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a b s t r a c t

The generalization ability of ELM can be improved by fusing a number of individual ELMs. This paper
proposes a new scheme of fusing ELMs based on upper integrals, which differs from all the existing
fuzzy integral models of classifier fusion. The new scheme uses the upper integral to reasonably assign
tested samples to different ELMs for maximizing the classification efficiency. By solving an optimization
problem of upper integrals, we obtain the proportions of assigning samples to different ELMs and
their combinations. The definition of upper integral guarantees such a conclusion that the classification
accuracy of the fused ELM is not less than that of any individual ELM theoretically. Numerical simulations
demonstrate that most existing fusion methodologies such as Bagging and Boosting can be improved by
our upper integral model.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Huang, Zhu, and Siew (2004, 2006) proposed a new learning
algorithm for single-hidden layer feedforward networks (SLFNs)
called Extreme Learning Machine (ELM) which overcomes the
problems caused by gradient descent based algorithms such as
Back propagation applied in artificial neural networks. ELM can
significantly reduce the amount of time needed to train a neural
network and preserve the universal approximation ability (Huang,
Chen, & Siew, 2006). It randomly chooses the input weights
and hidden node biases, and analytically determines the output
weights of SLFN. It has much better generalization performance
with much faster learning speed (Huang et al., 2006). It automat-
ically determines all the network parameters analytically, which
avoids trivial human intervention and makes it efficient in online
and realtime applications (Huang et al., 2006; Lan, Soh, & Huang,
2009). ELMhas several advantages such as ease of use, faster learn-
ing speed, higher generalization performance, suitable for many
nonlinear activation function and kernel functions (Liu, He, & Shi,
2008; Wang, Chen, & Feng, 2011).

To achieve good generalization performance, ELM minimizes
training error on the entire training data set, therefore it might
suffer from overfitting as the learning model will approximate all
training samples well (Liu & Wang, 2010). Hansen and Salamon
(1990) have showed that the generalization ability of a neural net-
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work system can be significantly improved through ensembling a
number of neural networks. Combiningmultiple classifiers to solve
a given classification problem is an efficient approach to improve
the performance of classification and avoid overfitting (Jain, Duin,
& Mao, 2000).

When outputs of a base classifier are real-valued vectors
(most often posterior probabilities or possibilities (Kuncheva,
2003), sometimes evidences), a fusion operator such as max-
imum/minimum, median, average, weighted average, ordered
weighted average, Dempster–Shafer approach or fuzzy integral,
can be selected to aggregate the outputs from all individual base
classifiers (Kuncheva, 2003; Schmitt, Bombardier, & Wendling,
2008; Zhai, Xu, & Li, 2013; Zhai, Xu, & Wang, 2012). The fusion
based on maximum/minimum, median or average is suitable for
the case that in a combination the importance of base classifier
is identical (Kuncheva, 2003; Verikas, Lipnickas, Malmqvist, Ba-
causkiene, & Gelzinis, 1999). If the importance of a base classifier
is different from another, weighted average and ordered weighted
average can be chosen (Kuncheva, 2003; Yager, 1988). The im-
portance of a single classifier is emphasized in weighted average
while the magnitude of output from a base classifier is particularly
considered in ordered weighted average (Kuncheva, 2003; Yager,
1988). But the twomethods are under an assumption that interac-
tion does not exist among the individual classifiers. However, this
assumption may not be true in many real problems. If the interac-
tion is involved, the fuzzy integral (Schmitt et al., 2008;Wang et al.,
2011) or Dempster–Shafer approach (Shafer, 1976) is considered
as one of the most appropriate choices. Fuzzy integrals are more
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computationally efficient than a strict Dempster–Shafer approach
(Keller, Gader, Tahani, Chiang, & Mohamed, 1994). The fuzzy inte-
gral as a fusion tool, in which the non-additivemeasure can clearly
express the interaction among classifiers and the importance of
each individual classifier, has its particular advantages. Addition-
ally the average, weighted average and ordered weighted average
can be regarded as special cases of fuzzy integrals. For a tested sam-
ple, each base classifier outputs a vector in which the ith compo-
nent is the degree of the sample belonging the ith class. The fuzzy
integral integrates these degrees with respect to a fuzzy measure
for each class. One difficulty of applying fuzzy integrals in classifier
fusion is how to determine the fuzzy measures. The training pro-
cess of fuzzy integral fusion method contains training base classi-
fiers and learning the fuzzy measure from training samples. From
references one can find a number of methods to determine fuzzy
measures such as linear programming, quadratic programming
(Yeung, Wang, & Tsang, 2004), genetic algorithm (Yang, Wang,
Heng, & Leung, 2008), neural network (Wang & Wang, 1997), and
pseudo-gradient (Wang, Leung, & Klir, 2005).

This paper proposes a new approach to multiple classifier fu-
sion based on the upper integral which is a type of fuzzy integrals
proposed by Wang, Li, and Leung (2008). Motivated by the defini-
tion of upper integrals which can be considered as a mechanism of
maximizing potential efficiency of classifier combination, the new
approach is devoted to improve the classification performance of
a fusion operator based on upper integrals. It is worth noting that,
in our approach, the upper integral itself is not considered as a tool
of classifier-fusion but it is considered as a tool to improve any ex-
isting classifier-fusion operator. In other words, our approach (in
which the upper integral is no longer a fusion operator) differs from
all existing fuzzy integral based fusion schemes (which consider
the fuzzy integrals as fusion operators). Specifically, given a group
of individual classifiers trained from a set of samples and a fu-
sion operator, we regard the classification accuracies of individual
classifiers and their combinations as the efficiencymeasure, which
avoids almost the difficulty of determining fuzzy measures. The
upper integral plays a role of assigning suitable proportion of sam-
ples to different individual classifiers and their combinations to ob-
tain maximum the classification efficiency. It computes howmany
samples will be allocated to some of individual classifiers and their
combinations by solving an optimization problemderived from the
upper integral. This implies a proportion of sample-allocation for
a given set of samples. Based on this proportion, some oracles are
used to determine which samples will be allocated to those indi-
vidual classifiers and their combinations. Given a sample, the ora-
cle of a combination of classifiers first predicts the possibility with
which the combination can correctly classify the sample. Then the
sample is allocated to the combination with maximum possibility.
When the number of samples allocated to a combination attains
the proportion, the allocation to this combination stops, and the
allocations to other combinations continue until all samples are al-
located. After the allocation, those classifiers perform the classifi-
cation of the set of samples, which is our final classification result.

The rest of this paper is arranged as follows. In Section 2, the
existing multiple classifier fusion schemes are reviewed. Section 3
is devoted to the efficiencymeasures, fuzzy integrals and upper in-
tegrals. Our proposed new fusion scheme based on the upper inte-
gral is given in Section 4. Section 5 presents a number of numerical
experiments to verify advantages of the new approach, and finally
Section 6 concludes this paper.

2. Multiple classifier fusion based on fuzzy integrals

Suppose that X = {x1, x2, . . . , xn} is a set of classifiers.
The output of classifier xi is a c-dimensional nonnegative vector
[dj,1, dj,2, . . . , dj,c ] where c is the number of classes. Without loss
of generality, let dj,i ∈ [0, 1] denote the support from classifier
xj to the hypothesis that the sample submitted for classification
comes from the ith class Ci for j = 1, 2, . . . , n, i = 1, 2, . . . , c. The
larger the support, the more likely the class label Ci. All outputs of
classifiers for a particular sample can be organized in a matrix

DP =

d1,1 d1,2 · · · d1,i · · · d1,c
d2,1 d2,2 · · · d2,i · · · d2,c
· · · · · · · · · · · · · · · · · ·

dn,1 dn,2 · · · dn,i · · · dn,c

 .

Each column ofDP matrix can be regarded as a function defined
on the classifier set X , fi : X → [0, 1], fi(xj) = dj,i, i = 1, 2,
. . . , c, j = 1, 2, . . . , n. For each class Ci, we need to determine
a nonnegative set function µi on the power set P(X) of X . µi can
represent not only the importance of individual classifiers but also
the interaction among classifiers towards samples from Ci class. Set
functions have some special cases.

Definition 1 (Wang et al., 2008). Let X be a nonempty and finite set
and P(X) be the power set of X , i.e., the group of all subsets of X .
Then (X; P(X)) is a measurable space. A set function µ : P(X) →

(−∞, +∞) is called a fuzzy measure or a monotone measure, if

(F1) µ(Ø) = 0, (vanishing at the empty set)
(F2) µ(A) ≥ 0, for any A ⊂ X , (non-negativity)
(F3) µ(A) ≤ µ(B), if A ⊂ B, A ⊂ X , B ⊂ X , (monotonicity).

Set function µ is called an efficiency measure if it satisfies (F1)
and (F2); µ is called a signed efficiency measure if it satisfies (F1)
only. Any fuzzymeasure is a special case of the efficiencymeasure;
and any efficiency measure is a nonnegative set function. Fuzzy
measures have a monotone constraint but efficiency measures
have not, so fuzzy measures are sometimes called nonnegative
monotone set functions. In multiple classifier fusion, nonnegative
set functions are used to describe the importance of classifiers
and the interaction among classifiers. The value of set function at
a single-point-set µ({xi}) presents the contribution of the single
classifier xi towards classification, and the value of set function at
other sets, such as µ({xi, xj, xk}), presents the joint contribution of
classifiers towards classification.Mainly themethods to determine
the nonnegative set functions have two types. One is to learn from
the history data (Wang et al., 2005; Wang & Wang, 1997; Yang
et al., 2008; Yeung et al., 2004) and the other is to specify by
experts.

Once the set functions are available, we can use the fuzzy in-
tegral to aggregate the outputs from all classifiers. The ith column
of DP matrix can be regarded as a function fi defined on classifier
set X , fi(xj) = dj,i. The integral of function fi with respect to non-
negative set functionµi is the degree of fusion system classifying a
sample to class Ci. If necessary, we can obtain the crisp class label
through Ct = argmax1≤i≤c(


fidµi).

Usually the type of fuzzy integral is chosen in advance. Choquet
fuzzy integral and Sugeno fuzzy integral are often selected in fusion
process. Noting that the addition and the multiplication operators
are used in Choquet integrals while the maximum and the
minimum operators are used in Sugeno integral, most researchers
prefer now to use the Choquet integral in classifier fusion models
(Wang et al., 2005). The classification process of a sample by a fused
system based on fuzzy integral is illustrated in Fig. 1.

Fig. 1 shows that a sample is first submitted to all classifiers
and the results from all classifiers are stored in a DP matrix. Each
column of the matrix is a function defined on set X. Then the final
classification result can be obtained by calculating the integral of
each column of the DP matrix. The crisp class label can be finally
obtained through the maximum if necessary.
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Fig. 1. The fusion system of multiple classifiers based on fuzzy integrals.

3. The upper integral and its properties

This section will introduce some mathematical concepts about
the upper integral which are suitable for multiple classifier fusion.

Definition 2. Let X = {x1, x2, . . . , xn} be a nonempty set, P(X) be
the power set ofX ,µ : P(X) → [0, +∞) be a set function denoting
the efficiency measure, and f : X → [0, +∞) be a function. The
upper integral of f with respect to a non-additive set-function µ is
described as:

(U)


fdµ = sup


2n−1
j=1

aj µ(Aj) |

2n−1
j=1

aj χAj = f


(1)

where χAj is the characteristic function of set Aj, and aj ≥ 0, Aj =
i:ji=1{xi}, j is expressed in binary digits as jnjn−1 . . . j1, j = 1, 2,

. . . , 2n−1.

The value of the upper integral (U)

fdµ is the solution of the

following linear programming problem, where a1, a2, . . . , a2n−1
are unknown parameters (Wang et al., 2008):

Maximum z =

2n−1
j=1

ajµj

Subject to :

2n−1
j=1

aj χAj(xi) = f (xi), i = 1, 2, . . . , n

aj ≥ 0, j = 1, 2, . . . , 2n
− 1

where µj = µ(Aj), j = 1, 2, . . . , 2n
− 1. The above n constraints

can be also rewritten as
j:x∈Aj⊂X

aj = f (x) ∀x ∈ X .

The upper integrals have the following properties:

1. For any c ∈ [0, +∞), (U)

cfdµ = c(U)


fdµ.

2. (U)

fdµ ≤ (U)


gdµ if f (x) ≤ g(x) for every x ∈ X .

3. (U)

fdµ ≤ (U)


fdν if µ(A) ≤ ν(A) for every A ⊆ X .

4. (U)

fdµ = 0 if and only if for every set Awithµ(A) > 0, there

exists x ∈ A such that f (x) = 0, that is, µ({x|f (x) > 0}) = 0.
Table 1
The values of efficiency measure µ in Example 1.

Set (combination) Value of µ (efficiency)

{x1} 5
{x2} 6
{x1, x2} 14
{x3} 8
{x1, x3} 7
{x2, x3} 16
{x1, x2, x3} 18

Table 2
The values of function f in Example 1.

xi f (xi)

{x1} 10
{x2} 15
{x3} 7

Generally, fuzzy integrals are not linear, that is, the equality

(U)


(af + bg)dµ = a(U)


fdµ + b(U)


gdµ

may not be true, where a, b are two constants, f , g are integrands.
Therefore, fuzzy integrals are called nonlinear integrals sometimes.
For simplicity, we hide the type of integrals here. The following
sample shows that the upper integral has a very intuitive and nat-
ural explanation.

Example 1 (Wang et al., 2008). Three workers, x1, x2, and x3 are
engaged in producing the same kind of products. Their efficiencies
(products per day) of working alone and their joint efficiencies
are listed in Table 1. These efficiencies can be regarded as a
nonnegative set function µ defined on the power set of X =

{x1, x2, x3} with µ(Ø) = 0 (the meaning is that there are no
products if there is noworker). Here 14 = µ({x1, x2}) > µ({x1})+
µ({x2}) = 5 + 6 means that x1 and x2 have a good cooperation,
while 7 = µ({x1, x3}) < µ({x1}) + µ({x3}) = 5 + 8, and even
7 = µ({x1, x3}) < µ({x3}) = 8 mean that x1 and x3 have a very
bad relationship and they are not suitable for working together.
Suppose that x1 works for 10 days, x2 for 15 days, and x3 only for 7
days. Also we suppose that the manager can arrange their working
in any combination, working alone or together in some way. The
question now is how to arrange their working schedule such that
the total products are maximized. It can be solved through the
following linear programming problem.

Maximum z = 5a1 + 6a2 + 14a3 + 8a4 + 7a5 + 16a6 + 18a7
Subject to : a1 + a3 + a5 + a7 = 10

a2 + a3 + a6 + a7 = 15
a4 + a5 + a6 + a7 = 7
aj ≥ 0, j = 1, 2, . . . , 7.

The optimal schedule is: x1 and x2 work together for 10 days, x2
workswith x3 for 5 days, and x3 works alone for 2 days. The relevant
number of total products is 236. This value is just the upper integral
(U)


fdµ where f is listed in Table 2.

Generally, if X = {x1, x2, . . . , xn} is the group of all workers,
µ defined on P(X) is the efficiency measure of the group, and f
is an information function indicating the working time of each
worker, then (U)


fdµ represents the potential energy of the team

(X, µ, f ). The upper integral can play a role of optimization.

4. A model of classifier fusion based on upper integral

This section is to establish a new model for classifier-fusion
based on the upper integral. The newmodel, which is totally differ-
ent from the existing fuzzy integral based models, gives a sample-
assignment schedule regarding how many and which samples
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should be assigned to individual classifiers and their combinations,
instead of the upper integral being aggregation operators.

4.1. Efficiency measure

Suppose that we are considering n classifiers, denoted by X =

{x1, x2, . . . , xn}. Let P(X) be the power set of X . Then each element
of P(X) will denote a combination of classifiers, and it is clear
there are totally 2n

− 1 combinations (excluding the empty set).
For instance, {x1} denotes that the classifier works singly, and
{x1, x3, x4} denotes the 3 classifiers work together. We first need
to define an efficiency measure on P(X).

Let T be the training set. Then each classifier has a training
accuracy on T, and therefore, the value of the efficiencymeasure on
a single classifier can be defined as the training accuracy, i.e., the
correct rate of classification. Furthermore, suppose that we have a
basic fusion operator such as average. Then, applying the fusion
operator to a combination of classifiers on T, we can obtain a
correct classification rate of the classifier combination on T, which
is defined as the value of the efficiency measure on the classifier
combination. In this way, the efficiency measure is defined as

µ(A) =


0 if A = Empty set
Accuracy of A on T if A is a nonempty subset of X

where A denotes either a single classifier or a group of classifiers. It
is worth noting that the definition of efficiency measure depends
on a training-set and a basic fusion-operator for groups of classi-
fiers.

4.2. Integrand

Since we are considering a finite space of classifiers X =

{x1, x2, . . . , xn}, the integrand is a function defined on X , to be ex-
act, a n-dimensional vector (y1, y2, . . . , yn)where yi is the propor-
tion of samples submitted to the classifier xi(1 ≤ i ≤ n) to classify.
Our goal in this subsection is to determine this integrand. Why is
an assignment of samples needed? It can be seen clearly from the
following example that an appropriate assignment will improve
the classification accuracy in some case. Suppose there are 10 sam-
ples {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10}, 3 classifiers {x1, x2, x3}, the
best combination {x1, x3} has the highest accuracy which correctly
classifies 7 samples {s3, s4, s5, s6, s7, s8, s9} and classifier, x2, cor-
rectly classifies 6 samples {s1, s2, s3, s5, s6, s8} and s10 cannot be
correctly classified by any of combinations/classifiers. Then an ap-
propriate assignment of samples will obtain higher accuracy than
0.8which is the highest accuracy. Assigning {s3, s4, s5, s6, s7, s8, s9}
to combination {x1, x3} and {s1, s2} to classifier x2 the final accu-
racy is 0.9. Or assigning {s4, s6, s7, s8, s9} to combination {x1, x3}
and {s1, s2, s3, s5} to classifier x2 the final accuracy is 0.9 too. Under
some conditions an appropriate assignment could obtain higher
performance than the best combination or classifier. That is, it can
improve the performance that the samples which are correctly
classified by some combinations and misclassified by other com-
binations are assigned to appropriate combination.

Noting that the definition of upper integrals given in Section 3,
we find that the value of integral expresses the highest classifica-
tion efficiency for singly and jointly using classifiers x1, x2, . . . , xn.
Specifically, the integral value denotes the highest classification ef-
ficiency and the process of computing the integral specifies a way
to achieve the highest value by assigning howmany samples to sin-
gle classifiers and how many samples to their combinations. Here
a key point we need to explicitly specify is the following. Suppose
that p (0 < p < 1) is the accuracy of a single classifier xi and there
exist N samples to be classified, then we will not assign all the N
samples to xi but will assign only t (t ≤ pN) samples to xi. It is sim-
ilar to the case of a combination. Further in the next subsection, we
will discusswhich sampleswill be assigned to single classifiers and
their combinations.
Assuming that the efficiency measure µ is known already, the
function f can be determined by the following optimization:

Maximum (U)


{y1, y2, . . . , yn}dµ

Subject to : yj ≤ µ̄j, j = 1, 2, . . . , n
(2)

where yj denotes the proportion of samples to be assigned to clas-
sifier xj including samples to single xj and to combinations contain-
ing xj, µ̄j =

samples correctly classified at least by one of combination containing xj
all training samples is

the proportion of samples in the training set which are correctly
classified by the single classifier xj or any combination contain-
ing xj. The inequality restriction means that samples should be as-
signed to a classifier or combination which can correctly classify.

The optimization problem (2) can be transferred to the follow-
ing (3)

Maximum (U)


{y1, y2, . . . , yn}dµ =

2n−1
i=1

ai · µi (3)

Subject to yj =


i|bj=1

ai ≤ µ̄j, j = 1, 2, . . . , n

ai ≥ 0, i = 1, 2, . . . , 2n
− 1

where the number i has a binary expression bnbn−1 . . . b1 and bj
is the jth bit; the classifier combination corresponding to ai is
{xk|bk = 1, k = 1, 2, . . . , n}. The models (2) and (3) have such a
weakness that samples for evaluating the accuracymay be counted
more than once. To avoid this, we can add one more restriction:
2n−1
i=1

ai = 1.

That is, instead of (3) we can use (4) to avoid the repeated counting
of samples.

Maximum (U)


{y1, y2, . . . , yn}dµ =

2n−1
i=1

ai · µi

Subject to : yj =


i|bj=1

ai ≤ µ̄j, j = 1, 2, . . . , n

2n−1
i=1

ai = 1

ai ≥ 0, i = 1, 2, . . . , 2n
− 1.

(4)

The optimization problem (4) is a linear programming problem
and is easy to numerically solve. The nonzero ai in the solution
indicates the proportion of tested samples for the combination
{xk|bk = 1, k = 1, 2, . . . , n} to classify. The solution of (4) results
in integrand f = {y1, y2, . . . , yn}.

The classification accuracy of the upper integral based fusion
system is not less than that of any individual base classifier, pro-
vided the oracles are correct. The following is a brief mathematical
proof for this statement.

Proposition. The classification accuracy of upper integral based fu-
sion system is not less than that of any combination of classifiers, pro-
vided the oracles are correct.
Proof. If the combination of classifiers A has the highest accuracy
p, µ(A) = p. Let the corresponding unknown parameter aA = p,
the sum of values of some other unknown parameters be 1 − p.
It is a feasible solution of optimization problem (4). If the oracles
are correct, p × N tested samples are correctly classified by the
combination A where N is the number of testing samples. At least
the accuracy of upper integral based fusion system is (p×N)/N =

p. The proof is completed.

The conclusion is suitable to the case where the sum of µ̄j’s is
no less than 1. Note that the value of the problems (3) and (4) is not
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the accuracy of themodel. The value of problem (4) is
2n−1

i=1 ai ·µi
which is called classification efficiency, and the accuracy of the
upper integral model with correct oracles is

2n−1
i=1 ai.

4.3. Oracles

In Sections 4.1 and 4.2 we have discussed how to obtain the ef-
ficiency measure and the integrand for the upper-integral based
classifier-fusion under the assumption that a training set and a ba-
sic fusion operator are given. In fact, the integrand gives the pro-
portions of samples which are assigned to different combinations
of classifiers. The remaining problem is which samples should be
assigned to different individual classifiers and their combinations.
We employ an oracle to solve this problem. Given a sample, the or-
acle of a combination of classifiers first predicts the possibilitywith
which the combination can correctly classify the sample. Then the
sample is allocated to the combination with maximum possibility.
When the number of samples allocated to a combination attains
the proportion ai from the solution of the optimizationproblem (4),
the allocation to this combination stops. The allocations to other
combinations continue until all samples are allocated.

Practically the oracle can be obtained by training. Let T be the
training set. Based on the training set T and a basic fusion operator,
each combination of classifiers (including each single classifier)
will have a training accuracy. Let XC be an arbitrary combination
of classifiers with accuracy p (0 < p < 1). Intuitively it means that
there are (p|T|) samples correctly classified by XC and ((1 − p)|T|)
samples incorrectly classified by XC . Consider the (p|T|) samples
as positive samples and the ((1 − p)|T|) samples as negative
samples, we can train a new classifier which is regarded as the
oracle for the combination XC . For example, XC = {x1, x3}. If the
sample O is classified correctly by combination {x1, x3}, the target
output of the oracle for the sample O will be ‘‘1’’. Contrarily, if
the sample O is misclassified by combination {x1, x3}, the target
output of the oracle for the sample O should be ‘‘0’’. Note that
the correct or misclassification is based on the result of fused
classification of classifiers x1 and x3. For unseen sample O′, if the
oracle corresponding combination XC = {x1, x3} output is most
close to ‘‘1’’, we choose the classification of combination {x1, x3} as
system output. Summarizing the above discussions, we briefly list
our scheme of upper integral based classifier fusion as follows.

Algorithm. Upper integral based classifier fusion.
Input:: T is the training set, S is the testing set, X = {x1, x2,

. . . , xn} is the group of base classifiers, F is a basic fusion operator,
and L is a training algorithm for 2-class problem.

Output: Classification results of all tested samples.
Step 1: For each subset A of X , determine the efficiencymeasure

(the accuracy of fused base classifiers in group A) based on training
set T and basic operator F according to Section 4.1,

µ(A)

=
the number of samples classified correctly by A based on F

the number of training samples
;

Step 2: Build and solve the optimization problem (4) given in
Section 4.2 to determine the integrand. According to the solution
of problem (4), combinations (including single base classifier)
corresponding to nonzero ai are chosen to classify unseen samples,
and ai is the proportion of samples in testing set S that is assigned
to the corresponding combination;

Step 3: Train oracles for all chosen combinations by using algo-
rithm L according to the 2nd in Section 4.3;

Step 4: According to the oracles trained in Step 3, a sample in S is
assigned to the combination which has not reached its proportion
and has the highest possibility to correctly classify the sample;

Step 5: Let the combination from Step 4 classify the assigned
sample based on F;
Table 3
Specification of classification data sets and the number of hidden neurons for SLFNs
in the experiment.

Data sets # Attributes # Classes # Samples

Iris 5 3 150
Breast cancer 10 2 683
Tic-Tac-Toe 9 2 958
Ionosphere 34 2 351
Pima 8 2 768
Heart 10 2 270
Wine 13 3 178
Sonar 60 2 208
Letter 17 26 20000
Waveform + noise 41 3 5000

Step 6: Calculate the final classification results.
Step 7: Repeat Steps 4–6 until all samples in S are classified.

It is worth noting that, the base classifiers are assumed to be
known in advance.

5. Experiment results

5.1. Comparison with Boosting/Bagging

In order to knowwell the upper integral based model of fusion,
an empirical study is performed in this section. Ten benchmark
data sets are respectively selected from UCI machine learning
repository (UCI, 0000). They are sized from 150 to 20000, and the
detailed information is summarized in Table 3.

All the simulations are carried out in MATLAB 2007 environ-
ment running on an Intel T2400, 1.83 GHz CPU. The upper inte-
gral fusion model is compared with Breiman (1996) and Freund
and Schapire (1997). In our experiment, 10-fold cross validation is
repeated 20 times on each data set. Both Bagging and Boosting con-
tain 100 base classifiers. When the upper integral model is com-
pared with Bagging, the upper integral model uses the 100 base
classifiers trained by Bagging and the basic fusion operator is ma-
jority vote. Similarly, in comparing with Boosting the upper inte-
gralmodel uses the 100 base classifiers trained by Boosting and the
basic fusion operator is weighted majority vote where the weights
are determined during the training of Boosting. Here the upper in-
tegral only considers the single base classifiers and combinations
which consist of two or three base classifiers (not all possible com-
binations). The parameters in efficiency measure increase expo-
nentially with the number of base classifiers. When the number of
base classifiers is small, we can consider all the combinations. It is
difficult to find the optimal solution of problem (4) when it is large.
It is needed to balance the accurate solution and the feasibility.

The 4 types of base classifiers, i.e., ELM, conventional back-
propagation single-layer neural networks (BP), ELM with Gaus-
sian kernel (ELM-kernel) (Huang, Zhou, Ding, & Zhang, 2012),
and least square support vector machine (LS-SVM, available at
http://www.esat.kuleuven.ac.be/sista/lssvmlab/) are respectively
implemented in the verification experiment. For the ELM and BP,
the transfer function is fixed as hyperbolic tangent sigmoid. The
number of hidden neurons used in each data set is determined by
a ten-fold cross validation on each data set. The number which
achieves the best average cross-validation accuracy will be se-
lected for ELM and BP respectively. Through observing the perfor-
mancewith different numbers, the appropriate step, such 5, 10, 50,
can be adopted to search the best number of hidden neurons. In
general, the performance will quickly increase with more hidden
neurons, so the step could be larger. When the growth of accuracy
slowed, a smaller step is adopted. When a turning-point appears,
the number of hidden neurons is chosen as the best. In order to
achieve good generalization performance, the cost parameter C
and kernel parameter γ of ELM-kernel and LS-SVM need to be
chosen appropriately. For each data set, we have used 50 differ-

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
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Table 4
Comparison of three fusion schemes for ELM and BP (the correct rate).

Data ELM BP
Upper integral
based Boosting

Boosting Upper integral
based Bagging

Bagging Upper integral
based Boosting

Boosting Upper integral
based Bagging

Bagging

Iris 0.9839 0.9728 0.9831 0.9696 0.9481 0.9377 0.9565 0.9367
Breast 0.9591 0.9472 0.9529 0.9394 0.9312 0.9172 0.9310 0.9138
Tic-Tac-Toe 0.9247 0.9102 0.9321 0.9001 0.9216 0.9056 0.9251 0.8914
Ionosphere 0.8566 0.8301 0.8596 0.8313 0.8369 0.8194 0.8330 0.8217
Pima 0.7912 0.7686 0.7891 0.7532 0.7493 0.7287 0.7384 0.7181
Heart 0.8438 0.8273 0.8451 0.8191 0.8215 0.7967 0.7962 0.7771
Wine 0.9418 0.9281 0.9469 0.9327 0.9287 0.9016 0.9188 0.8962
Sonar 0.8567 0.8289 0.8626 0.8310 0.8207 0.8003 0.8167 0.7983
Letter 0.9519 0.9307 0.9462 0.9265 0.9172 0.9002 0.9207 0.8963
Waveform + noise 0.8528 0.8319 0.8487 0.8261 0.8231 0.8173 0.8279 0.8031
Table 5
Comparison of three fusion schemes for ELM-kernel and LS-SVM (the correct rate).

Data ELM-kernel LS-SVM
Upper integral
based Boosting

Boosting Upper integral
based Bagging

Bagging Upper integral
based Boosting

Boosting Upper integral
based Bagging

Bagging

Iris 0.9867 0.9818 0.9868 0.9791 0.9840 0.9848 0.9721 0.9672
Breast 0.9731 0.9519 0.9687 0.9421 0.9811 0.9569 0.9756 0.9512
Tic-Tac-Toe 0.9473 0.9123 0.9369 0.9316 0.9252 0.9105 0.9312 0.9123
Ionosphere 0.8901 0.8672 0.8965 0.8758 0.8749 0.8470 0.8629 0.8427
Pima 0.8015 0.7826 0.7971 0.7763 0.7992 0.7768 0.7868 0.7529
Heart 0.8672 0.8429 0.8722 0.8511 0.8709 0.8321 0.8531 0.8247
Wine 0.9887 0.9856 0.9818 0.9796 0.9869 0.9835 0.9872 0.9813
Sonar 0.8824 0.8526 0.8768 0.8449 0.8794 0.8376 0.8830 0.8427
Letter 0.9839 0.9775 0.9881 0.9768 0.9773 0.9556 0.9801 0.9610
Waveform + noise 0.8774 0.8496 0.8887 0.8687 0.8808 0.8521 0.8783 0.8592
ent values of C and 50 different values of γ , resulting in a total
of 2500 pairs of (C , γ ). The 50 different values of C and γ are
{2−24, 2−23, . . . , 224, 225

}. We conduct a ten-fold cross validation
on each data set and select the pair of (C , γ ) for ELM-kernel and
LS-SVM respectively, which achieves the best average cross-
validation accuracy. The results are shown in Tables 4 and 5.

As seen from Table 4, the performance of three fusion systems,
the upper integral, Bagging and Boosting, with ELMs is higher than
that of fusion system with BPs on 10 data sets. This is in confor-
mity with the conclusions in Huang et al. (2006). Table 5 shows
that the accuracies with ELM-kernel are higher or similar to those
with LS-SVM. It tallies with the result in Huang et al. (2012). Also
it shows that the performance of fusion system is dependent on
the performance of base classifier. The performance of the up-
per integral model is higher or similar to that of Bagging/Boosting
on 10 data sets. It shows that the upper integral model can ob-
tain higher or similar performance to that of Bagging/Boosting. It
demonstrates that the upper integral model could capture the in-
teraction between base classifiers and make good use of the in-
teraction through assigning tested samples to different individual
classifiers and their combinations. That is, the upper integral could
be used to improve existing fusion model. The base classifiers in
Boosting have stronger interaction than those in Bagging. In appli-
cation, the base classifiers could be designed through other way
and the basic fusion operator can be others.

5.2. Comparison with existing fuzzy integral models

In this subsection we experimentally compare our approach
with existing fuzzy integral models. The basic fusion operator in
our approach is the average and the upper integral is used to im-
prove the classifier fusion system by assigning tested samples to
different classifier groups. Choquet integral, which is a type ofmost
frequently used fuzzy integrals due to its simplicity and availabil-
ity (Wang et al., 2008), is here selected as the fusion operator in
comparison with our approach. Three methods are used to deter-
mine the fuzzy measures for Choquet integral model. The first one
(written as λ-measure 1) is the λ-measure determined according
to following Eq. (5) (Verikas et al., 1999):

g i
=

pi
n

j=1
pj

(5)

where pi is the accuracy of the ith classifier. The λ-measure is used
for all classes.

The second (written as λ-measure 2) is λ-measures determined
according to following Eq. (6) (Verikas et al., 1999):

g ij
=

pij
n

t=1
ptj

(6)

where pij is the accuracy of the ith classifier classifying samples
from j class. The λ-measure g j

= {g1j, g2j, . . . , gnj
} is used for

determining the possibility of samples belonging to jth class.
The third method to determine fuzzy measure is the genetic al-

gorithm (Yang et al., 2008; Zhai et al., 2013). The population size is
100. The genetic algorithm is used to determine λ-measure (writ-
ten as GAλ) and regular fuzzy measure (2n

− 1 unknown parame-
ters, written as GAregular).

Ten-fold cross validation is repeated 20 times on each data set.
Ten ELMs are trained as the base classifier for both Choquet integral
and our approach. The results are listed in Table 6.

From Table 6 one can view that (1) the training for λ-measures
1 and 2 is extremely fast; (2) the training time of upper integral
model is much shorter than that of genetic algorithms; (3) the
performance of λ-measure 1 is the lowest; (4) the performance
of λ-measure 2 is better than that of λ-measure 1 but worse
than that of λ-measure determined by genetic algorithm; (5) the
performance of upper integral is the highest on 7 out of 10 data
sets; and (6) the performance of regular fuzzymeasure determined
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Table 6
Comparison of upper integral model with existing fuzzy integral models (the correct rate and the training time).

Data Upper integral λ-measure 1 λ-measure 2 GAλ GAregular
Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) Accuracy Time (s)

Iris 0.956 4 0.928 0.1 0.934 0.1 0.949 57 0.957 21
Breast 0.894 9 0.841 0.1 0.850 0.1 0.860 167 0.874 132
Tic-Tac-Toe 0.937 9 0.887 0.1 0.905 0.1 0.911 419 0.921 423
Ionosphere 0.808 5 0.748 0.1 0.767 0.1 0.778 138 0.788 111
Pima 0.708 6 0.655 0.1 0.671 0.1 0.682 201 0.692 171
Heart 0.712 8 0.673 0.1 0.672 0.1 0.686 109 0.697 89
Wine 0.754 4 0.725 0.1 0.737 0.1 0.746 77 0.755 45
Sonar 0.793 5 0.771 0.1 0.772 0.1 0.784 61 0.797 30
Letter 0.875 16 0.825 0.1 0.848 0.1 0.854 892 0.867 555
Waveform + noise 0.781 11 0.745 0.1 0.761 0.1 0.770 743 0.773 411
by genetic algorithm is highest on 3 out of 10 data sets (but their
time complexity of training is much higher than our approach).
Moreover it is worth noting that the time complexity for training
GA-regular fuzzy measures is exponentially increasing with the
number of base classifiers. Considering both the accuracy and the
training complexity, we experimentally validate that our approach
is superior to the fusion model based on Choquet integral.

6. Conclusions and discussions

This paper proposes a multiple classifier fusion method based
on the upper integral to most effectively use the individual ELMs
and their combinations. The difficulty of determining the fuzzy
measures is avoided by regarding the accuracies of classifier
combinations as an efficiency measure defined on the power
set of classifier set. The upper integral is used to determine the
proportions of samples to be assigned to classifier combinations
instead of aggregation operator. Through solving an optimization
problem with respect to the upper integral, the proportions can
be obtained. According to these proportions and some trained
oracles, the assignment is conducted. Theoretically, the definition
of upper integrals indicates that the accuracy of upper integral
based fusion system is not lower than that of any combination of
classifiers. The experiment results show that the upper integral
based fusion approach can improve the performance with ELMs
as base classifiers. In comparison with Bagging/Booting and fuzzy
integral fusion models, our proposed upper integral model can
obtain a better performance inmost cases. It demonstrates that the
upper integral model could capture the interaction between ELMs
and make good use of the interaction through assigning tested
samples to different individual ELMs and their combinations.

Our proposed scheme is dependent on the testing data. Each
time, the scheme simultaneously handles the classification of a
batch of samples rather than a sample. To some extent it may limit
the applicability. But for such real applications where the samples
are coming batch by batch (rather than one by one), the scheme
will have its significant advantages of higher accuracy (as the paper
shows). One reason is that the batch not only includes individual
samples but also includes their relationships. In real applications
we often see the classification problems in which samples are
coming in batch. For example, in remote image processing, often
we obtain a batch of images for classification fromdifferent sensors
simultaneously.
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