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A key characteristic of simultaneous fault diagnosis is that the features extracted from the
original patterns are strongly dependent. This paper proposes a new model of Bayesian
classifier, which removes the fundamental assumption of naive Bayesian, i.e., the indepen-
dence among features. In our model, the optimal bandwidth selection is applied to
estimate the class-conditional probability density function (p.d.f.), which is the essential
part of joint p.d.f. estimation. Three well-known indices, i.e., classification accuracy, area
under ROC curve, and probability mean square error, are used to measure the performance
of our model in simultaneous fault diagnosis. Simulations show that our model is signifi-
cantly superior to the traditional ones when the dependence exists among features.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Fault diagnosis is the problem of detecting the potential faults hidden in the observed instances that are related to specific
application domains. There are two types of fault diagnosis, i.e., single and simultaneous. In single fault diagnosis, only one
fault may appear in an observed instance, while in simultaneous fault diagnosis, multiple faults may appear in an observed
instance. Single fault diagnosis has been well studied in the past decade and has been applied to various domains, such as
generator winding protection [1], chemical process [18], electrical machine [16], active magnetic bearing [20], power trans-
former [28], and field air defense gun [2]. Currently, with the development of science/technology, there is a stronger need on
the safety and reliability of modern equipments. Unlike the traditional single fault generation, different faults often occur
simultaneously in modern equipments due to various factors. Consequentially, these faults may cause serious accidents
(e.g., air disasters, marine disasters, explosion accidents, collapse accidents, leakage accidents, and so on) that not only lead
to great economic losses but also heavy casualties and environmental pollution. Therefore, an effective methodology is re-
quired to recognize the potential simultaneous faults in order to avoid such accidents. However, it is very difficult to conduct
simultaneous fault diagnosis accurately and effectively due to the complex combination, mixture, and disturbance of fea-
tures that reflect the single faults. A comprehensive reference-search finds that only a few literatures [4,10,24,27,29] exist
to tackle this problem. These methods usually use the qualitative causal or quantitative analytical models to identify the
simultaneous faults. Although a good solution is provided, these models usually cannot work well in practical applications.
Meanwhile, the model parameters are also hard to determine.
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The main methodologies for handling simultaneous fault diagnosis include artificial neural networks (ANNs) [4,24],
support vector machines (SVMs) [27,29], and Dempster–Shafer theory (DST) [10]. Different models have been designed
for specific problems, i.e., chemical reactor [4,24], chemical plant [29], and multi-function rotor [10]. However, there are
two disadvantages of the existing models. (1) The computational complexity for learning their parameters are high. Given
that N is the size of training set, the training complexities of ANNs, SVMs, and DST are O(N2), O(N3), and O(N2) respectively,
which make them unable to deal with large data. (2) They often neglect the necessary dependence among features in the
observed instances, which exist in most practical applications. For example, in heart-disease electrocardiogram (ECG)
[22], there is strong dependence between indices of vulnerability and heart rate [13]. These limitations motivate our idea
in this paper to develop a novel simultaneous fault diagnosis model that can avoid the intractable complexity and take
the dependence among features into account.

Naive Bayesian classifier (NBC) is a competent tool to deal with large data due to its simplicity, low computational com-
plexity, and less memory requirement [3]. Applying NBC to fault diagnosis is an emergent research topic. Related studies on
single fault diagnosis can be found from recent references [9,12,15,17]. To our best knowledge, we are the first one who try to
establish a simultaneous fault diagnosis model based on Bayesian classifiers. In order to deal with the dependence among
features, a non-naive Bayesian classifier (NNBC) is proposed to diagnose the possible faults hidden in the observed instances.
It establishes a model of joint p.d.f. that is estimated by using Parzen windows based on the multivariate kernel function.
Specifically, the estimation is completed by seeking an optimal bandwidth for the Parzen window through minimizing
the mean integrated squared error between the true p.d.f. and the estimated p.d.f.

Analysis reveals that the training complexity of NNBC is O(Nd), where N is the number of training instances and d is the
number of conditional features. It shows that when d� N, NNBC can carry out the fault diagnosis with lower computational
burden than ANNs [24], SVMs [29], and DST [10]. We compare our proposed NNBC with three p.d.f. density estimation based
NBCs (normal naive Bayesian (NNB) [14], flexible naive Bayesian (FNB) [7], and the homologous model of FNB (FNBROT)) [11]
in terms of three evaluation indices, i.e., classification accuracy, area under ROC curve (AUC) [5,6], and probability mean
square error (PMSE) [8]. The comparative results show that NNBC is uniformly and significantly superior to the other three
models regarding the three indices, and therefore, provides a new way to design high-performance models for simultaneous
fault diagnosis.

The rest of the paper is organized as follows: In Section 2, we summarize the basic naive Bayesian classifier algorithm. In
Section 3, a non-naive Bayesian classification model based on the joint probability density estimation is proposed. In Section 4,
we apply our proposed NNBC to simultaneous fault diagnosis. Finally, in Section 5, we conclude this paper and outline the
main directions for future research.

2. A brief review on Bayesian classifiers

This section will give a brief review on naive Bayesian classifiers. We first introduce a number of denotations.
Let X be a set of N instances. Each instance is described by d condition attributes and one decision attribute. All the con-

dition attributes are assumed to be continuous, and the decision attribute is supposed to be discrete. Suppose that the deci-
sion attribute takes values from {w1, w2, . . . , wc}, which implies that all instances are categorized into c classes. In this way,
any instance in X will be denoted as a d-dimensional vector:
~xðkÞi ¼ xðkÞi1 ; x
ðkÞ
i2 ; . . . ; xðkÞid

n o
ð1 6 i 6 nk;1 6 k 6 cÞ;
where c is the number of classes and nk is the number of instances within the kth class. Let ~x ¼ ðx1; x2; . . . ; xdÞ indicate a new
example whose value of decision attribute is unknown.

Bayesian classifier [7,11,14,25,30] can assign the most likely class to the new example ~x ¼ ðx1; x2; . . . ; xdÞ by the Bayesian
theorem. According to the prior probability and class conditional probability of the new example, Bayesian classifier calcu-
lates the posterior probability and determines the value of decision attribute for the new example. The Bayesian classifier
discriminates the class of the new sample ~x as the following equation:
w ¼ arg max
wk ;k¼1;2;...;c

fPðwkj~xÞg ¼ arg max
wk ;k¼1;2;...;c

PðwkÞPð~xjwkÞ
Pð~xÞ

� �
¼ arg max

wk ;k¼1;2;...;c
fPðwkÞPð~xjwkÞg; ð1Þ
where P(wk) is the prior probability of the kth class, which can be estimated by the frequency of instances of the kth class, i.e.,
PðwkÞ � nk

N in which N ¼
Pc

k¼1nk is the size of dataset X. Pð~xjwkÞ is called the class conditional probability. The crucial work of
NBC is to estimate Pð~xjwkÞ based on the training instances in the kth class.

A fundamental assumption of the NBC is that all condition attributes are independent. Based on this assumption, the class
conditional probability can be expressed as Eq. (2):
Pð~xjwkÞ ¼ Pðx1; xk; . . . ; xdjwkÞ ¼
Yd

j¼1

PðxjjwkÞ: ð2Þ
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By replacing the class conditional probability with Eq. (2), NBC can get the following decision rule (in Eq. (3)) for deter-
mining the value of decision attribute of ~x:
w ¼ arg max
wk ;k¼1;2;...;c

nk

N

Yd

j¼1

PðxjjwkÞ
( )

: ð3Þ
From Eq. (3), we can find that the calculation of P(xjjwk)(1 6 j 6 d) is the key to classify new instance. There are three han-
dling-methodologies based on the density estimation strategy to estimate the component P(xjjwk) for ~x, i.e., NNB [14], FNB
[7], and FNBROT [11].

2.1. NNB

NNB [14] assumes that the nk values of the jth condition attribute, i.e., xðkÞ1j ; x
ðkÞ
2j ; . . . ; xðkÞnk ;j

, are generated from a single Gauss-
ian distribution. Then, P(xjjwk) can be calculated by Eq. (4):
PðxjjwkÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rðkÞj

exp �
xj � lðkÞj

� �2

2 rðkÞj

� �2

2
64

3
75; ð4Þ
where lðkÞj ¼
Pnk

i¼1
xðkÞ

ij

nk
and rðkÞj

� �2
¼
Pnk

i¼1
xðkÞ

ij
�lðkÞ

j

h i2

nk
are the mean value and variance of xðkÞ1j ; x

ðkÞ
2j ; . . . ; xðkÞnk ;j

respectively.

NNB provides the simplest and fast way to estimate class conditional probability. The two required parameters, i.e., mean
value and variance of the normal distribution, can be directly computed based on the given dataset. No sophisticated esti-
mation strategy is needed.

2.2. FNB

The continuous attributes do not always follow the Gaussian distribution in many application domains. To cope with the
case of non-Gaussian distribution, John and Langley [7] proposed the FNB which estimates P(xjjwk) through the following Eq.
(5):
PðxjjwkÞ ¼
1

nkhðkÞj

Xnk

i¼1

K
xj � xðkÞij

hðkÞj

 !" #
; ð5Þ
where hðkÞj is the bandwidth and K(�) is the kernel function. In FNB, hðkÞj ¼ 1ffiffiffiffi
nk
p and KðxÞ ¼ 1ffiffiffiffi

2p
p exp � x2

2

� �
. This kernel is called

Gaussian kernel. The experimental study shows that the classification performance of FNB mainly depends on the selection
of the bandwidth hðkÞj .

When the real distribution of the observed dataset is not held for normal, FNB can obtain a more accurate p.d.f. estimation
compared with NNB due to the application of flexible density estimation method, i.e., Parzen window. Besides, the important
bandwidth parameter is pre-assigned, which does not lead to the additional increase of training time.
2.3. FNBROT

In order to validate the impact of different parameter-selection methods on the classification performance, Liu et al.
applied the rule of thumb [11] to the selection of bandwidth parameter of FNB. They replaced the traditional bandwidth

parameter in FNB hðkÞj ¼ 1ffiffiffiffi
nk
p with the following Eq. (6):
hðkÞj ¼
4

3nk

� �1
5

rðkÞj ; ð6Þ
where rðkÞj

� �2
is the variance that can be calculated from the given instances xðkÞ1j ; x

ðkÞ
2j ; . . . ; xðkÞnk ;j

. In our study, we call this kind of

Bayesian classifier FNBROT. In addition to the above-mentioned rule of thumb, we can find other methods of parameter selec-

tion from references (e.g. [19,23]). However, as the demonstrations in [11], the very sophisticated bandwidth selection
schemes may not give good performance in the context of NBC classification, while some very simple schemes may give sig-
nificantly better performance. Furthermore in [11], the simple scheme, i.e., rule of thumb, is used for bandwidth selection in
their experiments.

The only difference between FNB and FNBROT is the determination of bandwidth parameter. FNBROT uses the rule of thumb
scheme to estimate the bandwidth parameter, which guarantees a more appropriate bandwidth than FNB. The bandwidth in
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FNB is totally independent from the given dataset, while the rule of thumb in FNBROT uses the information provided by the
current dataset.
3. Bayesian model based on joint probability density estimation

As it is mentioned in Section 2, the fundamental assumption in NBC is that all conditional attributes are independent. In
this section, we will propose an improved Bayesian classification model based on joint p.d.f. estimation, i.e., non-naive
Bayesian classifier (NNBC), which releases the assumption of attribute-independence. First, the basic concept of joint
p.d.f. estimation is introduced. Then, the optimal parameter selection in the joint p.d.f. estimation is discussed. Finally,
the NNBC model is described in detail.
3.1. Joint p.d.f. estimation

In probability theory and statistical inference, p.d.f. estimation [19,23] refers to giving a specific function without un-
known parameters such that the error between the function and the unobservable underlying p.d.f. can be small enough.
Particularly, the estimation of p.d.f. for a continuous distribution from the representative samples is considered as one of
the major ingredients in machine learning and pattern recognition. The well-known Parzen window method provides a con-
sistent and asymptotic mode to approximately construct the underlying p.d.f.. Based on the set of d-dimensional data
~x1; ~x2; . . . ; ~xN where ~xi ¼ ðxi1; xi2; . . . ; xidÞð1 6 i 6 NÞ, Parzen window method estimates the underlying joint p.d.f. through
the following Eq. (7):
f̂ hð~xÞ ¼
1

Nhd

XN

i¼1

K
~x� ~xi

h

� �	 

¼ 1

Nhd

XN

i¼1

K
x1 � xi1

h
;
x2 � xi2

h
; . . . ;

xd � xid

h

� �h i
; ð7Þ
where K(�) is a multivariate kernel function and h is an important parameter, called bandwidth. The most common kernel is
the multivariate Gaussian kernel as shown in Eq. (8):
Kð~xÞ ¼ 1ffiffiffiffiffiffiffi
2p
p� �d

exp �
~x~xT

2

� �
; ð8Þ
where ~xT is the transposition of vector ~x.
It is well acknowledged that the estimation performance of Parzen window method depends strongly on the selection of

bandwidth h [11,19,23], which is related to the size of dataset N and should hold for the following two conditions:
lim
N!þ1

hðNÞ ¼ 0 and lim
N!þ1

N � hðNÞ ¼ þ1:
Many researchers [19,23] have claimed that the appropriate selection of bandwidth can make the estimated error
between the true p.d.f. and estimated p.d.f. converge or attain the minimum.

3.2. The optimal selection of bandwidth

In order to find the optimal bandwidth for joint p.d.f. estimation, in this section, we use the mean integrated squared error
(MISE) to measure the difference between the true p.d.f. and the estimated p.d.f.. Let f ð~xÞ be the true p.d.f. of the observed
data ~x1; ~x2; . . . ; ~xN , then, MISE can be expressed as Eq. (9), in which

R
and d~x are the abbreviations of

RR
. . .
R

and dx1 dx2 . . . dxd

respectively:
MISEðhÞ ¼ E
Z
ff̂ hð~xÞ � f ð~xÞg

2
d~x

	 

¼
Z

var f̂ hð~xÞ
� �

d~xþ
Z

bias2 f̂ hð~xÞ
� �

d~x: ð9Þ
Then, we can derive the expressions of bias f̂ hð~xÞ
� �

and varðf̂ hð~xÞÞ as follows:
bias f̂ hð~xÞ
� �

¼ E f̂ hð~xÞ
h i

� f ð~xÞ ¼
Z

1

hd
K

~x� ~y
h

� �
f ð~yÞ

	 

d~y� f ð~xÞ ¼

Z
½Kð~zÞf ð~x� h~zÞ�d~z� f ð~xÞ

¼
Z

Kð~zÞ f ð~xÞ � h~zf 0ð~xÞ þ 1
2

h2~z~zT f 00ð~xÞ þ Oðh2Þ � f ð~xÞ
	 
� �

d~z

¼ �hf 0ð~xÞ
Z

~zKð~zÞd~zþ 1
2

h2f 00ð~xÞ
Z

~z~zT Kð~zÞd~zþ Oðh2Þ
Z

f ð~zÞd~z; ð10Þ
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and
var f̂ hð~xÞ
� �

¼ E f̂ hð~xÞ � E f̂ hð~xÞ
h in o2

¼ E f̂ hð~xÞ
h i2

� E f̂ hð~xÞ
h in o2

¼ 1
N

Z
1

h2d
K

~x� ~y
h

� �2

f ð~yÞ
" #

d~y� 1
N

Z
1

h2d
K

~x� ~y
h

� �
f ð~yÞ

	 

d~y

� �2

¼ 1

Nhd

Z
½Kð~zÞ2f ð~x� h~zÞ�d~z� 1

Nhd

Z
½Kð~zÞf ð~x� h~zÞ�d~z

� �2

¼ 1

Nhd
f ð~xÞ

Z
Kð~zÞ2d~z� hf 0ð~xÞ

Z
~zKð~zÞ2d~zþ 1

2
h2f 00ð~xÞ

Z
~z~zT Kð~zÞ2d~zþ Oðh2Þ

� �
þ OðN�1Þ; ð11Þ
where, ~z ¼ ~x�~y
h .

It is known that for the multivariate Gaussian kernel Kð~zÞ;
R

~zKð~zÞd~z ¼ 0 and
R

Kð~zÞd~z ¼ 1 hold well. Substituting these 2
integrals in Eq. (10), we have the following Eq. (12):
bias f̂ hð~xÞ
� �

¼ 1
2

h2f 00ð~xÞ
Z

~z~zT Kð~zÞd~zþ Oðh2Þ: ð12Þ
Having
1

Nhd
½hf 0ð~xÞ

Z
~zKð~zÞ2d~z� ¼ OðN�1Þ;
and
1

Nhd

1
2

h2f 00ð~xÞ
Z

~z~zT Kð~zÞ2d~z
	 


¼ OðN�1Þ;
the expression of var f̂ hð~xÞ
� �

can be rewritten as:
var f̂ hð~xÞ
� �

¼ 1

Nhd
f ð~xÞ

Z
Kð~zÞ2d~zþ OðN�1h�dÞ: ð13Þ
Neglecting the terms O(h2) and O(N�1h�d) in Eqs. (12) and (13) when h ? 0 and Nh ? +1, and replacing biasðf̂ hð~xÞÞ and
varðf̂ hð~xÞÞ in Eq. (9) with the derived Eqs. (12) and (13) respectively, we can get the following Eq. (14):
MISEðhÞ ¼ 1

Nhd

Z
Kð~zÞ2d~z

	 
 Z
f ð~xÞd~x

	 

þ 1

4
h4
Z

~z~zT Kð~zÞd~z
	 
2 Z

½f 00ð~xÞ�2d~x
� �

: ð14Þ
Let RðKÞ ¼
R

Kð~zÞ2d~z, l2ðKÞ ¼
R

~z~zT Kð~zÞd~z, and Rðf 00Þ ¼
R
½f 00ð~xÞ�2d~x. Note that

R
f ð~xÞd~x ¼ 1, thus we can simplify the expres-

sion of MISE (h) as the following Eq. (15):
MISEðhÞ ¼ 1

Nhd
½RðKÞ� þ 1

4
h4½l2ðKÞ�

2Rðf 00Þ: ð15Þ
To find the optimal bandwidth that can make MISE (h) reach the minimum, we let the first order partial derivative of MISE
(h) with respect to h be 0, i.e., dMISEðhÞ

dh ¼ 0 which implies that the optimal h is attained at
hðMISEÞ
optimal ¼

dRðKÞ
½l2ðKÞ�

2Rðf 00ÞN

" # 1
dþ4

; ð16Þ
and the corresponding minimal MISE (h) is given by
inf
h�0

MISEðhÞ ¼ dþ 4
4d

½l2ðKÞ�
2d½dRðKÞ�4½Rðf 00Þ�dN�4

n o 1
dþ4
: ð17Þ
In the following we point out how to compute the 3 components R(K), l2(K), and R(f00) in Eqs. (16) and (17). For the
multivariate Gaussian kernel, we can calculate
RðKÞ ¼ 1ffiffiffiffiffiffiffi
2p
p� �2d

Yd

j¼1

Z
exp �x2

j

� �
dxj ¼ ð4pÞ�

d
2; ð18Þ
and
l2ðKÞ ¼
1ffiffiffiffiffiffiffi
2p
p� �d

Xd

j¼1

Z
x2

j exp �
x2

j

2

 !
dxj

" #
¼ 1: ð19Þ
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For the sake of robust estimation, we consider f ð~xÞ as a multivariate normal density function N(0, R) with the diagonal
matrix R ¼ diag r2

1;r2
2; . . . ;r2

d

� �
where r2

j ; ð1 6 j 6 dÞ is the variance of x1j, x2j, . . . , xNj. We consider a special case of d = 2

and give its derivation of R(f00) where f ð~xÞ ¼ f ðx1; x2Þ ¼ 1ffiffiffiffi
2p
pð Þ2r1r2

exp � x2
1

2r2
1
þ x2

2
2r2

2

� �h i
. Then, the formula of R[f00(x1, x2)] can be

expressed as Eq. (20):
R½f 00ðx1; x2Þ� ¼
1

4
ffiffiffiffiffiffiffi
2p
p� �2

r1r2

2
1
r4

1

þ 1
r4

2

� �
þ 1

r2
1

þ 1
r2

2

� �2
" #

: ð20Þ
Similarly, the derivation of R½f 00ð~xÞ� for the p.d.f. estimation with d variables (d > 2) can be given by Eq. (21):
R½f 00ð~xÞ� ¼
2
Pd

j¼1
1
r4

j
þ

Pd
j¼1

1
r2

j

� �2

4
ffiffiffiffiffiffiffi
2p
p� �dQd

j¼1rj

ð21Þ
i.e.,
Rðf 00Þ ¼ ð4pÞ�
d
2jRj�

1
2f2trðR�1R�1Þ þ tr2ðR�1Þg

4
: ð22Þ
Bringing Eqs. 18, 19, 22 into Eqs. (16) and (17), we can get the optimal bandwidth in Eq. (23)
hðMISEÞ
optimal ¼

4d

NjRj�
1
2f2trðR�1R�1Þ þ tr2ðR�1Þg

 ! 1
dþ4

ð23Þ
and the minimal MISE in Eq. (24)
inf
h�0

MISEðhÞ ¼ ð4pÞ�
d
2

dþ 4
4d

� �
d
N

� � 4
dþ4 jRj�

1
2f2trðR�1R�1Þ þ tr2ðR�1Þg

4

 ! d
dþ4

: ð24Þ
3.3. Non-naive Bayesian classifier

As discussed in the previous sections, NNB, FNB and FNBROT have the following two restrictions. (1) They are based on
such an assumption that each condition attribute is independent of any other one, which obviously does not hold in many
real-world applications. (2) When estimating the marginal p.d.f., NNB assumes that each attribute follows a normal distri-
bution, while FNB/FNBROT do not have an appropriate strategy of parameter selection, which seriously affects the estimation
precision. In order to relax the above-mentioned two restrictions, we propose the NNBC, which removes the independence
among attributes, and replaces the marginal p.d.f. estimations by joint p.d.f. estimation. NNBC determines the class of a new
sample ~x as the following Eq. (25),
w ¼ arg max
wk ;k¼1;2;...;c

nk

N
Pð~xjwkÞ

n o
¼ arg max

wk ;k¼1;2;...;c

1

Nhd
k

Xnk

i¼1

K
x1 � xðkÞi1

hk
;
x2 � xðkÞi2

hk
; . . . ;

xd � xðkÞid

hk

 !" #( )
; ð25Þ
where Kð~xÞ ¼ 1ffiffiffiffi
2p
pð Þd

exp � ~x~xT

2

� �
is the multivariate Gaussian kernel as shown in Eq. (8), hk(1 6 k 6 c) is the optimal band-

width which has been derived as in Section 3.2.
Specifically, for a set of instances belonging to the kth class, the optimal bandwidth hk(1 6 k 6 c) given in Eq. (23) can be

simplified as:
hk ¼
4d

nkjRkj�
1
2 2tr R�1

k R�1
k

� �
þ tr2 R�1

k

� �n o
0
@

1
A

1
dþ4

;

where
Rk ¼ diag rðkÞ1

h i2
; rðkÞ2

h i2
; . . . ; rðkÞd

h i2
� �

:
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The main differences among NNB, FNB, FNBROT, and our proposed NNBC are summarized as follows:

(1) NNB, FNB, and FNBROT assume that all condition attributes are independent. By calculating every component P(xj-

jwk)(1 6 j 6 d,1 6 k 6 c) through the marginal p.d.f., NNB, FNB, and FNBROT get the class conditional probability
Pð~xjwkÞ for the new instance ~x ¼ fx1; x2; . . . ; xdg. Our proposed NNBC, which removes the independence assumption,
establishes a model of joint p.d.f. in the estimation of Pð~xjwkÞ based on the multivariate kernel function.

(2) Due to the inappropriate distribution assumption in NNB and the non-optimal parameter selection in FNB and FNBROT,
there are usually large errors between the true p.d.f. and the estimated p.d.f.. The imprecise estimation of p.d.f. for NBC
will lead to the dissatisfactory classification performance. By minimizing the MISE, our proposed NNBC finds the opti-
mal bandwidth for the joint p.d.f. estimation, which makes the estimated error reach the minimum.

Now, we give an analysis on the time complexity of the above-mentioned four Bayesian classification algorithms, i.e.,
NNB, FNB, FNBROT, and NNBC. Let N be the number of training instances, M the number of testing instances, and d the number
of condition attributes. Since NNB needs to calculate the means and variances of the d condition attributes, the training and
testing complexities are O(Nd) and O(Md) respectively. FNB uses the superposition of N p.d.f.s of the normal distribution to fit
the true p.d.f., thus, the training and testing complexities are O(Nd) and O(MNd) respectively. In comparison with FNB, the
application of the rule of thumb in FNBROT leads to some increase in the training time, but the training and testing complex-
ities are still O(Nd) and O(MNd) respectively. Similar to FNBROT, our NNBC also costs extra training time to compute the opti-
mal bandwidth. However, the parameter determination does not lead to additional increase of testing time. Thus, the
training and testing complexities of NNBC are still O(Nd) and O(MNd) respectively.

4. Application to simultaneous faults diagnosis

In this section, we first design a device that can generate instances with single and simultaneous faults, then we demon-
strate the performance of NNBC in simultaneous fault diagnosis on instances with strong dependence among features.
Fig. 1. The single and simultaneous faults generation.

Table 1
The detailed experimental results of classification accuracy and standard deviation on 20 single fault datasets.

Datasets NNB FNB FNBROT NNBC

1 SinglFG (50) 0.721 ± 0.019 0.601 ± 0.038 0.703 ± 0.024 0.888 ± 0.008
2 SinglFG (100) 0.648 ± 0.007 0.590 ± 0.018 0.661 ± 0.011 0.890 ± 0.006
3 SinglFG (150) 0.703 ± 0.017 0.589 ± 0.019 0.682 ± 0.018 0.891 ± 0.012
4 SinglFG (200) 0.658 ± 0.014 0.614 ± 0.010 0.649 ± 0.010 0.896 ± 0.010
5 SinglFG (250) 0.691 ± 0.012 0.637 ± 0.013 0.702 ± 0.011 0.896 ± 0.010
6 SinglFG (300) 0.666 ± 0.007 0.590 ± 0.018 0.665 ± 0.009 0.927 ± 0.009
7 SinglFG (350) 0.698 ± 0.004 0.635 ± 0.011 0.703 ± 0.011 0.918 ± 0.007
8 SimulFG (400) 0.645 ± 0.005 0.600 ± 0.014 0.693 ± 0.011 0.896 ± 0.005
9 SinglFG (450) 0.709 ± 0.008 0.634 ± 0.014 0.692 ± 0.006 0.950 ± 0.008

10 SinglFG (500) 0.687 ± 0.009 0.642 ± 0.010 0.694 ± 0.007 0.922 ± 0.006
11 SinglFG (550) 0.682 ± 0.008 0.618 ± 0.018 0.679 ± 0.008 0.920 ± 0.006
12 SinglFG (600) 0.679 ± 0.006 0.637 ± 0.010 0.667 ± 0.006 0.934 ± 0.006
13 SinglFG (650) 0.699 ± 0.007 0.632 ± 0.015 0.680 ± 0.006 0.933 ± 0.005
14 SinglFG (700) 0.695 ± 0.007 0.631 ± 0.010 0.673 ± 0.007 0.920 ± 0.006
15 SinglFG (750) 0.740 ± 0.007 0.660 ± 0.009 0.723 ± 0.009 0.941 ± 0.009
16 SinglFG (800) 0.676 ± 0.005 0.650 ± 0.008 0.702 ± 0.005 0.949 ± 0.005
17 SinglFG (850) 0.701 ± 0.006 0.631 ± 0.007 0.684 ± 0.007 0.956 ± 0.006
18 SinglFG (900) 0.713 ± 0.004 0.657 ± 0.006 0.716 ± 0.005 0.941 ± 0.003
19 SinglFG (950) 0.685 ± 0.005 0.620 ± 0.008 0.683 ± 0.005 0.939 ± 0.006
20 SinglFG (1000) 0.676 ± 0.003 0.607 ± 0.010 0.678 ± 0.005 0.961 ± 0.004

Average 0.689 ± 0.008 0.624 ± 0.013 0.686 ± 0.009 0.923 ± 0.007
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4.1. Single and simultaneous fault generation

Simultaneous fault diagnosis can be regarded as a multi-class classification problem in which every observed instance
may be classified into more than two classes. In order to get the classifiers, a number of training instances associated with
single or simultaneous faults are required. We develop a device as shown in Fig. 1 to generate these instances. In Fig. 1, Ai

(i = 1, 2, 3) (for simplicity, we only consider the case of 3 input units in this paper.) is the ith input unit. Fi (i = 1, 2, 3) is the ith
switch function that can transform the ith input Ai into sin(Ai) or cos(Ai). sin(Ai) indicates that the switch function Fi is work-
ing and no fault occurs when the input passes through it. Otherwise, cos(Ai) shows that the switch function Fi is not working
and the corresponding fault occurs when the input passes through it. If all switch functions work effectively on the inputs,
then the 3 outputs in Fig. 1 should be covered with black color. However, we find that the second output is not marked, and
the switch function F2 has no effect on the input that passes through it. In our study, the single or simultaneous fault instance
I is depicted as the following vector:
Table 2
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ailed experimental results of ranking performance and standard deviation on 20 single fault datasets.

Datasets NNB FNB FNBROT NNBC

SinglFG (50) 0.836 ± 0.015 0.746 ± 0.021 0.826 ± 0.018 0.988 ± 0.004
SinglFG (100) 0.758 ± 0.015 0.676 ± 0.009 0.728 ± 0.014 0.967 ± 0.003
SinglFG (150) 0.837 ± 0.006 0.757 ± 0.013 0.801 ± 0.008 0.983 ± 0.003
SinglFG (200) 0.774 ± 0.009 0.694 ± 0.014 0.769 ± 0.006 0.982 ± 0.003
SinglFG (250) 0.886 ± 0.003 0.820 ± 0.007 0.861 ± 0.005 0.988 ± 0.001
SinglFG (300) 0.829 ± 0.003 0.785 ± 0.011 0.825 ± 0.008 0.990 ± 0.002
SinglFG (350) 0.880 ± 0.003 0.799 ± 0.010 0.860 ± 0.006 0.991 ± 0.002
SinglFG (400) 0.855 ± 0.004 0.782 ± 0.005 0.834 ± 0.005 0.986 ± 0.002
SinglFG (450) 0.856 ± 0.003 0.808 ± 0.010 0.846 ± 0.005 0.992 ± 0.001
SinglFG (500) 0.842 ± 0.004 0.793 ± 0.005 0.834 ± 0.006 0.984 ± 0.003
SinglFG (550) 0.869 ± 0.003 0.818 ± 0.010 0.863 ± 0.004 0.991 ± 0.002
SinglFG (600) 0.818 ± 0.003 0.740 ± 0.006 0.795 ± 0.005 0.992 ± 0.001
SinglFG (650) 0.834 ± 0.002 0.781 ± 0.010 0.824 ± 0.004 0.993 ± 0.001
SinglFG (700) 0.860 ± 0.002 0.781 ± 0.008 0.836 ± 0.004 0.991 ± 0.002
SinglFG (750) 0.858 ± 0.004 0.795 ± 0.005 0.847 ± 0.003 0.992 ± 0.001
SinglFG (800) 0.879 ± 0.002 0.822 ± 0.004 0.867 ± 0.002 0.996 ± 0.001
SinglFG (850) 0.849 ± 0.002 0.792 ± 0.005 0.834 ± 0.002 0.995 ± 0.001
SinglFG (900) 0.860 ± 0.003 0.811 ± 0.005 0.844 ± 0.004 0.995 ± 0.002
SinglFG (950) 0.859 ± 0.002 0.802 ± 0.006 0.847 ± 0.002 0.994 ± 0.001
SinglFG (1000) 0.884 ± 0.002 0.829 ± 0.004 0.868 ± 0.003 0.997 ± 0.001

age 0.846 ± 0.005 0.782 ± 0.008 0.830 ± 0.006 0.989 ± 0.002

ailed experimental results of estimation quality and standard deviation on 20 single fault datasets.

Datasets NNB FNB FNBROT NNBC

SinglFG (50) 0.423 ± 0.010 0.526 ± 0.020 0.444 ± 0.014 0.172 ± 0.005
SinglFG (100) 0.403 ± 0.010 0.508 ± 0.016 0.426 ± 0.012 0.152 ± 0.007
SinglFG (150) 0.398 ± 0.009 0.503 ± 0.014 0.428 ± 0.007 0.174 ± 0.005
SinglFG (200) 0.443 ± 0.007 0.557 ± 0.015 0.459 ± 0.006 0.184 ± 0.006
SinglFG (250) 0.365 ± 0.005 0.522 ± 0.010 0.407 ± 0.006 0.130 ± 0.006
SinglFG (300) 0.376 ± 0.004 0.503 ± 0.011 0.424 ± 0.006 0.140 ± 0.005
SinglFG (350) 0.438 ± 0.006 0.552 ± 0.006 0.451 ± 0.005 0.142 ± 0.003
SinglFG (400) 0.420 ± 0.004 0.551 ± 0.008 0.450 ± 0.005 0.150 ± 0.002
SinglFG (450) 0.349 ± 0.002 0.426 ± 0.007 0.365 ± 0.003 0.117 ± 0.003
SinglFG (500) 0.435 ± 0.003 0.543 ± 0.007 0.465 ± 0.004 0.146 ± 0.002
SinglFG (550) 0.390 ± 0.003 0.488 ± 0.007 0.412 ± 0.004 0.110 ± 0.004
SinglFG (600) 0.418 ± 0.002 0.548 ± 0.008 0.445 ± 0.003 0.152 ± 0.002
SinglFG (650) 0.409 ± 0.003 0.504 ± 0.009 0.434 ± 0.004 0.124 ± 0.002
SinglFG (700) 0.408 ± 0.003 0.517 ± 0.007 0.434 ± 0.004 0.113 ± 0.002
SinglFG (750) 0.395 ± 0.003 0.496 ± 0.008 0.420 ± 0.003 0.135 ± 0.002
SinglFG (800) 0.396 ± 0.003 0.486 ± 0.010 0.410 ± 0.004 0.109 ± 0.002
SinglFG (850) 0.412 ± 0.002 0.513 ± 0.007 0.430 ± 0.002 0.128 ± 0.001
SinglFG (900) 0.378 ± 0.003 0.461 ± 0.005 0.394 ± 0.003 0.107 ± 0.002
SinglFG (950) 0.394 ± 0.002 0.482 ± 0.005 0.414 ± 0.001 0.109 ± 0.002
SinglFG (1000) 0.417 ± 0.001 0.512 ± 0.007 0.442 ± 0.002 0.118 ± 0.002

age 0.403 ± 0.004 0.510 ± 0.009 0.428 ± 0.005 0.136 ± 0.003
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I ¼ fA1;A2;A3;O1;O2;O3g;
where if Oi = cos(Ai) (i = 1, 2, 3), the ith fault exists in I; if Oi = sin(Ai) (i = 1, 2, 3), the ith fault does not occur in I. For example,
I
0
= {A1, A2, A3, sin(A1), cos(A2), sin(A3)} has fault in the second position and I00 = {A1, A2, A3, cos(A1), sin(A2), cos(A3)} has faults in

the first and third positions simultaneously.
As mentioned above, our proposed NNBC removes the independence assumption in the traditional NBC and can deal with

classification problem when features are strongly dependent. In order to guarantee that the features are dependent, we use
the random vector conforming to the following probability distribution as the input of (A1, A2, A3):
f ð~xÞ ¼ 1

ð2pÞ
d
2jRj

1
2

exp �1
2
ð~x� lÞR�1ð~x� lÞT

� �
;

where d = 3, l = [0, 0, 0], R = [1, 0.75, 0.75; 0.75, 1, 0.75; 0.75, 0.75, 1], and ~xT is the transposition of vector ~x.

4.2. Simultaneous fault diagnosis based on proposed NNBC

We first compare NNBC with NNB, FNB, and FNBROT in single fault diagnosis. Three indices, i.e., classification accuracy,
AUC [5,6], and PMSE [8], are used to evaluate the different learning models. AUC is based on such a fact that the cost of
classifying a sample into the wrong class is significantly lower than the reverse. A higher AUC value indicates that the
Fig. 2. Experimental comparisons of different diagnosis methods on steel plates faults dataset.
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corresponding learning model has a lower misclassification cost. PMSE is to measure the quality of class-conditional p.d.f.
estimation. A lower PMSE represents a higher quality of estimation. The comparative results on 20 single fault datasets in
terms of the three indices are summarized in Tables 1–3 respectively. In these tables, SinglFG (n) is the dataset in which
all instances are generated with one single fault and every single fault contains n instances. Then, the size of dataset SinglFG
(n) is 3n. We conduct 10-fold cross-validation for 10 times. Each time, the same training and testing sets are used for the four
methods, then the evaluations on classification accuracy, AUC, and PMSE are simultaneously performed.

From Tables 1–3, we can find that NNBC obtains the best classification accuracy, ranking performance, and estimation
quality on these 20 single fault datasets. The performances of NNBC are far superior to those of NNB, FNB, and FNBROT.
The average accuracy, AUC, and PMSE of NNBC are 0.923, 0.989, and 0.136 respectively, which indicate that it achieves
the most accurate and effective diagnosis for single faults among the compared models.

We also test the four methods on a selected UCI dataset named steel plates faults [21]. This database has 1941 instances
related to seven types of steel plates faults. Each instance has 25 continuous and 2 nominal attributes. In our experiments,
we only consider the 25 continuous attributes. Meanwhile, we also compare the classification accuracy of Bayesian models
Table 4
The detailed experimental results of classification accuracy and standard deviation on 20 simultaneous fault datasets.

Datasets NNB FNB FNBROT NNBC

1 SimulFG (50) 0.757 ± 0.013 0.689 ± 0.020 0.715 ± 0.015 0.883 ± 0.016
2 SimulFG (100) 0.674 ± 0.014 0.617 ± 0.011 0.674 ± 0.009 0.848 ± 0.007
3 SimulFG (150) 0.669 ± 0.007 0.656 ± 0.015 0.656 ± 0.010 0.871 ± 0.010
4 SimulFG (200) 0.700 ± 0.011 0.649 ± 0.011 0.668 ± 0.014 0.899 ± 0.006
5 SimulFG (250) 0.647 ± 0.007 0.636 ± 0.009 0.667 ± 0.010 0.899 ± 0.008
6 SimulFG (300) 0.685 ± 0.008 0.634 ± 0.012 0.693 ± 0.007 0.934 ± 0.008
7 SimulFG (350) 0.675 ± 0.009 0.628 ± 0.009 0.666 ± 0.006 0.903 ± 0.011
8 SimulFG (400) 0.681 ± 0.008 0.664 ± 0.007 0.686 ± 0.007 0.916 ± 0.006
9 SimulFG (450) 0.745 ± 0.008 0.694 ± 0.012 0.739 ± 0.008 0.937 ± 0.011

10 SimulFG (500) 0.700 ± 0.004 0.678 ± 0.007 0.706 ± 0.008 0.924 ± 0.004
11 SimulFG (550) 0.712 ± 0.009 0.656 ± 0.012 0.730 ± 0.004 0.921 ± 0.007
12 SimulFG (600) 0.705 ± 0.003 0.658 ± 0.008 0.687 ± 0.006 0.934 ± 0.004
13 SimulFG (650) 0.684 ± 0.004 0.655 ± 0.008 0.700 ± 0.005 0.924 ± 0.004
14 SimulFG (700) 0.693 ± 0.004 0.680 ± 0.009 0.703 ± 0.008 0.941 ± 0.003
15 SimulFG (750) 0.709 ± 0.008 0.649 ± 0.011 0.694 ± 0.005 0.941 ± 0.004
16 SimulFG (800) 0.729 ± 0.005 0.674 ± 0.008 0.723 ± 0.008 0.946 ± 0.005
17 SimulFG (850) 0.721 ± 0.004 0.660 ± 0.010 0.710 ± 0.006 0.951 ± 0.004
18 SimulFG (900) 0.750 ± 0.006 0.703 ± 0.006 0.743 ± 0.004 0.952 ± 0.004
19 SimulFG (950) 0.713 ± 0.005 0.664 ± 0.007 0.706 ± 0.006 0.936 ± 0.004
20 SimulFG (1000) 0.722 ± 0.006 0.670 ± 0.008 0.711 ± 0.003 0.950 ± 0.003

Average 0.704 ± 0.007 0.661 ± 0.010 0.699 ± 0.007 0.920 ± 0.006

Table 5
The detailed experimental results of ranking performance and standard deviation on 20 simultaneous fault datasets.

Datasets NNB FNB FNBROT NNBC

1 SimulFG (50) 0.829 ± 0.010 0.717 ± 0.014 0.809 ± 0.015 0.987 ± 0.005
2 SimulFG (100) 0.879 ± 0.004 0.812 ± 0.008 0.859 ± 0.008 0.982 ± 0.003
3 SimulFG (150) 0.878 ± 0.005 0.799 ± 0.008 0.853 ± 0.004 0.981 ± 0.004
4 SimulFG (200) 0.852 ± 0.011 0.740 ± 0.011 0.819 ± 0.007 0.979 ± 0.004
5 SimulFG (250) 0.850 ± 0.006 0.802 ± 0.012 0.850 ± 0.006 0.986 ± 0.002
6 SimulFG (300) 0.865 ± 0.005 0.783 ± 0.009 0.836 ± 0.005 0.991 ± 0.002
7 SimulFG (350) 0.818 ± 0.004 0.745 ± 0.008 0.799 ± 0.007 0.984 ± 0.003
8 SimulFG (400) 0.852 ± 0.005 0.791 ± 0.009 0.831 ± 0.007 0.986 ± 0.002
9 SimulFG (450) 0.862 ± 0.004 0.818 ± 0.005 0.843 ± 0.004 0.989 ± 0.001

10 SimulFG (500) 0.862 ± 0.005 0.821 ± 0.006 0.850 ± 0.003 0.993 ± 0.001
11 SimulFG (550) 0.862 ± 0.003 0.810 ± 0.006 0.848 ± 0.003 0.986 ± 0.001
12 SimulFG (600) 0.862 ± 0.003 0.783 ± 0.011 0.837 ± 0.004 0.991 ± 0.002
13 SimulFG (650) 0.876 ± 0.003 0.824 ± 0.008 0.870 ± 0.004 0.992 ± 0.001
14 SimulFG (700) 0.838 ± 0.002 0.819 ± 0.005 0.832 ± 0.003 0.991 ± 0.002
15 SimulFG (750) 0.878 ± 0.004 0.840 ± 0.009 0.870 ± 0.005 0.992 ± 0.001
16 SimulFG (800) 0.853 ± 0.002 0.792 ± 0.005 0.836 ± 0.003 0.994 ± 0.001
17 SimulFG (850) 0.845 ± 0.002 0.824 ± 0.004 0.843 ± 0.004 0.995 ± 0.001
18 SimulFG (900) 0.860 ± 0.003 0.833 ± 0.004 0.849 ± 0.003 0.992 ± 0.001
19 SimulFG (950) 0.853 ± 0.002 0.805 ± 0.004 0.832 ± 0.002 0.994 ± 0.001
20 SimulFG (1000) 0.852 ± 0.003 0.806 ± 0.006 0.831 ± 0.003 0.995 ± 0.001

Average 0.856 ± 0.004 0.798 ± 0.008 0.840 ± 0.005 0.989 ± 0.002
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with RBFNetwork [26], SMO [26], and J48 [26]. Similarly, we conduct 10-fold cross-validation for 10 times and get the aver-
aged values. The experimental results in terms of classification accuracy, AUC, and PMSE are listed in Fig. 2. From Fig. 2a, we
can find that the classification accuracy of our proposed NNBC is superior not only to NNB, FNB, and FNBROT but also to RBF-
Network, SMO, and J48. In addition, NNBC also obtains the best AUC (Fig. 2b) and PMSE (Fig. 2c) in comparison with NNB,
FNB, and FNBROT.

Then, we compare NNBC with NNB, FNB, and FNBROT in simultaneous fault diagnosis. The experimental results based on
10 times 10-fold cross-validation in terms of classification accuracy, AUC, and PMSE are summarized in Tables 4–6 respec-
tively. In these tables, SimulFG (n) is the dataset in which all instances are generated with two single faults, where {A1, A2,
A3, cos(A1), cos(A2), sin(A3)} is the instance belonging to the first class, {A1, A2, A3, cos(A1), sin(A2), cos(A3)} is the instance
belonging to the second class, and {A1, A2, A3, sin(A1), cos(A2), cos(A3)} is the instance belonging to the third class. Each class
contains n instances and the size of dataset SinglFG (n) is also 3n. From Tables 4–6, we can find that the average accuracy,
AUC, and PMSE of NNBC are 0.920, 0.989, and 0.136 respectively, which are far superior to those of the other methods. This
indicates that NNBC can achieve the most accurate and effective diagnosis for simultaneous faults.

The sensitivity of bandwidth selection on the performances of single and simultaneous fault diagnosis is also empirically
validated on two representative datasets SinglFG (100) and SimulFG (100). For each of these two datasets, NNBC is used with
the bandwidth parameter h ranging from 0.01 to 5 in step of 0.01. For each h, we evaluate the performances of fault diagnosis
in the same way as stated above. The experimental results on SinglFG (100) are summarized in Fig. 3 (Accuracy), Fig. 4 (AUC),
Table 6
The detailed experimental results of estimation quality and standard deviation on 20 simultaneous fault datasets.

Datasets NNB FNB FNBROT NNBC

1 SimulFG (50) 0.435 ± 0.013 0.475 ± 0.018 0.441 ± 0.012 0.196 ± 0.008
2 SimulFG (100) 0.472 ± 0.006 0.637 ± 0.017 0.500 ± 0.008 0.207 ± 0.005
3 SimulFG (150) 0.512 ± 0.012 0.551 ± 0.014 0.508 ± 0.011 0.214 ± 0.008
4 SimulFG (200) 0.439 ± 0.007 0.530 ± 0.010 0.445 ± 0.006 0.163 ± 0.008
5 SimulFG (250) 0.434 ± 0.003 0.481 ± 0.009 0.429 ± 0.005 0.159 ± 0.012
6 SimulFG (300) 0.414 ± 0.003 0.514 ± 0.011 0.432 ± 0.005 0.132 ± 0.004
7 SimulFG (350) 0.408 ± 0.003 0.491 ± 0.006 0.426 ± 0.004 0.128 ± 0.004
8 SimulFG (400) 0.434 ± 0.004 0.510 ± 0.007 0.449 ± 0.003 0.163 ± 0.007
9 SimulFG (450) 0.464 ± 0.006 0.535 ± 0.008 0.477 ± 0.005 0.151 ± 0.005

10 SimulFG (500) 0.399 ± 0.003 0.470 ± 0.008 0.420 ± 0.004 0.141 ± 0.004
11 SimulFG (550) 0.367 ± 0.005 0.453 ± 0.009 0.388 ± 0.006 0.088 ± 0.004
12 SimulFG (600) 0.445 ± 0.003 0.529 ± 0.006 0.456 ± 0.003 0.121 ± 0.003
13 SimulFG (650) 0.391 ± 0.003 0.450 ± 0.008 0.392 ± 0.003 0.090 ± 0.002
14 SimulFG (700) 0.413 ± 0.002 0.482 ± 0.004 0.418 ± 0.003 0.101 ± 0.003
15 SimulFG (750) 0.457 ± 0.004 0.518 ± 0.007 0.472 ± 0.005 0.141 ± 0.003
16 SimulFG (800) 0.406 ± 0.003 0.432 ± 0.006 0.404 ± 0.003 0.099 ± 0.003
17 SimulFG (850) 0.420 ± 0.002 0.507 ± 0.004 0.441 ± 0.002 0.118 ± 0.002
18 SimulFG (900) 0.397 ± 0.003 0.477 ± 0.004 0.420 ± 0.003 0.091 ± 0.001
19 SimulFG (950) 0.395 ± 0.003 0.473 ± 0.005 0.407 ± 0.003 0.108 ± 0.002
20 SimulFG (1000) 0.408 ± 0.002 0.445 ± 0.005 0.400 ± 0.003 0.101 ± 0.002

Average 0.425 ± 0.005 0.498 ± 0.008 0.436 ± 0.005 0.136 ± 0.005
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Fig. 3. The sensitivity of bandwidth on classification accuracy in single fault dataset SinglFG (100).
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and Fig. 5 (PMSE), and the results on SimulFG (100) are summarized in Fig. 6 (Accuracy), Fig. 7 (AUC), and Fig. 8 (PMSE)
respectively. From these figures, we can see that the fault diagnosis based on NNBC is sensitive to the bandwidth selection.
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Fig. 4. The sensitivity of bandwidth on AUC in single fault dataset SinglFG (100).
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Fig. 5. The sensitivity of bandwidth on PMSE in single fault dataset SinglFG (100).
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Fig. 6. The sensitivity of bandwidth on classification accuracy in simultaneous fault dataset SimulFG (100).
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The optimal bandwidths will lead to the highest accuracies, the highest ranking performances, and the lowest estimation
errors. These observations indicate the necessity of the optimal bandwidth selection.

A practical application, known as the chemical process by Watanabe et al. [24] and Eslamloueyan et al. [4], is used for
testing our proposed Bayesian model. The schematic diagram of this process is shown in Fig. 9. In this process, the heptane
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Fig. 7. The sensitivity of bandwidth on AUC in simultaneous fault dataset SimulFG (100).
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Fig. 9. The schematic diagram of chemical process [24,4].
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is converted to toluene in the Reactor which is heated by an electrical Heater installed in the inlet line of Reactor. The de-
tailed descriptions about this chemical process can be found from the Refs. [24,4]. There are seven possible single faults that
will occur during the plant operation. These seven single faults are summarized in Table 7, where Th is the outlet temperature
of electrical Heater, T product temperature at the Reactor outlet, Si integrator output in the PI controller, CC7H16 outlet con-
centration of heptane, CC7H8 outlet concentration of toluene, Ci

C7H16
heptane concentration in the feed, and Ti Reactor feed

temperature.
In Refs. [24,4], the simultaneous fault patterns can be generated with the superposition principle based on the seven sin-

gle fault patterns. For example, if single faults Fi and Fj are resulted from the deviation vectors of measured variables Dxi and
Dxj, then, the simultaneous fault Fi Fj is given by Dxixj = Dxi + Dxj. As used by [24,4], there are 21 different simultaneous faults
in every compared dataset, i.e., FiFj (i = 1, 2, . . . , 6; i < j 6 7). We compare our proposed Bayesian model with NNB, FNB, and
FNBROT on 10 different datasets. Each dataset includes 21 simultaneous faults FiFj(n) where n = 10, 20, . . . , 100 denoting the
number of patterns belonging to FiFj. As proposed by Eslamloueyan et al. [4], we use ‘‘deterioration degree’’ to generate the
simultaneous fault patterns based on the pre-defined single faults in Table 7, i.e., Fi(a)Fj(b) where a and b are the deteriora-
tion degrees which are real numbers in interval (0, 0.01]. The experimental results are summarized in Tables 8–10.

From Tables 8–10, we observe that our proposed NNBC obtains the best classification accuracy, ranking performance, and
estimation quality. By considering the dependence among conditional attributes, NNBC is indeed feasible and effective when
Table 7
Seven single fault patterns from the plant process [24,4].

Single fault Measured input pattern

DTh DT DSi DCC7 H16 DCC7H8 DCi
C7H16

DTi

F1 �1.85 �0.74 �1.19 5.55 �5.55 0 0
F2 �0.83 0 �0.83 5.04 �5.04 0 0
F3 0.90 0 0.90 �5.55 5.55 0 0
F4 0 0 4.55 0 0 0 0
F5 3.04 0 3.04 0 0 0 0
F6 �0.86 0 �0.86 �4.76 �5.23 �10 0
F7 0.43 0 0.43 0 0 0 �3

Table 8
The detailed experimental results of classification accuracy and standard deviation on 10 simultaneous fault datasets.

Datasets NNB FNB FNBROT NNBC

1 FiFj (10) 0.658 ± 0.005 0.718 ± 0.000 0.723 ± 0.004 0.735 ± 0.005
2 FiFj (20) 0.753 ± 0.014 0.841 ± 0.004 0.817 ± 0.003 0.882 ± 0.002
3 FiFj (30) 0.814 ± 0.004 0.837 ± 0.004 0.830 ± 0.002 0.869 ± 0.006
4 FiFj (40) 0.863 ± 0.002 0.897 ± 0.006 0.862 ± 0.005 0.905 ± 0.005
5 FiFj (50) 0.734 ± 0.010 0.862 ± 0.002 0.859 ± 0.003 0.892 ± 0.005
6 FiFj (60) 0.783 ± 0.003 0.863 ± 0.004 0.869 ± 0.002 0.892 ± 0.004
7 FiFj (70) 0.802 ± 0.003 0.889 ± 0.003 0.893 ± 0.003 0.901 ± 0.003
8 FiFj (80) 0.846 ± 0.004 0.903 ± 0.004 0.904 ± 0.005 0.900 ± 0.003
9 FiFj (90) 0.811 ± 0.004 0.885 ± 0.002 0.884 ± 0.003 0.895 ± 0.002

10 FiFj (100) 0.764 ± 0.004 0.882 ± 0.001 0.878 ± 0.005 0.897 ± 0.002

Average 0.783 ± 0.005 0.858 ± 0.003 0.852 ± 0.004 0.877 ± 0.004

Table 9
The detailed experimental results of ranking performance and standard deviation on 10 simultaneous fault datasets.

Datasets NNB FNB FNBROT NNBC

1 FiFj (10) 0.983 ± 0.002 0.988 ± 0.001 0.988 ± 0.001 0.992 ± 0.001
2 FiFj (20) 0.987 ± 0.001 0.990 ± 0.001 0.988 ± 0.002 0.995 ± 0.001
3 FiFj (30) 0.990 ± 0.001 0.996 ± 0.001 0.995 ± 0.001 0.994 ± 0.001
4 FiFj (40) 0.985 ± 0.002 0.985 ± 0.001 0.985 ± 0.001 0.991 ± 0.001
5 FiFj (50) 0.981 ± 0.001 0.984 ± 0.002 0.985 ± 0.002 0.993 ± 0.001
6 FiFj (60) 0.993 ± 0.001 0.994 ± 0.001 0.993 ± 0.001 0.998 ± 0.001
7 FiFj (70) 0.988 ± 0.001 0.992 ± 0.001 0.991 ± 0.001 0.996 ± 0.001
8 FiFj (80) 0.992 ± 0.000 0.995 ± 0.001 0.995 ± 0.001 0.998 ± 0.000
9 FiFj (90) 0.989 ± 0.000 0.996 ± 0.000 0.995 ± 0.001 0.997 ± 0.000

10 FiFj (100) 0.993 ± 0.000 0.995 ± 0.000 0.996 ± 0.000 0.998 ± 0.000

Average 0.988 ± 0.001 0.992 ± 0.001 0.991 ± 0.001 0.995 ± 0.001



Table 10
The detailed experimental results of estimation quality and standard deviation on 10 simultaneous fault datasets.

Datasets NNB FNB FNBROT NNBC

1 FiFj (10) 0.634 ± 0.012 0.388 ± 0.009 0.475 ± 0.009 0.417 ± 0.004
2 FiFj (20) 0.405 ± 0.012 0.291 ± 0.006 0.306 ± 0.003 0.278 ± 0.008
3 FiFj (30) 0.456 ± 0.008 0.293 ± 0.006 0.236 ± 0.011 0.261 ± 0.002
4 FiFj (40) 0.407 ± 0.005 0.243 ± 0.010 0.236 ± 0.010 0.204 ± 0.006
5 FiFj (50) 0.337 ± 0.004 0.237 ± 0.005 0.219 ± 0.005 0.199 ± 0.005
6 FiFj (60) 0.340 ± 0.002 0.216 ± 0.003 0.195 ± 0.004 0.182 ± 0.004
7 FiFj (70) 0.298 ± 0.006 0.187 ± 0.009 0.180 ± 0.004 0.140 ± 0.005
8 FiFj (80) 0.361 ± 0.002 0.209 ± 0.005 0.175 ± 0.005 0.147 ± 0.004
9 FiFj (90) 0.290 ± 0.004 0.227 ± 0.005 0.185 ± 0.006 0.171 ± 0.003

10 FiFj (100) 0.308 ± 0.004 0.180 ± 0.003 0.158 ± 0.006 0.142 ± 0.001

Average 0.384 ± 0.006 0.247 ± 0.006 0.237 ± 0.006 0.214 ± 0.004
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diagnosing the simultaneous faults in the chemical process. In fact, such dependence does occur in the process of plant oper-
ation. For example, it is very obvious that there is a dependence between the variables DCC7H16 and DCC7H8 due to the follow-
ing reaction [4] which takes place in the Reactor:
Table 1
The res

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Aver
C7H16ðgÞ ! C7H8ðgÞ þ 4H2ðgÞ:
Finally, we discuss how to use the single fault instance to diagnose the simultaneous faults. That is to say, when no simul-
taneous fault instances are available for training and only the single fault instances can be used, how can we use NNB, FNB,
and FNBROT or NNBC to establish the diagnosis model for simultaneous faults. In order to solve this problem, the following
framework is constructed (this framework does not require any training instances of simultaneous fault):

(1) Train the base classifier Cij with the single fault instances belonging to the ith and jth (i, j = 1, 2, 3, i – j) classes, and pij

is the pairwise probability of the ith single fault against the jth single fault for an unknown instance ~x. The probability
of instance ~x containing the ith single fault can be calculated as follows:
pi ¼
P3

i¼1

P3
j–inijpijP3

i¼1

P3
j–inij

;

where nij is the number of training instances within the ith and jth labels.
(2) The possible single faults contained in the new instance ~x can be determined according to the following decision rule:
ði; jÞ ¼ arg max
i; j ¼ 1;2;3

i–j

fpi þ pjg:
1
ults of predicting simultaneous faults in datasets SimulFG (500) based on the models trained on 20 single fault datasets.

Datasets NNB FNB FNBROT NNBC

SinglFG (50) 0.692 ± 0.042 0.578 ± 0.041 0.679 ± 0.028 0.858 ± 0.020
SinglFG (100) 0.702 ± 0.026 0.595 ± 0.051 0.680 ± 0.029 0.854 ± 0.034
SinglFG (150) 0.708 ± 0.027 0.600 ± 0.040 0.689 ± 0.024 0.870 ± 0.028
SinglFG (200) 0.701 ± 0.045 0.601 ± 0.045 0.681 ± 0.030 0.886 ± 0.030
SinglFG (250) 0.698 ± 0.030 0.626 ± 0.027 0.687 ± 0.030 0.881 ± 0.039
SinglFG (300) 0.713 ± 0.032 0.616 ± 0.022 0.700 ± 0.031 0.891 ± 0.030
SinglFG (350) 0.707 ± 0.015 0.604 ± 0.038 0.699 ± 0.029 0.902 ± 0.024
SinglFG (400) 0.705 ± 0.049 0.604 ± 0.032 0.679 ± 0.056 0.910 ± 0.034
SinglFG (450) 0.697 ± 0.043 0.606 ± 0.035 0.688 ± 0.050 0.908 ± 0.030
SinglFG (500) 0.723 ± 0.033 0.606 ± 0.039 0.698 ± 0.031 0.905 ± 0.022
SinglFG (550) 0.699 ± 0.031 0.623 ± 0.019 0.683 ± 0.033 0.884 ± 0.025
SinglFG (600) 0.717 ± 0.029 0.629 ± 0.036 0.709 ± 0.032 0.911 ± 0.030
SinglFG (650) 0.726 ± 0.025 0.642 ± 0.028 0.710 ± 0.035 0.909 ± 0.041
SinglFG (700) 0.704 ± 0.013 0.615 ± 0.029 0.692 ± 0.014 0.912 ± 0.021
SinglFG (750) 0.723 ± 0.017 0.636 ± 0.025 0.702 ± 0.020 0.907 ± 0.024
SinglFG (800) 0.723 ± 0.022 0.640 ± 0.039 0.706 ± 0.017 0.919 ± 0.019
SinglFG (850) 0.712 ± 0.038 0.621 ± 0.034 0.692 ± 0.036 0.909 ± 0.035
SinglFG (900) 0.719 ± 0.025 0.639 ± 0.030 0.698 ± 0.040 0.926 ± 0.024
SinglFG (950) 0.727 ± 0.024 0.640 ± 0.029 0.706 ± 0.030 0.935 ± 0.021
SinglFG (1000) 0.728 ± 0.028 0.656 ± 0.031 0.711 ± 0.027 0.932 ± 0.025

age 0.711 ± 0.030 0.619 ± 0.034 0.694 ± 0.031 0.900 ± 0.028
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For example, if p1 + p3 > p1 + p2and p1 + p3 > p2 + p3, then the first and third single faults occur simultaneously for the new
instance ~x.

By using the above-mentioned strategy, we compare the performances of the four methods in simultaneous fault diag-
nosis with the models trained on 20 different single fault datasets SinglFG (n), n = 50, 100, . . . , 1000 respectively. For each
n, a simultaneous fault dataset SimulFG (500) including 500 simultaneous fault instances is used as the testing set. The
experimental results are listed in Table 11. From this table, we can find that the average classification accuracies of NNB,
FNB, FNBROT, and NNBC are 0.711, 0.619, 0.694, and 0.900 respectively. As a result, NNBC still obtains the best diagnosis
performance.

In summary, in comparison with NNB, FNB, and FNBROT, NNBC has the best diagnosis performance in terms of the 3 indi-
ces: classification accuracy, ranking and estimation quality. The reason is that, in the NNBC model, the assumption of inde-
pendence among features is relaxed, and a more accurate estimation of the joint class-conditional p.d.f. can be acquired.

5. Conclusion and future works

In this paper, we propose a new simultaneous fault diagnosis model based on non-naive Bayesian classifier (NNBC). It
removes the independence assumption and achieves a more accurate estimation on class-conditional p.d.f.. The comparative
results demonstrate that NNBC can obtain the remarkable improvements in the classification accuracy, ranking performance
and class-conditional probability estimation. Our scheduled further development in this research topic contains: (i) seeking
other application domains for the designed model, such as industrial electronics and control engineering domains; (ii) study-
ing the impact of different bandwidth selection methods on the performance of the model; and (iii) providing the theoretical
analysis regarding the sensitivity of optimal bandwidth and finding the locally and globally optimal conditions based on the
empirical risk minimization for our proposed NNBC.
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