433 0446 0520 0675 0909 0.294 0381 0.519 0.801 1330 0314 1262 0.675 0484 0.936 0.566 0.896
Triangular 0.053 0.752 0485 0964 0626 0880 0592 1.109 0.733 0.808 0.532 1.028 0.709 0.729 0.121 1.696 1.109 0.050 0507 0.102 0.318
Truncated 0.056 1361 0930 1572 1.010 1391 0962 1.620 1.069 1339 0921 1554 1.007 0.168 0.631 2207 1.620 0461 0009 0411 0.266
Uniform 0.083 0431 0.045 0.647 0.103 0464 0036 0693 0.094 0416 0.044 0.616 0.097 1.063 0296 1.280 0.693 0466 0918 0519 0.640
Von Mises 0.084 0984 0914 1.191 1.168 1265 1230 1494 1499 1.139 1.087 1367 1413 0452 0.505 2.081 1494 0335 0.118 0.276 0.055
Weibull 0.069 2.002 1.864 2216 2.095 2221 2073 2450 2293 2123 1986 2353 2210 0537 1461 3.037 2450 1291 0.839 1.238 0.997
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Table 6
The comparison between RE,,; and different discretization methods under dataset size n=150.
RE(I+I[) EWD EFD KMCD oD FFD NDD PD WPD MVSDD
Stu Sco Squ Fre Stu Sco Squ Fre Stu Sco Squ Fre a=0 =05 o=1
Beta 0.032 2246 1961 2598 2.074 2321 2.033 2679 2153 2261 1983 2596 2.087 0594 1.735 4310 2.679 1.692 0.817 1.221 1.039
Cauchy 1.019 2088 1.839 1971 0.086 0335 0440 0.022 2334 0979 0270 0394 1.179 2438 0922 1.654 0.022 0964 2.076 2.203 2334
Chi-Squared  0.104 0.268 0.241 0207 0.212 0.502 0474 0.860 0877 0399 0400 0.778 0.858 1.381 0.084 2491 0.860 0.126 1.037 0.628 1.191
Chi 0.056 0992 0875 1338 1.098 1.254 1.138 1.611 1389 1.163 1.056 1.528 1.294 0550 0.667 3.243 1.611 0.625 0254 0.148 0.095
Erlang 0.074 0.358 0372 0.132 0.109 0.042 0.120 0400 0323 0.077 0.149 0309 0254 1.789 0544 2.031 0400 0.586 1.469 1.070 1.347
Exponential ~ 0.087 0.520 0484 0.855 0.877 1.196 1235 1553 1667 1.079 1.112 1469 1574 0693 0609 3.185 1.553 0567 0340 0.071 0.484
F 2.429 0.582 0497 0531 1.092 1389 1901 1.747 3857 0926 1.763 1532 2.050 0722 0803 3378 1.747 0.761 0438 0.587 0.643
Frechet 0.415 1307 1197 1.657 1401 1525 1416 1.882 1.643 1441 1297 1796 1497 0.278 0938 3.514 1.882 0.896 0.021 0.422 0.199
Gamma 0.068 0.127 0.045 0438 0321 0409 0363 0.767 0.634 0302 0250 0.681 0.557 1423 0.177 2398 0.767 0219 1.099 0.699 0.956
Gumbel 0.063 0.546 0.501 0252 0.201 0.075 0.127 0283 0333 0.195 0.211 0.188 0.236 1936 0661 1914 0.283 0.703 1.587 1.189 1.493
Hyperbolic 0.179 0.535 0.663 0869 1.046 1.029 1.183 1.387 1.602 0872 1.053 1.274 1492 0856 0443 3.018 1.387 0401 0474 0.106 0.420
Laplace 0.098 0.146 0.107 0306 0.592 0.502 0.681 0.860 1.204 0303 0.550 0.733 1.129 1409 0.084 2491 0.860 0.126 1.003 0.655 0.955
Logistic 0.066 0.234 0.154 0.173 0.187 0.196 0331 0.553 0697 0075 0.160 0452 0.526 1.694 0391 2185 0.553 0433 1308 0923 1.213
Lognormal 0.096 0.526 0335 0378 0532 0.777 0998 1.135 1.845 0.615 0920 1.025 1.826 1.206 0.190 2.766 1.135 0.148 0.802 0.490 1.107
Normal 0.055 0492 0439 0835 0704 0.777 0.766 1.135 1.027 0.671 0.605 1.047 0.875 1.036 0.190 2.766 1.135 0.148 0.727 0.328 0.591
Pareto 0.129 0.666 0.810 0943 1.632 1961 2.249 2319 3.189 1.788 2.062 2.218 2947 0089 1375 3.950 2319 1332 0373 0.698 0.098
Rayleigh 0.067 1.692 1559 2.040 1.795 1947 1.820 2305 2.049 1.845 1.732 2222 1973 0.157 1361 3936 2305 1318 0.440 0.841 0.607
Semicircle 0.034 1.503 1.150 1.857 1.247 1551 1.185 1.909 1.278 1497 1.154 1.843 1.254 0.146 0965 3.540 1909 0.922 0.047 0.451 0.290
Student’s-t 0.092 0.169 0.185 0393 0.555 0.568 0.780 0.926 1.185 0405 0.620 0.805 1.081 1.331 0.018 2.557 0.926 0.060 0936 0.566 0.898
Triangular 0.050 0.874 0.625 1224 0775 1.002 0.743 1360 0898 0940 0.682 1.294 0.833 0.743 0416 2991 1360 0.374 0.505 0.101 0.317
Truncated 0.053 1478 1.089 1.836 1.176 1513 1.112 1.871 1172 1461 1.079 1805 1.154 0.159 0.927 3.502 1.871 0.884 0.009 0.411 0.258
Uniform 0.073 0.557 0.147 0912 0.161 0.586 0.165 0.944 0.188 0.537 0.145 0.883 0.143 1.060 0.000 2.575 0.944 0.042 0917 0517 0.639
Von Mises 0.073 1.020 1.043 1366 1334 1387 1414 1745 1.703 1249 1316 1.644 1.635 0483 0.801 3376 1.745 0.758 0.117 0.279 0.045
Weibull 0.063 2.074 2.006 2420 2218 2343 2258 2701 2495 2231 2156 2.601 2391 0537 1757 4332 2701 1.715 0.839 1.241 0.994
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Table 7
The counts of wins, losses and ties of RE;,;; compared with all discretization methods by using two-tailed t-test with the 99% confidence level.

w/  EWD EFD KMCD oD FFD NDD PD WPD MVSDD
7 M2 M3 M4 M5 M6 M7 M8 M9 MI0 MI1 MI12 M13 M14 M15 Mi16 M17 M18 M19 M20 M21

50 23/ 22/ 21/ 21/ 20/ 20/ 21/ 24/ 20/ 20/ 22/ 23/ 21/ 20 19/ 21/ 20/ 19/ 20/ 19/
01 02 03 03 13 04 03 00 04 04 02 01 03 04 05 03 04 05 04 1/4
100 23/ 20/ 23/ 21/ 20/ 21/ 21/ 24/ 22/ 21/ 20/ 22/ 21/ 21/ 22/ 21/ 21/ 20/ 21/ 20/
01 04 01 03 04 03 03 00 11 03 04 02 03 03 02 03 03 04 03 0/
150 23/ 22/ 23/ 22/ 21 22/ 22/ 24/ 22/ 22/ 22/ 23/ 21/ 18/ 24/ 22/ 20 21/ 21 20
01 02 01 02 03 02 02 00 02 02 02 01 03 06 00 02 04 03 03 0/

Note that: M2: RE(I+II) vs. EWD(Stu) M3: RE(I+1I) vs. EWD(Sco) M4: RE(I+II) vs. EWD(Squ) M5: RE(I+11) vs. EWD(Fre) M6: RE(I+11) vs. EFD(Stu) M7: RE(I+1I)
vs. EFD(Sco) M8: RE(I+II) vs. EFD(Squ) M9: RE(I+II) vs. EFD(Fre) M10: RE(I+11) vs. KMCD(Stu) M11: RE(I+I) vs. KMCD(Sco) M12: RE(I+1I) vs. KMCD(Squ) M13:
RE(I+1I) vs. KMCD(Fre) M14: RE(I+I) vs. OD M15: RE(I+1l) vs. FFD M16: RE(I+I) vs. NDD M17: RE(I+I) vs. PD M18: RE(I+II) vs. WPD M19: RE(I+II) vs.
MVSDD(o = 0) M20: RE(I+11) vs. MVSDD(e: = 0.5) M21: RE(I+I1) vs. MVSDD(o: = 1).

Table 8
Different Hspace — Hre,,, and Hspace + Hg,,,, — 2Hrre terms on five distributions.

Dataset size REj. vs. m SE REj .y vs. mp SE RE;,;; vs. NNDE

Hinse — Hrg,y Himse + Hrey — 2Htrue Hingse — Hrey Hm,se + Hrg.y — 2Hrrue Hnnpe — Hrey Hnnoe + Hrey — 2HTre

Cauchy 50 0.224 —0.548 —-0.220 —0.992 0.355 -0.417
(HTrue = 2531)

100 0.186 —0.462 —-0.155 —0.803 0.257 —-0.391

150 0.192 —0.295 —-0.106 -0.594 0.261 —0.226

Frechet 50 0.008 —0.892 -0.212 -1.111 0.060 —0.840
(HTrue = 0671)

100 0.003 —0.886 —-0.170 —1.058 0.033 —0.856

150 —0.024 —0.860 —0.158 —0.995 —0.020 —0.856

Hyperbolic Scant 50 —0.027 0.311 —0.326 0.011 0.045 0.382
(HTrue = ]]66)

100 0.003 0.319 -0.226 0.090 0.041 0.357

150 0.019 0.385 —0.188 0.177 0.046 0.412

Lognormal 50 0.125 -0.182 —-0.183 —0.490 0.219 —0.088
<HTrue =141 9)

100 0.093 —0.204 -0.138 —0.435 0.141 —0.156

150 0.092 —0.128 -0.114 -0.334 0.136 —0.084

Pareto 50 0.165 —0.100 —0.046 -0.311 0.222 —0.043
(HTrue = 0235)

100 0.176 —0.151 0.002 -0.325 0.212 -0.115

150 0.142 —0.136 —-0.010 —0.288 0.164 -0.114

is also described. We target on 10 density distributions from Table 1 as the positive distributions on which RE;,; has
obtained better estimation performances. Based on each selected distribution, 100 datasets are generated under the
different dataset sizes of n =50, 100, and 150. For the specific dataset size, the notations hpyin, himax, Rave, h1, and hyy
denote the minimal value of all optimal bandwidths, the maximal value of all actual optimal bandwidths, the average
value of all actual optimal bandwidths, the average value of all actual optimal bandwidths selected by RE;, and the
average value of all optimal bandwidths selected by RE,,;;. The experimental results are listed in Table 3.

From Table 3, we explain the implied meaning by taking Chi distribution as an example. The following relations are
considered:

Chi: (C1) hy(Chi) € [nyin(Chi), Amax (Chi)]; (C2)hyy (Chi) € [Aumin (Chi), Rmax(Chi)]; (C3)|hy (Chi) — haye(Chi)|
- ‘hpr][(chi) — have(Chi)|.

The expressions (C1) and (C2) imply that the optimal bandwidths selected by RE; and RE,;; are reasonable. That is to say,
the optimal bandwidths selected by RE, and RE,y fall into a feasible interval of optimal bandwidth. And, the inequality (C3)
shows that the optimal bandwidth h;,;; (Chi) selected by RE,,; is better than the optimal one h; (Chi) selected by RE;, because
hi.y (Chi) is more close to the actual optimal bandwidth than h; (Chi). The observation that h;,; (Chi) is more appropriate
than h; (Chi). The tuning of bandwidth h; (Chi) occurs when the new strategy RE; is used to select the optimal parameter
for RE. This kind of tuning to all the optimal bandwidths selected by RE; is effective on the distributions employed in this
additional experiment. According to the experimental observations, the following conditions can be summarized for the po-
sitive distributions on which RE;,;; can obtain the better estimation performances than RE;:
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Fig. 8. The learning curves of RE;,;; and different discretization methods on normal density.

Positive distribution : (P1) h(Pos) € [min(P0S), hmax (Pos)]; (P2) hy.y(Pos)
€ [hmin(POS), hmax (P0S)]; (P3) [hi(Pos) — have(PoS)| > R (Pos) — haye (PoS)|.

However, when the above conditions are not satisfied this tuning is not always helpful to the negative distributions on
which REj,; cannot obtain the better estimation performances in comparison with RE,, for example, on Hyperbolic Secant,
Truncated Normal, Uniform distributions. Firstly, for Hyperbolic Secant and Uniform distributions, the relations are:

Hyperbolic Secant : (H1) hi(Hyp) ¢ [hmin(Hyp), hmax(Hyp)]; (H2) hi,n(Hyp)
¢ [min (HYD), himax(Hyp)]; (H3) [Ri(Hyp) — have(Hyp)| < [hin(HYD) — have (HyD)|.



Y.-L. He et al./Applied Mathematics and Computation 219 (2012) 3425-3460 3453

Uniform : (U1) hi(Uni) ¢ [Amin(Uni), himax(Uni)}; (U2) i (Uni) ¢ [Amin (Uni), Amax (Uni)]; (U3) [Ai(Uni) — have (Uni)|
< |h[+11(Ul'li) — have(Uni)\.

We can see that on these two distributions, the optimal bandwidths selected by RE; and RE,y all fall out the correspond-
ing feasible intervals. And, for Truncated Normal distribution, there are:

Truncated Normal : (T1) hy(Tre) € [hmin(Tre), hmax(Tre)]; (T2) hyu(Tre)
¢ [Nmin(Tre), hmax(Tre)]; (T3) |hi(Tre) — haye(Tre)| < |hy(Tre) — haye(Tre)|.

The tuned bandwidth of RE;,; is also not acceptable by the feasible interval. Secondly, for these three distributions, the
process of tuning the bandwidth makes the optimal bandwidths far from the actual optimal bandwidths. Overall, it states
that negative distributions are not satisfied with the summarized conditions for positive distributions so that RE;,;; obtain
the worse estimation performances on Hyperbolic Secant, Truncated Normal, Uniform distributions.

6.2. Compare RE,,; with different discretization methods

Because the discretization is used as the necessary pre-processing technology in many literatures [5-12] when the con-
tinuous entropy needs to be estimated, the different discretization methods are also introduced in our comparisons. In Sec-
tion 2, 9 typical discretization methods have been summarized. For the setup of forementioned parameters in these
methods, we give the following descriptions. For EWD, EFD, and KMCD, the number of discretized intervals k and the width
of interval m need to be determined beforehand. And, these two parameters will produce effects on the estimated perfor-
mances of EWD, EFD, and KMCD. There is not any best number of intervals, and different interval widths can reveal different
features of the data. Some theoreticians [26-28] have attempted to determine an optimal number of intervals, but these
methods generally make strong assumptions about the shape of the distribution. Depending on the actual data distribution
and the goals of the analysis, different interval widths may be appropriate, so experimentation is usually needed to deter-
mine an appropriate width. However, there are various useful guidelines that can be used to determine the number of
discretized intervals k or the width of interval m:
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Fig. 9. The learning curves of RE;,;;, m SE, m, SE, and NNDE on 24 different densities.
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(1) Sturges’ formula [53]: k = [log,n + 1], where n is the size of dataset X, and [u] denotes the rounding of the element u
to the nearest integers towards infinity;

(2) Scott’s choice [54]: m = 3.5a6/n'/3, where ¢ is the standard deviation of dataset X;

(3) Square-root choice: k = [v/n];

(4) Freedman-Diaconis choice [55]: m = 2IQR(X)/n'/3, where IQR(X) denotes the inter-quartile range [50] of dataset X.

In the following comparison, these four rules are respectively used in EWD, EFD, and KMCD to determine the number of
discretized intervals or the width of interval. For example, EWD(Stu) denotes EWD with Sturges’ interval number. In addi-
tion, because OD depends on the primary discretization, EWD with 10 discretized intervals is employed. In Peng’s web
homepage [51], three parameters o =0, or 0.5, or 1 are provided, so, we apply these three parameters in MVSDD in our
experiment.

The experimental procedures are arranged as follows. We investigate the entropy estimation performances of different
methods under the dataset sizes n = 50, 100, and 150. The estimation performance is measured by the error between the true
entropy and the estimated entropy. Under the specific dataset size, 100 datasets are generated randomly for every density
distribution listed in Table 1. By discretizing the continuous observations in advance, the estimated entropies can be calcu-
lated by the different discretization methods according to the Eq. (1.1). The experimental results are summarized in Tables
4-6.

For the specific dataset size and density distribution, we compare RE,; with the different discretization methods via the
two-tailed t-test with the 99% confidence level based on the comparative results on 100 datasets. According to the statistical
theory, we speak of two results for a dataset as being significantly different only if the probability of significant difference is
at least 99%. Then, based on the statistical results under the given dataset size, Table 7 records entries of w/t/l which means
that RE;,; wins in w densities, ties in t densities, and loses in [ densities.

From our experiments, we can see that the performances of RE,,; are overall the best among the related models. And,
with the increase of dataset size, the advantages of RE;,;; are advanced gradually. For example, compared with EWD(Squ),
the changed series of win number of RE,,; is 21(n =50) — 23(n =100) — 23(n = 150); With EFD(Sco), 20 —» 21 — 22; With
KMCD(Sco), 20 — 21 — 22; With NDD, 19 — 22 — 24; and with MVSDD(« =0), 19 —» 20 — 21, and so on. The empirical
results reflect that with the increase of dataset size, the estimated error of RE;,; will decrease gradually, while the
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discretization methods will lead to the increase of estimated error. In order to present this conclusion vividly, an additional
simulation is also carried out. The normal distribution N (0,1) is employed. Let n denote the size of dataset and range from 50
to 150 in step of 10. For different values of n, 100 datasets are generated randomly and the entropy estimations are carried
out base on these 100 times random repetitions. All the entropy estimations corresponding to different parameter n are aver-
aged. The experimental results are listed in Fig. 8:

The empirical observations from Fig. 8 demonstrate the conclusion mentioned above: the discretization methods will lead
to the increase of estimated error gradually with the increase of dataset size. Based on the experimental results, two disad-
vantages of discretization methods are summarized as follows:

(1) For the discretization methods, it is very central to determine the number of intervals and the width of interval.
Depending on the actual data distribution and the goals of the analysis, different interval widths may be appropriate.
So, these existing determination rules are not always effective. It shows that there is not any best number of intervals,
and different interval widths can reveal different features of the data. Compared with those discretization methods,
RE;, ;1 is a more flexible estimation method in which the only parameter h is dependent on the given dataset and
can be obtained by solving the Eq. (5.20);

(2) In Comparison with the related discretization methods, RE,,; obtains the best estimation performance. And, we find
that the discretization methods are not appropriate for the large dataset. With the increase of dataset size, the esti-
mated errors of different discretization methods also increase gradually. On the contrary, RE; ; can reduce the esti-
mated error with the increase of dataset size.

Now, we give an analysis of the time complexity of the above-mentioned 9 discretization methods and RE, ;. Because
EWD, EFD, OD, FFD, NND, PD, WPD, and MVSDD are dominated by sorting, their complexities are of order O(nlog,n) [25],
where n is the size of given dataset on which the entropy estimation is conducted based. When k is fixed, the complexity
of k-means clustering is O(n**Vlog,n) [58], where k is the number of clusters. KMCD uses the k-means clustering to deter-
mine intervals for the continuous observations. Thus, the complexity of KMCD is O(n*+Dlog,n). In order to solve the optimal
bandwidth for RE;.;;, we must find the minimization of E;,; = E; + Ej;. From the Egs. (36) and (38), we know that there are n?
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exponential components which need to calculate accordingly. Therefore, the computational complexity of RE, is of order
0O(n?). Thus RE;; has complexity lower than KMCD and higher than EWD, EFD, OD, FFD, NND, PD, WPD, and MVSDD.

6.3. Compare RE,.; with mSE, m, SE, and NNDE

The other three mostly used entropy estimators based on space-m SE [36], m,, SE [37], and NNDE [38]-are also compared
their performances with RE;,;;. The approximation rules of these methods are listed in the Egs. (12)-(14) respectively. By
arranging the experimental procedures as follows, the comparative results will be listed in Fig. 9.

Step 1:
Step 2:

Step 3:

For every probability density listed in Table 1, n random samples are generated X = {xﬁ"),xé”’, .. ,x,(f)}
(p=1,2,...,24);

Compute the estimated entropies Hge,,, (X, hiin), Hinse (X)), Himyse (X®), and Hywoe (X®) by using four different esti-
mators: RE;,;, m SE, m,, SE, and NNDE;

Calculate the estimated errors:

RE(1+11) = [Hge,,, (X?, hin) — HP?, mSE = [Huse(X®) — HP'?, m,SE = [Hp,s:(X™”) — H”)?, and NNDE

_ [HNNDE(X(m) _ H(IJ)]Z7

where H? (p = 1,2,...,24) is the true entropy of the p-th density listed in Table 1;

Step 4:

Set the size of used dataset n ranging from 50 to 150 in step of 10. Repeat the following Steps 1-3 for different values
of n and 100 times for each value. The average values of RE(I + II), mSE, m,SE, and NNDE terms on the 100 repeated
trials are recorded respectively.

From the comparative results, we can summarize the following experimental observations:

(1) Compared with m SE, RE,,; has obtained the better estimation performances on 20 density distributions except Cau-
chy (2= 1), Frechet (s = 1, = 3), Lognormal (¢ = 0,6 = 1), and Pareto (x, = 1, = 3) distributions;
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(2) Compared with m, SE, RE,; has obtained the better estimation performances on 23 density distributions except
hyperbolic secant distribution;

(3) Compared with NNDE, RE,,; has obtained the better estimation performances on 20 density distributions except Cau-
chy (2 =1), Frechet (s = 1,0 = 3), Lognormal (x = 0,0 = 1), and Pareto (x, = 1, = 3) distributions.

Now, we will try to discuss the reason of incapability of RE,, ;. Let Hspace denote the estimated entropy with space based
entropy estimator (Hysg, Hm,se, OF Hunpe)- The incapability of RE;,; can be reflected from the larger estimation error. So, the
following inequality can be derived:

2 2 2 2 2 2
(HSpace - HTrue) < (HREHII - HTrue) = HSpace - 2HSpaceHTrue + HTrue =< HREI_“ - 2HREMIHTrue + HTrue

= H3,.ce — 2HspaceHrue < Hzg, — 2Hgr,  Hrrue = (Hspace — Hie,,,) (Hspace + Hre,., — 2Hrrue) < 0. (41)

Space

The inequality (41) shows that when Hspace — Hrg,,,, and Hspace + Hrg,,, — 2H1re terms keep the opposite signs, the esti-
mated quality of RE;,; will be inferior compared with space based entropy estimator. In order to validate this presentation,
we carry out a numerical experiment on Cauchy (1 = 1), Frechet (s = 1,« = 3), Hyperbolic Secant, Lognormal (¢ = 0,0 = 1),
and Pareto distributions (x,, = 1, o = 3). For every distribution, 100 random datasets are generated and the estimated entro-
Py Hspace is the average of 100 times of repeated trials. Then, the Hspace — Hgg,,, and Hspace + Hge,,,, — 2Htre terms are calcu-
lated based on the estimated entropy Hspace. The experimental results are summarized in Table 8.

From the experimental results we can find that our proposed explanation is acceptable and can reflect the estimation
mechanism of RE,,;. For example, on Hyperbolic Secant distribution, m, SE has obtained the better estimation compared
with REj,;;, while m SE and NNDE are second to RE,,;;. Then, we can find the following experimental observations:

mSE(Hyp) : [Hmse(Hyp) — Hge,,,, (HYP))[Hmse (HYP) + Hre,.,, (HYP) — 2Hre (Hyp)] > O,
maSE(HYD) : [Hm,se(HYpP) — Hee,.,, (HYP)][Hm,se(Hyp) + Hke,.,, (Hyp) — 2Hrrie (Hyp)] < O,
and NNDE(Hyp) : [Hxnpe(Hyp) — Hge,., (Hyp)][Hnnoe (Hyp) + Hge,,, (Hyp) — 2Hme (Hyp)] > 0.

Similarly, on Cauchy (1 = 1) distribution, m, SE has obtained the worse estimation compared with RE,,;;, while m SE and
NNDE are better than RE;,;. Then, we can also find the following experimental observations:
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mSE(Cauchy) : [Hpse(Cauchy) — Hgg,,, (Cauchy)|[Hpse(Cauchy) + Hgg,, (Cauchy) — 2Hrwe (Cauchy)] < 0O,
m,SE(Cauchy) : [Hp,se(Cauchy) — Hgg,,, (Cauchy)|[Hp,se(Cauchy) + Hgg, , (Cauchy) — 2Hrre(Cauchy)] > 0,
and NNDE(Cauchy) : [Hxnpe(Cauchy) — Hgg, ,, (Cauchy)][Hanoe (Cauchy) + Hgg,,, (Cauchy) — 2Hrre(Cauchy)] < 0

For the distributions on which m SE and NNDE have obtained the better estimations, there is such a data characteristic
which can be extracted: Hspace — Hgg,,, > 0. The following discussions will give a detailed and insightful explanation of this
characteristic. Let the current dataset be X = {x1,X2,...,X,}. And, sort the original dataset X = {x1,X>,...,X,} in ascending
order and the ordered dataset is: X = {X;,Xs,...,X;,}, where X <X, <---<ZX, For the elementary function
y(X) = exp (—1x?),x € (—o0,+00), we can find that when |x| > 4.714 (The value of 4.714 is not designated, that any value
larger than 4.714 is also available), the value of y(X) < 0.00001 will be very close to 0. So, we think it is expected that when
|X| = 4.714,y(X) — 0. Based on the ordered dataset X = {X;,X2,...,%,}, RE, can be described as:

Ay — 1§ L AN A O o S B RVEEIY
Hiy == 21 {nhmzm [ (m)”‘ n;m{ﬂ—mhw;exp{ 2(hl+u>]}' 52

%% n %%\ 2| whenxi=%; . .
When min. 120, 1 > 4.714, we can get the component Y7, exp |—1 (,;] “J> — 1. Then, the approximation of the
J=1.2,.n | T +
. i=12..n
Eq. (42) is

~ 1< 1
H ~——)Y In|————| =In|V27wnhyy|. 43
% 3| | = [y (43)

XXI

" > 4.714, then mini12...

j=12...
iz is

obtained by bringing mm, 12,0 x Xj| = 4.714h,,y into the Eqgs. (12) and (14), let m =1 in the Eq. (12):

1#)

Because miniiz..n
j=12.

x — x,\ 4.714hy,y. The approximations of m SE and NNDE can also be
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_ 1 n—1 ~ B
Hpse = Ezln[n(xfﬂ —x;)] = ¥(1) = In[4.714nhy,] — ¥(1), (44)
i=1
and
~ 1 n
Hunoe = EZIn(ndi) +In2 + y; ~ In[4.714nh;y) + In2 + ;. (45)
i=1

Then, by comparing the Eq. (43) with Eqgs. (44) and (45), we can find Hmsg - ITIREH” = 0 and HNNDE - ITIREM, > 0 with the in-
crease of component nhy, ;. This shows that the imprecise bandwidth selection for RE,,;; on some distributions, for example,
Cauchy (2 = 1), Frechet (s = 1, = 3), Lognormal (¢t = 0,0 = 1), and Pareto (x,, = 1, « = 3) distributions, will lead to the con-
Xi—%
h[+]l

clusion Hgyace — Hig,,,, > 0. So, such distributions satisfying the condition mini-i»
=12,
i#j

> 4.714 will hamper RE,;; to mani-

n
n

fest its advantages.

7. Conclusions and future research

In this study, we have investigated a new strategy of selecting an optimal bandwidth for re-substitution entropy estima-
tor (RE). Two types of generated errors, entropy estimation error (type-I error) and density estimation error (type-II error),
are considered to merge together. The new estimator named RE,,;; aims to make a trade-off between these two errors. On 24
typical probability distributions, the estimation performance of RE;,;; is demonstrated. The 9 mostly used unsupervised dis-
cretization methods and 5 sophisticated entropy estimators are employed as the competitors. The experimental results show
that RE;,; can indeed attain the better estimation performance among the involved methods. We summarize some high-
lights briefly as follows: (1) the optimal bandwidth used in RE,.; indeed performs better than the singled bandwidth by min-
imizing type-I error. And, compared with the sophisticated splitting data estimator (SDE) and cross-validation estimator
(CVE), RE,; can also obtain a satisfactory estimation. The simulations confirm the validity and effectiveness of the derivation
error measure; (2) the discretized estimators are sensitive to the dataset size. It is not feasible to build the entropy estima-
tion when given with a large-scale dataset. With the increase of dataset size, the estimation error will increase significantly.
On the contrary, RE;,; can reduce the estimation error with the augment of dataset size; (3) the overall performance of RE,
also goes beyond the estimation behaviors of m-spacing estimator (m SE), m,-spacing estimator (m, SE), and nearest neigh-
bor distance estimator (NNDE). The application conditions of m SE, m,, SE, and NNDE are also discussed with the experimen-
tal comparisons. The empirical analysis demonstrates that RE;,;; is more insensitive to data and a better generalizable way
for the estimation of continuous entropy. Our scheduled further developments in the research are to: (1) extend the new
entropy estimation strategy into multivariate domain; and (2) apply the new entropy estimator in some machine learning
and data mining algorithms, such as, decision tree and Bayesian classifier.
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