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Abstract—A key issue in decision tree (DT) induction with
continuous valued attributes is to design an effective strategy for
splitting nodes. The traditional approach to solving this problem
is adopting the candidate cut point (CCP) with the highest dis-
criminative ability, which is evaluated by some frequency based
heuristic measures. However, such methods ignore the class per-
mutation of examples in the node, and they cannot distinguish
the CCPs with the same or similar frequency information, thus
may fail to induce a better and smaller tree. In this paper, a new
concept, i.e., segment of examples, is proposed to differentiate
the CCPs with same frequency information. Then, a new hybrid
scheme that combines the two heuristic measures, i.e., frequency
and segment, is developed for splitting DT nodes. The relationship
between frequency and the expected number of segments, which
is regarded as a random variable, is also given. Experimental
comparisons demonstrate that the proposed scheme is not only
effective to improve the generalization capability, but also valid
to reduce the size of the tree.

Index Terms—Classification, continuous valued attributes,
decision tree (DT) induction, segment.

I. INTRODUCTION

NDUCTION of decision trees (DTs) is a technique of

supervised learning, which builds up a knowledge-based
expert system by inductive inference from examples. Due
to a good interpretability and simple implementation, DTs
have been utilized in various application domains such
as fuzzy rule extraction [9], [11], [19], [41], ensemble
learning [2], user authentication [37], anomaly detection [16],
sample selection [40], monotonic classification [18], object
ranking [20], and uncertainty analysis [38], etc. Recent
developments of DTs could be found from the literature,

Manuscript received December 13, 2013; revised March 2, 2014
and July 30, 2014; accepted August 6, 2014. Date of publication
September 29, 2014; date of current version June 12, 2015. This work
was supported by the National Natural Science Foundation of China under
Grant 61272289, Grant 61175123, and Grant 61170040. This paper was
recommended by Associate Editor J. Basak.

R. Wang is with the Department of Computer Science, City University
of Hong Kong, Hong Kong, and also with the Shenzhen Key Laboratory
for High Performance Data Mining, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China (e-mail:
ranwang3-c@my.cityu.edu.hk; wangran@siat.ac.cn).

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong (e-mail: cssamk @cityu.edu.hk).

X.-Z. Wang is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
xizhaowang @ieee.org).

Q. Jiang is with the Shenzhen Key Laboratory for High Performance Data
Mining, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, China (e-mail: gs.jiang@siat.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2348012

such as multivariate DT [1], cost-sensitive DT [27], fuzzy

T [24]-[26], [32], geometric DT [28], and DT for handling
continuous label [17].

DTs can easily produce some well-organized classification
rules and have relatively low computational loads, thus are
treated as powerful classification tools. As it is mentioned
in [31], any effective methodology of supervised learning must
have its inductive bias. The inductive bias of DT proposed by
Quinlan [33] is that we prefer a smaller tree to a bigger tree
when both of them are acceptable. This bias is supported by
an old philosophic idea, i.e., Occam’s razor [4], which clearly
states that a model should be as simple as possible.

Traditional DT induction algorithms are typically designed
for the data with symbolic/discrete valued attributes. For the
one with continuous valued attributes, discretization must
be conducted before or during the tree growth [5], [12].
Discretization before the tree growth is simple and easy to
carry out, but the performance is poor since it neglects the
relationship between the conditional attributes and the deci-
sion attribute. Discretization during the tree growth follows
some guidelines given by the decision attribute, thus can
achieve better performances. The main task in this kind of
discretization is to split the currently chosen attribute into
several intervals such that the discriminative ability on the
training examples is high. Along this direction, one can further
adopt binary splitting or multiple splitting [22], [29], which
respectively divide the attribute into two or more intervals.
The well-behavedness of multiple splitting have been demon-
strated in many works [3], [6], [13], [15], but the inductive
procedure is complex and the size of the induced tree is
large. Thus, we only deal with the typical binary splitting
in this paper. Obviously, the trees generated are of two
branches.

The induction of DT is a recursive process that follows
a top-down approach by repeated splits of the training set.
Generally, there are two key issues during the tree growth.

1) One is how to judge a leaf node.

2) The other is how to split a nonleaf node [8].

Usually, a leaf node is determined if its class purity is higher
than a given coefficient, or the number of examples in it is
smaller than a given threshold. As for splitting a nonleaf node,
the typical solution is to sort the examples according to each
attribute, evaluate all the possible splits by a certain heuristic
measure, and select the one with the highest discriminative
ability. The earliest method is known as IDE3 [21], which
selects the split with the highest information gain. However,
IDE3 is specially designed for discrete attributes, and tends
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to select the one with more values, which may lead to the
over-fitting problem. Thus, C4.5 [14], [33], [34] is proposed
to improve IDE3, which replace the criterion of information
gain by gain ratio, and is extended to handle both discrete
and continuous attributes. Both IDE3 and C4.5 are based on
the heuristic of information entropy [36]. Later, classification
and regression trees (CART) algorithm [7], [23] is proposed
based on the heuristic of Gini-index by selecting the split
that can maximally reduce the degree of sample disorder, and
chi-squared automatic interaction detection (CHAID) algo-
rithm [39], [43] is proposed based on the Chi square detection.
The CART and CHAID algorithms have similar performances
on many problems, however, CART is more effective with
continuous attributes, and CHAID is designed for discrete
attributes. Besides, in order to improve the learning efficiency,
supervised learning in quest (SLIQ) algorithm [30] is proposed
for classifying large-scale datasets with a presorting stage, and
scalable parallelizable induction (SPRINT) algorithm [35] is
proposed by removing all the memory restrictions. Both SLIQ
and SPRINT are based on the heuristic of Gini-index.

It is noteworthy that all the above introduced methods
adopt frequency based heuristics, they consider the purity of
a node [10] during the induction process, but ignore the class
distribution/permutation of the sorted examples. In this case,
when two or more possible splits have the same or similar
discriminative abilities, they may fail to select a better one for
the benefits of the further splitting on the branches. In other
words, when the frequency information of one split is identical
to another, it is possible that their class permutations are quite
different. Obviously, these two splits cannot be differentiated
by the frequency based measures, but differentiating them is
helpful in generating a compact and high-performance tree,
which is in accord with the aforementioned inductive bias.

Motivated by these facts, a new concept, i.e., segment
of examples, is proposed in this paper. This concept takes
the class permutation into consideration, thus can effectively
differentiate the cases with similar or same frequency infor-
mation. By jointly using the frequency and segment, a new
heuristic measure for splitting nodes is proposed, and a hybrid
scheme for DT induction is developed. Furthermore, the rela-
tionship between frequency and segment is discussed. This
relationship demonstrates that the expected number of seg-
ments, which is regarded as a random variable, has some
common features with the frequency based heuristic measures
such as information entropy and Gini-index.

The rest of this paper is organized as follows: in Section II,
some basic concepts in DT induction with continuous val-
ued attributes are reviewed, and the common characteristics
of frequency based heuristic measures are summarized; in
Section III, the concept of segment is introduced, and the
algorithm for evaluating the number of segments in a node
is presented; in Section IV, the frequency and segment are
combined to develop a new hybrid scheme for splitting
nodes, then some related analyzes are described in detail; in
Section V, experimental comparisons demonstrate the effec-
tiveness of the scheme in reducing the tree size and improving
the learning accuracy; and finally, conclusions are given
in Section VI.
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II. DT INDUCTION WITH CONTINUOUS
VALUED ATTRIBUTES

In this section, we introduce some basic concepts, as well as
the framework of frequency based DT induction model with
continuous valued attributes.

A. Basic Concepts

In a DT, each node represents a set of examples. A node
is called a leaf node if it cannot be split, and a nonleaf
node otherwise. Let S = {e, ey, ..., ey} be a node with N
examples. Each example in S is represented by a group of
conditional attributes A = {A;,A>,...,A,,} and a decision
attribute C € {Cy, Cy, ..., Cr}. Each conditional attribute is
also called an available splitting attribute (ASA). The ith exam-
ple in S is expressed as ; = {a;1, ap, ..., din, c;} Where a;;
is written as A;(e;) and denotes the value of the i-th example
with respect to the j-th attribute; ¢; is written as C(e;) and
denotes the class label of the i-th example. Suppose all the
conditional attributes are continuous, then we have A;(e;) € R
where j=1...,m.

Definition 1 (Cut Point): Let A; be a continuous valued
attribute whose values are restricted to [ min{A;}, max{A;}].
Each point x € (min{A;}, max{A;}) divides the interval
[min{A;}, max{A;}] into two parts, ie., [min{A;},x] and
[x, max{A;}]. We call x a cut point of attribute A;.

Obviously, the number of cut points for a continuous valued
attribute is countless, usually, we only consider a potential
subset as follows.

Definition 2 (Candidate Cut Point): Let S = {ej,ep, ...,
ey} be a node with N examples and A; be a continuous valued
attribute. Suppose all the examples in S are ranked by ascend-
ing values of A;, ie., Aj(e;) < Aj(e2) < ... < Aj(ey). The
midpoint of any two adjacent values in this order is considered
as a candidate cut point (CCP) of attribute A; with respect to S.

We denote CCP(S, Aj) as the set that contains all the CCPs
of A; with respect to S, then

ccp (S, Aj)
= {x,-,-|xj,- - w,m ... .N— 1}. 1)

If C(e;) = C(eiy1), i.e., the two examples e; and e;;]
belong to the same class, we call the cut point xj; a stable
cut. Otherwise, if C(e;) # C(ejt+1), i.e., the two examples
belong to different classes, we call it an unstable cut [42].

Definition 3 (Partition): LetS = {e{, e, ..., ey} be a node
with N examples, A; be a continuous valued attribute, and xj;
be a CCP of A; with respect to S. If S; = {e € S|A;(e) < x;;}
and Sy = {e € S|Aj(e) > x;j}, then {Si, Sy} is called a partition
of S induced by x;;.

B. Frequency Based Heuristic Measures

Given that {Sy, S} is a partition of node S induced by xj;,
the information gain of xj; in node S is defined as
. 2 S|
Gain (S, x;1) = £ (S) — Z

5! G0 @)

where |S| represents the number of examples in set S, and
f(S) is a function that measures the impurity of class labels
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in S. The general form of f(S) is f(S) =f(S; p1,p2,---,PL)s
where p; is the frequency of the i-th class, and L is the number
of classes in S. Clearly, ZZL:M’Z = 1.

There exists many forms for function f(S) =
f(@S; p1,p2, .., pr)- Two commonly used ones are information
entropy and Gini-index.

1) Information Entropy: Information entropy was first pro-
posed by Shannon [36] in 1948 to measure the amount of
information. It was used by Quinlan [33] to measure the impu-
rity of a node in DT induction. The entropy of node S is
defined as

L
fE& == plogp:. 3)

Clearly, the more imbalance the frequency distribution is,
the smaller the entropy will be. When all the examples are
from the same class, i.e., p; = 1 for a certain [ € {1, ..., L},
entropy arrives its minimum. When the numbers of examples
from all the classes are equivalent, i.e., p;y = 1/L for | =
1,..., L, entropy arrives its maximum.

2) Gini-Index: Gini-index was first proposed by the Italian
economist Corrado Gini in 1912 to measure the income
divergence level. It was used by Breiman et al. [7] to mea-
sure the class impurity of a set. The Gini-index of set S is
defined as

f&=1-% " n @)

Gini-index has similar characteristics to entropy, i.e., it
arrives its minimum when all the examples belong to the same
class, and maximum when examples from each class are with
equal probability.

3) Other Heuristic Measures: Other than Gini-index and
information entropy, Wang et al. [42] proposed three new
frequency based measures, i.e., sin measure defined as

f® =3, s (ap) )

sqrt measure defined as

L
o =\[1_n (©)

and psin measure defined as

F© =" pisinGrp. ™

For binary problem, f(S) could be rewritten as f(p), where
p is the frequency of positive class in S. Then, the mea-
sure functions (4)~(7) can respectively degenerate to the
following:

f(p) = —plogy p — (1 — p)logy(1 —p)
f(p)=—=2p" +2p

£(p) = sin® (p) + sin? (7 (1 — p)) ®)
f(p) =+p(1—p)

f(p) =psin(@p) + (1 — p)sin (7 (1 — p)).

It can be seen from (8) that the impurity measure function
f(p) has the following features, i.e., it is defined on [0, 1],
symmetric at p = 0.5, strictly increasing in (0, 0.5), strictly
decreasing in (0.5, 1), and convex (dzf /dpz)( p) < 0. The rela-
tionships between frequency p and the five heuristic measures
in (8) are shown in Fig. 1.
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Fig. 1. Relationship between measure values and frequency of positive class.

C. Framework of C4.5 Algorithm

Different DT algorithms have similar induction framework.
Among them, C4.5 is treated as a powerful one. In C4.5,
information entropy, i.e., (3), is adopted as the frequency mea-
sure, and the criterion of information gain, i.e., (2), is replaced
by the gain ratio, which is defined as the ratio of the infor-
mation gain to its split information. The split information is
calculated as

. IS1] [Si] ISal IS
Split (S, xj;)) = —— log, — — — log, — )
Pl (S 51) = ~Tgy 182 Tgy ~ gy %2 g
and the gain ratio is measured by
Gain (S, xj;
5P (5, ) = S (8 x0) (10)

Split (S, xji)
where the CCP with the highest SP is selected to split S.

Besides, in order to tackle the over-partitioning problem,
a node will be treated as a leaf node when the number of
examples in it is smaller than a given threshold N, and the
output is decided by the class label with the highest frequency
in it. The basic framework of C4.5 with continuous valued
attributes is then described in Algorithm 1.

In Algorithm 1, we assume that there are no duplicated val-
ues in an attribute. However, this assumption does not hold in
most practical problems. In this case, we may give a constraint
to Algorithm 1, i.e., when the examples in node S are sorted
with respect to attribute A;, only the CCPs that are between
two different attribute values are feasible for splitting.

III. SEGMENT IN EXAMPLE QUEUE AND BAR

In this section, we first present our motivation, then we
propose some definitions regarding the segment based heuristic
method, finally we give an illustrative example to compute the
number of segments in a node.

A. Motivation

Consider a node with a set of examples, it is unnecessary
to discuss the distribution or permutation when the examples
cannot be sorted. However, if the examples can be sorted
according to different attributes, there may have some use-
ful information for classification. We first look at a binary
example indicated in Fig. 2.

In Fig. 2, S; and S» represent two different class permuta-
tions of examples in a node with exactly the same frequency
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Algorithm 1: C4.5 DT With Continuous Valued Attributes

Input: Training examples {ei}i.vz | with m continuous
valued attributes A = {Aj}J’.”=1 and one decision
attribute C € {Cl}1L=1§ threshold number N to stop
splitting a node.

Output: A binary DT.

1 Initialize Q as an empty set;
2 Consider the set of all examples as the root-node, and

add it to Q;

3 while Q is not empty do

4 Select a node from €2, denoted by S;

5 if |S| < N then

6 Treat S as a leaf node and assign it the class
label [* = argmax;=1,. .1 pi;

7 else

8 For each ASA A;, j =1, ..., m, sort the examples
with ascending order;

9 Get the CCPs of each ASA based on (1), i.e., xj;,
where j=1,...,mandi=1,...,N—1;

10 Calculate the splitting performance of each CCP
based on (10), i.e., SP(S, xji);

11 Find the optimal splitting attribute A;+ and its

optimal CCP xj«;+, where

{j*, "} = argmaxy; 5 SP(S, x;j;);

12 Split S into two child-nodes by xj, i.e.,
Sy = {ee S|Aj* (e) < xj*i*} and

Sz = {e € S|Al* (e) > xl*l*}’

13 fori=1,2 do
14 if all the examples in S; are from the same
class I* then

15 Treat S; as a leaf node and assign it the
class label [*;

16 else

17 | Add S; to Q;

18 end

19 end

20 end

21 Remove S from 2;

22 end

23 return the constructed tree.

Se1 11111 2222

Se:l 21 21 21 211

Fig. 2. Different permutations of examples with same class frequencies.

information, i.e., 0.6 for class 1 and 0.4 for class 2. That is
to say, when splitting this node, any frequency based measure
cannot differentiate S and S>. However, one obviously prefers
S1 over S», since S can become two leaf nodes after one fur-
ther splitting but S> cannot. Thus, it is necessary to find a
new measure to differentiate such cases. It is noteworthy that
the reason we can have this observation comes from the fact
that the examples could be ordinal with regard to different
attributes.
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B. Proposed Definitions

Note that all of the following concepts are proposed under
the same problem environment, i.e., S = {ej, ep, ..., ey} is a
node or a set of examples to be split, A; is a continuous valued
attribute, and x;; is a CCP of A; with respect to S.

Definition 4 (Segment): Let Q be a permutation of exam-
plesin S. Then a sub-queue of Q,i.e., SQ = (e,, €41, ..., €),
1 <r<t<N,is called a segment if and only if it satisfies
the following requirements.

1) Cley) = Clert1) =... = C(ep).

2) C(e;) # C(e,—p) if and only if r # 1.

3) C(e;) # C(eryq) if and only if r # N.

The set of all segments in Q is denoted by Seg(Q).

Definition 5 (Segments Induced by an Attribute): Let Q(A;)
be a permutation of examples in S with ascending values of
A;j. Then Seg(Q(4))), also denoted as Seg(S, 4;), is called a
set of segments in S induced by A;.

Specifically, if attribute A; and its CCP x;; split the node S
into S| = {e € S|4j(e) < x;;} and Sy = {e € S|Aj(e) > x;;},
then we denote the sets of segments in S; and S, by
Seg(S1; xji) and Seg(Sy; xj;) respectively.

Definition 6 (Number of Segments in a Node): The num-
ber of segments in node S is defined as

Seg# (S) = min [Seg (S, A;)]
J

where | | denotes the number of elements in a set.

When the attribute values of examples in S are distinct with
respect to A;, we can easily compute the number of segments
with the above definitions. However, when there are duplicated
values for some examples, these concepts are not sufficient to
evaluate the discriminative ability of A;. To handle this issue,
we further give the following definitions.

Definition 7 (Bar): Suppose there is a duplicated value of
A; at some examples in S, and let this value be a, then the set
of examples {e € S|A;(e) = a} is called a bar in S with respect
to Aj, denoted by Bar(S,Aj = a). The value a is called a bar
point.

Definition 8 (Number of Segments in a Bar): Let B be a
bar in S with respect to A;, and Q* be a permutation of exam-
ples in 5 whose class labels are most chaotic. Then the number
of segments in bar B is defined as

bSeg# (B) = |Seg (Q7)|.

Generally, samples belonged to different classes are sup-
posed to have different values with respect to a certain
attribute. Otherwise the discriminative ability of the attribute
is poor. To address this issue, the most chaotic case is selected
for defining the number of segments in a bar, since we hope
that the attribute could distinguish samples even with identi-
cal value. The most chaotic permutation could be treated as
the one that can produce the maximum number of segments
for the bar. For example, we suppose that the ten samples of
S1 and S in Fig. 2 have identical value with respect to a certain
attribute. Then, S, is referred to as the most chaotic permu-
tation while S; is the most nonchaotic one. In fact, the most
chaotic permutation of a bar may not be unique, e.g., both
“1,2,1,2,1,2,1,2,1,1” and “1,2,1,2,1,1,2,1,2,1” could be treated
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Algorithm 2: Computing the Number of Segments in a
Bar

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

Input: All the examples in a bar B.
Output: The number of segments in bar B: bSeg#(B).
1 Get the numbers of examples belonging to each class:
n,ny,...,n,
2 Sort ny, ny, ..., ny in descending order. Suppose the

sorted values are n},n), ..., ny;

3 Set initial value: bSeg#(B) = 0;

4 while r, > 0 do

5 bSeg#(B) = bSeg#(B) + 2n);

6 Set ny = n| —nj, np =0 and n; = n] for each
i(3 <i <L), thus we get new values of
ny,ny,...,nyp,

7 Get the sorted values n},n), ..., n; of ni,ny, ..., ng
in descending order;

8 end

9 if n} # 0 then

10 ‘ bSeg#(B) = bSeg#(B) + 1,
11 end

12 return bSeg#(B).

as the most chaotic permutations of “1,1,1,1,1,1,2,2,2,2”
However, the number of segments induced by them will be
the same, which is also the maximum number of segments
the bar can have.

Computing the number of segments in a nonbar sub-queue
is straightforward. While computing the number of segments
in a bar sub-queue is much more complicated. One possible
solution is presented in Algorithm 2.

When computing the number of segments in a node induced
by an attribute, we have to perform the following steps.

1) Sort the examples with ascending order according to the

attribute, and find all the bar points.

2) Divide the order into several bar sub-queues and nonbar

sub-queues based on the bar points.

3) Get the number of segments in each nonbar sub-queue

directly, and compute the number of segments in each
bar sub-queue based on Algorithm 2.

4) Sum up the numbers of segments in all the sub-queues,

and return it as the final number of segments.

Let r be the number of bar points in node S with respect
to A;. Then we can get ¢ bar sub-queues By, B2, ..., B; and u
nonbar sub-queues SQ1,S59s,...,S59,, where each nonbar
sub-queue is generated from the interval of two adjacent bar
points, and u only takes values of 7, r — 1, and ¢ + 1. More
specifically, u = t, u = t— 1, and u = ¢+ 1 respectively denote
the cases that one, both, or neither of the two extreme values
of A; are bar point(s). Therefore, the number of segments in
S induced by A;, denoted by Seg(S, A;), is computed as

t u
Seg# (S, Aj) = Z bSeg# (B;) + Z [Seg (SQpl.  (11)

i=1 i=1

C. Illustrative Example

We now give an illustrative example to calculate the number
of segments in a node induced by an attribute with duplicated

TABLE 1
NODE S WITH 20 EXAMPLES
e ey e2 €e3 (2 €5
Aj (e) 3 32 3.6 39 4.5
C(e) 1 1 2 1 1
e €eg er esg €9 €10
Aj (e) 5.0 5.0 5.0 5.6 6.1
C(e) 1 1 3 1 2
e el el €13 €14 €15
Aj (e) 6.8 7.2 7.7 8.0 8.0
C(e) 1 3 3 1 1
e el e17 [S3E] €19 €20
Aj (e) 8.0 8.0 8.0 8.6 9.0
C(e) 3 1 2 1 3
;‘ SO\ '} e ;‘ N #
B, B, [l|ews
1les
1les 3les
€1€C3 €4 € |lle; 9 €0 C11€i2€13 [1[e17€19 €20
112 1 1 [3les 1 2 13 3 [2es1 3
3 4 5 6 7 8 9
Fig. 3. Distribution of examples in Table I.

values. Let S be a node with 20 examples from three classes,
ie., {1, 2,3}, as shown in Table I. The class permutation of
examples in S with respect to A; could be described as shown
in Fig. 3.

From Table I and Fig. 3, we can see that A; = 5.0 and
Aj = 8.0 are two bar points, which separate the permutation
into two bar sub-queues and three nonbar sub-queues. The
two bar sub-queues are By = Bar(S,A; = 0.5) = (eq, €7, €g)
and By = Bar(S,A; = 0.8) = (e, ers, g, €17, €13).
The three nonbar sub-queues are SQ; = (e, €2, €3, €4, €5),
S = (ey, €10, €11, €12, €13) and SQ3 = (ej9, €x9). Then the
number of segments in S with respect to A; is

Seg#(S, Aj) = |Seg(SQ1)| + |Seg(S Q)| + [Seg(SQ3)]
+ bSeg#(B1) + bSeg#(B>)
=34+44+24+3+5
=17.

IV. SEGMENT BASED DT INDUCTION WITH
CONTINUOUS VALUED ATTRIBUTES

In this section, we first develop the segment based DT
induction algorithm, followed by a 2-D example to show
its difference with C4.5. Then, we discuss the relationship
between segment and frequency. Finally, we make an analysis
on time complexity.

A. Segment Based DT Induction Model

Let S be the given node, we now try to develop a hybrid
scheme that utilizes both frequency and segment to split it.
First, the best splitting performance SP* is calculated as
SP* = r{n‘aii SP (S, x]'l') (12)
Jsl
where SP(S, xj;) is defined in (10). Then, the K CCPs with
splitting performances closest to SP* are selected from {x;;}
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- - - TABLE II
Algorithm 3: Segment+C4.5 DT With Continuous Valued 2-D BINARY DATASET
Attributes
Input: Training examples {e'}N with m continuous sample featurel feature2 label | sample featurel feature2 label
put: g examp ifi=1 ou 1 0.0000 07903 2 T 01106 06129 1
valued attributes A = {Aj}jm:1 and one decision 2 02207 02823 1 12 0.6232 04194 2
: L . y 3 0.4136  0.3468 1 13 0.5009  0.3145 1
attr,lb,ute C € (Gl threshold number N to stop 4 0.5274  0.5887 2 14 04302 02742 1
splitting a node and parameter K. 5 04327 04839 2 15 02815 02097 2
Output: A binary DT. 6 05120 0.0887 2 16 04524 07258 2
LFESS B . 7 0.7535 0.6613 2 17 0.0289 09839 2
1 Initialize €2 as an empty set; 8 05083 00161 2 18 02569 04032 2
2 Consider the set of all examples as the root-node, and 9 02969 08306 2 19 05538  0.0565 2
add it to Q; 10 0.1764 02661 2 20 04935 04758 2
3 while Q2 is not empty do
4 Select a node from €2, denoted by S; 1 1
s | if [S| <N then ﬂ- . g;f .
6 Treat S as a leaf node and assign it the class 07 = - 07 = -
label I* = arg maxi—i...... pr; Il iy ;
05 05 am
7 else 04 n [ 04 u u
8 For each ASA A;, j =1, ..., m, sort the examples 03 " AA 03 A A A
with ascending order; 02 = 02 =
. 0.1 0.1
9 Get the CCPs of each ASA based on (1), i.e., xj;, 0 u 0 a"
. . 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
where j=1,..., mandi=1,...,N—1;
10 Calculate the splitting performance of each CCP @ (b)
based on (10), i.e., SP(S, x;); Fig. 4. Difference between DTs induced by C4.5 and th d algorith
. X % . 18. 4. 11rerence obetween S 1Imdauce y LD ane € proposed algorithm
1 Get the best Sphttmg performange SP by (12) ’ on the 2-D dataset. (a) DT of C4.5. (b) DT of Segment+C4.5.
12 Get the set X that contains the K CCPs whose
splitting performances are closest to SP*;
13 Compute the number of segments in the two performance, C4.5 selects one randomly while our approach
child-nodes induced by each CCP in X selects the one with fewest segments.
14 Get the optimal splitting attribute A+ and its It is noteworthy that by revising the splitting performance
optimal CCP xj« by (13); in line 10 of Algorithm 3, the proposed segment measure can
15 Split S into two child-nodes by xj, i.e., be incorporated into any frequency based heuristic other than

Si ={ee S|Aj* (e) < xl'*i*} and
S, ={ee S|Aj* (€) > xj+j+ };

16 fori=1,2 do
17 if all the examples in S; are from the same
class I* then

18 Treat S; as a leaf node and assign it the
class label [*;

19 else

20 | Add S; to Q;

21 end

22 end

23 end

24 Remove S from 2;

25 end

26 return the constructed tree.

to form the subset X, where j = 1,...,mandi=1,...,N—1.
Finally, the optimal CCP x;+;+ is derived by

. [ IS1] [Sa]
Xjjr = arg;jrilérgg [@ |Seg (St xji) | + =l |Seg (Sa: xji) | |-

(13)

The segment based DT induction model with continuous
valued attributes under the frequency strategy of C4.5 is then
described in Algorithm 3. Generally speaking, when several
CCPs have equivalent or approximately equivalent splitting

C4.5. Without losing generality, we only present C4.5 here.

B. Example Demonstration

In this section, we give a 2-D example to show the dif-
ference between C4.5 and the proposed scheme. As listed in
Table II, a binary dataset containing 20 samples with two con-
tinuous features is give. Five samples are from class 1 and
fifteen samples are from class 2. We conduct C4.5 algorithm
and the proposed algorithm respectively on this dataset, and
observe the difference of the two induced trees. Due to the
small data size, we simply set K = 2 in Algorithm 3, and
N =2 in both Algorithms 1 and 3.

When splitting the root node, there are 19 CCPs for each
of the two ASAs, we denote them as {x;} where j = 1,2
and i = 1,...,19. It is calculated that xj 14 gives the high-
est information gain ratio of 0.1737, and x 5 gives the second
highest information gain ratio of 0.1511. Accordingly, the seg-
ment measure values of these two CCPs are respectively 5.90
and 3.25. In this case, C4.5 selects xj 14 to split the node,
while the proposed scheme selects x2 5 to split it. As a result,
C4.5 induces a tree with eight leaf nodes and seven nonleaf
nodes in eight depths as shown in Fig. 4(a), while the proposed
scheme induces a tree with five leaf nodes and four nonleaf
nodes in four depths as shown in Fig. 4(b). Obviously, the
proposed tree is much simpler than the C4.5 tree, which effec-
tively avoids the over-partitioning problem and the additional
time complexity.
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C. Relationship Between Segment and Frequency

In this section, we give an analysis on the relationship
between frequency and the expected number of segments
for binary cases. Let S be a node with N examples, and
p(0 < p < 1) be the frequency of positive class in S. We
suppose that the number of segments in S is &, where £ is a

positive integer that can take values of 2, 3, ..., M(p, N), thus
2pN + 1 when 0 < p < 0.5

M(p,N)={ N when p = 0.5 (14)
2( =p)N+1 when 0.5 <p < 1.

The above statement implies a discrete probability distribu-
tion with the following form:

234 ...M(p,N)

(15)
M ryrg ... rM(p,N)

where the first row denotes the values that £ can take and the
second row denotes the corresponding probabilities under the
conditions r¢ > 0 and Zgﬁgm re = 1.

In order to get the expectation of &, we first need to estimate
the probability rg, which equals to get the number of possible
example permutations that can produce & segments. Let T'(&€)
denotes this number, and k = (§ — §%?2)/2, thus for given p
and N, we have

I =
2(pN)L (N = pN)'CI e
when & = 2k

k k—1 k—1 ok
(pN)! (N —pN)! (CpN—IC(l—p)N—l + CpN—lC(l—p)N—l)
when & =2k+ 1,pN > k, (1 —p)N > k (16)

(pN)! (N _pN)!CgN—lel_—lp)N—l
when & =2k+1,(1 —p)N =k

(PN = pN)ICI 1 Cl v
when & =2k + 1, pN = k.

We place the derivation of (16) in the Appendix. Let

nglz(g,N) T(¢) = Tgum, then the probability listed in (15) can

be represented as

re = T(§)/Taum

where £ =2,...,M(p, N).

It is clear from (14) that M(p,N) is symmetric about
p=0.5,1ie., M(p,N) = M(1 — p, N). Thus, for any fixed N,
the distribution (15) induced by p is identical to that induced
by 1—p. In other words, for p and 1 —p, the second row listed
in (15) has no change at all.

Based on the above discussion, the expectation of & corre-
sponding to distribution (15) is computed as

M(p,N)
EEl=), 0 kn

a7

(18)

where r¢ is given in (17).

The analytic form of (18) is extremely complicated. Thus,
it is difficult to analyze the change of (18) with p for general
N. However, for any fixed N, (18) is a function with respect
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Fig. 5. Relationship between expected number of segments and frequency
of positive class for different N.

to p, and we have some concrete expressions. Fig. 5 illustrates
the cases of N = 10, 20, ..., 100.

It can be seen from Fig. 5 that E[£], which could be regarded
as a function of p and rewritten as E( p), has the common char-
acteristics with frequency based heuristic measures, i.e., E(p)
is defined on [0, 1], symmetric at p = 0.5, strictly increas-
ing in (0, 0.5), strictly decreasing in (0.5, 1), and convex
((d2E /dpz)( p) < 0). In this way, the segment based scheme is
considered as a general stochastic version of frequency based
scheme. Specifically, when p is given to a node, the frequency
information can be determined, but the segment information
cannot be determined. The number of segments for a given p
can vary from 2 to its maximum with the distribution listed
in (15). It implies that we may use the expected number of
segments to evaluate the quality of a tree.

D. Analysis of Time Complexity

We first analyze the time complexity of splitting a node in
Algorithm 1. Let S be a node with N examples. Suppose the
number of ASAs in S is m and there are 8; CCPs for A;. The
main complexity in Algorithm 1 lies in steps 8 to 11. In step 8§,
sorting the examples for the m ASAs leads to a minimum
complexity of O(mN logN). In steps 9 to 10, calculating the
splitting performances of the ijzl B; CCPs leads to a com-
plexity of O(N Z/m:l Bj). In step 11, finding the optimal CCP
leads to a complexity of O3~ f;). Thus, the complexity for
splitting S in Algorithm 1 is O(mN logN + (N + 1) Z;":l ﬂj).
We further suppose that each ASA has the same number of
CCPs,ie., Bj=N—1,j=1,..., m. Thus, the time complexity
of splitting a node in Algorithm 1 is

O mNlogN+N+1)> "8
j=1
= O (mNlogN + m(N — 1)(N + 1))
~ O (mN(N + logN)).

We then analyze the time complexity of splitting a node
in Algorithm 3. The main complexity lies in steps 8 to 14.
According to the above analysis, steps 8 to 11 lead to a
complexity of O(mNlogN + (N + 1) 3-I, ). We suppose
that there are no example bars in the sorted queue, thus in
steps 12 to 13, computing the number of segments for the K
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CCPs leads to a complexity of O(N -K). Then, in step 14, find-
ing the optimal CCP leads to a complexity of O(K). Finally,
the time complexity of splitting a node in Algorithm 3 is

O [mNlogN + (N + 1) g+ (N + DK
j=1
-0 (leogN—i—m(N DN+ 1)+ N+ 1)f<)

~ 0 (mN(N +logN) + I%N).

In most cases, the number of ASAs is much smaller than
the number of examples, i.e., m << N. Thus, when K is set to
be a very small number, the time complexities for splitting a
node in both Algorithms 1 and 3 are O(N?).

V. EXPERIMENTS COMPARISONS

In this section, we conduct some experimental comparisons
to demonstrate the effectiveness of the proposed scheme.

A. Comparative Methods

As aforementioned, the segment measure can be combined
with any frequency based heuristic method. However, it is
unnecessary to implement all of them, thus we only com-
bine it with the most popular and powerful algorithm, i.e.,
C4.5. Finally, eight heuristic methods are listed as follows for
performance comparison.

1) IDE3 [21]: For splitting a node, the CCP with the
maximum information gain is selected, which adopts entropy,
i.e., (3), as the frequency measure.

2) C4.5 [33], [34]: Algorithm 1 is realized.

3) CART [7], [23]: For splitting a node, the CCP with the
maximum information gain is selected, which adopts Gini-
index, i.e., (4), as the frequency measure.

4) SIN [42]: The sin measure, i.e., (5), is applied to eval-
vate the information gain, and the CCP with the maximum
information gain is used to split a node.

5) SORT [42]: This method has the same framework with
SIN, but it applies the sqrt measure, i.e., (6), to evaluate the
information gain.

6) PSIN [42]: This method also has the same framework
with SIN, but it applies the psin measure, i.e., (7), to evaluate
the information gain.

7) Segment+C4.5: Algorithm 3 is realized, which incorpo-
rates the proposed segment measure to C4.5.

8) Segment: This method just adopts the proposed segment
measure to induce a DT, where the CCP with the mini-
mum value of (|S]/|S])[Seg(S1; xji)| + (IS21/IS])|Seg(S2; x;i)|
is selected to split a node.

B. Experimental Design

Experimental comparisons are conducted on 15 binary
University of California, Irvine (UCI) machine learning
datasets and five multiclass UCI machine learning datasets'
as listed in Table III. For these datasets, not all the attributes
are continuous. If the number of unique values in an attribute

1 http://www.ics.uci.edu/~mlearn/MLRepository.html
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is less than ten, then we treat it as a discrete attribute and delete
it from the dataset. Besides, for each attribute, the input val-
ues are normalized to [0, 1] by 1 — ((Xmax — X)/ (Xmax — Xmin)>
where xmax and xpi, are the maximum and minimum values
among all the examples with regard to the attribute, and x is
the value to be normalized.

For all the methods, we stop splitting a node if the number
of examples in it is less than five, i.e., N = 5. Besides, for
method Segment+C4.5, we tune K = {2, 4, 6, 8, 10, 15, 20, 30,
40, 50} and select the best one as the final parameter. For the
15 binary datasets, we conduct 10-fold cross-validation, and
observe the average value of the 10 results. However, it is dif-
ficult to conduct 10-fold cross-validation on some multiclass
datasets. Take dataset Ecoli as an instance, the class distri-
bution 143/77/2/2/35/20/5/52 is highly unbalanced. In some
classes, there are only two examples, which are not enough to
be divided into ten folds. In this case, for the five multiclass
datasets, we conduct 5 x 2-fold cross-validation, and observe
average value of the 5x2 = 10 results. In each experiment, the
eight heuristic methods listed in Section V-A are implemented
on the same training and testing sets.

We evaluate the performance of a DT from two aspects, i.e.,
generalization capability and model complexity. The general-
ization capability is measured by the testing accuracy, while the
model complexity is mainly reflected by the number of nodes
and tree depth. Since the algorithms realized are all based on
the typical binary splitting, the number of leaf nodes is always
one more than the number of nonleaf nodes, thus only the total
number of nodes is considered. We generally have the following
expectations by incorporating the segment based measure.

1) Boththe number of nodes and tree depth should be reduced

compared with the single frequency based method.

2) With a proper setting of K, the accuracy of the model

should be improved.

The experiments are performed under MATLAB 7.9.0,
which are executed on a computer with a 3.16-GHz Intel
Core 2 Duo CPU, a maximum 4.00-GB memory, and 64-bit
Windows 7 system.

C. Empirical Studies

Fig. 6 demonstrates the average reduction scales in the train-
ing accuracy, testing accuracy, number of nodes, and tree depth
of Segment+C4.5 compared with C4.5 with different K val-
ues. As an example, if the depths of the trees induced by C4.5
and Segment+C4.5 are respectively di and d», then the reduc-
tion scale in tree depth of Segment+C4.5 compared with C4.5
is calculated as ((d» — dp)/dy) * 100%. Similar calculations
are also applied to the number of nodes, training and testing
accuracies. Thus, if the reduction scale is below zero, the mea-
sure value is reduced by the segment based method, otherwise
increased. In this case, we generally hope that the reduction
scales of accuracies are above zero, meanwhile the reduction
scales of node number and tree depth are below zero. It can be
seen from Fig. 6 that, the reduction scales of the four referred
criteria are influenced by parameter K. Basically we have the
following observations:

1) Observation 1: The segment based methods can achieve
reductions on tree depth for all the datasets. The absolute
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Fig. 6. Average reduction scale in accuracy and tree size of method Segment+C4.5 compared with method C4.5. (a) Haberman. (b) Ionosphere. (c¢) Cancer.
(d) Australian. (e) German. (f) Bupa. (g) Heart. (h) Transfusion. (i) Wdbc. (j) Wpbc. (k) Pima. (1) Plrx. (m) SPECTE. (n) CT. (0) Sonar. (p) Cotton. (q) Ecoli.

(r) Libras. (s) Vowel. (t) Yeast.

reduction scale becomes larger with the increase of K. This is
easy to explain, since with a larger K, the algorithm considers
more CCPs with approximately equal splitting performances.
In this case, there is a larger probability to select the CCP
that can lead to a lower number of segments. Obviously, a
lower number of segments is helpful in reducing the tree depth.
Besides, we make a further investigation on the segment mea-
sure, i.e., [S1|/[SI1Seg(S1; xji)| + [S21/IS]1Seg(S2; xji)|. Given

two different CCPs, i.e., x; and x», suppose they have the
same information gain ratio, as well as the same number of
segments after splitting, i.e., |Seg(St; x1)| + [Seg(Sa; x1)]
|Seg(S1; x2)| + |Seg(So; x2)|. As demonstrated in Fig. 5, a
larger number of examples corresponds to a larger expected
number of segments, thus we further assume:

D IS1l/ISI = 0.1, S21/ISI = 0.9, |Seg(S1; x1)|

|Seg(Sa; x1)| =9 for xi;

1 and
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(@) (b)

Fig. 7. Two DTs with different depths. (a) Tree with larger depth. (b) Tree
with lower depth.

2) [S1l/ISI = 0.5, [S2l/IS| = 0.5, [Seg(S1;x2)| = 5 and

|Seg(Sa; x2)| = 5 for xp.

Then, we have IS11/1S]1Seg(Sy; x1)| +
IS21/1S1ISeg(S2; x1)| = 0.82 and [S1]/[S|[Seg(S1; x2)| +
[S21/1S]|Seg(S2; x2)| = 0.5. Obviously, x, is preferred to xj.
This observation demonstrates that the segment measure tends
to select the CCP with two equally balanced sets, as a result,
the tree depth is reduced. A simple illustration is shown in
Fig. 7, where x; may induce a DT similar to Fig. 7(a) and x»
may induce a DT similar to Fig. 7(b).

2) Observation 2: The segment based methods can also
achieve reductions on the number of nodes, but the absolute
reduction scales are much smaller than those on the tree depth.
Five typical cases could be found. First, as shown in Fig. 6(g),
the number of nodes for dataset Heart decreases gradually with
K increases in the front part of the figure, and attains the mini-
mum when K = 15, then becomes increasing in the latter part.
Similar trends could also be found for many other datasets, e.g.,
Haberman, Australian, German, Bupa, Pima, SPECTF, Vowel,
and Yeast. Second, as shown in Fig. 6(j) and (o), the numbers
of nodes for datasets Wpbc and Sonar keep decreasing in the
whole process, which indicate that the K value that can achieve
the maximum reduction on node number may be larger than
50. Third, as shown in Fig. 6(n) and (r), the numbers of nodes
for datasets CT and Libras have no obvious change. Although
the tree depth is largely reduced, the number of nodes can-
not be reduced any more by the segment measure. Forth, as
shown in Fig. 6(c) and (i), the numbers of nodes for datasets
Cancer and Wdbc fluctuate in the whole process, with no
clear and explicit trend. Finally, as shown in Fig. 6(b) and (q),
the segment based method does not achieve any reduction,
but leads to an increase on the number of nodes for datasets
Ionosphere and Ecoli. We now try to find out the reason for the
different cases. Fig. 8 demonstrates the standard deviation of
the segment based measure values, i.e., [S1|/[S||Seg(S1; x;;) |+
[S2]/1S]|Seg(S2; xji)|, of the K considered CCPs when split-
ting the root-node for datasets CT, Ionosphere, Heart, Pima,
Transfusion, and Australian. Similar results could also be found
when splitting other nodes. It is easy to observe that this stan-
dard deviation is large on datasets Heart, Pima, Transfusion,
and Australian. In this case, the considered CCPs have quite
different segment information, and choosing the one with the
minimum value can obviously reduce the number of nodes.
While this standard deviation is much smaller on datasets CT
and Ionosphere, and has no obvious increase even when K
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Fig. 8.  Standard deviation of segment based measure values of the K
considered CCPs when splitting the root-node.

becomes large. That is to say, the considered CCPs have very
close segment information. Distinguishing them is not effec-
tive enough to reduce the number of nodes, at the worst, it
may lead to an increase on this number.

3) Observation 3: In general, the training and testing accu-
racies keep a stable trend. On most datasets, the training
accuracy is slightly decreased, and the testing accuracy is slightly
increased. This observation demonstrates that incorporating the
segment measure may be helpful for tackling the over-fitting
problem. However, this statement does not hold for dataset
Ionosphere in Fig. 6. In this case, when the considered CCPs
have very close segment information, the proposed method is
not effective in both size reduction and accuracy improvement.

In conclusion, on most datasets, an appropriate value of K
can not only improve the generalization capability, but can
also reduce the size of tree, which is crucial to improve the
testing efficiency.

The best K values among {2, 4, 6, 8, 10, 15, 20, 30, 40, 50}
for method Segment+C4.5 are listed in the last column of
Table III. With these K values, Table IV summarizes the
average testing accuracy and standard deviation of the cross-
validation results of the eight heuristic methods, where the
highest testing accuracy is marked with / for each dataset. It
is observed that methods IDE3, C4.5, CART, SIN, Segment,
and Segment+C4.5 can respectively perform best on 3, 1,
2, 1, 1, and 12 datasets out of 20. Among them, method
Segment+C4.5 gives the best average result. Furthermore, 1
and || are used to demonstrate that whether incorporating
the segment measure can improve the performance of single
frequency based method. Clearly, Segment+C4.5 has higher
accuracy than C4.5 on 19 datasets out of 20, it only fails to
improve the performance on dataset Ionosphere. Besides, it is
observed that method Segment gives the lowest average result,
it performs very bad in most cases, and only gives satisfactory
performance on dataset German. That is to say, the frequency
based heuristic is crucial and important for inducing a high-
performance tree. The proposed segment measure serves as an
assistant to improve the capability of the frequency measure.
It is only valid with certain constraint and threshold, which is
reflected by the parameter K in Algorithm 3.

Table V reports the average tree depth and number of nodes
induced by the eight heuristic methods. For each dataset, the
minimum values are highlighted in bold face. It can be seen
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TABLE III
SELECTED DATASETS FOR PERFORMANCE COMPARISON

Dataset Example# Conditional Continuous Data Type Class#  Class Distribution Missing K
Attribute# Attribute# Values
Haberman 306 3 3 Integer 2 225/81 None 8
Tonosphere 351 34 32 Real+Integer 2 225/126 None 2
Cancer 699(683) 9 8 Integer 2 458(444)/241(239) 16 6
Australian 690 14 7 Real+Integer 2 307/383 None 6
German 1000 24 3 Integer 2 700/300 None 15
Bupa 345 6 6 Real 2 145/200 None 50
Heart 270 13 5 Real+Integer 2 150/120 None 15
Transfusion 748 4 4 Integer 2 178/570 None 50
Wdbc 569 30 30 Real 2 212/357 None 15
Wpbc 198 33 33 Real 2 47/151 None 30
Pima 768 8 8 Real+Integer 2 268/500 None 30
Plrx 182 12 12 Real 2 130/52 None 40
SPECTF 267 44 44 Integer 2 212/55 None 15
CT 221 36 36 Real 2 101/120 None 2
Sonar 208 60 60 Real 2 97/111 None 50
Cotton 356 21 21 Real 6 100x 6 None 2
Ecoli 336 5 5 Real 8 143/77/2/2/35/20/5/52 None 10
Libras 360 90 90 Real 15 24x15 None 10
Vowel 990 10 10 Real 11 90x 11 None 10
Yeast 1484 6 6 Real 10 244/429/463/44/51/163/35/30/20/5 None 10

Note: The datum 699 in 699(683)” about dataset Cancer denotes the number of records in the original database, while 683 denotes the number of
records after removing the ones with missing values, and the same explanation for ~458(444)” and 241(239)”.

TABLE IV
COMPARISONS OF DIFFERENT DT INDUCTION HEURISTICS: TESTING ACCURACY

Datasets IDE3 C4.5 CART SIN SQRT PSIN Segment Segment+C4.5
Haberman 67.09i8.96\/ 58.88+7.46 63.46+6.78 63.38+678 64.76+8.64 66.41+7.60 64.46+6.66 66.65+6.66T
Ionosphere 90.59+5.73 93.70i3.37\/ 89.13+6.41 88.59+356 90.87+624 89.15+478 76.63+7.85 92.28+367]]
Cancer 94.58+3.02 94.00-+3.36 94.29-+280 93.41+273 94.88-+2.00 94.58+2.69 81.12+421 95.17il.86T \/
Australian 70.87+4.02 73.04+433 72.89+381 73.48+6.52 71.03+5.10 72.01+431 58.39+533 749343447 \/
German 62.70+4.96 60.70+5.18 63.90+3.70 64.80+5.42 62.10+3.8 62.70+4.10 70.00i2.93\/ 63.90+270T
Bupa 63.26+7.54 63.53+7.11 62.10+6.72 61.73+647 65.79+6.65 63.50+6.4 49.55+6.54 66.99+577T \/
Heart 65.19-7.80 58.52+857 67.78i6.43\/ 62.96+8.11 67.41+3.63 63.33+735 53.70-+8.65 66.30+9.55T
Transfusion 73.51 %487 74.06+390 73.25+523 76.19i4.30\/ 72724428 72.59+542 75.80-£089 75.53 43377
Wdbc 92.80+254 92.80+1.62 93.36+384 91.21+260 94.39+3.40 93.69+3.10 83.28+655 94.73 12207 \/
‘Wpbc 73.33+981 70.01+9.34 67.27+931 67.62+6.02 71.75+9.42 70.32+9.11 70.80+4.80 74.81 L8207 \/
Pima T1.74+464 69.53+279 69.14+493 67.95+5.17 69.40+3.79 68.09+3.55 67.58+337 721246887 \/
Plrx 60.53-£7.96 57.75+1136 64.82;&12.47\/ 52.25+9.3 58.30-+11.82 60.53+11.07 56.64+7.24 62.13;&13.30T
SPECTF 76.11+887 71.24 4869 74.66+1057 71.09+9.66 75.94+7.47 71.94+7.67 78.34+437 78.63+60T \/
CT 86.46+7.21 86.90+7.68 86.44+756 82.83+629 86.01+9.76 84.17+9.79 52.98+10.14 89.17 £60sT \/
Sonar 76.4717.75\/ 67.71+875 73.04+7.86 70.23+7.20 76.46+5.67 73.06+7.54 53.84+1059 71.68+520T
Cotton 84.66+183 84.32+261 84.04+3.00 82.58+186 84.43 154 74.99+5.52 64.21+301 85.67;&3.27T \/
Ecoli 77.80+1.80 77.56+1.79 77.73+270 76.72+422 70.31+3.00 66.01+3.22 50.12+2.17 78.87+254T \/
Libras 54.61+5561 54.89+431 55.61+479 36.78+2.11 23.50+631 35.00+3.48 20.06+1.98 58.39+474T \/
Vowel 72.8512.38\/ 68.10+2.40 72.08+230 43.68+238 55.25+449 41.35+342 23.82+1.03 71.25+147T
Yeast 49.66-+1.30 48.02+1.60 49.84+1.79 43.44+195 44.37+212 40.74+1.47 25.10+127 50.69i1.69T \/
Avg. 73.244543 71.26+532 72.74+5.65 68.54+5.14 69.98+5.48 68.21+5.63 58.82+4.8 74.49 149047 \/

Note: For each dataset, the highest testing accuracy is marked with /. For method Segment+C4.5, 1 and || respectively represent that compared

with methods C4.5, the performance is improved or degraded.

that the methods that achieve the smallest tree depth and node
number on different datasets are quite different. In fact, each
method can induce the smallest tree in some cases. Among
them, CART gives the lowest average value. However, the
comparison between C4.5 and Segment+C4.5 is clear. In the
last two columns of Table V, | and || are used to demon-
strate that whether method Segment+C4.5 can reduce the tree
size of its single frequency based method C4.5. Obviously,
depth reduction is achieved on 19 datasets out of 20, and node
number reduction is achieved on 18 datasets out of 20.

The average reduction scale of tree size and the average
improvement of testing accuracy on the 20 datasets are listed
in Table VL.

Finally, we make some statistical tests on the testing accu-
racies listed in Table IV. Paired Wilcoxon’s signed rank test
is performed, which is a famous nonparametric statistical
hypothesis test for assessing that whether there exists signifi-
cant difference between the elements of two sets, or whether
one of two groups of independent observations tends to have
larger values than the other. With an unknown distribution,
the Wilcoxon’s signed rank test is safer and more rational
than the t-test. The corresponding p values are reported in
Table VII, and the significance level 0.05 is adopted. If the
p value is smaller than 0.05, the two referred methods are
considered as statistically different. It can be seen that in
some cases, the six single frequency based methods, i.e.,
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TABLE V
COMPARISONS OF DIFFERENT DT INDUCTION HEURISTICS: TREE SCALE

Datasets IDE3 C4.5 CART SIN SQRT PSIN Segment Segment+C4.5
Depth #Nodes| Depth #Nodes| Depth #Nodes| Depth #Nodes| Depth #Nodes| Depth #Nodes| Depth #Nodes| Depth #Nodes
Haberman  16.50 129.80 | 25.10 150.80 | 16.90 130.80 | 43.10 157.60 | 17.10 139.20 | 15.60 127.20 | 45.30 89.60 | 12.20] 128.60]
Ionosphere  9.50  34.60 | 17.00 34.80 | 9.80 38.40 | 7.90 31.60 | 11.00 33.60 | 12.80 44.60 | 197.40 393.80 | 17.201] 36.801T
Cancer 840 3920 | 11.90 50.60 | 850 45.00 | 76.20 198.60 | 10.10 37.60 | 10.00 49.00 | 366.60 732.20 | 10.80) 47.40J
Australian  16.80 185.60 | 48.40 237.80 | 14.80 184.00 | 69.90 324.60 | 19.30 191.60 | 15.00 188.80 | 328.80 656.60 | 28.50] 214.80]
German 2420 471.00 | 61.10 544.00 | 21.40 452.40 | 29.60 331.00 | 24.90 494.40 | 22.00 442.40 | 32.50 64.00 | 17.20) 475.20{
Bupa 12.50 119.00 | 69.50 185.40 | 11.30 116.20 | 23.20 169.20 | 16.00 120.40 | 11.20 117.80 | 22.80 44.60 | 9.00] 159.40)
Heart 13.70 96.80 | 45.70 13220 | 13.70 97.40 | 28.30 150.80 | 16.20 99.80 | 13.10 98.60 | 38.70 76.40 | 14.80] 107.80J
Transfusion 20.20 281.20 | 40.00 309.80 | 17.80 270.00 | 25.20 139.40 | 22.40 291.40 | 16.50 266.40 | 25.40 49.80 | 10.50) 281.60J
Wdbc 7.50 3240 16.10 49.00 | 840 3720 | 4820 131.40 | 880 30.60 | 9.40 39.00 | 337.80 674.60 | 11.40] 42.40)
Wpbc 9.70  41.20 | 24.60 60.00 | 880 43.00 | 42.20 103.00 | 1490 40.20 | 11.00 46.80 | 66.80 132.60 | 14.50) 47.20{
Pima 1590 200.60 | 94.60 301.60 | 15.00 199.00 | 30.60 230.20 | 19.10 212.20 | 15.20 208.00 | 15.00 29.00 | 16.00) 242.60)
Plrx 16.30 57.00 | 40.10 81.80 | 15.60 59.00 | 27.40 108.20 | 24.60 62.40 | 13.60 60.00 | 148.20 295.40 | 26.80) 77.00J.
SPECTF 11.60 42.80 | 26.70 6420 | 9.50 4540 | 3540 101.60 | 15.80 4580 | 10.90 51.00 | 36.80 72.60 | 19.80) 55.60J
CT 7.30 2220 | 13.00 29.60 | 820 25.00 | 12.20 49.60 | 930 23.80 | 10.60 32.00 | 191.00 381.00 | 12.20) 29.00{
Sonar 830 3140 | 2050 57.60 | 7.50 36.40 | 16.10 61.00 | 920 3040 | 820 36.00 | 156.20 311.40 | 7.70) 37.60}
Cotton 6.80 30.40 | 12.20 3420 | 790 31.20 | 11.30 49.00 | 7.80 35.60 | 27.20 67.40 | 172.50 344.00 | 11.40) 33.80J
Ecoli 9.50 43.80 1220 50.80 | 9.00 4540 | 20.20 92.60 | 8.20 64.40 | 4230 100.60 | 65.00 129.00 | 8.40] 53.407]
Libras 8.60 75.80 | 21.90 95.00 | 1090 75.00 | 91.00 190.00 | 14.50 137.40 | 94.80 198.20 | 134.40 267.80 | 16.80] 93.40{
Vowel 11.20 163.40 | 47.40 220.80 | 13.30 163.40 | 235.60 527.80 | 13.50 249.20 | 230.50 534.60 | 455.30 909.60 | 22.50] 185.80)
Yeast 19.10 382.20 | 74.20 483.00 | 20.00 374.40 | 90.60 586.00 | 17.40 440.20 | 133.50 639.00 | 72.30 143.60 | 32.50] 400.80)
Avg. 12.68 124.02 | 36.11 158.65| 12.42 123.43 | 4821 186.66 | 15.01 139.01 | 36.17 167.37 | 145.44 289.88 | 16.01) 137.51}

Note: For each dataset, the minimum number of tree nodes and the smallest tree depth are in bold face. For method Segment+C4.5, | and 1]
respectively represent that compared with method C4.5, the number of nodes or tree depth is reduced or not.

TABLE VI
AVERAGE REDUCTION SCALE OF TREE SIZE AND AVERAGE
IMPROVEMENT OF TESTING ACCURACY OF Segment+C4.5 OVER C4.5

Tree depth Number of nodes  Testing accuracy
55.66%]|| 13.32%]| 4.53%11
TABLE VII

PAIRED WILCOXON’S SIGNED RANK TESTS OF TESTING
ACCURACIES (p VALUES)

Method C4.5 CART SIN SQRT PSIN  Segment Segment
+C4.5
IDE3 0.02511 0.2959 0.00321 0.04791 0.00161 0.00041  0.0064+
C4.5 —— 0.1084 0.1259 0.9405 0.2959 0.0028f 0.0002f
CART —— —— 0.00367 0.4781 0.0228f 0.00131 0.0043f
SIN — ——  ——  0.1259 1.0000 0.0028} 0.0001f
SQRT —— —— —— ——  0.0276f 0.00131 0.0013}
PSIN - — — —  ——  0.0012f 0.0002f
Segment — @ — @ —— — — — 0.0003t

Note: For each test, T represent that the two referred methods are
significantly different with the significance level 0.05.

IDE3, C4.5, CART, SIN, SQRT, and PSIN, are of no signifi-
cant difference. However, all of them are statistically different
from Segment+C4.5 and Segment. Besides, Segment+C4.5
and Segment are also statistically different. Furthermore, in
order to validate that whether the several methods are statisti-
cally different from all each other, Friedman test is conducted,
where the p value is 2.7166 x ¢~?, which is much smaller than
0.05. These observations strongly attest to the effectiveness of
the proposed scheme.

VI. CONCLUSION

Traditional DT induction models with continuous valued
attributes only consider the frequencies of classes, which fail
to differentiate the CCPs with the same or approximately

equal splitting performance. In order to tackle this problem,
the concept of segment is proposed in this paper. Theoretical
analysis demonstrates that the expected number of segments,
which is considered as the expectation of a random vari-
able, has the common features of frequency based measures
such as information entropy and Gini-index. The hybrid of
frequency and segment is then used as a measure to split
nodes. Empirical studies clearly demonstrate that the pro-
posed method is effective in both improving the generalization
capability and reducing the tree size.

Several possible research issues regarding this topic are
listed as follows.

1) The performance of the proposed method is influenced
by the parameter K. The optimal value of K differs a
lot on different datasets. Thus, it is necessary to discuss
how to get the optimal K value adaptively according to
the characteristics of a given training set.

As analyzed in Section IV-C, the expected number of
segment is regarded as a random variable. It is affected
by the number of examples and the frequencies of
classes in the node. It might be useful to find an analytic
expression for this expectation in general case, which
only relies on the frequencies of classes.

It might be interesting to extend the work to multi-
splitting environment with mixed types of attributes.
Consequently, the related analysis will be more com-
plicated.

2)

3)

APPENDIX
A. Description
Consider a binary classification problem, let S be a set with
N examples, and the frequency of positive class is p. Clearly,

different distributions of these examples will produce different
numbers of segments.
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B. Problem

Given a positive integer &, where & can take values of
2,3,...,M(,N) and M(p,N) is give in (14), how many
distributions of examples in S will produce & segments?

C. Solution

Note that all the examples of a segment must belong to the
same class: + or —. If all examples belong to the positive
class, then we call the segment a positive segment denoted
by @. If all examples belong to the negative class, then we
call it a negative segment denoted by ®.

No matter how to rank these examples, the distribution of
segments must be one of the following cases.

1) The first segment is a positive segment:
0,8.8,8,6,8,...
2) The first segment is a negative segment:
®,8.9,8,8,0,...

Let £T denotes the number of positive segments and &~
denotes the number of negative segments. Then the following
holds.

1) £ =&~ =&/2 when £ is even.

2) EF =(£+1)/2and £~ = (£ —1)/2 when & is odd and

the first segment is positive.

3) £ = (& —1)/2and £~ = (£ +1)/2 when & is odd and

the first segment is negative.

If P and Q are the numbers of ways to separate positive and
negative examples into their corresponding segments, then the
number of distributions is P - Q.

Let k = (§ — £%2)/2, and Group(M, k) denotes the num-
ber of ways to separate M examples into k groups. Then, the
number of distributions for £ segments is

TE) =
2Group (pN, k) - Group ((1 — p)N, k)
when & = 2k

Group (pN, k+ 1) - Group ((1 — p)N, k) +
Group (pN, k) - Group ((1 — p)N,k+ 1)
when &€ =2k+ 1,pN > k, (1 —p)N > k (19)
Group (pN, k+ 1) - Group ((1 — p)N, k)

when § =2k+1,(1 —p)N =k

Group (pN, k) - Group ((1 — p)N,k+ 1)
when & =2k + 1, pN = k.

Based on the above discussions, the problem is simplified to
get the number of ways to separate M examples into k groups.
We first suppose that the M examples are in fixed order. In
this case, the problem is further transferred to insert £ — 1
separating marks into the M examples. Obviously, this equals
to select k — 1 inserting positions from the M — 1 positions
that are between any two adjacent examples in this order. As
a result, the number of ways to separate M ordered examples
into k groups could be derived as

Group(M, k) = C7!,

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

where C represents the combination. By further considering
the different ranking orders of the M examples, we get

Group(M, k) = A%C}f,l__ll (20)

where A represents the permutation.
Finally, by applying (19) and (20), we get (16).
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