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Abstract—This paper presents a covariance-matrix modeling
and detection approach to detecting various flooding attacks.
Based on the investigation of correlativity changes of monitored
network features during flooding attacks, this paper employs
statistical covariance matrices to build a norm profile of normal
activities in information systems and directly utilizes the changes
of covariance matrices to detect various flooding attacks. The clas-
sification boundary is constrained by a threshold matrix, where
each element evaluates the degree to which an observed covariance
matrix is different from the norm profile in terms of the changes of
correlation between the monitored network features represented
by this element. Based on Chebyshev inequality theory, we give
a practical (heuristic) approach to determining the threshold
matrix. Furthermore, the result matrix obtained in the detection
serves as the second-order features to characterize the detected
flooding attack. The performance of the approach is examined by
detecting Neptune and Smurf attacks—two common distributed
Denial-of-Service flooding attacks. The evaluation results show
that the detection approach can accurately differentiate the flood-
ing attacks from the normal traffic. Moreover, we demonstrate
that the system extracts a stable set of the second-order features
for these two flooding attacks.

Index Terms—Covariance matrix, flooding attacks, second-
order feature, statistical anomaly detection, threshold matrix.

I. INTRODUCTION

F LOODING attacks have imposed significant threat to the
reliability of computer networks. These flooding attacks

are defined as the attacks which exploit the huge resource asym-
metry between the Internet and victim and impose abnormal
exhaustion of either Internet bandwidth or the server’s resource
(e.g., memory and CPU resources) [1]. The consequences
caused by flooding attacks are very severe. For example, a
typical flooding attack can prevent network users from access-
ing critical services or even cause the failures of networking
infrastructure. To compromise the security of an information
system, various flooding attacks can take many different means.
For instance, a quick probing attack [33] occupies network
bandwidth and gathers host vulnerabilities by scanning a net-
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work of computers within a short period; a flooding Distributed
Denial-of-Service (DDoS) attack makes a host or network
service unavailable by amassing a number of compromised
hosts to send useless packets to the victim at around the same
time [1]; a flooding spam worm exhausts network bandwidth
and server’s memory by mass mailing within a short time.

To assure the reliability of computer networks, an effective
detection for flooding attacks is indispensable. Flooding-attack
detection belongs to the field of intrusion detection. In the past
decade, a variety of studies on intrusion detection emerged
in the literature. They vary in their approaches and addressed
intrusions. Largely, different approaches fall into two major
categories: misuse detection and anomaly detection. Misuse-
detection techniques signal intrusions when the observed ac-
tivities in an information system match the prebuilt rules or
signatures of known intrusions. Anomaly detection techniques
indicate intrusions when the subject’s observed behaviors have
a significant deviation from its norm profile. Compared with the
techniques of anomaly detection, misuse detection techniques
lack the ability to identify unknown intrusions [2]. When the
attack signature changes a little, the original built-up detection
rules in the misuse-detection system will have no use. For
example, Xu [14] shows that a defense technique proposed by
Internet Security System (ISS) is very effective in countering
current DDoS software. But, it becomes powerless when such
software is slightly modified. Since various unknown flooding
attacks pop up at a surprising rate and become prevalent in
network attack incidences [20], [34], anomaly detection tools
are often employed in the detection of multiple and various
flooding attacks.

In most of the anomaly detection approaches to detecting
flooding attacks, large amounts of attention are mainly paid to
forming the criteria among the normal traffic and known at-
tacks, while the differences among various unknown attacks are
neglected. For example, Lee and Stolfo [13] employ machine-
learning algorithms to generate intrusion-detection rules based
on the analysis of network-connection records, in which various
types of flooding attacks in Denial-of-Service (DoS) and Probes
categories are signaled when the observed activities match
the rules of known attacks. However, since the rules cannot
cover the high variance of the unknown attacks, their model
is not effective in detecting the unknown DoS attacks [15].
Wang et al. [12] utilize the change-point-monitoring approach
to detect flooding DoS attacks. Their detection model is effec-
tive in making a quick detection of any abrupt change in the
network traffic. However, the model lacks the ability to identify
the types of the detected anomalies—such as either Smurf or
Neptune attack in the category of flooding DoS attacks. To
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distinguish various types of flooding attacks from each other is
still a challenge to constructing an effective detection system.

Based on the investigation of correlativity changes of mon-
itored network features during flooding attacks [9], [11], [12],
this paper utilizes the changes of correlations among features
in the detection. Although some approaches in the literature
also take advantage of correlation changes to detect flooding
attacks, the correlativity changes in these approaches is utilized
either indirectly [7], [10] or partially [11], [12]. For example,
the approaches in [11] and [12] only use correlativity changes
to identify flooding attacks from normal traffic, but they do not
further reveal the possible insights into the behavioral patterns
of flooding attacks that may be exhibited by the correlativity
changes. The possible insights include, e.g., whether the cor-
relativity changes can be directly utilized in the detection or
whether the correlativity changes can serve as the second-order
features to distinguish various flooding attacks from each other.
The answers to these questions will greatly improve our under-
standing of the normal traffic and flooding attacks, which
will further help us take effective responses to maintain the
security of information systems. From this sense, this paper
proposes a general modeling and detection approach. It focuses
on answering the questions of: 1) how to directly utilize the
correlativity changes to construct an effective detection system
so that the behavioral properties of various flooding attacks,
especially the properties of various unknown flooding attacks,
can be revealed and 2) in which ways to mark the detected
flooding attacks so that various flooding attacks can be distin-
guished from each other in terms of correlativity changes.

This paper employs the covariance matrix to model and
detect various flooding attacks. The covariance matrix, as one
of the second-order statistics, is directly utilized to reveal the
characteristics of different classes (normal traffic or various
types of flooding attacks) in terms of correlation changes
among monitored features. Our detection approach has three
main characteristics.

1) It models the traffic samples provided by network-
monitoring devices into covariance-matrix samples. This
modeling process enables the approach to directly make
use of the differences of correlation information among
network features in the detection.

2) It not only detects various flooding attacks, but further
extracts the second-order features for the detected flood-
ing attacks—a useful tool to identify various unknown
flooding attacks.

3) It is independent of prior data-distribution assumptions.
Since a covariance matrix is constructed based on a se-
quence of samples, the statistical distribution information
of the population has been embodied in the covariance
matrix when a suitable sequence length is selected.

The rest of this paper is organized as follows. Section II
provides the background of this paper. Section III details the
covariance-matrix modeling process and gives the problem rep-
resentation. Section IV describes the detection approach, where
the dissimilarity function, threshold determination algorithm,
and 0–1 matrix concept are introduced. Section V evaluates
the performance the detection approach by detecting two types

of common flooding DDoS attacks—Neptune (also known as
SYN flooding) and Smurf attacks. Section VI presents the
validation results and makes some discussions. Section VII
discusses some practical implementation issues. In the end,
Section VIII states a conclusion.

II. RELATED WORKS

Basically, the techniques of detecting various flooding
attacks belong to the network anomaly detection category. In
the category of network anomaly detection, many different
detection techniques exist such as neural network [23], [32],
clustering [31], Markov model [29], wavelet analysis [19],
specification-based detection [17], [18], and statistical detection
[2]–[10]. In the detection of flooding attacks, the statistical
detection approaches are widely employed among others. The
detailed surveys of statistical detection development in this
area have appeared in the literature [3]–[5]. In this section, we
review the statistical detection techniques for flooding attacks
mainly from the point of view of the problem formulation.

To detect flooding DoS attacks, some detection ap-
proaches use the macroscopic formulation. For example,
Xiong et al. [24] formulate the problem of high concentration
of malicious DDoS packets to the victim as a similar hot-spot
problem as observed in a multiprocessor system, where a hot
spot is formed when a large number of processors simultane-
ously access the shared variables in the same memory module.
Kong et al. [25] model the mitigation of flooding DoS attacks
as a controllable material flow. However, since there is a lack
of the underlying traffic models, the macroscopic formulation
cannot ensure the applicability of their derived results [24].

In addition to the high-level solutions mentioned above,
many other flooding-attack-detection approaches are based on
the Bayesian formulation, in which the statistics of different
network features are evaluated. For example, Jung et al. [27]
evaluate various statistics such as the distribution of page access
number or the distribution of client number to distinguish
the normal hypertext transfer protocol (HTTP) requests from
flooding DoS attacks. Blazek et al. [10] regard the protocol
utilization as the evaluated statistical variable. Manikopoulos
and Papavassiliou [8] regard different frequencies of selected
packet attributes such as protocol or service in the protocol
headers as the evaluated statistical variables. Ohsita et al. [28]
evaluate the statistics of time variation of different flow traffic
to detect DoS attacks. The approaches mentioned above mainly
utilize the first-order statistics to distinguish flooding attacks
from normal traffic. Few of them consider the second-order
statistics of the observed subjects in the detection of flooding at-
tacks. A drawback of the Bayesian-formulation-based detection
approaches is that the detection approaches need prior distri-
bution assumptions [1], [6]. If the evaluated statistical variables
are not distributed as presumed, the detection techniques will
yield a high false alarm rate [6].

Recent work mainly focuses on sequential change-point
detection for flooding attacks. The detection approaches are
based on time-series formulation. For example, the abrupt
change-detection approach in [11] determines the anomalies by
analyzing the abrupt changes in Management Information Base
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Fig. 1. Segmentation of observed temporal sample stream.

(MIB) variables. The change-point detection approach in [12]
detects the SYN flooding attack based on the changed statistics
between the number of SYN packets and the number of FIN or
SYN/ACK packets. The sequential change-point-based detec-
tion approaches make effective detection of any abrupt change
in network traffic. However, they fail to reveal the meaning
of abrupt changes to flooding attacks, e.g., whether different
abrupt changes correspond to different network attacks.

Different from the detection models mentioned above, where
the evaluated statistical variables are the first-order statistics,
our detection model utilizes the second-order statistics of
monitored-network features as the evaluated variables. Spe-
cially, we employ the covariance matrices of the sequential
samples and propose a covariance-matrix-based detection ap-
proach to detecting various types of flooding attacks. The
covariance matrix is directly utilized in the detection in order to
evaluate the changes of correlations among monitored features.
The detection model presented here overcomes the limitations
of prior assumptions of data distribution in the Bayesian formu-
lation. Moreover, it further reveals the specific meanings of the
second-order statistics to different types of flooding attacks.

III. COVARIANCE-MATRIX MODELING AND

PROBLEM REPRESENTATION

A. Covariance-Matrix Modeling

Note that the abnormal packets of flooding attacks are
always amassed quickly to a single victim in order to exhaust
the resources. The statistical properties within that period will
mainly reflect the traffic behavioral properties of the flooding
attacks, which should be different from that of the normal
traffic. Therefore, we can make use of the statistical properties
contained in the temporally sequential samples to detect the
flooding attacks. To exhibit the correlativity of the underlying
network traffic, we use statistical covariance matrices to
model the sample sequences of equal and fixed length. Each
element in a covariance matrix describes the correlation
between any two monitored features of the corresponding
sample sequence. Mathematically, the covariance-matrix
modeling process can be described as follows. Assume an
observed sample x has p features. It can be represented as
a random vector x = (f1, f2, . . . , fp)T. Let x1, . . . ,xn be n
observations, where xi = (f i

1, f
i
2, . . . , f

i
p)

T is the ith observed

vector. We define a new variable y, which represents the
following statistics yl related to p features of the lth sequence
of length n:

yl = (xl
1, . . . ,x

l
n)T (1)

where xl
k = (f l,k

1 , f l,k
2 , . . . , f l,k

p )T, 1 ≤ k ≤ n. The definition
(1) can be represented in detail as

yl =
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where f l,k
u is the value of fu in the kth observation in the lth

sequence. Parameters u, l, and k are integers and satisfy the
conditions of 1 ≤ u ≤ p, 1 ≤ l < ∞, and 1 ≤ k ≤ n.

We use the covariance matrix Ml to characterize the variable
yl as follows:
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where σf l
u,f l

ν
= cov(f l

u, f l
ν) = 1/n

∑n
k=1(f

l,k
u − µf l

u
)(f l,k

ν −
µf l

ν
), and µf l

u
= E(f l

u) = 1/n
∑n

k=1 f l,k
u .

The covariance-modeling process can be regarded as a data
preprocess, where the correlations of sample sequences of equal
and fixed length n are represented by covariance matrices.
In practice, we obtain a temporal sample stream through
the continuous sampling of the network-monitoring devices.
The covariance-modeling process first segments the temporal
sample stream into all nonoverlapped sequences of length n
and then calculates the covariance matrices of the sequential
samples. Fig. 1 illustrates the relationship between the observed
temporal sample sequences and their corresponding covariance
matrices.

In conceptual terms, the modeling process can be regarded
as a process of a new covariance feature space construc-
tion. Each dimension of the covariance feature space gives
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Fig. 2. Illustration of the covariance-matrix-based detection model.

a measure of correlation between any pair of monitored fea-
tures. Since an original sample is described by p features,
a sample sequence of length n can be viewed as n points
of x in the original feature space with p dimensions. The
covariance-matrix-modeling process can, thus, be described as
a transformation that maps the temporal n samples into an
intermediate point y in a p(p + 1)/2-dimensional covariance
feature space. The covariance-modeling process is illustrated
on the left in Fig. 2.

B. Problem Representation

Based on the covariance feature space construction illus-
trated in Fig. 2, the problem of detecting various flooding
attacks can be posed as follows.

The norm profile of normal traffic is represented by the math-
ematical expectation of all covariance matrices constructed
from all nonoverlapped sequential samples of the normal class
in the training dataset. Given a testing covariance matrix, the
detection approach will determine whether the presented co-
variance matrix is greatly different from the norm profile by
means of some Dist(•) function. The modeling and detection
flow of our detection model is illustrated in Fig. 2.

Since each element in the covariance matrix exhibits the
correlation between two corresponding features, the difference
matrix or the result matrix of function Dist(•) will represent
the correlation differences between the observed sequential
samples and the normal traffic. If the correlation differences are
significant, a flooding attack will be signaled.

IV. DETECTION APPROACH

A. Dissimilarity Function and 0–1 Result Matrix

We use the symbol N to denote the norm profile of normal
traffic. The dissimilarity function Dist(•) between an observed
covariance matrix Mobs and N is defined as follows:

Dist(Mobs,N;T) = (duν)p×p

∀mobs
uν ∈ Mobs ∀nuν ∈ N ∀δuν ∈ T

duν =

{
1, if

∣∣mobs
uν − nuν

∣∣ ≥ δuν

0, if
∣∣mobs

uν − nuν

∣∣ < δuν

(4)

where T is the dissimilarity threshold matrix. Each element δuν

in T restricts the range within which the element mobs
uν in Mobs

can be different from nuν in N.

Note that the result of function Dist(•) is a matrix whose
elements are either zeros or ones. We call it 0–1 matrix. A 0–1
matrix can represent a total of 2[p(p+1)/2] different dissimilarity
results. If two 0–1 matrices have different number of ones, they
are different. If two 0–1 matrices have the same number of
ones, but the ones appear at different positions (the coordinates
of rows and columns), they should be considered different too.
For example, if

Dist(Mobs1,N;T) =
(

1 0
0 0

)

Dist(Mobs2,N;T) =
(

0 1
0 0

)

we can draw two conclusions: 1) both Mobs1 and Mobs2 are
significantly different from norm profile N, which means
that both Mobs1 and Mobs2 are detected as attacks and
2) Mobs1 is not equal to Mobs2 since there are different
positions of value one in their dissimilarity results, which
means Mobs1 and Mobs2 come from different types of attacks.
That Mobs belonging to the normal class is true if and only if
Dist(Mobs,N;T) = [0]p×p.

By introducing the 0–1 matrix to evaluate the difference
between the observed covariance matrix and the norm profile,
our detection approach will enjoy the advantage of further
extracting the patterns of the unknown attacks. Note that in
a detection result represented by a 0–1 matrix, the positions
with value ones exactly correspond to correlations which are
significantly different from the norm profile. Therefore, the
positions with value ones in the result matrix can serve as the
second-order features to mark the detected flooding attack.

B. Threshold Determination

Let us assume that the variable E(Ml) denotes the math-
ematical expectation of all covariance matrices of the normal
traffic. The variable Ml (3) denotes the covariance matrix of the
lth temporal sample sequence of length n of the normal traffic.
Since the threshold matrix T (4) restricts the distance between
Ml and E(Ml), the threshold matrix essentially reflects the
statistical variance of the random vector (Ml − E(Ml)).

In order to provide a practical solution to determining a
suitable threshold matrix, we employ the Chebyshev inequality
theorem. The Chebyshev inequality is a result in probability
theory [35]. It gives a lower bound for the probability that
a random variable with finite variance lies within a certain
distance from the variable’s mean.

Let X be a random variable with a finite mean E(X) and
a finite variance D(X). Then for any positive real number ε,
we have

P (|X − E(X)| ≥ ε) ≤ D(X)
ε2

. (5)

Equivalently

P (|X − E(X)| < ε) ≥ 1 − D(X)
ε2

. (6)



YEUNG et al.: COVARIANCE-MATRIX MODELING AND DETECTING VARIOUS FLOODING ATTACKS 161

Equation (6) shows the probability that a random variable will
assume a value lies within a certain distance from the variable’s
mean is greater than (1 − D(X)/ε2).

In our case, we have (7), shown at the bottom of the page. In
statistical theory, E(Ml) = cov(X), where cov(X) denotes
the covariance matrix of the population of normal traffic X .
Therefore, we have

Ml−E(Ml)=




σf l
1f l

1
−σf1f1 σf l

1f l
2
−σf1f2 · · · σf l

1f l
p
−σf1fp

σf l
2f l

1
−σf2f1 σf l

2f l
2
−σf2f2 · · · σf l

2f l
p
−σf2fp

...
...

. . .
...

σf l
pf l

1
−σfpf1 σf l

pf l
2
−σfpf2 · · · σf l

pf l
p
−σfpfp


.

(8)

Since we are interested in detecting significant correlation
changes which is represented by σf l

uf l
ν
− E(σf l

uf l
ν
), we only

need to set the lower bound for each element in the threshold
matrix. Thus, for each element in the difference matrix (Ml −
E(Ml)), according to Chebyshev inequality, we obtain

∀(u, ν), P
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uf l
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ν
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)/ε2.

(9)

In (9), let ε = 3
√
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ν
) and ε = 4

√
D(σf l

uf l
ν
), respec-

tively, we can obtain
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where D(σf l
uf l

ν
) = 1/s

∑s
l=1(σf l

uf l
ν
− σfufν

)2, s is the total
number of sequences of length n in the training set.

Equation (9) provides a solution to determining the value of
each element in the threshold matrix subject to the detection
probability of normal traffic. For example, if the requirement
of the probability of accurate detection for normal traffic is
(1–1/9), the lower bound of the threshold matrix should be set

to 3
√

D(σf l
uf l

ν
) indicated in (10). Similarly, if the requirement

of the probability of accurate detection for normal traffic is
(1–1/16), the lower bound of the threshold matrix should be

set to 4
√

D(σf l
uf l

ν
) indicated in (11).

The Chebyshev inequality is valid for any stochastic variable
regardless of what distribution of the variable follows. There-
fore, this threshold-matrix determination process provides a
lower bound solution constrained by the detection probabil-
ity, regardless of any distribution assumption of the normal
traffic. In the detection of various flooding attacks, if there

exists an element in (Ml − cov(X)) which is greater than the

corresponding boundary (e.g., 3
√

D(σf l
uf l

ν
) or 4

√
D(σf l

uf l
ν
))

settled in the threshold matrix, we will signal an anomaly.

C. Detection

In practice, a network traffic record for each sampling event
contains a variety of information including the number of pack-
ets to the same host, the packet rate, the number of connections
to the same host, the number of connection that have “SYN”
errors to the same host, and so on. In this paper, we extract
and utilize nine network time-based traffic features from the
sampled records. The meaning of these nine features and the
reasons why we utilize them are provided in Section V.

The network traffic to and from a host machine are captured
through a continuous sampling process. Each of the samples is
characterized by nine features and each sequence of n samples
is characterized by its corresponding covariance matrix. For
intrusion detection, we will first build a norm profile to present a
long term of normal traffic through training, and then, compare
the traffic in the recent past to the long-term norm profile for the
detection of any significant deviations. The long-term profile of
normal network traffic measured by the covariance matrix is
characterized by the sample mean. We can obtain the sample
mean from all covariance matrix samples in the training data.
During the online detection, we define the network activities
in the recent past from the (obs − n)th packet to the current
obsth packet as the covariance matrix Mobs. Each element
σuν in Mobs represents the linear correlation between fu and
fν , measuring the covariance of the monitored features fu and
fν in the same time period of these n samples collected. The
multivariate observation Mobs, thus, represents the covariance
among various monitored features in the recent past.

At the observed sequence, we compare the sequential net-
work traffic represented by Mobs with the norm profile rep-
resented by N under the threshold matrix T as follows: Mobs

is considered normal, if Dist(Mobs,N;T) = [0]p×p; otherwise,
an alarm will be signaled. If we signal an alarm, the positions
of significant deviations of the currently observed covariance
matrix from the norm profile measured by the 0–1 result
matrix will be provided as the detailed information, to help the
network administrator find out the second-order features of the
detected attack.

V. VALIDATIONS

As case studies, we evaluate the performance of the proposed
detection approach by detecting two common flooding DDoS
attacks—Neptune and Smurf attacks. The aim of the case
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...
...

. . .
...
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studies in this section is to demonstrate the effectiveness of the
detection approach in two respects of: 1) detecting the unknown
flooding attacks and 2) extracting the second-order features for
the detected flooding attacks.

Similar to most anomaly detection approaches, the basic
principles of our detection approach are to build a norm profile
first, and then, to determine the attack when any significant
deviation from the norm profile happens. In the first stage, we
will obtain a detector through a supervised training process. The
detector will be only provided with the samples of the normal
class in the training stage. We use the sample center of the
normal traffic data and a determined boundary that constrains
the range of all covariance matrix samples deviate from their
center to build the norm profile for the normal traffic. In the
second stage, we utilize the detector obtained from training to
label the unknown attack samples—the testing samples that do
not appear in the training stage. Since no samples from the at-
tack class are provided in the training dataset, the effectiveness
of our approach will be validated if the detector can correctly
detect the attack samples in the testing dataset as attack.

We will also illustrate how to utilize the 0–1 result matrix
to extract the second-order statistics for the detected attacks.
As discussed earlier, we will assign the values of either ones
or zeros to different positions in the detection-result matrix,
in order to magnify the significant deviations of the observed
covariance matrix from the norm profile. The positions assigned
with value ones in the result matrix represent the significant de-
viations. The positions assigned with the value zeros represent
no significant deviations. In the case studies, we find that the
ones’ positions in the result matrix are stable in detecting the
testing samples from the same class. Therefore, we extract
the covariance feature set which stably exhibits the significant
deviations of the detected attack from the normal traffic as the
second-order features to mark the detected flooding attack. We
will use the average result matrix as one of performance indexes
to present the results of such feature extraction.

A. Detection-Result Specification

In order to manifest the characteristics of our detection
approach to various flooding attacks, we use two indexes to
indicate the performance of our detection approach. One is the
detection rate, which will present the detection accuracy. The
other is the average detection-result matrix, which will present
the second-order features for the detected flooding attacks.
1) Detection Rate: The detection rate of a class is defined

as the probability of correctly detecting the testing samples in
the class. For example, if the detection approach can accurately
detect m covariance matrices as the normal class from a total
of n covariance matrices in the normal class, the detection rate
will be (m/n) × 100%. This result indicates that we will have
(m/n) × 100% faith to believe that the approach can detect
the normal class accurately. Similarly, the detection rate of a
flooding attack will indicate how much faith can be placed on
the conclusion that the detection approach can accurately detect
the attack.
2) Average Detection-Result Matrix: For each Mobs in the

testing dataset, we will obtain a 0–1 dissimilarity result matrix

under the function of Dist(Mobs, cov(X);T) (4). In order to
reflect detection result statistically, we sum up all 0–1 result
matrices in detecting all samples in a particular class and use
the average sum to represent the detection result. The average
detection-result matrix is defined as

(1/s)
s∑

l=1

Dist
(
Ml, cov(X);T

)
(12)

where s is the total number of sample sequences in a
particular class.

Clearly, the value of each element in the average detection-
result matrix is between zero and one. A nonzero element in
the average detection-result matrix reports the statistical prob-
ability of its corresponding correlation of the detected attack
changed significantly in comparison with the norm profile. The
larger a nonzero element is, the more faithful we are willing to
believe that this position will mark the second-order statistical
features for the detected flooding attack. The positions with
value ones report that we have 100% confidence to believe
that the correlations at these positions will always significantly
deviate from the norm profile during detection.

B. Training and Testing Data

The dataset we employ is a subset of KDD CUP 99 dataset at
http://kdd.ics.uci.edu/databases/kdd cup99/kddcup99.html. Al-
though the KDD CUP dataset has many flaws [16], it is the
only public dataset with labeled attack samples we can find.
The attack samples in the dataset are obtained by passive
monitoring, rather than by inserting the attack packets into the
normal traces. Therefore, we select this public dataset as the
base dataset in our case studies.

As a public dataset, KDD CUP 99 contains many different
types of attacks for the purpose of network intrusion detec-
tor competition, such as Probe, User-to-Root (U2R), Remote-
to-Local (R2L), and DoS attacks. A detailed description of
different types of attacks contained in KDD CUP 99 dataset
is provided in.1 In spite of other attack types, Neptune and
Smurf attacks are the only flooding DDoS attacks labeled in
the whole training dataset. Therefore, we extract all records
with the labels of Normal, Neptune, and Smurf from the whole
training dataset to form the dataset used in our case studies.
Our training dataset only includes the Normal records, while
our testing dataset includes all records of the Normal, Neptune,
and Smurf classes. The description of the datasets used in our
case studies is presented in Table I.

C. Features Used

The KDD CUP dataset provides a total of 41 features to
describe various types of attacks. These features are grouped

1KDD CUP 1999 DATA, Dataset used for the Third International Knowledge
Discovery and Data Mining Tools Competition, in conjunction with KDD-99
the Fifth International Conference on Knowledge Discovery and Data Mining,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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TABLE I
DATASET DESCRIPTION

TABLE II
DESCRIPTION OF TIME-BASED TRAFFIC FEATURES DERIVED FROM [13]

into three sets: basic, content, and time-based traffic features.
The basic and content feature groups describe the host audit
and log information. The time-based traffic features describe
the network connections and traffic information. For example,
one of the basic features called src_bytes describes the
number of data bytes from source to destination; the feature
num_failed_logins in the content feature group describes the
number of failed login attempts. A detailed description of these
41 features is available (see footnote 1).

As a conclusion in [15], detecting different categories of in-
trusions require different feature groups. The basic and content
features are suitable in the detection of host-based intrusions
such as U2R or R2L intrusions, while the time-based traffic
features are more suitable in the detection of DoS and probing
attacks, which are typical flooding attacks [15]. Therefore, we
employ all nine time-based traffic features in this paper. All of
them are continuous type, shown in Table II. These nine time-
based traffic features reflect 2-s Transmission Control Protocol
(TCP) connection statistics, which can be online obtained using
a packet monitoring and capturing program [30].

D. Parameter Settlement

There are several parameters to be chosen, namely the fixed
sequence length n and the threshold matrix T. The parameter n
controls the number of the samples observed in each covariance
matrix calculation, while the threshold T restricts the degree to
which the evaluated covariance matrix Ml is different from the
norm profile E(Ml).

To select a suitable sequence length n, we utilize the statistics
of maximum value in the difference matrix. The maximum
value in the difference matrix is denoted as max(|dl

uν
|), ∀dl

uν
∈

(Ml − E(Ml)), where Ml is the covariance matrix of the
lth sample sequence and E(Ml) is equal to the covariance
matrix of the normal population represented by cov(X). For

Fig. 3. Mean of H versus sequence length n.

Fig. 4. Standard deviation of H versus sequence length n.

a certain length n, we can obtain a sequence of maximum
value H : max(|d1

uν
|), . . . ,max(|ds

uν
|), where each max(|dl

uν
|)

represents the maximum element in the difference matrix
(Ml − cov(X)). The relationship between (Ml − cov(X))
and n can be reflected by the mean and the standard deviation
of sequence H . The mean of H versus the sequence length n
is shown in Fig. 3, where x axis represents the sequence length
n and y axis represents the value of (1/s)

∑s
i=1[max(|dl

uν
|)],

∀dl
uν

∈ (Ml − cov(X)). The standard deviation of H versus
the sequence length n is shown in Fig. 4, where x axis repre-
sents the sequence length n and y axis represents the value of
std[max(|dl

uν
|)], ∀dl

uν
∈ (Ml − cov(X)).

From Figs. 3 and 4, we can find that the larger the sequence
length n is, the less of the difference between the covariance
matrix of a sample sequence and the covariance matrix of the
population is. The sequence length n is a feature-dependent
parameter based on the training dataset. A suitable n can
be selected as a relatively stable value. In the case studies,
we select n as 150, where the corresponding mean and the
corresponding standard deviation of H is 0.3299 and 0.2432,
respectively. At this point, ∆E(H) levels out at 0.0016 and
∆std(H) levels out at 5.9511e-004.

The threshold matrix T is determined with constraint of the
detection probability of normal traffic. According to the thresh-
old determination algorithm discussed in Section IV-B, we use
two different threshold matrices to evaluate the performance of
our detection approach in the validations: one is set to 3D(M),
and the other is set to 4D(M). The definition of D(M) is
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Fig. 5. Covariance distributions of the Normal, Neptune, and Smurf traffic. (a) Covariance distributions of the normal traffic. (b) Covariance distributions of the
Neptune attack. (c) Covariance distributions of Smurf attack. (d) Covariance distributions of three classes.

given in (13), where each element can be obtained in the
training stage

D(M)=




std(σf l
1f l

1
) std(σf l

1f l
2
) · · · std(σf l

1f l
p
)

std(σf l
2f l

1
) std(σf l

2f l
2
) · · · std(σf l

2f l
p
)

...
...

. . .
...

std(σf l
pf l

1
) std(σf l

pf l
2
) · · · std(σf l

pf l
p
)


. (13)

Theoretically, we can at least obtain the following detection
probability in detecting the normal traffic:

{
P

(
Ml − cov(X)| < 3D(M)

)
≥ 1 − 1

9 = 0.8889
P

(
Ml − cov(X)| < 4D(M)

)
≥ 1 − 1

16 = 0.9375
(14)

where Ml is the covariance matrix of the lth sample sequence
of length 150 and cov(X) is the covariance matrix of the
normal population.

VI. RESULTS AND DISCUSSIONS

This section describes the results obtained by applying the
3D(M) and 4D(M) as the threshold matrices, respectively,
as described in the previous section, in order to validate the
performance of the detection approach.

A. Covariance Distributions of Experimental Data

To validate the covariance differences among the normal traf-
fic and different flooding attacks, we plot the covariance values
of all samples of different classes in the testing dataset. As we
know, the covariance feature space in the validations has a di-
mension of 45, where the feature number p equals nine. In order
to present the changes of covariance on different dimensions
clearly, we convert the form of a matrix into a multidimensional
vector with the rules as (1, 1) ⇒ 1, (1, 2) ⇒ 2, (1, 9) ⇒ 9, and
(2, 2) ⇒ 10 . . .. Since a covariance matrix is symmetric, in the
transformation, we only consider the elements in the upper
triangle matrix. The transformation rule is that any coordinates
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∀(u, ν) 1 ≤ u ≤ ν ≤ p in a covariance matrix will correspond
to the entry u∗(2p − u + 1)/2 − (p − ν) in its correspond-
ing vector. For example, the coordinates (3, 4) in a covari-
ance matrix will correspond to the entry 3∗(2∗9 − 3 + 1)/2 −
(9 − 4) = 19 in the corresponding vector. The coordinates
(3, 5) in a covariance matrix will correspond to the entry 20 in
the corresponding vector. The coordinates (9, 9) in a covariance
matrix will correspond to the last entry 45 in the corresponding
vector. Fig. 5 demonstrates the changes of covariance values of
all samples of different classes in the testing dataset, from the
dimension 19 to the dimension 36. The x axis represents the
entry label in the corresponding vector. The y axis represents
the covariance value. Fig. 5(a) shows the covariance distrib-
utions of the normal traffic. Fig. 5(b) shows the covariance
distributions of the Neptune attack traffic. Fig. 5(c) shows the
covariance distributions of the Smurf attack traffic. Fig. 5(d)
shows the differences of covariance distributions of these three
different classes.

Fig. 5(a)–(c) shows that the covariance distribution on each
dimension of a particular class concentrates stably within a
certain range. Fig. 5(d) further shows that different classes have
different covariance distributions obviously. For instance, in
Fig. 5(d), the distribution of the σf3f5 (corresponding to the
20th label on x axis) of the Neptune attack traffic denoted
by plus symbols is clearly different from that of the normal
traffic denoted by circles. Thus, in this paper, we utilize the
covariance matrix differences to distinguish different flooding
attacks from the normal traffic. We use a threshold matrix
to constrain the range, within which an observed covariance
matrix can be different from the norm profile, and introduce
the 0–1 detection-result matrix to characterize the significant
covariance differences in the detection.

B. Detection Rate

Table III summarizes the detection rates under the threshold
matrices of 3D(M) and 4D(M). Table III shows that the
experimental detection rate for the normal class is lower than
the theoretical value of 88.89% under the threshold matrix
of 3D(M), while it is nearly equal to the theoretical value
of 93.75% under the threshold matrix of 4D(M). The 100%
detection rates for the Neptune and Smurf attacks in Table III
also validate that the flooding attacks are significantly different
from the normal class in terms of the correlations among
monitored features.

For a given test, different threshold matrices will lead to
different pairs of false alarm rate and detection rate. Table IV
shows some pairs of false alarm rate and detection rates under
different threshold matrices of different multipliers by D(M).

Table IV shows that the covariance-matrix-based detection
approach achieves very high detection rates and low false alarm
rates on the experimental data. The 100% detection rates also
show the high sensitivity of our detection model in the detection
of flooding attacks, which will be attributed to the utilization of
a matrix rather than a scalar as the threshold to evaluate the
covariance changes. Since each entry in the threshold matrix
evaluates the changes of the covariance of two corresponding
features, it is easy to happen that the changes of some elements

TABLE III
DETECTION RATE ON THE TESTING DATASET

TABLE IV
FALSE ALARM AND DETECTION RATES ON THE TESTING DATASET

Fig. 6. Average detection-result matrix in detecting a Neptune attack.

in the observed covariance matrix exceed their corresponding
elements in the threshold matrix.

C. Second-Order Features of Detected Flooding Attacks

We use a binary image to virtually represent the average
detection-result matrix for each attack. In order to demonstrate
how the average detection-result matrix is represented by a
binary image, the average detection-result matrix for a Neptune
attack is selected as an example. In detecting a Neptune attack,
we obtain the following average detection-result matrix accord-
ing to (12), where the threshold matrix is set to 3D(M). Note
the symmetry of a covariance matrix, we only present the upper
triangle matrix in Fig. 6.

As we know, each nonzero element in the average detection-
result matrix presents the confidence with that we can draw a
conclusion that this position marks the second-order statistical
feature for the detected flooding attack. Therefore, the value
0.9023 at position (1, 3) in Fig. 6 indicates that we have 90.23%
confidence to believe that the covariance between feature 1 and
feature 3 changes significantly in the Neptune attack in com-
parison with the norm profile in the detection. The maximum
value 1 at position (3, 5) in Fig. 6 indicates that we have 100%
confidence to believe that the covariance between feature 3
and feature 5 is significantly different from the norm profile
in the detection, more definitely that the element at (3, 5) in
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Fig. 7. Second-order features extracted for Neptune attack. (a) 3D(M) as
threshold matrix. (b) 4D(M) as threshold matrix.

the average result matrix equal to one enables us to draw a
conclusion that the covariance between feature 3 and feature 5
will always significantly deviate from the norm profile in the
detection of the Neptune attack. The appearance of ones in
the average result matrix also indicates the stabilities of these
positions in the detection. That is, for each testing covariance
matrix from a particular class, the value of elements at those
positions in the 0–1 result matrix will always equal one in the
detection. Therefore, we can utilize the nondiagonal positions
of (3, 4), (3, 5), (3, 6), (4, 5), and (4, 6) and diagonal positions
of (1, 1), (3, 3), (4, 4), and (9, 9) to indicate the second-order
features for the Neptune attack. A nondiagonal element with
value one indicates that the covariance between two first-order
features has significantly changed, while a diagonal element
with value one indicates that the variance of the first-order
feature itself has changed greatly. For example, that the element
at (1, 1) equal to one in Fig. 6 means that the variance of feature
count (the number of connections to the same host as the current
connection in the past 2 s) changes greatly in the Neptune attack
in comparison with the norm profile. Similarly, that the element
at (3, 5) in Fig. 6 equal to one means the covariance between
feature serror_rate (the percentage of connections that have
“SYN” errors to the same host) and feature rerror_rate (the
percentage of connections that have “REJ” errors to the same
host) changes greatly in the Neptune attack.

To virtually present the second-order features, we use a
simple binary image to represent an average detection-result
matrix. The elements with value ones in the average detection-
result matrix are drawn in gray color, while other elements are
in white color. Therefore, the average detection-result matrix of
the Neptune attack in Fig. 6 will be represented as the image in
Fig. 7(a), where the gray colored squares in the image exhibit
the extracted second-order features for a Neptune attack with
100% confidence during detection. Figs. 7 and 8 present the
results of extracted second-order features for the Neptune and
Smurf attacks under different threshold matrices in our case
studies, respectively.

A summary of the second-order features extracted for
Neptune and Smurf attacks under different threshold matrices
is given in Table V.

Table V shows the set of second-order features for different
attacks under different threshold matrices. For example, when
the threshold matrix is set to 4D(M), the second-order features

Fig. 8. Second-order features extracted for Smurf attack. (a) 3D(M) as
threshold matrix. (b) 4D(M) as threshold matrix.

TABLE V
LISTS OF THE SECOND-ORDER FEATURES OF

NEPTUNE AND SMURF ATTACKS

of the Neptune attack are the variances of feature one, feature 3
and feature 4, and the covariance between feature pairs of
(3,4), (3,5), (3,6), (4,5), and (4,6). Similarly, the second-order
features of the Smurf attack are the variance of feature 9, which
means that the variance of feature 9 has changed greatly during
the Smurf attack in comparison with the norm profile. The
corresponding detection rate of the normal class is 93.63% in
experiments (Table III) and 93.75% in statistical theory (14),
while the detection rates of both attacks are 100% with 4D(M)
as the threshold matrix.

For the same column in Table V, the number of positions
with value ones decreases as the value of threshold matrix
increases, which is consistent with the principle of threshold-
based detection: if the classification boundary becomes wider,
more points will be classified as normal.

D. Discussions

In our case studies, the high detection rates for the two com-
mon DDoS flooding attacks validate the effectiveness of the
covariance-matrix-based approach in detecting the unknown
flooding attacks, since no prior knowledge of these attacks is
provided in the training stage. Moreover, the results also show
that the detection approach can extract a new important feature
set—the second-order feature set to mark each of the detected
flooding attacks.

Two major reasons contribute to the high performance
achieved by the detection approach we developed in the valida-
tions. One is the dataset itself. We should notice that the
detection results would vary with different datasets and dif-
ferent feature sets. The features we used in the validations are
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effective enough in detecting the flooding attacks in the KDD
CUP dataset, but will not be sufficient enough to detect all
the flooding attacks in the Internet. The other is the threshold
determination algorithm. As we know, any threshold determina-
tion will face a tradeoff between the beta errors. In this paper,
the principal consideration of settling the threshold matrix is
the requirement of decreasing the false alarm rate as much as
possible. According to (9), a lower false alarm rate will corre-
spond to a higher detection rate of normal traffic. Therefore, the
Chebyshev-inequality-based threshold determination algorithm
provides a suitable threshold matrix solution constrained by the
false alarm rates. Our final objective is to obtain an adaptive
threshold, which can be learned from examples. The Chebyshev
inequality provides a loose-bound solution, but so far, we have
not yet found a better inequality to set the threshold. It may
remain to be studied further.

Since the detection approach we developed mainly utilizes
the covariance changes in the detection, one challenge would
be that the detection approach will not work under the situa-
tion where an attack linearly changes all monitored features.
We can analyze this challenge as follows. Let Mx denote
the covariance matrix constructed from the normal samples
x = (f1, f2, . . . , fp)T. Let Mz denote the covariance matrix
constructed from the linearly changed attack samples z =
(a1 + b1f1, a2 + b2f2, . . . , ap + bpfp)T. Essentially, the chal-
lenge can be restated as: the detection approach which mainly
utilizes the differences among covariance matrices will not
work, since the statement Mx = Mz is true. In fact, the state-
ment Mx = Mz will be true, if and only if cov(fi, fj) =
bibjcov(fi, fj), where i and j are integers which satisfy
∀i, ∀j, 1 ≤ i, j ≤ p. Obviously, we can obtain bibi = 1,
i = 1, 2, . . . , p. Thus, bi = ±1, i = 1, 2, . . . , p. Since ∃i, ∃j,
cov(fi, fj) �= 0, we will obtain bibj = 1. Therefore, in order to
satisfy Mx = Mz , we must have either bi = 1 or bi = −1, ∀i.
In practice, it hardly happens that all p features have and only
have the shift transformation. Thus, it is impossible to satisfy
∀i, bi = −1, neither does ∀i, bi = 1. Therefore, the covariance
matrix will also change in the situation where a flooding attack
linearly changes all monitored features. The covariance-matrix-
based anomaly detection model can still work to detect such
kind of attacks.

In this paper, we utilize the second-order statistics—one of
numerical characteristics of a random variable to describe the
normal traffic. It would be more accurate if we could use the
probability density function (pdf) or joint pdfs to completely
describe the normal traffic. However, in practice, it is very
difficult to obtain the real pdf of the normal network traffic.
For example, some work in the last few years claims that the
network traffic can be modeled as a long-range-dependent or
Self-Similar (SS) stationary process. However, recent evidence
shows that the Internet traffic cannot be characterized by only
a single Hurst parameter in the SS because it is extremely
nonstationary [21], [22]. Therefore, there is a need for more
approaches and models to discover the real nature of the normal
network traffic. Utilizing the numerical characteristics, such
as utilizing the second-order statistics proposed in this paper,
will be an alternative approach to possibly reflect the statistical
characteristics of the normal traffic.

VII. PRACTICAL IMPLEMENTATION ISSUES

A. Role and Placement of the Detector

The features we used in our validation are all network-based,
rather than the host-based features. Therefore, as has been done
in most network intrusion detection systems, it is possible that
our network anomaly detector works in a bypass monitoring
mode. The covariance-matrix-based detector proposed in this
paper can be used to protect any server in a local network.
To capture the traffic of the victim inside a local network
and detect flooding attacks, the detector should be installed
in the same local network where the victim is located. In a
100/10-M local/stub network, the network connection statistics
of the victim can be captured and calculated by utilizing some
online-traffic-capturing software such as Sniffer or TCPDUMP,
with the presettled sequential sampling rules such as making a
statistical calculation after collecting a fixed number of packets.
However, in an over 1000-M/G core network, when the
bandwidth is near saturation, the software such as TCPDUMP
has to drop the packets at a very high rate. In this circumstance,
we should make use of high-performance capturing hardware
such as NP for packet capturing and state analysis.

In order to decrease the traffic that the detector machine
needs to analyze, we suggest linking the detector machine with
a mirror interface of the router that classifies and forwards the
traffic to the victim. By setting up the mirror rules, the detector
machine can only receive the network traffic of the monitored
host rather than the whole traffic of the local network. We can
even utilize the existing network statistical monitoring system
running on the routers to forward the statistics of the sequen-
tial samples to the detection system by building up special
capturing rules. For example, the detector can directly receive
the needed statistical samples from the commercial product
Netflow running on Cisco routers.

With the development of large-scale packet classifying
techniques [26], the network-based detector’s capability to
withstand any flooding attacks will mainly depend on the
ability of a local router to classify and forward packets [12].
During a flooding attack, the arrival time between the adjacent
anonymous packets is very short. However, at one particular
time, there will be at most one packet transported on the
communication channel, since almost all local networks are
broadcast network based on multiaccess channel with Carrier
Sense Multiple Access/Collision Detect protocol on the
medium access-control sublayer. Under the condition that the
router can forward the packet properly, the passive sequential
sampling of the victim traffic will work, even as the requests
cannot be accepted by the victim machine.

B. Performance Improvements

The detection model we developed has a number of weak-
nesses. We are investigating some possible modifications that
would likely to rectify the weaknesses and improve the perfor-
mance of the detection model.
Online Training: In this paper, we utilize the offline normal

traffic data provided by a public dataset to obtain the norm
profile. The obtained profile is somewhat simple and will not
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be responsive enough to adapt to the rapidly evolving network
traffic. Thus, an online training extension to our present model
can greatly reduce the impact of traffic behavioral changes.
Feature Set Engineering: The features we used in this

paper are the network-connection-based features. The detection
model needs to keep the connection status, which limits itself
to the stub networks. There are many other network feature sets
available and could be utilized to improve the performance. We
suggest utilizing the stateless network features, such as the TCP
flags [9] and MIB variables [36], which will enable the detec-
tion model to be settled into any core network. Furthermore,
the application of different feature sets to our detection model
will help to understand the nature of network traffic from a
viewpoint of its second-order statistics.
Sequence Length Determination: The complexity of pre-

sented detection model is O(np2), where n is the sequence
length and p is the number of features. The size of n will affect
the time spent on the covariance-matrix modeling. In this paper,
we use an experimental way to determine the parameter n in the
stage of training. Although the time spent on training will not
affect the detection speed, it is still a limitation of not providing
a more effective way to determine the sequence length.
Alternative Dissimilarity Measures: The dissimilarity mea-

sure we proposed in this paper is relatively coarse. It equally
evaluates all of the dimensions of two compared covariance
matrices. Using a different measure, such as assigning different
weights to different dimensions and including a priori domain
knowledge, will improve the performance at the cost of decreas-
ing generality of the approach.
Detection Delay Decrease: The detection delay is another

important factor to exhibit the effectiveness of the detection
model in addition to the detection accuracy. The detection
delay in our detection model relates with the time of the
sampling interval and the time spent on covariance-matrix
modeling. The covariance-matrix modeling needs a total of np2

calculations. The time spent on the calculations will be fixed
after determining the parameters n and p. However, the time
spent on sampling can be reduced. In this paper, we utilize
the nonoverlapped sequences of length n in the covariance-
matrix modeling. The corresponding detection delay is nts,
if the sampling interval is ts. An improvement to shorten the
detection delay is to employ the sliding sequences instead of
nonoverlapped sequences in the covariance-matrix modeling
process. If each sequence of length n is obtained by sliding
m(m � n) samples once a time, the detection delay of will
be shortened within the range of [mts, nts].

VIII. CONCLUSION

This paper presents a general and effective modeling and
anomaly detection approach to detecting various flooding
attacks. The modeling process utilizes the correlations among
network features provided by the passive-network-monitoring
devices. In conceptual terms, this modeling process for-
mulates a sequence of original samples provided by the
passive-monitoring devices or software into a point in the
covariance feature space. The detection approach itself directly
works with the covariance matrices and maps the point rep-

resented by each covariance matrix in the covariance feature
space into the decision space as normal or a specific flooding
attack. The classification boundaries for the norm profile are
defined by the elements in a threshold matrix. Each element in
the threshold matrix evaluates the degree to which an observed
covariance matrix is different from the norm profile in terms
of the correlations of the monitored first-order features rep-
resented by this element. Significant difference is determined
if an element in the difference matrix between the observed
covariance matrix and the norm profile is bigger than the
corresponding element in the threshold matrix. One appears at
the position in the result matrix, where significant difference
of the corresponding correlation is determined; otherwise, zero
appears to represent no significant difference. Since the appear-
ance of one in the result matrix indicates that the observed
covariance matrix is significantly different from the norm pro-
file and different number and positions of ones in the result
matrix indicates the different types of flooding attacks, the
result matrix serves as the second-order features to mark the
detected flooding attack.

As case studies, we validate the effectiveness of the
covariance-matrix modeling and detection approach to detect
Neptune and Smurf attacks—two common DDoS flooding
attacks. The approach can accurately differentiate these two
unknown attacks. We also demonstrate that the system ex-
tracts these two attacks’ own second-order features based on
the detection-result matrix, respectively. By employing the
Chebyshev inequality, we provide a practical method to deter-
mine the threshold matrix.

In summary, the accurate detection of two typical DDoS
flooding attacks and the second-order features extracted by the
detection approach will further improve our understanding of
various flooding attacks. As an anomaly detection approach,
which directly utilizes correlation information among the first-
order features, the covariance-matrix modeling and detection
approach will have wide applications in the fields such as signal
detection or high-order feature extractions.
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