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a b s t r a c t

The initial localized generalization error model (LGEM) aims to find an upper bound of error between a

target function and a radial basis function neural network (RBFNN) within a neighborhood of the

training samples. The contribution of LGEM can be briefly described as that the generalization error is

less than or equal to the summation of three terms: training error, stochastic sensitivity measure (SSM),

and a constant. This paper extends the initial LGEM to a new LGEM model for single-hidden layer feed-

forward neural networks (SLFNs) trained with extreme learning machine (ELM) which is a type of new

training algorithms without iterations. The development of this extended LGEM can provide some

useful guidelines for improving the generalization ability of SLFNs trained with ELM. An algorithm for

architecture selection of the SLFNs is also proposed based on the extended LGEM. Experimental results

on a number of benchmark data sets show that an approximately optimal architecture in terms of

number of neurons of a SLFN can be found using our method. Furthermore, the experimental results on

eleven UCI data sets show that the proposed method is effective and efficient.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The generalization ability of a trained feed-forward neural
network, which refers to the accuracy of the trained network
predicting the classes of unseen instances, is the most important
index for designing and training a neural network [1–9]. How to
improve the generalization ability is the central part of learning
feed-forward neural networks. The generalization ability can be
equivalently described as generalization error. Given a data set,
there are two frequently-used approaches from the literature to
measuring and estimating generalization error. One is the cross
validation [1] and the other is the error bound model [5–8]. The
cross validation is based on a split of the given data set, or
generally, based on a K-fold partition of the given data set, where
K is an integer bigger than or equal to 2. Specifically, the given data
set is first divided to K disjoint subsets, and then the union of any
(K�1) subsets is considered as a training set, and the remaining
subset is the testing set. Correspondingly, K neural network
classifiers are generated and the average of testing errors of the K

classifiers on the remaining subset is referred as to an estimation of
the generalization error, where the testing error of a classifier is
defined as the number of testing instances wrongly predicted by
ll rights reserved.
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the classifier. The K-fold cross validation is experimentally driven
and easy-implementation, but it is time consuming. The error
bound model for a trained neural network is to estimate the
generalization error by finding an upper bound of the difference
between the target function and the trained neural network on the
entire input space. The main advantage of error bound models is
that the error bound can be definitely suitable for all unseen
instances and the main disadvantages are the difficulty of math-
ematical derivation in finding the bound and the looseness of the
derived upper bound. Recently, based on the stochastic sensitivity
analysis of the radial basis function neural network (RBFNN), a
localized generalization error model (LGEM) is proposed in [10],
which gave an upper bound on the generalization error for unseen
samples located within neighborhoods of the training samples.

Another important index for training a neural network is the
complexity of training algorithm. One of the old frequently-used
algorithms for training a feed-forward neural network is the gradient-
based back-propagation (BP) algorithm. Even if its performance is
often claimed in textbooks or references to be better, it is criticized as
time-consuming of iteration and it often reaches local minimum.
Recently, a new training algorithm for single-hidden layer feed-
forward neural networks (SLFNs) was firstly proposed in [11]. It is
referred to as Extreme Learning Machine (ELM) which performs on a
SLFN. The ELM’s main features include the following points.
(1)
 ELM does not need iteration to tune the weights and so it is
not time-consuming.
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(2)
 The weights between input layer and hidden layer are
randomly generated.
(3)
 The weights between hidden layer and output are determined
by solving the system of generalized linear equations.
(4)
 There is no general conclusion for the generalization ability of
SLFNs trained by ELM.
The related references [11–18,25,29–31] can be found from
journals and conference proceedings. More recently, a survey
paper on ELM, which completely introduces ELM’s historical
development, newest advances, key issues, and main advantages
and disadvantages, has been published in Journal of Machine
Learning and Cybernetics [16].

Since there is still no general result for the generalization
ability of SLFNs trained by ELM (point (4) mentioned above),
based on the error bound model given in [10] for RBFNNs, this
paper makes an attempt to establish an upper error bound model
for a SLFN trained by ELM. A main concept for deriving the upper
error bound formula is called Q-neighbor. It is expected that the
establishment of the upper error bound model can provide some
useful guidelines for clarifying the generalization ability of SLFNs
trained by ELM. Moreover, the upper error bound model here has
potential applications to topics such as feature selection and
architecture selection of networks.

This paper is organized as follows. Section 1 is the introduc-
tion. In Section 2, the ELM for SLFNs and LGEM for RBFNNs are
briefly reviewed. In Section 3, the LGEM for SLFNs trained with
ELM is derived in detail and its application to architecture
selection is presented. In Section 4, a number of numerical
experiments using this newly proposed model are conducted
and some experimental results and remarks are showed there.
Section 5 concludes this paper.
2. Brief review of extreme learning machine and localized
generalization error model

In this section, we briefly review the basic concepts and
methods of extreme learning machine and localized general-
ization error model.
2.1. Extreme learning machine (ELM)

The ELM algorithm was proposed by Huang for single-hidden
layer feed-forward neural networks (SLFNs). According to Theo-
rem 2.1 in [11], the input weights and biases do not need to be
adjusted. It is possible to analytically determine the output
weights by finding the least-square solution. The neural network
is obtained after a few steps with very low computational cost.

Given a training data set, L¼{(xi,ti)9xiARn,tiARm,i¼1,2,UUU,N},
where xi is a n�1 input vector and ti is a m�1 target vector, a
SLFN with M hidden nodes is formulated as

f yðxiÞ ¼
XM
j ¼ 1

bjgðwjUxiþbjÞ ¼ tið1r irNÞ ð1Þ

where wj ¼ ½wj1,wj2, � � �wjn�
T is the weight vector connecting the

jth hidden node with the input nodes. bj¼[bj1,bj2y,bjm]T is the
weight vector connecting the jth hidden node with the output
nodes, and bj is the threshold of the jth hidden node. Eq. (1) can be
written in a more compact format as

Hb¼ T ð2Þ
where

H¼
gðw1 � x1þb1Þ � � � gðwM � x1þbMÞ

^ � � � ^
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ð3Þ

b¼
bT

1

^

bT
M

2
4

3
5

M�m

and T ¼
tT

1

^

tT
N

2
4
3
5

N�m

ð4Þ

H is the hidden layer output matrix of the network [12], where
the jth column of H is the jth hidden node’s output vector with
respect to inputs x1, x2, y, xN, and the ith row of H is the output
vector of the hidden layer with respect to input xi. If the number
of hidden nodes is equal to the number of distinct training
samples, the matrix H is square and invertible, and SLFNs can
approximate these training samples with zero error. But gener-
ally, the number of hidden nodes is much less than the number of
training samples. Therefore, H is a non-square matrix and we can
not expect an exact solution of the system (2). Fortunately, it has
been proved in [13,14] that SLFNs with random hidden nodes
have the universal approximation capability and the hidden
nodes could be randomly generated. According to the definition
of the Moore-Penrose generalized inverse, the smallest norm least-
squares solution of (2) is given in [11]:

b
4
¼HyT ð5Þ

where Hy is the Moore-Penrose generalized inverse of matrix
H [19].

In the following, the ELM Algorithm [11] is introduced.
ELM Algorithm: Given a training data set {(xi,ti)9,xiARn,tiARm,

i¼1,y,N} , an activation function g, and the number of hidden
nodes M:
(1)
 Randomly assign input weights wj and biases bj, j¼1,y, M.

(2)
 Calculate the hidden layer output matrix H;

(3)
 Calculate output weights matrix b¼HyT.
2.2. Localized generalization error model (LGEM)

The localized generalization error model [5,6,10] was proposed by
Yeung and it is to find an upper bound of MSE for unseen samples
which have similar feature values to the training samples (i.e., the
unseen samples will only occur with the distance smaller than a
given value Q from the training samples in the input space) [5,6].

The Q-neighborhood (SQ(xb)) of a training sample xb is defined
as SQ ðxbÞ ¼ x9x¼ xbþDxi,0o9Dxi9rQ ,8i¼ 1,2, � � � ,n

� �
, where n

denotes the number of input features, and Q is a given real value.
Let SQ be the union of all SQ(xb) and it is called as the Q-union.
All samples in SQ(xb) except xb are considered as unseen samples.
In classification problem, we usually do not have any knowledge
about the distribution of the true input space. Therefore, each
unseen sample is expected to have the same chance to appear;
correspondingly, Dxi is considered to be input perturbations
which is random variable having uniform distribution with zero
mean and variance s2

Dxi
.For 0rQ1r � � �rQkr1, the following

relationship holds:

DDSQ1
D � � �DSQk

DT ð6Þ

where D is the training data set and T is the entire input space.
The localized generalization error is defined as:

RSMðQ Þ ¼

Z
SQ

ðf yðxÞ�FðxÞÞ2pðxÞdx ð7Þ

where fy denotes the classifier with parameter set y, F(x) denotes
the true unknown input–output mapping function and p(x)
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denotes the true unknown probability density function of the
input x. By the Hoeffding’s inequality [20], with a probability of
(1�Z), we have

RSMðQ Þ ¼

Z
SQ

ðf yðxÞ�FðxÞÞ2pðxÞdxr ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ESQ
ððDyÞ2Þ

q

þ

ffiffiffiffiffiffiffiffiffiffi
Remp

q
þAÞ2þe¼ Rn

SMðQ Þ ð8Þ

where Dy¼ fy(x)� fy(xb), e¼ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln Z=ð�2NÞ

p
, Remp ¼

1
N

PN
b ¼ 1

ðf yðxbÞ

�FðxbÞÞ
2. Remp is the training error, ESQ

ððDyÞ2Þ denotes the stochas-

tic sensitivity measure(SSM), A, B and Z, the difference between
the maximum and minimum value of the target outputs, the
possible maximum value of the MSE and the confidence of the
bound, respectively. A and B can be fixed when the data set is given.
3. Architecture selection algorithm based on extended LGEM

The number of hidden neurons in feed-forward neural net-
work is usually selected by sequential learning [9,15,26] or by CV.
However, the sequential learning technique determines the num-
ber of hidden neurons by making use of the training error without
considering the generalization capability. The CV technique is
time consuming for large data sets. In this paper, we propose an
architecture selection algorithm based on extended LGEM which
considers the generalization capability and costs less time than
CV. We derive the SSM of Rn

SM for single-hidden layer feed-
forward neural network with sigmoid activation function in
Section 3.1 and an algorithm for architecture selection of the
SLFNs is proposed in Section 3.2.

3.1. Derivation of the SSM for SLFNs with sigmoid activation

function

The stochastic sensitivity measure (SSM) measures the output
perturbations (Dy) of the classifier when the input value changes
[21,22,27]. In this paper, we assume the training samples are
independent and only consider input perturbation. In addition,
the input perturbation of the ith input feature is a random
variable with a uniform distribution having the mean mDxi

¼ 0
and the variance s2

Dxi
¼ ð2Q Þ2=12¼Q2=3 .Uniform distribution is

assumed here because without any prior knowledge on the
distribution of unseen samples, we assume that they have an
equal chance of occurrence. According to (1), SLFNs with sigmoid
activation function could be described as

f yðxÞ ¼
XM
j ¼ 1

bjgðwj � xþbjÞ ¼
XM
j ¼ 1

bj

1

1þexpð�ðwj � xþbjÞÞ
ð9Þ

According to Taylor’s series expansion: 1
1þx ¼

P1
t ¼ 0

ð�1Þtxt

ð�1oxo1Þ,

f yðxÞ ¼
XM
j ¼ 1

bj

X1
t ¼ 0

ð�1Þt expð�ðwj � xþbjÞÞ
� �t

, 0oexpð�ðwj � xþbjÞÞo1
� �

ð10Þ

Ignoring the terms with order larger than 1, we have:

f yðxÞ �
XM
j ¼ 1

bjð1�expð�ðwj � xÞþbjÞÞ ð11Þ

Let Sj ¼
Pn

i ¼ 1

ðwijxiþbijÞ and Sn

j ¼
Pn

i ¼ 1

ðwijðxiþDxiÞþbijÞ.

Then ESQ
ððDyÞ2Þ

¼ ESQ

XM
j ¼ 1

bjð1�expð�Sn

j ÞÞ�
XM
j ¼ 1

bj 1�expð�SjÞ
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2
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¼ ESQ

XM
j ¼ 1
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@

1
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2
0
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Let Vj ¼ expð�SjÞ�expð�Sn

j Þ, then we have:

ESQ
ððDyÞ2Þ ¼

XM
j ¼ 1

XM
i ¼ 1

bibjESQ
ðViVjÞ ð13Þ

We have:

ESQ
ðViVjÞ ¼ ESQ

ðexpð�Si�SjÞÞ�ESQ
ðexpð�Si�Sn

j ÞÞ

�ESQ
ðexpð�Sn

i �SjÞÞþESQ
ðexpð�Sn

i �Sn

j ÞÞ ð14Þ

According to the central limit theorem, expðSjÞand expðSn

j Þ have
a log-normal distribution. Therefore,

ESQ
ðexpð�Sn

i �Sn

j ÞÞ ¼ exp
VarðSn

i þSn

j Þ

2
�EðSn

i þSn

j Þ

 !
� 1

þ
VarðSn

i þSn

j Þ

2
�EðSn

i þSn

j Þ ð15Þ

Then,

ESQ
ðViVjÞ ¼

1
2ðVarðSn

i þSn

j ÞþVarðSiþSjÞ

�VarðSn

i þSjÞ�VarðSiþSn

j ÞÞ ð16Þ

Because:

Var Sn

i þSn

j

� �
¼ Var

Xn

k ¼ 1

ðwki xkþDxkð ÞþbkiÞ

 

þ
Xn

k ¼ 1

ðwkj xkþDxkð ÞþbkjÞ

!
¼
Xn

k ¼ 1

ðwkiþwkjÞ
2VarðxkÞ

þ
Q2

3

Xn

k ¼ 1

ðwkiþwkjÞ
2

ð17Þ

And, finally we get:

ESQ
ððDyÞ2Þ ¼

Q2

3

XM
j ¼ 1

b2
j

Xn

k ¼ 1

w2
kj ð18Þ

where Q is a given real value, bj is the output of the jth hidden
node and wkj is the weight connecting the jth hidden node and the
kth input node.

The sensitivity measure (SM) of neural network [21,22] gives a
quantified data on the change of network outputs with respect to
change of network inputs. Intuitively, it measures how sensitive
the network output is to the input change. Here, the formula (18)
measures the output fluctuations of the classifier. A classifier that
has high output fluctuations yields high SM because its output
varies dramatically when the input value changes. Due to the
classifier bias/variance dilemma, a classifier yielding a good
generalization capability should minimize both the training error
and SM or achieves a good balance between the two [28].

3.2. Architecture selection algorithm based on extended LGEM

There are two ways to compare two classifiers [10]. One way is
to fix the value of Rn

SMðQ Þ and compare the magnitude between
the Q values. The other is to fix the Q value and compare the
Rn

SMðQ Þ. Suppose there are two classifiers, f1 and f2. Given a value a

of Rn

SM , if Rn

SMðQ1Þ ¼ Rn

SMðQ2Þ ¼ a, Q1oQ2, then f2 has a better
generalization performance. In order to get the best network
structure and find the optimal classifier, we can select the largest
Q which satisfies Rn

SMðQ Þ ¼ a . On the other hand, we can also
compute the Rn

SM using the same Q, the lower Rn

SM is, the better
generalization capability the network has.



Table 1
The basic information of the benchmarking data sets.

No. of features No. of samples No. of classes

Classification
Iris 4 150 3

Breast Cancer 10 699 2

Wine Recognition 13 178 3

Sonar Target 60 208 2

Pima Diabetes 8 768 2

Ionosphere 34 351 2

Car Evaluation 6 1728 4

Waveform 21 5000 3

Optical Digit 64 5620 10

Mushroom 22 8124 2

Wisconsin Breast Cancer 32 569 2

Regression
Servo 4 167 –

Boston housing 13 506 –

Auto-MPG 8 398 –

Abalone 8 4177 –

Ailerons 40 7154 –
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According to the first way, we can formulate the architecture
selection problem as an optimization problem, that is

max
Q

Rn

SMðQ Þra ð19Þ

According to (8) and (18), the Rn

SM for SLFNs with sigmoid
activation function is as follows:

Rn

SM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

3

XM
j ¼ 1

b2
j

Xn

k ¼ 1

w2
kj

vuut þ

ffiffiffiffiffiffiffiffiffiffi
Remp

q
þA

0
@

1
A

2

þe ð20Þ

Let Rn

SMðQ Þ¼a, we have

Q2
XM
j ¼ 1

b2
j

Xn

k ¼ 1

w2
kj�3ð

ffiffiffiffiffiffiffiffiffi
a�e
p

�

ffiffiffiffiffiffiffiffiffiffi
Remp

q
�AÞ2 ¼ 0 ð21Þ

Eq. (21) is a quadratic equation for Q. There are two solutions
for Q and let Q* be the positive real solution of the quadratic
equation.

hðM,Qn
Þ ¼

0, RempZa

Qn, else

(
ð22Þ

The algorithm for architecture selection of SLFNs trained with
ELM based on LGEM (ASLGEM-ELM) is given as follows.
1)
 Initialize M¼1;

2)
 Randomly assign input weight wj and bias bj of hidden nodes,

j¼1,y,M;

3)
 Calculate the hidden layer output matrix H;

4)
 Calculate output weights matrix b¼HyT;

5)
 Calculate the Q-value for the current network using (22);

6)
 If it does not meet the stop criterion, then M¼Mþ1 and go to

step (2), otherwise, go to (7);

7)
 Calculate argmax

M

hðM,Qn
Þ .

The stop criterion could be ‘‘M is equal to the number of
training samples’’. But it is not only time consuming but also
unnecessary. Generally speaking, when M{ N, the ELM algorithm
also gets high training and testing accuracy [11]. In our experi-
ments, we set the stop criterion as M¼500 when the number of
training samples is larger than 500.
4. Experimental results and analysis

In this section, we investigate the performance of the proposed
algorithm ASLGEM-ELM by conducting experiments on eleven
benchmark classification data sets and five regression problems
chosen from the University of California at Irvine (UCI) Machine
Learning Repository [23]. The basic information of the data sets is
given in Table 1. All attributes have been scaled to [0,1] to reduce
the effect of large values. Note that the proposed method
ASLGEM-ELM can be applied to any variation of problems with
any number of features, samples and classes.

In the experiments, every data set is randomly divided into
two parts, training data set and testing data set, and the simula-
tions are conducted in Matlab 7.1 running on a desktop PC (2.80 G
HZ CPU). Three groups of experiments are conducted for different
purposes. In experiment 1, we verify our proposed method with
ELM by the results of average testing accuracy. In experiment 2,
we compare our method with CV and OP-ELM [31] in architecture
selection on classification problems. In experiment 3, it is com-
pared with I-ELM [13], CS-ELM [32] and EM-ELM [15] on regres-
sion problems. Each experiment is repeated ten times to get ten
independent results for each data set. The experimental results
show that our proposed algorithm could obtain a network with
the best generalization performance.
The setting of parameters of in ASLGEM-ELM is as follows.
In (8), the difference between the maximum and minimum values
of target outputs (A) and the number of training samples (N) are
fixed after giving the training data set. The maximum possible
value of the MSE (B) and the confidence level of the Rn

SM bound (Z)
could also be selected before any classifier training. From Eq. (22),
one may notice that the smaller a is, the larger number of hidden
nodes will be selected by ASLGEM-ELM. This is because the Q

value will be zero if its training error is larger than a and the
training error decreases as the number of hidden nodes increases.
Since the experimental results show that the trained SLFNs with
training error larger than 0.25 will not yield good generalization
capability, the constant a is set as 0.25.

4.1. Experiment 1: Performance verification

In this section, we verify that the proposed algorithm ASLGEM-
ELM with ELM. In Table 2, nodes1 denotes the number of the
hidden nodes selected by our algorithm and nodes2 denotes the
optimal number of hidden nodes by many trials with ELM. nodesi
(i¼3,4) denotes the number of the hidden nodes two times and
half as many as nodes2, respectively. From Table 2, the optimal
network architecture can be found by our algorithm, because
nodes1 and nodes2 is comparative. However, when the number of
hidden nodes in SLFNs trained by ELM is more or less than
nodes2, the testing accuracies are lower than our method in all
the ten datasets. It could be easily observed that our proposed
algorithm ASLGEM-ELM could select the optimal network archi-
tecture in terms of number of neurons.

4.2. Experiment 2: Benchmarking with real classification

applications

In this section, we compare the ASLGEM-ELM with well known
architecture selection method, i.e. the k-fold cross validation (CV)
[1] and OP-ELM. The average classification testing accuracies and
average running time of ten time experiments of each data set are
given in Tables 3 and 4.

Experimental results in Table 3 show that the ASLGEM-ELM
performs best among the methods in terms of average classifica-
tion testing accuracy in most cases and training time on all the
data sets.



Table 2
The results of experiment 1: performance verification.

Datasets ASLGEM-ELM ELM

No. of nodes1 Testing accuracy (%) No. of nodes2 Testing accuracy (%) No. of nodes3 Testing accuracy (%) No. of nodes4 Testing accuracy (%)

Iris 6.7 98.67 7 98.67 14 97.33 4 78.67

Breast Cancer 8.6 96.20 9 96.93 18 95.03 5 93.57

Wine Recognition 13.8 98.88 14 98.88 28 96.63 7 91.01

Sonar Target 45.2 84.48 45 84.48 90 69.23 22 71.15

Pima Diabetes 35.8 83.85 36 84.38 72 75.52 18 76.04

Ionosphere 36.3 90.34 36 90.91 72 85.80 18 84.09

Car Evaluation 349.7 95.37 350 95.37 700 88.08 175 93.75

Waveform 69.5 85.16 70 85.16 140 84.92 35 83.28

Optical Digit 270.4 97.76 270 97.37 540 97.30 135 85.08

Mushroom 207.3 99.98 207 99.93 414 99.89 103 99.68

Table 3
The results of experiment 2: comparison with CV.

Datasets ASLGEM-ELM 5-CV 10-CV

No. of nodes Testing accuracy (%) CPU Time1 No. of nodes Testing accuracy (%) CPU Time2 No. of nodes Testing accuracy (%) CPU Time3

Iris 6.7 98.67 2.2969 13.6 96.53 11.60 10.3 96.07 13.4

Breast Cancer 8.6 96.20 66.9063 14.1 96.99 672 17.9 96.92 1012.7

Wine Recognition 13.8 98.88 1.9063 34.6 90.06 23.8 40.2 91.19 29.1

Sonar Target 45.2 84.48 8.2969 30.4 80.49 44.0 35.2 80.87 54.1

Pima Diabetes 35.8 83.85 81.2188 17.6 75.86 561.2 12.3 75.55 824.1

Ionosphere 36.3 90.34 9.6563 54.1 83.29 243.2 65.1 83.40 279.9

Car Evaluation 349.7 95.37 484.2031 63.4 90.92 2048.0 80.0 91.61 2209.7

Waveform 69.5 85.16 250.8125 32.5 82.60 255.4 54.3 84.20 283.8

Optical Digit 270.4 97.76 290.8750 93.2 94.80 4492.4 112.1 95.25 4663.0

Mushroom 207.3 99.98 267.3906 135.4 99.70 751.2 152.6 99.94 799.7

Table 4
The results of experiment 2: comparison with OP-ELM.

Datasets OP-ELM ASLGEM-ELM

Time(s) Testing accuracy (%) Time(s) Testing accuracy (%)

Iris 7.4e�2 95.00 2.2969 98.67

Wisconsin B.C. 1.1 95.60 54.7344 96.84

Pima I.D. 0.96 74.90 81.2188 83.85

Wine 0.44 90.70 1.9063 98.88
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From Table 3, the learning speed of our method ASLGEM-ELM
is the fastest in all cases. ASLGEM-ELM is about 5 to 20 times
faster than CV besides waveform and mushroom. The reason that
more time is required by CV is that for k-fold CV and L choices of
running times, kL classifiers must be trained. As shown in Table 3,
for Breast Cancer dataset ASLGEM-ELM gains a little lower testing
accuracy than CV, but for all the other data sets, ASLGEM-ELM
gains higher testing accuracies than CV. The reason is that CV
method estimates the expected generalization error instead of its
bound. Thus, they can not guarantee the constructed classifiers
have good generalization capability [24]. The presenting experi-
mental results illustrate that our proposed method has better
performance than CV on the same training and testing data sets.

According to the test results of Table 4, the OP-ELM is faster
than our method. This is comprehensible, because our method
trains multiple classifiers in order to find the maximum value of Q

(i.e., the classifier with the best generalization performance).
It could be obviously concluded that the network architecture
selected by our method is superior than that the OP-ELM selected.

4.3. Experiment 3: Benchmarking with regression applications

In this section, we evaluate and compare the performance of the
proposed ASLGEM-ELM with I-ELM, EM-ELM and CS-ELM. In our
experiments, the I-ELM and EM-ELM algorithms have two para-
meters that need to be considered: the expected training rate e and
the maximum number of hidden nodes Lmax. In the evaluations, we
aim to get the network when the training rate reaches the specific e
without the constraint of Lmax. Therefore, in our experiments, Lmax is
set to be a large value of 2000. For the CS-ELM, only the number of
hidden neurons needs to be set by us. According to [32], Lmax is set
to be 100 in order to obtain a compact network structure.

From Table 5, it is clear that the proposed ASLGEM-ELM
achieves better generalization performance than others and
comparable compact network structure.

I-ELM achieves comparable performance with the largest net-
work structure for all the regression cases. Comparing CS-ELM,
EM-ELM with the I-ELM, the network obtained using CS-ELM and
EM-ELM is always more compact than I-ELM. From Table 5,
ASLGEM-ELM performs better than others, because our method
is proposed based on generalization error.
5. Conclusions and future works

In this paper, we derive the SSM of SLFNs with sigmoid
activation function and propose an algorithm for architecture
selection of SLFNs trained by ELM based on LGEM. The algorithm
is not only simple but also efficient to automatically determine
the number of hidden nodes with the best generalization perfor-
mance. The experimental results demonstrate that the proposed
method could select the architecture of SLFNs which have the
best generalization performance, and yield higher average classi-
fication testing accuracy and less training time than CV.

Since ELM randomly generates input weights and biases which
may different each time, the network structure is not steady.
In our experiments, we have to compute the average number of
hidden nodes. In this paper, we have considered the input



Table 5
The results of experiment 3: benchmarking with regression cases.

Datasets Algorithms No. of hidden

nodes

Training

time(s)

Testing

RMSE

Servo I-ELM 2000 0.1398 0.1440

EM-ELM 28.6 0.0125 0.1369

CS-ELM 16.8 0.0078 0.1214

ASLGEM-

ELM

12.8 0.8125 0.1187

Auto-MPG I-ELM 2000 0.1422 0.0831

EM-ELM 21.7 0.0086 0.0803

CS-ELM 13.5 0.0125 0.0806

ASLGEM-

ELM

18.9 1.0625 0.0804

Boston

housing

I-ELM 2000 0.1844 01043

EM-ELM 46.05 0.0219 0.1052

CS-ELM 22.75 0.0117 0.1086

ASLGEM-

ELM

50.3 0.5469 0.0935

Abalone I-ELM 1840.6 0.4820 0.0822

EM-ELM 11.5 0.0117 0.0794

CS-ELM 20.8 0.0375 0.0771

ASLGEM-

ELM

26.4 2.9219 0.0771

Ailerons I-ELM 2000 0.8492 0.0658

EM-ELM 79.8 0.5203 0.0526

CS-ELM 31.9 0.3414 0.0530

ASLGEM-

ELM

38.2 17.7500 0.0514
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perturbation, leaving behind the weights perturbation. A future
work is to add the effect of weights perturbation to the SSM.
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