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1. Introduction

Rough set (RS) theory, which was proposed by Pawlak [24,25], is a mathematical tool to handle uncertainty of indiscern-
ibility. RS is effective in many real applications such as artificial intelligence, data mining and pattern recognition. However,
it is limited by its basic definition ‘equivalence relation’. As a result, many generalizations, such as fuzzy rough sets
[7,8,22,59,61], cover rough sets [48,49,56], Bayesian rough sets [18,32,36,54] and probabilistic rough sets [42,43,51,55], have
been proposed. These generalizations make rough sets feasible to handle many types of practical problems such as the prob-
lems with real values, the problems with missing values and the problems with random uncertainty.

One of the important applications of rough set theory is attribute reduction [11,14,34,37,45,47,62,63]. In recent years,
researchers, motivated by a desire to acquire reduction robustly, have proposed many methods to mining valuable and
less-sensitive attributes by incorporating parameters into rough set theory [15,18,21,57,58,60]. These methods are called
parameterized rough reduction. Roughly speaking, parameterized rough reduction is split into two types: reduction on
parameterized rough models and parameterized reduction on rough sets. The parameterized rough models share a common
characteristic by introducing parameters into the rough approximation operators, whereas parameterized reduction deletes
redundant attributes by introducing thresholds into the process of attribute reduction.
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Many parameterized rough models are presently being proposed and studied intensively, they are Variable Precision
Rough Set Models [2,3,50,53], Robust Fuzzy Rough Set Models [1,9,10,26,45], Probabilistic Rough Set Models [42,43,51], Deci-
sion Theoretic Rough Set Models [17,39,40], and Bayesian Rough Set Models [18,32]. The Variable Precision Rough Set Models
treat the required parameters as a primitive notion [50]. The interpretation and the process of determination of parameters
are based on rather intuitive arguments and left to empirical studies [2,3,16], with the lack of theoretical and systematic stud-
ies and justifications on the choices of the threshold parameters. K-Nearest Neighbor Fuzzy Rough Sets provide some methods
to determine the required parameters [10], whereas the applications of these models focus mainly on making classification
predications. Unlike the aforementioned models, the Bayesian Rough Set Models [18,32] attempt to provide an alternative
interpretation of the required parameters. The models are based on Bayes’ Rule that expresses the change from the a priori
probability to the a posteriori probability [40,41]. In these models, the required parameters can be expressed in terms of prob-
abilities. In addition to variable precision analysis and Bayesian analysis, the parameterized approaches have been applied to
the theory of rough sets in some other forms, such as decision-theoretic analysis [39,40] and probabilistic analysis [42,43,51].
The probabilistic rough set models and decision-theoretic rough set models provide a unified and comprehensive framework
so that many types of parameterized models can be integrated into a whole [38]. These models provide a systematic method
for determining the parameters by using more concrete notions of costs and risks.

Instead of introducing parameters into the approximation operators, parameterized reduction on rough sets introduces
parameters into the process of attribute reduction. By relaxing the criteria of attribute reduction, some parameters are intro-
duced in the processing (or notions) of attribute reduction, such as the method of fuzzy reductions (Fuzzy-RED) [5,6] and
approximate reductions (Approximate-RED) [28-30]. The common characteristic of these methods is that the parameters
are put into the process of attribute reduction. The main difference between these models is that the distinct measures of
discernibility power are used in the process of attribute reduction, such as dependency function, information entropy and
monotonic measure. The determination of these parameters is usually adopted in an intuitive way.

Whether reduction on parameterized models or parameterized reduction on rough sets is applied, a difficulty with many
existing studies on parameterized rough reductions is that no interpretation or procedure for calculating the required
threshold exists. In real applications, the setting of parameters affects the results of the reduction significantly, and different
thresholds may lead to different reduction results. Some researchers realize the significance of the parameters, and they have
paid attention to the parameter analysis and selection. Intuitively, the parameters are given by the experience of an expert in
most of the parameterized rough reductions [11,12,52]. Some parameterized rough reduction approaches, based on the
assumption that the threshold is in an interval that was determined by the desired level of classification performance, pro-
posed methods for finding an appropriate reduct [2,3]. Other researchers have tried to find a reasonable threshold based on
an assessment of the minimum acceptable upper bound of the misclassification error [33]. Essentially, these approaches uti-
lize the principle of the ‘extent of classification correctness’ to determine an appropriate threshold value under the premise
that changing the number of attributes has no effect on the classification results [13]. However, such approaches need to set
the classification error beforehand. Instead of setting the parameters intuitively, a systematic method for computing param-
eters in probabilistic rough sets was provided. Yao et al. introduced risk to probabilistic rough sets and proposed decision
theoretic rough sets with Bayesian decision procedures [38,41].These studies have explicitly noted the parameter effect
on the values of approximation operators. Although the aforementioned methods adopt and design different methods of
determining and interpreting the parameters, these methods share a common characteristic that all of them seek one opti-
mal or suboptimal value to be the required parameter. These methods omit one possible situation that often occurs in real
applications: the required parameter changes frequently. That is, the required parameters are not fixed, and these parame-
ters often change with time or with other conditions in real application.

Some researchers have realized the importance of the parameters and have described various methods for setting param-
eters. Unfortunately, many researchers are still unaware of the connection between reduction and parameters. The existing
methods do not indicate how the parameters affect the performance of reduction. Nobody has mentioned the approaches
that can determine the proper reduct based on the given reducts. Discovering the inner relationship between the parameters
and the reducts in parameterized rough reduction approaches is now a promising and necessary area of research. In this pa-
per, we propose such a method to quickly find reducts on different parameters in parameterized rough reduction by explic-
itly showing the connections between the reducts and the parameters.

The remainder of this paper is organized as follows. Section 2 gives some preliminaries, such as rough sets and a param-
eterized rough reduction. After reviewing many approaches to parameterized rough reduction, we discover the inner con-
nection between the reducts and the parameters in Section 3. By strict mathematical reasoning, we describe the
connection, which is called the nested structure. A systematic approach to identify the nested structure is proposed based
on a strict mathematical foundation. By using the nested reduction structure, Section 4 proposes some algorithms to find
the required reducts quickly. By using numerical experiments, Section 5 clearly demonstrates the effectiveness of these algo-
rithms. Finally, a conclusion is drawn in Section 6.

2. Parameterized rough reduction

In this section, we present some methods to address parameterized rough reduction, that is, reduction in parameterized
rough models and parameterized reduction on rough sets.
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2.1. Reduction in parameterized rough models

2.1.1. Several parameterized rough models

Many parameterized rough models have been proposed by introducing parameters into rough sets, such as Probabilistic
Rough Set Models, Variable Precision Rough Set Models, Decision Theoretic Rough Set Models, and Bayesian Rough Set Mod-
els. There are many parameterized rough models, but only some models are reviewed in this subsection because some of
them will be analyzed in the following part. Similar results can be obtained for the other parameterized rough reductions
by using the theoretical methods proposed in this paper.

VPRS [50]: VPRS has been proposed to handle the problems with misclassification by incorporating a controlled degree of
misclassification into knowledge representation of rough set formalism. The concept of set approximations with variable
precision is then proposed as RyA = U{[x]r|c([x]rA) < B,x € U} and RyA = U{[x];|c([X]z,A) < 1 — B,x € U}, where VA C U,
p€10,0.5) and C(X,Y) =1 — Card(X n'Y)/Card(X), if Card(X) >0 or ¢(X,Y) =0 if Card(X) = 0.

VPBRS [31]: The Variable Precision Bayesian Rough Set Model is a parametric Bayesian extension of the rough set
model, where the set approximations are defined by using the prior probability as a reference. In VPBRS, the positive
region is defined as follows: POS®(x)=U{E € Eq:P(X|E) > 1 — &(1 — P(X))}, where Eq is the partition space of an equiva-
lence relation. VPBRS combines the advantages of VPRS and Bayesian reasoning approaches in the data mining
applications.

VPRS-FRS [26]: VPRS-FRS introduced VPRS into Dubois and Prade’s fuzzy rough set framework. The authors in [26] intro-
duced a concept named beta-precision aggregation to fuzzy approximation operators. Set approximations in VPRS-FRS were
proposed as R'Ag(x) = max(Iga,, A(X)); R.Az(x) = min(lg,a,,A(X)) wWith Iz s, (x) = max s min(R(x,y),AY)); Ir.a,(X) = miny I

(y#x)
max(1 — R(x,y),Ay)).
VPERS [19,20]: The authors in [19,20] introduced VPRS into a general FRS framework named VPFRS. We focus here on
reviewing the lower approximation of VPFRS because it is very important for attribute reduction. The lower approximation
in VPFRS was proposed as follows:

iy

infoes (U )(X), 1p(x)), if 3o, = sup{o € (0,1] : e,(X;, F) < 1—u},
M&in{ f ves, Oy, ) (X), Hp(X)) p{o € (0,1] : ex(X;, F) }, whereSiu=5UPP(XiﬂX,iu).

0, otherwise,

This definition can be equivalently represented in the following way:

infﬁ(ﬂx,(")#p(")) > o, V() (%), e (X)), if Jor, = sup{a € (0,1] : e,(Xi, F) < 1—u},
ﬂguF(Xi) Uy, (x>0
0, otherwise.

FVPRS [45,46]: FVPRS combines FRS and VPRS with the goal of making FRS a special case of FVPRS. FVPRS is less sensitive
to both misclassification and perturbation of data. In FVPRS, fuzzy approximation operators are defined as
Ry A(x) = infaw<xd(R(x, 1), o) A infawsa?(R(X, u),A(w)) and Rr,A(X) = SUPau = n T(R(X, u), N(2)) V Supyuyane T(R(X, u), A(w)),
vx e U.

VQRS [4]: In VQRS, a fuzzy quantification measure named quantifier was introduced to measure whether one fuzzy set R,

[RynA|
[Ry]

was included in another fuzzy set A : Q,, (%). Then, the lower approximation was proposed as Rl A(y) = Qu( ) where

Q is a regularly increasing measure that satisfies the boundary conditions.

Remark 1. One common characteristic of these parameterized models is that one or two parameters are introduced into the
approximation operators. One main difference in these parameterized models is that the parameters are put in different
positions. For example, in VPRS-FRS and VPFRS, the parameter was put in the position of the aggregation operator; in FVPRS,
the parameter was put in the position of the fuzzy decision class.

2.1.2. Reduction in parameterized rough models

Reduction in parameterized rough models means the attribute reduction methods based on the parameterized approx-
imation operators. Essentially, there are two types of attribute reduction methods based on parameterized approximation
operators: dependence-function-based approach and discernibility-matrix-based approach. The common criterion of attri-
bute reduction in these approaches is to keep the positive region invariant.

Discernibility-matrix-based approach [45]: The discernibility matrix is designed by keeping the discernibility power invari-
ant. In FVPRS, the discernibility matrix is defined as follows. Suppose U = {x1,X2,X3,...,Xn}; by M,(U,R,D), we denote an n x n
matrix (c}) called the o-discernibility matrix of (U,RUD) such that (M 1) ¢} = {a: T(a(x;,x;),2) < o}, 2= Ry [x]p(x) for
D(xi,x;) =0 and (M 2) ¢ = ¢ for D(x;,x;) = 1.

By using discernibility matrix, the reduct can be defined as follows. Given a fuzzy decision system FD =(U,R U D) and
P CR, Pis one reduction of R if and only if P is the minimal subset of R satisfying P N ¢;; # ¢ for every c; # ¢. The algorithms
designed by using discernibility matrix are called discernibility-matrix-based approach.
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Remark 2. Note that the discernibility-matrix-based approach is sensitive to the parameter in the definition of
approximation operators because the computing of the discernibility matrix is dependent on the threshold alpha, whereas
alpha is exactly the parameter in the approximation operators.

Dependence-function-based approach [15]: In these approaches, the definition of attribute reduction is as follows. Suppose
FD = (U,RuU D) is a fuzzy decision system. Then, P C R is called a fuzzy decision reduct if the following statements always
hold: (1) Dep(R) = Dep(P); (2) Va € P, Dep(P — {a}) < Dep(P), where Dep(R) = 3",.,Posz(D)(x) (dependence function) and
POSg(D) = UxcuRa[X]p (positive region). The algorithms designed by keeping the dependence degree invariant are called
Dependence-function-based approach.

Remark 3. Note that the dependence-function-based approach is sensitive to the parameter in parameterized approxima-
tion operators because the notions of positive region, dependence function and attribute reduct are defined based on
parameterized approximation operators.

2.2. Parameterized reduction on rough sets

Parameterized reduction on rough sets is the second type of parameterized method, which focuses on relaxing the attri-
bute reduction criteria. Some approaches relax the attribute reduction criteria to omit the misclassification and perturbation
hidden in the databases. If no confusion arises, we call this type of reduction approach: Parameterized-criteria-of-attribute-
reduction approach. The method of fuzzy reductions (Fuzzy-RED) and approximate reductions (Approximate-RED) are the
examples of this type of attribute reduction approach.

Approximate-RED [28,30]: The concept of approximate reduction was proposed by keeping the quality measure of certain
subsets almost unchanged before and after attribute reduction. The approximate reduction proposed in this way was param-
eterized because it was free from the harsh criteria of attribute reduction. Let G be a monotonic mapping G:p(A) — R, and G is
defined as the quality measure. The a-reduct is defined as follows.

G-Reduct: Given B C A an a-reduct of generalized information for D in (U,Cu D) if and only if |G(B) — G(A)| < o and for
every proper subset C C B inequality |G(C) — G(A)| > o holds.

Fuzzy-RED [5,6]: In Fuzzy-RED, after describing a monotonic measure, the authors in [7] proposed the fuzzy decision re-
duct by keeping this measure almost unchanged. Fuzzy-RED was more general than Approximate-RED because the quality
measure was a special case of the monotonic measure.

Fuzzy M-decision reduct: Let M be a monotonic M: p(DS) — [0,1] mapping, B C Aand 0 < o < 1. Bis called a fuzzy M-deci-
sion reduct to degree o if M(B) > o and for all B ¢ B, M(B') < ..

Remark 4. The reducts obtained by Approximate-RED and Fuzzy-RED are sensitive to the parameters used in the process of
attribute reduction.

2.3. The algorithms to find reducts on different parameters

A great challenge for many existing studies of parameterized rough reduction is to interpret, determine and analyze the
required parameters. In general, there are three ways to determine the parameters. One way is the intuitive method
[3,12,45], the second is the assumption method [10,33], and the third is the systematic method [38,40]. Regardless of the
method used to determine the parameter, it is hypothesized that only one optimal parameter is required. In the real appli-
cation, it is difficult to define the optimal parameter. Some reducts on suboptimal parameters are generally needed. Never-
theless, the ‘suboptimal’ is not unique. A method to find reducts on all of the possible parameters, including a method to find
reducts on several different parameters, has not yet been studied. There are two intuitive ways to find reducts on all of the
possible parameters.

One intuitive way to find the reducts on all of the possible thresholds is to execute the existing algorithms on all of the
possible thresholds. This intuitive method is NP complete. An alternative way is to run the existing algorithms with a fixed
step length. This intuitive algorithm can be described as follows.

Intuitive Algorithm 1:

Step 1: Give the step length and the interval that contains all the parameters.
Step 2: Run certain existing algorithms on each parameter with the given step length.
Step 3: Obtain all the reducts.

The intuitive Algorithm 1 cannot, in fact, find the reducts on all of the possible parameters. This algorithm is merely a
heuristic algorithm.

Another intuitive way is the assumption that there exist some boundary values on which the reduct size changes. This
intuitive algorithm can be designed as follows.

Intuitive Algorithm 2:
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Step 1: Give all the boundary values.
Step 2: Run the existing algorithm on all of the boundary values.
Step 3: Obtain all the reducts on all of the possible parameters.

The second algorithm can find the reducts on all of the possible parameters, whereas this algorithm is designed based on
the assumption that all of the boundary values are obtained. Nevertheless, there is no mention of how to find all the bound-
ary values; even the existence of these boundary values has not been verified.

Remark 5. Both of these intuitive algorithms repeat the existing algorithms on the different parameters, but they do not
study the connection of the reducts to the different parameters. As a result, these two intuitive algorithms are time-
consuming, and many repetitions are conducted.

3. The nested structure in parameterized rough reduction

In this section, the nested reduction, which defines the inner relationship between the parameters and the reducts in
parameterized rough reduction, is described. First, some definitions of the nested reduction are proposed that describe
the nested structure existing in parameterized rough reduction. Then, some theorems are presented. These theorems provide
principles that are needed to construct the nested reduction structure. Furthermore, these theorems show that not all
parameterized rough models can be used to construct the nested reduction, only the models satisfying the conditions of
these theorems can be used to construct the nested reduction. By mathematical reasoning, several methods of parameterized
rough reduction in which the nested structure holds are described.

In this paper, both Reduct(o) and a-reduct represent the reduct obtained for the parameter o for 0 < o < 1. If no confusion
arises, the different reducts mean that the reducts are obtained for two different parameters. The different reducts are called
the reducts on different approximations. Then, the reducts on all parameters are called the reducts on all of the possible
approximations.

3.1. The nested reduction and weakly nested reduction

In this subsection, some notions of the nested reduction are first proposed. Then, some theorems are proposed that supply
the conditions of nested structures. These theorems are targeted at three different types of attribute reduction approaches.
First, we would like to propose several notions that describe several types of nested structures of reductions.

Definition 3.1 (Forward Nested Reduction). In a parameterized model, if the reducts on different approximations satisfy
VReduct(p), 3Reduct(a) s.t. Reduct(o) C Reduct(f), we call this type of nested structure ‘Forward Nested Reduction’.

Definition 3.2 (Reverse Nested Reduction). In a parameterized model, if the reducts on different approximations satisfy
VReduct(p), IReduct(a) s.t. Reduct(a) D Reduct(8), we call this type of nested structure ‘Reverse Nested Reduction’.

Definition 3.3 (Weakly Nested Reduction). In a parameterized model, if the reducts on different approximations satisfy
VReduct(g), 3P D Reduct(f) contains an o-reduct, we call this type of nested structure ‘Forward Weakly Nested Reduction’.
Generally, Forward Nested Reduction and Reverse Nested Reduction are called Nested Reduction. Nested Reduction and
Weakly Nested Reduction, which describe the nested structure of reducts in parameterized rough set models, are collectively
called the nested structure of reducts.
We next propose several theorems that supply some necessary information to construct the nested structure existing in
parameterized rough set models.

Theorem 3.1. Suppose M,(U,R,D) is an n x n a-discernibility matrix (c,j‘) and o> p. If Mo(U,R,D) 2> M{U,R, D), then the follow-
ing statements hold:

(1) With the parameter increasing, the forward nested reduction holds.
(2) With the parameter decreasing, the weakly nested reduction holds.

where My(U,R,D) 2 My(U,R,D) is defined by c} 2 c{; forevery 1 <i,j<n.
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Proof

(1) We need to prove that VReduct (B), 3P C Reduct(f) is an a-reduct. Because Reduct(f) is a p-reduct,
Ve # ¢, Reduct(p) ncf # ¢. Because My(U,R,D) 2> MyU,R,D), we have cZ D cf. Thus, Vc; # ¢, Reduct(p) nci # ¢.
3P C Reduct(), P is the minimal reduct satisfying Vc; # ¢, P N ¢;; # ¢. According to the definition of attribute reduc-
tion, P is an o-reduct.

(2) We need to prove that VReduct(a), 3P D Reduct(o) contains a p-reduct. Because Reduct(o) is a o-reduct, Vc; # ¢,
Reduct(a) N ¢ # ¢. Because My(U,R,D) 2 My(U,R,D), we have ¢} 2 Cg Thus, 3P O Reduct(x) satisfies the requirement
that V¢ # ¢, PN c{; # ¢. That is, P contains a g-reduct. O

Theorem 3.1 is proposed to target the discernibility-matrix-based approach. This theorem shows that if the discernibility
matrix is nested, then the reducts are also nested.

Theorem 3.2. Suppose (a) M: p(DS) — [0, 1], which is the discernibility measure, is monotonic; (b) B, as a a-reduct, satisfies
M(B) = o and VB’ C B, M(B') < «, then the following statements hold:

(1) With the parameter increasing, the weakly nested reduction holds.
(2) With the parameter decreasing, the forward nested reduction holds.

Proof

(1) M(e) is monotonic = 3P D Reduct() satisfies M(P) > o = by the condition (b) VReduct(p), 3P D Reduct(p) contains an
a-reduct.

(2) M(e) is monotonic = 3P C Reduct(a) satisfies M(P) > p and VP c P, M(P') < 8 = P = Reduct(B) by the condition (b) =
VReduct(o), 3P C Reduct(a) is a f-reduct. O

Theorem 3.2 is proposed to target the flexible-criteria-based approach, which shows that the nested structure of reducts
in the flexible-criteria-based approach depends on the definition of attribute reduction.

Theorem 3.3 is proposed to target the dependence-function-based approach. Comparatively, the result of Theorem 3.3 is
weaker than the results of Theorems 3.1 and 3.2 because only the weakly nested reduction holds in the results of Theorem
3.3.

Theorem 3.3. Suppose M,(B) is monotonic with B. Then, the following statements hold:

(1) If My(B) is monotonic with o, with the parameter decreasing, the weakly nested reduction holds.
(2) If My(B) is ANTI-monotonic with «, with the parameter increasing, the weakly nested reduction holds.

Proof

(1) Let Q = Reduct(a). According to the definition of attribute reduction in the dependence-function-based approach, we
have M,(Q)=M,(R) and for all Q' C Q, My(Q') < M,(R). M4(Q) < M4(R) = (a) When My(Q) = M(R), Q=Reduct(«) is a
p-reduct; (b) when My(Q) < M4(R), there exists Q C P C R and P is a super g-reduct. =VReduct(c), 3P 2 Reduct(a) con-
tains a p-reduct.

(2) The proof is similar to (1). O

In this section, we present three theorems. These theorems give some necessary conditions to construct the nested reduc-
tions or the weakly nested reductions. These theoretical results supply some principles to judge which parameterized model
is suitable to construct a nested reduction. Furthermore, these theoretical results are important and useful in designing algo-
rithms to find reducts on different approximations, or even on all levels of approximations, quickly.

3.2. Some parameterized methods satisfying the nested reduction or the weakly nested reduction

In this subsection, we present some properties of the parameterized models. By these properties and aforementioned the-
orems, we find some parameterized models in which the nested reduction structures hold.
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3.2.1. The discernibility-matrix-based parameterized models

We discuss the discernibility-matrix-based model: fuzzy variable precision rough set model (FVPRS) in this part. Because
Theorem 3.1 is proposed for those parameterized models that find reducts based on discernibility matrix, we need to deter-
mine whether FVPRS satisfies the condition in Theorem 3.1. First, several properties of FVPRS are described.

Proposition 3.1. In FVPRS, if o> §, then Ry A(x) > RysA(x), Vx € U.

Proof. According to the definition of lower approximation in FVPRS, we have

R, A(x) = |inf dR(xu).0) | 5 inf d(R(xu)e) | A inf J(R(x,u), A(u))

Aw)=p B<Aw)sa Aw)>a
R A(x) = }n)f SR u.B) | A ﬂl}(lf; SRxu), Aw))| A inf (R(x,u), A(u))
) u)<h <A(u)<o A(u)>a

Because infy)<sd(R(x,u),0) = infauy<s(R(x,u), B),  infgeay<od(R(xX,u),0t) = infzeaiuy<ad(R(x,u),A(u)) and infaqy9(R(x,u),
A(u)) = infaquyI(R(x,u),A(u)), we have Ry A(x) > RyA(x), Vx e U. O
Proposition 3.2 shows how the threshold affects the discernibility power of the attributes.

Proposition 3.2. In FVPRS, if residuated implication ¥ satisfies ‘if 3(a,b) =c, then T(a,c)=b, Va,b,c € [0,1]’, then the following

statement holds:
If T(a(x, u),RypA(x)) < f, then T(a(x,u), Ry A(x)) < o, where a(x,u) is the similarity degree of x,u € U on the attribute a € R.

Proof. Because

&;;A (x) = Al;niﬂ HR(x,u), ) A inf  HR(x,u), A(u)) A inf ﬁ(R(r u), A(u))

fed()sa Au)>

@ (®) ©

we have that RysA(x) get its value in the following three situations:

(1) Assume RysA(x) has the value determined in part (c). Jw eU st AW)>a and RyzA(x) = Id(REX,U),
AW)) = I(R(x,u),A(’)) is the minimum value among J(R(x,u),«) for A(u)<o and I(R(x,u)A(u)) for
A(u) > o = Ry ARX) = IR, 1), A(W)) = RyyA(x) = T(a(x.y), Ry, A(X)) = T(a(x.), RypAx)) < f < o

(2) Assume  RysA(x) has the value determined in part (b). 3JeU st p<AW)<a and
RypA(x) = 9(R(x,u"),AW’)) = T(R(x,u'), RysA(x)) = A(t) (by the given condition) =-a(x,y) < R(x,u’) (by the monotonicity
of T-norm) because T(a(x,y),RysA(X)) < p and g <A(U') < o
There are two possibilities for determining the value of Ry A(x): Ry A(X) = 9(R(x,u"),0) (here A(u")<a) and
Ry A(X) = 9(R(x,u"),A(u")) (here A(u")>o). Ry A(X)=9I(R(x,u"),o) (here A(u") < o) = T(R(x, u"), Ry Ax)) <a (By
deﬁnltlon of residuated implication) = J(R(x, u’”) o) < I(R(x,u'),A(u')) < I(R(x,u'),o) = R(x,u’) < R(x,u") (by the mono-
tonicity of residuated implication) = a(x,y) < R(x,u") (because a(x,y) < R(x,u')) = T(a(x,y),Ry A(x)) < o (by the
monotonicity of T-norm).

Ry, A(x) = 9(R(x,u"),A(u")) (here A(u") > o) = F(R(x,u"),A(u")) < I(R(x,u), o) = T(R(x,u'), Ry A(X))
= T(R(x. ), 9(R(X,U"), ) < o
(By the monotonicity of T-norm) because T(R(x,u'), ¥(R(x, '), ) < & = T(a(x,y),Ry A(x)) < & (because a(x,y) < R(x,u')).
(3) Assume RysA(x) has the value determined in part (3a). Juw eU st A(w)<p and RyA(x) =d(R(x,u'), ) =

T(R(x,u'),RysA(x)) = p (by the given condition)= a(x,y)<R(x,u’) (the monotonicity of T-norm) because
T(a(x,y), RypA(x)) < B). Like (2), we determine that T(a(x,y), Ry A(X)) < o

All these show that if T(a(x,u), RysA(x)) < f and o > , then T(a(x, u), Ry A(x)) < o in the condition that if ©¥(a,b) = ¢, then
T(a,c)=b, Va,b,c€[0,1]. O

These results show that if the attribute a is selected as a discerning member into discerning the object pair x and u on a
smaller threshold g, then it is also selected as a discerning member on a larger threshold ¢. That is, some more attributes are
selected as discerning members in FVPRS on the larger threshold.

Proposition 3.3. If o > p, then M(U,R,D) 2 My4(U,R,D) in FVPRS.

Proof. By definition of a-discernibility matrix in FVPRS and Proposition 3.2, we have that if a € c{;, thena € ¢, ie., ¢} 2 C{;
Thus, M,(U,R,D) 2 M4(U,R,D) in FVPRS. O
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Proposition 3.3 shows that if the residuated implication satisfies ‘if ¥(a,b) = ¢, then T(a,c)=b, Va,b,c € [0,1]’, then the
forward nested reduction and the weakly nested reduction can be constructed in FVPRS.

3.2.2. The dependence-function-based models
Some parameterized models, such as Approximate-RED and fuzzy-RED, satisfy the conditions in Theorem 3.2. The
following proposition shows this fact.

Proposition 3.4. Suppose B is a a-reduct and M:p(DS) — [0, 1] is the discernibility measure,

(1) In Approximate-RED, (a) M(e) is a monotonic; (b) M(B) = «; (c) VB' C B, M(B') < o holds.
(2) In fuzzy-RED, (a) M(e) is a monotonic; (b) M(B) > a; (c) VB' c B, M(B') < o holds.

Proof

(1) By definition of attribute reduction in [23], B C A = |G(B) — G(A)| < o = G(B) > G(A) — o because G(-) is a monotonic
= let B=G(A)—o, then G(B)> . For every proper subset CcCB, the inequality |G(C)— G(A) >«
holds = G(C) < G(A) — a = B.

(2) It is straightforward to get that in fuzzy-RED, (a) M(e) is @ monotonic; (b) M(B) > «; (c) VB’ € B, M(B') < o holds. O

Proposition 3.4 shows clearly that approximate-RED and fuzzy-RED satisfy the conditions in Theorem 3.2. That is, they
can construct the weakly nested reduction and the forward nested reduction.
3.2.3. The dependence-function-based models

In this subsection, we present some properties of the dependence-function-based models. These properties show that
most of the dependence-function-based models can be used to construct a reverse weakly nested reduction.
Proposition 3.5. In VPBRS, M,(B) is monotonic with B, and it is monotonic with o.

Proof. By definition of the lower approximation operator in VPBRS,
BCP = Eg D Ep = p(X/Ep) < p(X/Ep) = Posp(X) < Pospy(X) = M,(B) < My(P).

2> f=1-a(l—pX)) <1-p(1-p(X)) == Posss(X) 2 Posss(X) = My(B) < My(B). O

Proposition 3.6. In VPFRS, M,(B) is monotonic with B, and M,(B) is monotonic with a.

Proof. By definition of the lower approximation operator in VPFRS,
BCP = x e U, BXi(x) > PXi(X) = 9(Jpy, (%), fp (X)) < O(Jpy, (X). f15(2)) = By(X) < Py(%) = P0Sz(X) < POSps,
= M, (B) < My(P).

%> p=1-a<1-p=esAB) > e,(AB) (here e,(A,B) = 1 7W)

A
and
{7€01]:¢,(Xi, F) <1 —a} C{y € (0,1] : (X, F) <1 B} = By(X) < By(x) = Posp(X) < Posp(X)
= M,(B) < Mg(B). O

Proposition 3.7. In VPRS-FRS, M,(B) is monotonic with B, and ANTI-monotonic with o.

Proof. By definition of the lower approximation operator in VPRS-FRS,
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BCP=Vx,ycUB(xy) > P(x,y) = max(1 - B(x,y),A(y)) < max(1 — P(x,u)A(y)) = Ip,a, (X) < Ip,a,(X)
= By(X) < Py(x) = Posp,(x) < Posp,,(x) = My(B) < My(P).

a>p= miin(U) > mﬁin(U) = Ip.a, (X) < Ipa,(X) = By(X) = By(x) = Pospy(x) = Pospy(x) = My(B) < My(B). O

Proposition 3.8. In VPRS, M,(B) is monotonic with B, and ANTI is monotonic with o.

Proof. By definition of the lower approximation operator in VPRS,

BCP=VxeU, X2 [xlp = c([x]p,A) > c((x]p,A) = U{[xlglc((x]p, A) < o,x € U} C U {[X]glc([x]p, A) < o,x € U}
= By(X) < Py = P, < Posp(X) = My(B) < My(P).

o> = U{[xlglc([x]5,A) < o, x € U} 2 {[x]g|c([X]5,A) < B,x € U} = Bu(x) > By(x) = Posps(x) > Posg,(x)
= M,(B) < My(B). O

Proposition 3.9. In VQRS, B,A(x) and Posg,(x) NOT is monotonic with B.

1BynAl  [PynA|
[Byl = [Pyl

Proof. By definition of the lower approximation operator in VQRS, B C P = Vy € U, B, D P,= the inequality
not always hold =B,A(x) and Posg,(x) is not monotonic with B. As a result, M,(B) is monotonic with B. O

Propositions 3.5, 3.6, 3.7, 3.8 show that VPBRS and VPFRS are suitable to construct the weakly nested reductions.
Meanwhile, Proposition 3.9 shows that VQRS is not suitable to construct the nested reductions or the weakly nested
reductions. All these results are very helpful for the algorithm designed to find a proper reduct quickly.

does

4. Some quick reduction algorithms

In this section, by using the nested structure of reduction, we design some algorithms to find a different reduct quickly
when a reduct is given. To fasten the proposed algorithms, we improve them by finding the different reducts with no rep-
etition. The existing algorithms to find the suboptimal reduct are also given.

4.1. Algorithms to find a different reduct based on the nested reduction

In this subsection, based on the nested reduction, we find a new reduct based on the given reduct or the obtained reduct,
which is the main difference between the proposed algorithms in this paper and the existing algorithms. Because there are
two types of nested structures (the forward nested reduction and the reverse nested reduction), it is necessary to propose
two types of algorithms to find the nested reduction. As a result, based on the structure of the nested reduction, we design
six algorithms (see Algorithms 1-6) called Nested Reduction Approaches. DF and DR are the nested reduction approaches
designed by the dependency function, and MF and MR are the nested reduction approaches designed by the discernibility
matrix. FF and FR are the nested reduction approaches designed by the flexible criteria of reduction.

In the following algorithms, S = (U,A,D) represents the decision system. U represents the Universe, A represents all the
condition attributes, D represents the decision attributes, and RED(pB) represents the given reduction on the threshold p.

Algorithm 1. Dependency function, Forward nested, DF for short).

Input: S = (U,RED(B),D), the given threshold 8 and a new threshold o.

Output: RED().

Initialize: RED(o) = ¢, Candidate = RED(p)

Step 1: Compute the dependency degree of RED(S3): Dep(RED(B));

Step 2: Do
(2.1) For every a; € Candidate, compute the dependency degree of RED(x) U a;: Dep(RED() U a;);
(2.2) Find a* such that Dep(RED(«) U a*) is maximal;
(2.3) If Dep(RED(o) U a*) < Dep(RED(B)), then let RED(a) = RED() U a*, Candidate = RED(f3) — RED(a);

While (Dep(RED(o) U a*) < Dep(RED(R)))
Step 3: Output RED(o)
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Algorithm 2 (Dependency function and Reverse nested, DR for short).
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Input: S = (U,A,D), the reduction RED(), the given threshold 8 and a new threshold o.
Output: RED(a)
Initialize: RED(ot) = RED()
Step 1: Compute the dependency degree of RED(a):Dep(RED()), the dependency degree of A: Dep(A);
Step 2: if Dep(RED()) = Dep(A), goto Step 4, otherwise, goto Step 3;
Step 3: Do
(3.1) For every a; € A — RED(a), compute the dependency degree of RED(a) U a;:Dep(RED(a)) U a;);
(3.2) Find a* such that Dep(RED(o) U a@*) is maximal;
(3.3) If Dep(RED(o) U a*) < Dep(A), then let RED(o) = RED(ot) U a*;
While (Dep(RED(o) U a*) < Dep(A))
Step 4: If RED(«) is not independent, delete the redundant elements in RED(a); Output RED(ot)

Algorithm 3. Discernibility matrix, Forward nested, MF for short).

Input: S = (U,RED(p),D), the given threshold g and a new threshold o.

Output: RED(a)

Initialize: RED(o) = ¢

Step 1: Compute the lower approximation Ry ([x]) for every x € U (here R = RED(f)).

Step 2: Compute c; = {a: T(a(x;,x;), ) < &}, . = Ry [xi]p(x;) for D(x;,x;) = 0; Otherwise c; = ¢;

Step 3: For every c; # ¢, if ¢; N RED(S) # ¢, let RED(o) = RED() and goto Step 5, otherwise goto Step 4.

Step 4: While (there exist some c;; # ¢)
(4.1) Find the attribute a with the maximum frequency of occurrence in all ¢; # ¢, and add it into RED(«.);
(4.2) Delete those c;; with nonempty overlap with a;

Step 5: If RED(«) is not independent, delete the redundant elements in RED(a); Output RED().

Algorithm 4. Discernibility matrix and Reverse nested, MR for short).

Input: S=(U,A,D), the reduction RED(f), the given threshold g and a new threshold o.

Output: RED(o)

Initialize: RED(a) = RED(B)

Step 1: Compute the lower approximation Ay ([x]p) for every x € U;

Step 2: Compute c;; = {a: T(a(x;,x;), ) < o}, 2= Ay, [Xilp(x;) for D(x;X;) = 0; Otherwise ¢;; = ¢;

Step 3: Delete those c¢; with nonempty overlap with RED(a);

Step 4: While (there exist some c; # ¢)
(4.1) Find the attribute a with the maximum frequency of occurrence in all ¢;; # ¢, and add it into RED(«);
(4.2) Delete those c;; with nonempty overlap with a;

Step 5: If Reduct is not independent, delete the redundant elements in RED(«); Output RED(o.).

Algorithm 5. Flexible criteria measure, Forward nested, FF for short).

Input: S = (U,A,D), the reduct RED(p), the given threshold g and a new threshold «.
Output: RED(a).
Initialize: RED(o) =[]
Step 1: Compute the dependency degree of A: Dep(A);
Step 2: Do
(2.1) For every a; € RED(B) — RED(«), compute the dependency degree of RED(a) U a;: DEP(RED(a) U a;);
(2.2) Find a* such that DEP(RED(o) U ;) is maximal; let RED(o) = RED(o) U a*;
While (Dep(A) — Dep(RED(a)) > o)
Step 3: Output RED(o).
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Algorithm 6. Flexible criteria measure and Reverse nested, FR for short).

Input: S =(U,A,D), the reduct RED(p), the given threshold and 8 a new threshold .
Output: RED(x)
Initialize: RED(c) = RED(B)
Step 1: Compute the dependency degree of RED(): Dep(RED(=)), the dependency degree of A: Dep(A);
Step 2: If Dep(A) — Dep(RED(x)) < o, goto Step 4, otherwise goto Step 3.
Step 3: Do
(3.1) For every a; € A — RED(a), compute the dependency degree of RED(a) U a;: DEP(RED(x) U a;);
(3.2) Find a* such that Dep(RED(o) U ;) is maximal; let RED(o) = RED(o) U a*;
While (Dep(A) — Dep(RED(a)) > o)
Step 4: If RED(a) is not independent, delete the redundant elements in RED(«); Output RED(o)

These algorithms are suited not only for the nested reduction but also for the weakly nested reduction. The main differ-
ence lies in the step of ‘checking independence’. The weakly nested reduction requires more time to check the ‘indepen-
dence’ than does the nested reduction.

In the aforementioned algorithms, DF, MF and FF share the common idea, and all of them are designed based on the for-
ward nested structure. The common designed idea is presented as follows:

Step 1: Given the threshold beta and alpha, beta here is smaller than alpha.

Step 2: Take the reduct on beta as the candidate attribute set: CA.

Step 3: Compute the dependency degree/discernibility matrix/criterion on CA.

Step 4: Find the reduct on alpha from CA based on the increased searching strategy.

In Step 4, the theoretical basis is the forward nested structure. For this reason, these approaches are called forward nested
algorithms.

DR, MR and FR share another common idea, and all of them are designed based on the reverse nested structure. The com-
mon designed idea is presented as follows:

Step 1: Given the threshold beta and alpha, beta here is larger than alpha.

Step 2: Initialize the reduct on alpha being equal to the reduct on beta.

Step 3: Compute the dependency degree/discernibility matrix/criterion on the whole universe U.
Step 4: Find the reduct on alpha from U using an increased searching strategy.

In Step 4, the theoretical basis is the reverse nested structure. For this reason, these approaches are called reverse nested
algorithms.

Based on the above explanations, the obvious difference between these two types of approaches is that the different the-
oretical bases are used: forward nested structure and reverse nested structure. Another obvious difference is that the dis-
cussed universes are different. The former approach takes the given reduct as the discussed universe; the latter takes the
whole universe as the discussed universe.

These algorithms show that it is fast to find a new reduct when two thresholds, the reduct on one of which is known, are
given. However, it is difficult to know whether the reducts are the same when two different thresholds are given. As a result,
it is necessary to propose some algorithms that can display to what extent the reducts are the same.

4.2. Two improved algorithms to find different reducts based on nested reduction

In this subsection, we improve the above proposed algorithms to determine the critical point value on which the reduct
changes. By using these algorithms, the reducts on all possible thresholds are obtained. The algorithm MALL is designed
based on the perfect nested structure existing in discernibility matrix. The algorithm FALL is designed based on the perfect
nested structure of flexible-criteria-based approaches. The dependence-function-based approach is not suitable to design the
improved algorithms because only the weakly nested reduction exists in them.

Algorithm 7. Discernibility matrix, MALL for short).

Input: S=(U,A,D), A={ay,...,a,...,a;}.

Output: All_RED.

Step 1: Compute the similarity degree of A and the lower approximation Ay([x]p) for every x € U;

Step 2: For k=1,...,r, compute fc;(k) = min{p : 9(ar(xi, %), ) < Ag,([x]p)(xi)} for D(x;X;) = 0; others fci(k) = 0;
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Step 3: For any i,j,k, sort fc;(k) in ascending order and save in a vector named as Threshold; Let t = 0, RED(t) = ¢;
Step 4: Do while (t < length(Threshold))
(4.1) Let t=t+1, y = Threshold(t), and compute y-cut of each fc;;, denoted as (fc;),;
(4.2) Let RED(t) = RED(t — 1), Delete those (fc;), with nonempty overlap with RED(t);
(4.3) While (there exist some (fc;), # ¢)
(4.3.1) Add the attribute a, with maximum frequency of occurrence in all (fc;), # ¢ into RED(t);
(4.3.2) Delete those (fc;;), with nonempty overlap with a;
(4.4) If RED(y) is not independent, delete the redundant elements in RED(t);
(4.5) Let All_RED(t) = (RED(t),7);
(4.6)
(4.6.1) compute the intersection of the matrix on RED(t)
(4.6.2) find the maximum ‘alpha’ in the intersected matrix
(4.6.1) find the position ‘t’ of ‘alpha’ staying in 'Threshold’
Step 5: Output All_RED.

In MALL, it is critical to find all of the boundary values on which the reduct size changes. There are three steps to deter-
mine these very boundary values: compute the fuzzy discernibility matrix, find all possible boundary values, and find the
very boundary values. In the following section, we will describe these steps clearly.

4.2.1. Computing the robust fuzzy discernibility matrix
Suppose (fcjj)nxn i1s the fuzzy discernibility matrix. Each entry in the fuzzy discernibility matrix is defined as
fey(k) = min{p : I(ar(x:, x;), B) < Ay, ([X]p)(X:)}, Vk € R, where § € [0,1]. In the real applications, the fuzzy discernibility matrix
is obtained based on the specific triangular norm T. Let ¥ = ¥y, for example, then
07 D(Xi,Xj) = 1,
feyky = § XX, axi. %) > max(R(xi,y) and D(xi,x;) =0,

0, ar(Xi, %) < maUx(R(x,-,y) and D(x;,x;) = 0.
ye

4.2.2. Finding all possible boundary values

All possible boundary values can be found from the robust fuzzy discernibility matrix. All membership degrees of the fuz-
zy sets in the robust fuzzy discernibility matrix are composed of the set of all possible boundary values. We obtain all these
values by using the following steps:

(1) Collect all the membership degrees of the fuzzy sets in the fuzzy discernibility matrix.
(2) Save those values in ALLPV.

(3) Find the values in ALLPV with no repetitions and save them in PV.

(4) Sort the values increasingly in PV.

4.2.3. Finding the quite boundary values and the corresponding reducts
It is critical to find the boundary values from PV on which the reduct size changes. We design the following steps to find
all boundary values.

(1) Set the original value: o= PV(1) and s = 1.
(2) While o <= max (PV):
(2.1) Let VPV(s) = o and find the o-reduct ‘RED,,.
(2.2) For k = 1:length(RED,,):
(2.2.1) Find the left attributes K = RED,, — ay in RED,,.
(2.2.2) Compute mij;X(IgleiII(lfCU(S)), and save it as Thr(k).

(2.3) Compute min(Thr) and save it as o, Let s=s+ 1.
(3) VPV is the set of all the boundary values on which the reduct size changes.

Clearly, it is easy to see that the reducts on all of the possible parameters can be found when all the boundary values are
selected.
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Algorithm 8. Flexible criteria measure to find reducts on all levels of approximation, FALL for short).

Input: S=(U,A,D).
Output: All_RED.
Initialize: Candidate = ¢
Step 1: Compute the similarity degree of A, the dependency degree of A: Dep(A); Let k = 0;
Step 2: Do
(2.1) For every a; € A, compute the dependency degree of Candidate U a;: Dep(Candidate U a;);
(2.3) Find a* such that Dep(Candidate U a*) is maximal,
(2.4) Let B=Dep(A) — Dep(Candidate U a*), A=A — a* and Candidate = Candidate U a*;
(2.5) If Candidate is not independent with respect to B, delete the redundant elements from Candidate;
(2.6) Let k = k + 1,All_RED(k) = (Candidate, p).
While (Dep(A) — Dep(Candidate U a*) # 0).
Step 3: Output All_RED.

In the dependence-function-based models, the boundary values are easy to determine because the dependency function
is monotonic with the increment of attributes. As a result, this idea is used in Step 4 of FALL.

MALL and FALL are the first to be proposed to find the reducts on all possible thresholds. Now all the existing algorithms
are proposed on one fixed threshold. Then, the intuitive way to find the reducts on all possible thresholds is to execute the
existing algorithms on all possible thresholds. Nevertheless, it is clear that this intuitive method is NP-complete. Compara-
tively, MALL and FALL are not NP-complete because the designation of MALL and FALL can find the critical point values on
which the reducts change. We list more detailed reasons as follows.

(1) The first and most important reason is that MALL and FALL can determine the critical point value on which the reduct
changes. The nested structure shows that, to some extent of the thresholds, the reduct does not change. Based on this
discovery, we design methods to determine the critical point values, and then the NP problem becomes a polynomial
problem.

(2) MALL and FALL avoid some repetition in computing reducts on different thresholds. Assume that all of the critical
point values are given. An intuitive algorithm is used to execute the existing algorithms on all the critical point values.
This intuitive algorithm is not NP-complete, but it is much slower than MALL and FALL. Because MALL and FALL use
the nested structure to avoid repetition in computing the reducts.

4.3. The existing heuristic to find a reduct
In this subsection, we present the existing approaches ME, DE and FE (see Algorithms 9-11). Formally, these algorithms
seem similar to the algorithms of the nested reduction approaches. The main difference between the existing algorithms and

the nested reduction approaches is whether the reduct obtained is used in the algorithms.

Algorithm 9. Dependency function, DE for short).

Input: S = (U,A,D) and the threshold o.
Output: RED().
Initialize: RED(o) = ¢
Step 1: Compute the dependency degree of A: Dep(A); Let RED(a) = ¢
Step 2: Do
(2.1) For every a; € A, compute its dependency degree of RED(o) U a;: Dep(RED(o) U a;);
(2.2) Find a* such that Dep(RED(o) U a*) is maximal;
(2.3)Let A=A — a* and RED(«) = RED(o) U a*;
While (Dep(RED(o) U a*) < Dep(A))
Step 3: If Reduct is not independent, delete the redundant elements in RED(«); then Output RED().

Algorithm 10. Discernibility matrix, ME for short).

Input: S=(U,A,D) and the threshold o.
Output: RED(o)
Initialize: RED(a) = ¢
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Step 1: Compute he similarity degree of A and the lower approximation Ay, ([x]p) for every x € U;
Step 2: Compute c;j = {a: T(a(x;,x;), ) < o}, 2 = Ay, [xi]p(x;) for D(x;,x;) = 0; Otherwise c; = ¢;
Step 3: Compute Corep, (A); Delete those c; with nonempty overlap with Corep, (A); Let RED(c) = Corep, (A);
Step 4: While (there exist some c;; # ¢)
(4.1) Add the attribute a with maximum frequency of occurrence in all ¢; # ¢ into RED(x);
(4.2) Delete those c; with nonempty overlap with a;
Step 5: If Reduct is not independent, delete the redundant elements in RED(a); then output RED(o).

Algorithm 11. Flexible criteria measure, FE for short).

Input: S = (U,A,D), the threshold .
Output: RED(a)
Initialize: RED(o) = ¢
Step 1: Compute the dependency degree of A: Dep(A);
Step 2: Do
(2.1) For every a; € A — RED(o), compute the dependency degree of RED(a) U a;: Dep(RED() U a;);
(2.2) Find a* such that Dep(RED(o) U a*) is maximal; let RED(a) = RED(a) U a*;
While (Dep(A) — Dep(RED(a)) > o)
Step 3: If RED(«) is not independent, delete the redundant elements in RED(a); Output RED(ot)

4.4. Scalability analysis

In Tables 1 and 2, we give the detailed time complexity comparison. We find that, although the nested reduction ap-
proaches do not change the level of the time complexity, they significantly reduce the size of the time complexity.

When the reduct that has been obtained is used in the algorithms, the input dataset or the initialized reduct is changed. In
Algorithms 1, 3 and 5, the size of the input dataset is significantly reduced to the size of the given reduct. In Algorithms 2, 4
and 6, the initialized reduct is changed from the empty set to the given reduct. As a result, the nested reduction approaches
are far quicker than the approaches that do not use the nested reduction. We will demonstrate this fact in Section 5.

In Table 2, k is the execution time of the algorithms FE and ME, which needs to be set beforehand. The parameter ¢t is the
number of all boundary values. In general, k is larger than ¢, especially if the step length is small. The parameter |P| is the
number of the reducts obtained in the previous boundary values. As a result, |P| becomes smaller with the increment of t.
The time complexity of FALL and MALL is obviously smaller than FE and ME.

5. Numerical experiments

In this section, several datasets with different object numbers, decision classes, condition attributes and data distributions
(see Table 3) are selected to demonstrate the performance of the algorithms designed based on the nested reduction.

As mentioned previously in Section 3, there are many parameterized models suited for the construction of the nested or
weakly nested reductions. Here, FVPRS, VPBRS and fuzzy-RED, which determine reducts by using three different types of
attribute reduction approaches, are selected as examples to perform some demonstrations. Similar results can be obtained
on the other parameterized models suited for the construction of the nested or weakly nested reductions.

Table 1
the detailed information of the time complexity in Algorithms 1, 2, 3, 4, 5, 6, 9, 10, 11.
Designed by discernibility matrix Designed by
dependency function and designed by flexible criteria of reduction
Using the No Yes Using the No Yes
nested nested
reduction or reduction or
not not
ME MF MR DE,FE DFFF DRFR
Similarity O(|UI> x |A]) O(JU]? x |RED(B)]) O(|U|* x |A|) Similarity O(|U)? x |A]) O(|UJ* x [RED(B)|) O(|UJ* x |A])
Matrix O(|UI? x |A]) O(JU[? x [RED(B)]) O(UJ? x |A]) Dependency ~ O(|U|) o(|u)) o(|ul)
(or quality
measure)

Loop O(|UP x |A]>) O(|U* x [RED(BY*|) O(|UJ* x (JA| — |RED|(B)|)* Loop O(|UP x |A]*) O(|U* x [RED(B)*) O(|UJ> x (|A| — [RED()|)*)
All O(|UI* x |AI*) O(|U* x |RED(B)*|) O(|UI* x (JA| — [RED|(B)])* All O(|U? x |A[%) O(|UJ? x [RED(B)[) O(|UJ* x (JA| — [RED(8)])?)
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Table 2

the detailed information of time complexity in Algorithms 7-11.
Designed by discernibility matrix Designed by flexible criteria
Using the nested reduction or not No Yes Using the nested reduction or not No Yes

ME MALL FE FALL

Similarity ok x [UP? x |A])  O(|U]* x |A]) Similarity otk x [U? x |A])  O(|U]* x |A])
Matrix O(k x |U? x |A]) ~ O(t x |U]? x |P|) Dependency (or quality measure) O(k x |U|) o(|u))
Loop otk x U] x |AP) O<t>< |UP x \mugm) Loop ok x [UP? x |A2)  O(|U]? x |AP)
All Ok x |U]? x |A]%) O<t>< |UP? \p\(\g\—l)) All O(k x |U]? x |A%)  O(|U? x |A]?)

Table 3

The information of some datasets from UCI [35].
Datasets Abbr. Objects Condition Data type Classes
Iris Iris 150 4 Real value 3
Diabetes Diab 769 8 Real value 2
lonosphere Ionos 351 34 Real value 2
Wine Wine 178 13 Real value 3
Sonar Sonar 208 60 Real value 2
Wdbc Wdbc 569 30 Real value 2
Wpbc Wpbc 198 32 Real value 2
New_thyroid New_thy 215 5 Real value 3
Haberman Haberman 306 3 Real value 2

In the following, we first demonstrate the structure of the nested reduction by numerical results. Then, we by experimen-
tal results show that the nested reduction approaches perform obviously or even significantly better than those algorithms
without using the nested reduction.

5.1. The structure of the nested reduction

Here we take FVPRS as an example to demonstrate the structure of the nested reduction. And the improved algorithm to
find reducts, i.e., MALL, is selected to perform the demonstration. The numerical results are presented in Tables 4-6. These
tables clearly demonstrate that the reducts act as a nested structure with the incremental parameter.

Table 4
The nested reduction in FVPRS (diabetes, iris and new_thyroid).

Diabetes Iris New_thyroid

Parameters Reduct Parameters Reduct Parameters Reduct

0 6 7 8 0 1 2 3 4 0 1 2 3 4 5
0.95 0.945 1 2 4 0.911 1 2
0.951 8 0.972 1 2 5
0.983
0.99

0.997
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Table 5
The nested reduction in FVPRS (wine).

Wine

Parameter Reduct

0

0.765
0.791
0.793
0.821
0.828
0.857
0.878
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0.949
0.978
0.995
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Table 6
The nested reduction in FVPRS (wpbc).
WPBC Reduct
parameters
0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.664 12 3 4 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0.707 12 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32
0.746 12 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 26 27 28 29 30 31 32
0.761 12 3 4 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 26 28 29 30 31 32
0.776 12 3 4 6 7 8 910 11 12 13 14 16 17 18 19 20 21 22 23 26 28 29 30 31 32
0.781 12 3 4 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22 23 26 28 29 30 32
0.784 12 3 4 6 7 8 910 12 13 14 16 17 18 19 20 21 22 23 26 28 29 30 32
0.786 12 3 4 6 7 8 9 10 12 13 14 16 17 18 19 20 22 23 26 28 29 30 32
0.792 12 3 4 6 7 8 9 10 12 13 14 17 18 19 20 22 23 26 28 29 30 32
0.798 12 3 4 6 8 910 12 13 14 17 18 19 20 22 23 26 28 29 30 32
0.823 12 4 6 8 9 10 12 13 14 17 18 19 20 22 23 26 28 29 30 32
0.83 14 6 8 9 10 12 13 14 17 18 19 20 22 23 26 29 30 32
0.831 14 6 8 10 12 13 14 17 18 19 20 22 23 26 29 30 32
0.834 14 6 8 10 12 13 17 18 19 20 22 23 26 29 30 32
0.835 14 6 8 10 12 13 17 19 20 22 23 26 29 30 32
0.844 14 6 8 10 12 13 17 20 22 23 26 29 30 32
0.847 14 8 10 12 13 17 20 22 23 26 29 30 32
0.858 1 8 10 12 13 20 22 23 26 29 30 32
0.863 18 10 12 13 20 22 23 26 29 32
0.865 110 12 13 20 22 23 26 29 32
0.871 110 12 13 22 23 26 29 32
0.881 110 13 22 23 26 29 32
0.896 110 13 22 23 26 32
0.919 110 13 22 26 32
0.944 110 13 26 32
0.968 110 13 26
0.984 110 26
0.995 110

5.2. To compare the algorithms of using nested reduction or not: finding one reduct

This subsection focuses on the comparison of finding a different reduct when a reduct is given. The comparison is setup as
follows:

(1) The parameters are chosen on the interval [0, 1] with the step length 0.01.

(2) The running times, as index, are compared.

(3) Three types of the nested reduction algorithms and the existing algorithms are compared.
(4) FVPRS, VPBRS and fuzzy-RED are selected as examples.

The comparison results are summarized in Figs. 1-3.

In the above figures, MR and MF are the algorithms that use the nested reduction. M is the existing algorithm, which does
not use the nested reduction. These figures show that the algorithms using the nested reduction are often obviously faster
than the algorithms that do not use the nested reduction. It is thus easy to draw a conclusion that the nested reduction is
very helpful in finding a different reduct quickly when a reduct is given.

OMR-FVPRS @M-FVPRS OMF-FVPRS OMR-FVPRS ®@M-FVPRS OMF-FVPRS
50 400
350
40
the the 300
executing 30 executing 250
time time 200
(CPU 20 (CPU 150
seconds) seconds)
100
10
E.] EI 50
0 0
iris new_thyroid haberman wine wpbe sonar diabetes ionosphere wdbe

Fig. 1. The comparison of running time: FVPRS.
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OMR-Fuzzy-RED @M-Fuzzy-RED OMF-Fuzzy-RED OMR-Fuzzy-RED  @M-Fuzzy-RED OMF-Fuzzy-RED
20 180
160
140
the 15 the
. X 120
executing executing 100
time 10 time %0
(CPU (CPU 0
seconds) g seconds)
£ 40 _—
b [ gl IS R
o Ll 0
iris new_thyroid haberman wine wpbc diabetes ionosphere sonar wdbc
Fig. 2. The comparison of running time: Fuzzy-RED.
OMR-VPBRS @M-VPBRS OMR-VPBRS @M-VPBRS
250 2500
200 2000
the the
executing 150 executing 1500
time time
(CPU 100 (CPU 1000
seconds) seconds)
50 500
Lol L
iris new_thyroid wine haberman wpbc sonar ionosphere diabetes wdbc

Fig. 3. The comparison of running time: VPBRS.

5.3. To compare the improved algorithms with the existing algorithms

In this subsection, we compare the improved algorithms, i.e., MALL and FALL, and the existing algorithms, i.e., ME and FE.

First, we highlight the limitations and advantages of these algorithms. These existing approaches have one limitation:
they often find many repeated reducts. As a result, these existing approaches are time-consuming, and many similar com-
putations are repeated many times using the existing approaches. The improved algorithms that use the nested reduction
have one obvious advantage: by using the improved algorithms, those repeated computations can be skipped, and then
the computing time is saved.

In the following, we experimentally show differences between these algorithms. The experiments are set up as follows:

(1) The algorithms, ME and FE, are executed on the interval [0,1] with the step length 0.01.
(2) The indices, including the running time, the repeated reducts and the obtained reducts, are compared.
(3) FVPRS and Fuzzy-RED are selected as examples to compare with the existing algorithms.

Tables 7 and 8 display one obvious fact: MALL and FALL do not obtain repeated reducts, but ME and FE do. Figs. 4 and 5
clearly show that MALL and FALL are significantly faster than the existing algorithm. All these facts show that as the heuristic

Table 7
Comparison of obtained reducts in FVPRS.
The number of all reducts The number of repeated reducts The number of obtained reducts®
MALL ME MALL ME MALL ME
Diabetes 6 99 0 95 6 4
Haberman 1 99 0 98 1 1
Ionos 29 99 0 76 29 23
Iris 2 99 0 97 2 2
New_thyroid 3 99 0 96 3 3
Sonar 50 99 0 67 50 32
WDBC 29 99 0 81 29 18
Wine 12 99 0 90 12 9
WPBC 29 99 0 78 29 21

2 Here the number of the obtained reduct means the number of reducts when the repeated reducts are deleted.
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Comparison of obtained reducts in Fuzzy-RED.

147

The number of all reducts

The number of repeated reducts

The number of obtained reducts®

FALL FE FALL FE FALL FE
Diabetes 8 99 0 91 8 8
Haberman 3 99 0 93 3 3
lonos 33 99 0 84 33 15
Iris 4 99 0 95 4 4
New_thyroid 5 99 0 94 5 5
Sonar 57 99 0 76 57 23
WDBC 30 99 0 88 30 11
Wine 13 99 0 88 13 11
WPBC 32 99 0 85 32 14

2 Here the number of the obtained reduct means the number of reducts when the repeated reducts are deleted.
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Fig. 4. The Comparison of running times in FVPRS.
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180
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140 —
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executin
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seconds) % M
40
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diabetes wpbc  ionosphere sonar wdbc

Fig. 5. The comparison of running times in Fuzzy-RED.

algorithms, MALL and FALL, often find more reducts without repetition. Comparatively, the lazy algorithms, ME and FE, often
do a significant amount of repeated work and are time-consuming.

6. Conclusions

This paper studies the structure of the reducts on the different parameters in parameterized rough sets. The authors dis-
cover that the reducts on different parameters are often nested or the same. In this paper, it is called the nested structure.
Based on this interesting discovery, some theorems and algorithms have been proposed. The theorems show, by using strict
mathematical reasoning, that the nested structure exactly exists in parameterized rough reduction. Using several theorems
and several properties, we present a systematic framework that clearly describes the nested structure of reducts in param-
eterized rough reduction. The algorithms show that the nested structure is very useful and effective in real applications. By
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using the nested structure, some feasible and effective algorithms have been designed that find a proper reduct quickly. In
particular, MALL and FALL are the first to be proposed to find the reducts on all of the possible thresholds.
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Appendix A

In this part, we will briefly recall the notions of rough sets, fuzzy sets and fuzzy logical operators. Interested readers are
referred to [7,8,22,44] for further details and backgrounds.

A.1. Rough sets

The theory of rough sets proposed by Pawlak is an extension of set theory for the study of intelligent systems char-
acterized by insufficient and incomplete information. It is formally based on an information system which is a pair
A=(U,A), where U is a non-empty finite set of objects called the Universe and A is a non-empty finite set of attributes.
With every subset of attributes B C A, we associate a binary relation defined as IND(B) = {(x,y) € U:a(x) = a(y), Va € B}.
The sets {x € U:[x]p C X} and {x € U:[x]gnX#= ¢} are called B-lower and B-upper approximation of X, denoted by
B X and BX, respectively. By using these approximation operators, knowledge hidden in data can be represented as
possible and certain rules.

A.2. Fuzzy logic operators

Fuzzy logic operators play an important role in the development of fuzzy rough set theory. We therefore recall some
important definitions before briefly reviewing FRS. These definitions are: triangular norm (i.e., T-norm) and T-residuated
implication. Other fuzzy logical operators are referred [22] for details.

A triangular norm, or shortly T-norm, is a function T:[0,1] x [0,1] — [0,1] that satisfies the following conditions: mono-
tonicity (if x <o, y <, then T(x,y) < T(«,f)), commutativity (T(x,y) = T(y,x)), associativity (T(T(x,y),z) = T(x,T(t(y,z)), and
boundary condition (T(x,1) = x). The most popular continuous T-norms include the standard T-norm: Ty(x,y)=min{x,y}
and the Lukasiewicz T-norm: T;(x,y) = max{0,x +y — 1}.

Given a lower semi-continuous triangular norm T, the residuation implication, or called the T-residuated implication, is a
function 9:[0,1] x [0,1] — [0,1] that satisfies ¥(x,y)=sup {z|z €[0,1], T(x,z) <y} for every x,y € [0,1]. The T-residuated
1, x<y

and the Lukasiewicz implication ;.
y, x>y

implications include the Godel implication 9, which is based on Ty;: 9y = {

which is based on T : ¥7, = min{1 —x+y,1}.
A.3. Fuzzy decision system

Let U, called the Universe, be a nonempty set with a finite number of objects. Each object is described by a set of fuzzy
condition attributes, denoted by R, and decision attributes, denoted by D. The triple of (U,R U D) is then called a fuzzy deci-
sion system, denoted by FD. Here, fuzzy attributes mean the attributes with real values that can be transferred into fuzzy
values.

A.4. Fuzzy similarity relation

With every P C R, we associate a binary relation P(x,y) called fuzzy similarity relation of P, which is a binary relation sat-
isfying (s.t.) reflexivity (P(x,x) = 1), symmetry (P(x,y) = P(y,x)) and T-transitivity (P(x,y) > T(P(x,z),P(z,y))) for every x,y,z € U.
For simplicity, we use P to represent its similarity relation, F(U) to represent the fuzzy power set of U.

A.5. Fuzzy rough sets

Fuzzy rough sets (FRS) are developed to handle databases with real values by combining fuzzy sets and rough sets. Fuzzy
rough sets (FRS) were first proposed by Dubois and Prade [7,8] and then studied in detail in [22,27,44]. In general, the exist-
ing FRS can be summarized as the following four approximation operators: T - upper approxXimation operator:

RrA(x) = sup,yT(R(x,u),A(u)); 9 - lower approximation operator: RyA(X) = inf,y9(R(x,u))A(u));s - lower approximation
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operator: ReA(x) = inf,,cyS(N(R(x,u)),A(u)); o - upper approximation operator: R;A(x) = sup,.,0(N(R(x, u),A(u)). In this paper,
we focus on the work based on T - upper and ¥ — lower approximation operators. Similar work can be obtained on the left
two operators by using the duality.
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