
1262 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

Segment Based Decision Tree Induction With
Continuous Valued Attributes

Ran Wang, Member, IEEE, Sam Kwong, Fellow, IEEE, Xi-Zhao Wang, Fellow, IEEE, and Qingshan Jiang

Abstract—A key issue in decision tree (DT) induction with
continuous valued attributes is to design an effective strategy for
splitting nodes. The traditional approach to solving this problem
is adopting the candidate cut point (CCP) with the highest dis-
criminative ability, which is evaluated by some frequency based
heuristic measures. However, such methods ignore the class per-
mutation of examples in the node, and they cannot distinguish
the CCPs with the same or similar frequency information, thus
may fail to induce a better and smaller tree. In this paper, a new
concept, i.e., segment of examples, is proposed to differentiate
the CCPs with same frequency information. Then, a new hybrid
scheme that combines the two heuristic measures, i.e., frequency
and segment, is developed for splitting DT nodes. The relationship
between frequency and the expected number of segments, which
is regarded as a random variable, is also given. Experimental
comparisons demonstrate that the proposed scheme is not only
effective to improve the generalization capability, but also valid
to reduce the size of the tree.

Index Terms—Classification, continuous valued attributes,
decision tree (DT) induction, segment.

I. INTRODUCTION

INDUCTION of decision trees (DTs) is a technique of
supervised learning, which builds up a knowledge-based

expert system by inductive inference from examples. Due
to a good interpretability and simple implementation, DTs
have been utilized in various application domains such
as fuzzy rule extraction [9], [11], [19], [41], ensemble
learning [2], user authentication [37], anomaly detection [16],
sample selection [40], monotonic classification [18], object
ranking [20], and uncertainty analysis [38], etc. Recent
developments of DTs could be found from the literature,

Manuscript received December 13, 2013; revised March 2, 2014
and July 30, 2014; accepted August 6, 2014. Date of publication
September 29, 2014; date of current version June 12, 2015. This work
was supported by the National Natural Science Foundation of China under
Grant 61272289, Grant 61175123, and Grant 61170040. This paper was
recommended by Associate Editor J. Basak.

R. Wang is with the Department of Computer Science, City University
of Hong Kong, Hong Kong, and also with the Shenzhen Key Laboratory
for High Performance Data Mining, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China (e-mail:
ranwang3-c@my.cityu.edu.hk; wangran@siat.ac.cn).

S. Kwong is with the Department of Computer Science, City University of
Hong Kong, Hong Kong (e-mail: cssamk@cityu.edu.hk).

X.-Z. Wang is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
xizhaowang@ieee.org).

Q. Jiang is with the Shenzhen Key Laboratory for High Performance Data
Mining, Shenzhen Institutes of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, China (e-mail: qs.jiang@siat.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2348012

such as multivariate DT [1], cost-sensitive DT [27], fuzzy
DT [24]–[26], [32], geometric DT [28], and DT for handling
continuous label [17].

DTs can easily produce some well-organized classification
rules and have relatively low computational loads, thus are
treated as powerful classification tools. As it is mentioned
in [31], any effective methodology of supervised learning must
have its inductive bias. The inductive bias of DT proposed by
Quinlan [33] is that we prefer a smaller tree to a bigger tree
when both of them are acceptable. This bias is supported by
an old philosophic idea, i.e., Occam’s razor [4], which clearly
states that a model should be as simple as possible.

Traditional DT induction algorithms are typically designed
for the data with symbolic/discrete valued attributes. For the
one with continuous valued attributes, discretization must
be conducted before or during the tree growth [5], [12].
Discretization before the tree growth is simple and easy to
carry out, but the performance is poor since it neglects the
relationship between the conditional attributes and the deci-
sion attribute. Discretization during the tree growth follows
some guidelines given by the decision attribute, thus can
achieve better performances. The main task in this kind of
discretization is to split the currently chosen attribute into
several intervals such that the discriminative ability on the
training examples is high. Along this direction, one can further
adopt binary splitting or multiple splitting [22], [29], which
respectively divide the attribute into two or more intervals.
The well-behavedness of multiple splitting have been demon-
strated in many works [3], [6], [13], [15], but the inductive
procedure is complex and the size of the induced tree is
large. Thus, we only deal with the typical binary splitting
in this paper. Obviously, the trees generated are of two
branches.

The induction of DT is a recursive process that follows
a top-down approach by repeated splits of the training set.
Generally, there are two key issues during the tree growth.

1) One is how to judge a leaf node.
2) The other is how to split a nonleaf node [8].
Usually, a leaf node is determined if its class purity is higher

than a given coefficient, or the number of examples in it is
smaller than a given threshold. As for splitting a nonleaf node,
the typical solution is to sort the examples according to each
attribute, evaluate all the possible splits by a certain heuristic
measure, and select the one with the highest discriminative
ability. The earliest method is known as IDE3 [21], which
selects the split with the highest information gain. However,
IDE3 is specially designed for discrete attributes, and tends

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1263

to select the one with more values, which may lead to the
over-fitting problem. Thus, C4.5 [14], [33], [34] is proposed
to improve IDE3, which replace the criterion of information
gain by gain ratio, and is extended to handle both discrete
and continuous attributes. Both IDE3 and C4.5 are based on
the heuristic of information entropy [36]. Later, classification
and regression trees (CART) algorithm [7], [23] is proposed
based on the heuristic of Gini-index by selecting the split
that can maximally reduce the degree of sample disorder, and
chi-squared automatic interaction detection (CHAID) algo-
rithm [39], [43] is proposed based on the Chi square detection.
The CART and CHAID algorithms have similar performances
on many problems, however, CART is more effective with
continuous attributes, and CHAID is designed for discrete
attributes. Besides, in order to improve the learning efficiency,
supervised learning in quest (SLIQ) algorithm [30] is proposed
for classifying large-scale datasets with a presorting stage, and
scalable parallelizable induction (SPRINT) algorithm [35] is
proposed by removing all the memory restrictions. Both SLIQ
and SPRINT are based on the heuristic of Gini-index.

It is noteworthy that all the above introduced methods
adopt frequency based heuristics, they consider the purity of
a node [10] during the induction process, but ignore the class
distribution/permutation of the sorted examples. In this case,
when two or more possible splits have the same or similar
discriminative abilities, they may fail to select a better one for
the benefits of the further splitting on the branches. In other
words, when the frequency information of one split is identical
to another, it is possible that their class permutations are quite
different. Obviously, these two splits cannot be differentiated
by the frequency based measures, but differentiating them is
helpful in generating a compact and high-performance tree,
which is in accord with the aforementioned inductive bias.

Motivated by these facts, a new concept, i.e., segment
of examples, is proposed in this paper. This concept takes
the class permutation into consideration, thus can effectively
differentiate the cases with similar or same frequency infor-
mation. By jointly using the frequency and segment, a new
heuristic measure for splitting nodes is proposed, and a hybrid
scheme for DT induction is developed. Furthermore, the rela-
tionship between frequency and segment is discussed. This
relationship demonstrates that the expected number of seg-
ments, which is regarded as a random variable, has some
common features with the frequency based heuristic measures
such as information entropy and Gini-index.

The rest of this paper is organized as follows: in Section II,
some basic concepts in DT induction with continuous val-
ued attributes are reviewed, and the common characteristics
of frequency based heuristic measures are summarized; in
Section III, the concept of segment is introduced, and the
algorithm for evaluating the number of segments in a node
is presented; in Section IV, the frequency and segment are
combined to develop a new hybrid scheme for splitting
nodes, then some related analyzes are described in detail; in
Section V, experimental comparisons demonstrate the effec-
tiveness of the scheme in reducing the tree size and improving
the learning accuracy; and finally, conclusions are given
in Section VI.

II. DT INDUCTION WITH CONTINUOUS

VALUED ATTRIBUTES

In this section, we introduce some basic concepts, as well as
the framework of frequency based DT induction model with
continuous valued attributes.

A. Basic Concepts

In a DT, each node represents a set of examples. A node
is called a leaf node if it cannot be split, and a nonleaf
node otherwise. Let S = {e1, e2, . . . , eN} be a node with N
examples. Each example in S is represented by a group of
conditional attributes A = {A1, A2, . . . , Am} and a decision
attribute C ∈ {C1, C2, . . . , CL}. Each conditional attribute is
also called an available splitting attribute (ASA). The ith exam-
ple in S is expressed as ei = {ai1, ai2, . . . , aim, ci} where aij

is written as Aj(ei) and denotes the value of the i-th example
with respect to the j-th attribute; ci is written as C(ei) and
denotes the class label of the i-th example. Suppose all the
conditional attributes are continuous, then we have Aj(ei) ∈ R
where j = 1 . . . , m.

Definition 1 (Cut Point): Let Aj be a continuous valued
attribute whose values are restricted to [min{Aj}, max{Aj}].
Each point x ∈ (min{Aj}, max{Aj}) divides the interval
[min{Aj}, max{Aj}] into two parts, i.e., [min{Aj}, x] and
[x, max{Aj}]. We call x a cut point of attribute Aj.

Obviously, the number of cut points for a continuous valued
attribute is countless, usually, we only consider a potential
subset as follows.

Definition 2 (Candidate Cut Point): Let S = {e1, e2, . . . ,

eN} be a node with N examples and Aj be a continuous valued
attribute. Suppose all the examples in S are ranked by ascend-
ing values of Aj, i.e., Aj(e1) < Aj(e2) < . . . < Aj(eN). The
midpoint of any two adjacent values in this order is considered
as a candidate cut point (CCP) of attribute Aj with respect to S.

We denote CCP(S, Aj) as the set that contains all the CCPs
of Aj with respect to S, then

CCP
(
S, Aj

)

=
{

xji|xji = Aj (ei) + Aj (ei+1)

2
, i = 1 . . . , N − 1

}
. (1)

If C(ei) = C(ei+1), i.e., the two examples ei and ei+1
belong to the same class, we call the cut point xji a stable
cut. Otherwise, if C(ei) �= C(ei+1), i.e., the two examples
belong to different classes, we call it an unstable cut [42].

Definition 3 (Partition): Let S = {e1, e2, . . . , eN} be a node
with N examples, Aj be a continuous valued attribute, and xji

be a CCP of Aj with respect to S. If S1 = {e ∈ S|Aj(e) ≤ xji}
and S2 = {e ∈ S|Aj(e) > xji}, then {S1, S2} is called a partition
of S induced by xji.

B. Frequency Based Heuristic Measures

Given that {S1, S2} is a partition of node S induced by xji,
the information gain of xji in node S is defined as

Gain
(
S, xji

) = f (S) −
∑2

k=1

|Sk|
|S| f (Sk) (2)

where |S| represents the number of examples in set S, and
f (S) is a function that measures the impurity of class labels

1264 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

in S. The general form of f (S) is f (S) = f (S; p1, p2, . . . , pL),
where pi is the frequency of the i-th class, and L is the number
of classes in S. Clearly,

∑L
l=1 pl = 1.

There exists many forms for function f (S) =
f (S; p1, p2, . . . , pL). Two commonly used ones are information
entropy and Gini-index.

1) Information Entropy: Information entropy was first pro-
posed by Shannon [36] in 1948 to measure the amount of
information. It was used by Quinlan [33] to measure the impu-
rity of a node in DT induction. The entropy of node S is
defined as

f (S) = −
∑L

l=1
pl log2 pl. (3)

Clearly, the more imbalance the frequency distribution is,
the smaller the entropy will be. When all the examples are
from the same class, i.e., pl = 1 for a certain l ∈ {1, . . . , L},
entropy arrives its minimum. When the numbers of examples
from all the classes are equivalent, i.e., pl = 1/L for l =
1, . . . , L, entropy arrives its maximum.

2) Gini-Index: Gini-index was first proposed by the Italian
economist Corrado Gini in 1912 to measure the income
divergence level. It was used by Breiman et al. [7] to mea-
sure the class impurity of a set. The Gini-index of set S is
defined as

f (S) = 1 −
∑L

l=1
p2

l . (4)

Gini-index has similar characteristics to entropy, i.e., it
arrives its minimum when all the examples belong to the same
class, and maximum when examples from each class are with
equal probability.

3) Other Heuristic Measures: Other than Gini-index and
information entropy, Wang et al. [42] proposed three new
frequency based measures, i.e., sin measure defined as

f (S) =
∑L

l=1
sin2 (πpl) (5)

sqrt measure defined as

f (S) =
√

∏L

l=1
pl (6)

and psin measure defined as

f (S) =
∑L

l=1
pl sin (πpl). (7)

For binary problem, f (S) could be rewritten as f (p), where
p is the frequency of positive class in S. Then, the mea-
sure functions (4)∼(7) can respectively degenerate to the
following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (p) = −p log2 p − (1 − p) log2(1 − p)

f (p) = −2p2 + 2p
f (p) = sin2(πp) + sin2 (π(1 − p))

f (p) = √
p(1 − p)

f (p) = p sin(πp) + (1 − p) sin (π(1 − p)).

(8)

It can be seen from (8) that the impurity measure function
f (p) has the following features, i.e., it is defined on [0, 1],
symmetric at p = 0.5, strictly increasing in (0, 0.5), strictly
decreasing in (0.5, 1), and convex (d2f /dp2)(p) < 0. The rela-
tionships between frequency p and the five heuristic measures
in (8) are shown in Fig. 1.

Fig. 1. Relationship between measure values and frequency of positive class.

C. Framework of C4.5 Algorithm

Different DT algorithms have similar induction framework.
Among them, C4.5 is treated as a powerful one. In C4.5,
information entropy, i.e., (3), is adopted as the frequency mea-
sure, and the criterion of information gain, i.e., (2), is replaced
by the gain ratio, which is defined as the ratio of the infor-
mation gain to its split information. The split information is
calculated as

Split
(
S, xji

) = −|S1|
|S| log2

|S1|
|S| − |S2|

|S| log2
|S2|
|S| (9)

and the gain ratio is measured by

SP
(
S, xji

) = Gain
(
S, xji

)

Split
(
S, xji

) (10)

where the CCP with the highest SP is selected to split S.
Besides, in order to tackle the over-partitioning problem,

a node will be treated as a leaf node when the number of
examples in it is smaller than a given threshold N̂, and the
output is decided by the class label with the highest frequency
in it. The basic framework of C4.5 with continuous valued
attributes is then described in Algorithm 1.

In Algorithm 1, we assume that there are no duplicated val-
ues in an attribute. However, this assumption does not hold in
most practical problems. In this case, we may give a constraint
to Algorithm 1, i.e., when the examples in node S are sorted
with respect to attribute Aj, only the CCPs that are between
two different attribute values are feasible for splitting.

III. SEGMENT IN EXAMPLE QUEUE AND BAR

In this section, we first present our motivation, then we
propose some definitions regarding the segment based heuristic
method, finally we give an illustrative example to compute the
number of segments in a node.

A. Motivation

Consider a node with a set of examples, it is unnecessary
to discuss the distribution or permutation when the examples
cannot be sorted. However, if the examples can be sorted
according to different attributes, there may have some use-
ful information for classification. We first look at a binary
example indicated in Fig. 2.

In Fig. 2, S1 and S2 represent two different class permuta-
tions of examples in a node with exactly the same frequency

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1265

Algorithm 1: C4.5 DT With Continuous Valued Attributes

Input: Training examples {ei}N
i=1 with m continuous

valued attributes A = {Aj}m
j=1 and one decision

attribute C ∈ {Cl}L
l=1; threshold number N̂ to stop

splitting a node.
Output: A binary DT.

1 Initialize � as an empty set;
2 Consider the set of all examples as the root-node, and

add it to �;
3 while � is not empty do
4 Select a node from �, denoted by S;
5 if |S| < N̂ then
6 Treat S as a leaf node and assign it the class

label l∗ = arg maxl=1,...,L pl;
7 else
8 For each ASA Aj, j = 1, . . . , m, sort the examples

with ascending order;
9 Get the CCPs of each ASA based on (1), i.e., xji,

where j = 1, . . . , m and i = 1, . . . , N − 1;
10 Calculate the splitting performance of each CCP

based on (10), i.e., SP(S, xji);
11 Find the optimal splitting attribute Aj∗ and its

optimal CCP xj∗i∗ , where
{ j∗, i∗} = arg max{ j,i} SP(S, xji);

12 Split S into two child-nodes by xj∗i∗ , i.e.,
S1 = {e ∈ S|Aj∗(e) ≤ xj∗i∗} and
S2 = {e ∈ S|Aj∗(e) > xj∗i∗};

13 for i = 1, 2 do
14 if all the examples in Si are from the same

class l∗ then
15 Treat Si as a leaf node and assign it the

class label l∗;
16 else
17 Add Si to �;
18 end
19 end
20 end
21 Remove S from �;
22 end
23 return the constructed tree.

Fig. 2. Different permutations of examples with same class frequencies.

information, i.e., 0.6 for class 1 and 0.4 for class 2. That is
to say, when splitting this node, any frequency based measure
cannot differentiate S1 and S2. However, one obviously prefers
S1 over S2, since S1 can become two leaf nodes after one fur-
ther splitting but S2 cannot. Thus, it is necessary to find a
new measure to differentiate such cases. It is noteworthy that
the reason we can have this observation comes from the fact
that the examples could be ordinal with regard to different
attributes.

B. Proposed Definitions

Note that all of the following concepts are proposed under
the same problem environment, i.e., S = {e1, e2, . . . , eN} is a
node or a set of examples to be split, Aj is a continuous valued
attribute, and xji is a CCP of Aj with respect to S.

Definition 4 (Segment): Let Q be a permutation of exam-
ples in S. Then a sub-queue of Q, i.e., SQ = (er, er+1, . . . , et),
1 ≤ r ≤ t ≤ N, is called a segment if and only if it satisfies
the following requirements.

1) C(er) = C(er+1) = . . . = C(et).
2) C(er) �= C(er−1) if and only if r �= 1.
3) C(et) �= C(et+1) if and only if t �= N.
The set of all segments in Q is denoted by Seg(Q).
Definition 5 (Segments Induced by an Attribute): Let Q(Aj)

be a permutation of examples in S with ascending values of
Aj. Then Seg(Q(Aj)), also denoted as Seg(S, Aj), is called a
set of segments in S induced by Aj.

Specifically, if attribute Aj and its CCP xji split the node S

into S1 = {e ∈ S|Aj(e) ≤ xji} and S2 = {e ∈ S|Aj(e)> xji},
then we denote the sets of segments in S1 and S2 by
Seg(S1; xji) and Seg(S2; xji) respectively.

Definition 6 (Number of Segments in a Node): The num-
ber of segments in node S is defined as

Seg# (S) = min
j

∣∣Seg
(
S, Aj

)∣∣

where | | denotes the number of elements in a set.
When the attribute values of examples in S are distinct with

respect to Aj, we can easily compute the number of segments
with the above definitions. However, when there are duplicated
values for some examples, these concepts are not sufficient to
evaluate the discriminative ability of Aj. To handle this issue,
we further give the following definitions.

Definition 7 (Bar): Suppose there is a duplicated value of
Aj at some examples in S, and let this value be a, then the set
of examples {e ∈ S|Aj(e) = a} is called a bar in S with respect
to Aj, denoted by Bar(S, Aj = a). The value a is called a bar
point.

Definition 8 (Number of Segments in a Bar): Let B be a
bar in S with respect to Aj, and Q∗ be a permutation of exam-
ples in B whose class labels are most chaotic. Then the number
of segments in bar B is defined as

bSeg# (B) = ∣
∣Seg

(Q∗)∣∣.

Generally, samples belonged to different classes are sup-
posed to have different values with respect to a certain
attribute. Otherwise the discriminative ability of the attribute
is poor. To address this issue, the most chaotic case is selected
for defining the number of segments in a bar, since we hope
that the attribute could distinguish samples even with identi-
cal value. The most chaotic permutation could be treated as
the one that can produce the maximum number of segments
for the bar. For example, we suppose that the ten samples of
S1 and S2 in Fig. 2 have identical value with respect to a certain
attribute. Then, S2 is referred to as the most chaotic permu-
tation while S1 is the most nonchaotic one. In fact, the most
chaotic permutation of a bar may not be unique, e.g., both
“1,2,1,2,1,2,1,2,1,1” and “1,2,1,2,1,1,2,1,2,1” could be treated

1266 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

Algorithm 2: Computing the Number of Segments in a
Bar

Input: All the examples in a bar B.
Output: The number of segments in bar B: bSeg#(B).

1 Get the numbers of examples belonging to each class:
n1, n2, . . . , nL;

2 Sort n1, n2, . . . , nL in descending order. Suppose the
sorted values are n′

1, n′
2, . . . , n′

L;
3 Set initial value: bSeg#(B) = 0;
4 while n′

2 > 0 do
5 bSeg#(B) = bSeg#(B) + 2n′

2;
6 Set n1 = n′

1 − n′
2, n2 = 0 and ni = n′

i for each
i(3 ≤ i ≤ L), thus we get new values of
n1, n2, . . . , nL;

7 Get the sorted values n′
1, n′

2, . . . , n′
L of n1, n2, . . . , nL

in descending order;
8 end
9 if n′

1 �= 0 then
10 bSeg#(B) = bSeg#(B) + 1;
11 end
12 return bSeg#(B).

as the most chaotic permutations of “1,1,1,1,1,1,2,2,2,2.”
However, the number of segments induced by them will be
the same, which is also the maximum number of segments
the bar can have.

Computing the number of segments in a nonbar sub-queue
is straightforward. While computing the number of segments
in a bar sub-queue is much more complicated. One possible
solution is presented in Algorithm 2.

When computing the number of segments in a node induced
by an attribute, we have to perform the following steps.

1) Sort the examples with ascending order according to the
attribute, and find all the bar points.

2) Divide the order into several bar sub-queues and nonbar
sub-queues based on the bar points.

3) Get the number of segments in each nonbar sub-queue
directly, and compute the number of segments in each
bar sub-queue based on Algorithm 2.

4) Sum up the numbers of segments in all the sub-queues,
and return it as the final number of segments.

Let t be the number of bar points in node S with respect
to Aj. Then we can get t bar sub-queues B1,B2, . . . ,Bt and u
nonbar sub-queues SQ1,SQ2, . . . ,SQu, where each nonbar
sub-queue is generated from the interval of two adjacent bar
points, and u only takes values of t, t − 1, and t + 1. More
specifically, u = t, u = t−1, and u = t+1 respectively denote
the cases that one, both, or neither of the two extreme values
of Aj are bar point(s). Therefore, the number of segments in
S induced by Aj, denoted by Seg(S, Aj), is computed as

Seg#
(
S, Aj

) =
t∑

i=1

bSeg# (Bi) +
u∑

i=1

|Seg (SQi)|. (11)

C. Illustrative Example

We now give an illustrative example to calculate the number
of segments in a node induced by an attribute with duplicated

TABLE I
NODE S WITH 20 EXAMPLES

Fig. 3. Distribution of examples in Table I.

values. Let S be a node with 20 examples from three classes,
i.e., {1, 2, 3}, as shown in Table I. The class permutation of
examples in S with respect to Aj could be described as shown
in Fig. 3.

From Table I and Fig. 3, we can see that Aj = 5.0 and
Aj = 8.0 are two bar points, which separate the permutation
into two bar sub-queues and three nonbar sub-queues. The
two bar sub-queues are B1 = Bar(S, Aj = 0.5) = (e6, e7, e8)

and B2 = Bar(S, Aj = 0.8) = (e14, e15, e16, e17, e18).
The three nonbar sub-queues are SQ1 = (e1, e2, e3, e4, e5),
SQ2 = (e9, e10, e11, e12, e13) and SQ3 = (e19, e20). Then the
number of segments in S with respect to Aj is

Seg#(S, Aj) = |Seg(SQ1)| + |Seg(SQ2)| + |Seg(SQ3)|
+ bSeg#(B1) + bSeg#(B2)

= 3 + 4 + 2 + 3 + 5

= 17.

IV. SEGMENT BASED DT INDUCTION WITH

CONTINUOUS VALUED ATTRIBUTES

In this section, we first develop the segment based DT
induction algorithm, followed by a 2-D example to show
its difference with C4.5. Then, we discuss the relationship
between segment and frequency. Finally, we make an analysis
on time complexity.

A. Segment Based DT Induction Model

Let S be the given node, we now try to develop a hybrid
scheme that utilizes both frequency and segment to split it.

First, the best splitting performance SP∗ is calculated as

SP∗ = max{ j,i} SP
(
S, xji

)
(12)

where SP(S, xji) is defined in (10). Then, the K̂ CCPs with
splitting performances closest to SP∗ are selected from {xji}

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1267

Algorithm 3: Segment+C4.5 DT With Continuous Valued
Attributes

Input: Training examples {ei}N
i=1 with m continuous

valued attributes A = {Aj}m
j=1 and one decision

attribute C ∈ {Cl}L
l=1; threshold number N̂ to stop

splitting a node and parameter K̂.
Output: A binary DT.

1 Initialize � as an empty set;
2 Consider the set of all examples as the root-node, and

add it to �;
3 while � is not empty do
4 Select a node from �, denoted by S;
5 if |S| < N̂ then
6 Treat S as a leaf node and assign it the class

label l∗ = arg maxl=1,...,L pl;
7 else
8 For each ASA Aj, j = 1, . . . , m, sort the examples

with ascending order;
9 Get the CCPs of each ASA based on (1), i.e., xji,

where j = 1, . . . , m and i = 1, . . . , N − 1;
10 Calculate the splitting performance of each CCP

based on (10), i.e., SP(S, xji);
11 Get the best splitting performance SP∗ by (12);
12 Get the set X that contains the K̂ CCPs whose

splitting performances are closest to SP∗;
13 Compute the number of segments in the two

child-nodes induced by each CCP in X;
14 Get the optimal splitting attribute Aj∗ and its

optimal CCP xj∗i∗ by (13);
15 Split S into two child-nodes by xj∗i∗ , i.e.,

S1 = {e ∈ S|Aj∗(e) ≤ xj∗i∗} and
S2 = {e ∈ S|Aj∗(e) > xj∗i∗};

16 for i = 1, 2 do
17 if all the examples in Si are from the same

class l∗ then
18 Treat Si as a leaf node and assign it the

class label l∗;
19 else
20 Add Si to �;
21 end
22 end
23 end
24 Remove S from �;
25 end
26 return the constructed tree.

to form the subset X, where j = 1, . . . , m and i = 1, . . . , N−1.
Finally, the optimal CCP xj∗i∗ is derived by

xj∗i∗ = arg min
xji∈X

[|S1|
|S|

∣∣Seg
(
S1; xji

)∣∣ + |S2|
|S|

∣∣Seg
(
S2; xji

)∣∣
]
.

(13)

The segment based DT induction model with continuous
valued attributes under the frequency strategy of C4.5 is then
described in Algorithm 3. Generally speaking, when several
CCPs have equivalent or approximately equivalent splitting

TABLE II
2-D BINARY DATASET

(a) (b)

Fig. 4. Difference between DTs induced by C4.5 and the proposed algorithm
on the 2-D dataset. (a) DT of C4.5. (b) DT of Segment+C4.5.

performance, C4.5 selects one randomly while our approach
selects the one with fewest segments.

It is noteworthy that by revising the splitting performance
in line 10 of Algorithm 3, the proposed segment measure can
be incorporated into any frequency based heuristic other than
C4.5. Without losing generality, we only present C4.5 here.

B. Example Demonstration

In this section, we give a 2-D example to show the dif-
ference between C4.5 and the proposed scheme. As listed in
Table II, a binary dataset containing 20 samples with two con-
tinuous features is give. Five samples are from class 1 and
fifteen samples are from class 2. We conduct C4.5 algorithm
and the proposed algorithm respectively on this dataset, and
observe the difference of the two induced trees. Due to the
small data size, we simply set K̂ = 2 in Algorithm 3, and
N̂ = 2 in both Algorithms 1 and 3.

When splitting the root node, there are 19 CCPs for each
of the two ASAs, we denote them as {xji} where j = 1, 2
and i = 1, . . . , 19. It is calculated that x1,14 gives the high-
est information gain ratio of 0.1737, and x2,5 gives the second
highest information gain ratio of 0.1511. Accordingly, the seg-
ment measure values of these two CCPs are respectively 5.90
and 3.25. In this case, C4.5 selects x1,14 to split the node,
while the proposed scheme selects x2,5 to split it. As a result,
C4.5 induces a tree with eight leaf nodes and seven nonleaf
nodes in eight depths as shown in Fig. 4(a), while the proposed
scheme induces a tree with five leaf nodes and four nonleaf
nodes in four depths as shown in Fig. 4(b). Obviously, the
proposed tree is much simpler than the C4.5 tree, which effec-
tively avoids the over-partitioning problem and the additional
time complexity.

1268 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

C. Relationship Between Segment and Frequency

In this section, we give an analysis on the relationship
between frequency and the expected number of segments
for binary cases. Let S be a node with N examples, and
p(0 < p < 1) be the frequency of positive class in S. We
suppose that the number of segments in S is ξ , where ξ is a
positive integer that can take values of 2, 3, . . . , M(p, N), thus

M(p, N) =
⎧
⎨

⎩

2pN + 1 when 0 < p < 0.5
N when p = 0.5
2(1 − p)N + 1 when 0.5 < p < 1.

(14)

The above statement implies a discrete probability distribu-
tion with the following form:

2 3 4 . . . M(p, N)

r2 r3 r4 . . . rM(p,N)
(15)

where the first row denotes the values that ξ can take and the
second row denotes the corresponding probabilities under the

conditions rξ ≥ 0 and
∑M(p,N)

ξ=2 rξ = 1.
In order to get the expectation of ξ , we first need to estimate

the probability rξ , which equals to get the number of possible
example permutations that can produce ξ segments. Let T(ξ)

denotes this number, and k = (ξ − ξ%2)/2, thus for given p
and N, we have

T(ξ) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(pN)! (N − pN)!Ck−1
pN−1Ck−1

(1−p)N−1
when ξ = 2k

(pN)! (N − pN)!
(
Ck

pN−1Ck−1
(1−p)N−1 + Ck−1

pN−1Ck
(1−p)N−1

)

when ξ = 2k + 1, pN > k, (1 − p)N > k

(pN)! (N − pN)!Ck
pN−1Ck−1

(1−p)N−1
when ξ = 2k + 1, (1 − p)N = k

(pN)!(N − pN)!Ck−1
pN−1Ck

(1−p)N−1
when ξ = 2k + 1, pN = k.

(16)

We place the derivation of (16) in the Appendix. Let
∑M(p,N)

ξ=2 T(ξ) = Tsum, then the probability listed in (15) can
be represented as

rξ = T(ξ)/Tsum (17)

where ξ = 2, . . . , M(p, N).
It is clear from (14) that M(p, N) is symmetric about

p = 0.5, i.e., M(p, N) = M(1 − p, N). Thus, for any fixed N,
the distribution (15) induced by p is identical to that induced
by 1−p. In other words, for p and 1−p, the second row listed
in (15) has no change at all.

Based on the above discussion, the expectation of ξ corre-
sponding to distribution (15) is computed as

E[ξ] =
∑M(p,N)

ξ=2
ξ · rξ (18)

where rξ is given in (17).
The analytic form of (18) is extremely complicated. Thus,

it is difficult to analyze the change of (18) with p for general
N. However, for any fixed N, (18) is a function with respect

Fig. 5. Relationship between expected number of segments and frequency
of positive class for different N.

to p, and we have some concrete expressions. Fig. 5 illustrates
the cases of N = 10, 20, . . . , 100.

It can be seen from Fig. 5 that E[ξ], which could be regarded
as a function of p and rewritten as E(p), has the common char-
acteristics with frequency based heuristic measures, i.e., E(p)

is defined on [0, 1], symmetric at p = 0.5, strictly increas-
ing in (0, 0.5), strictly decreasing in (0.5, 1), and convex
((d2E/dp2)(p) < 0). In this way, the segment based scheme is
considered as a general stochastic version of frequency based
scheme. Specifically, when p is given to a node, the frequency
information can be determined, but the segment information
cannot be determined. The number of segments for a given p
can vary from 2 to its maximum with the distribution listed
in (15). It implies that we may use the expected number of
segments to evaluate the quality of a tree.

D. Analysis of Time Complexity

We first analyze the time complexity of splitting a node in
Algorithm 1. Let S be a node with N examples. Suppose the
number of ASAs in S is m and there are βj CCPs for Aj. The
main complexity in Algorithm 1 lies in steps 8 to 11. In step 8,
sorting the examples for the m ASAs leads to a minimum
complexity of O(mN log N). In steps 9 to 10, calculating the
splitting performances of the

∑m
j=1 βj CCPs leads to a com-

plexity of O(N
∑m

j=1 βj). In step 11, finding the optimal CCP
leads to a complexity of O(

∑m
j=1 βj). Thus, the complexity for

splitting S in Algorithm 1 is O
(
mN log N + (N + 1)

∑m
j=1 βj

)
.

We further suppose that each ASA has the same number of
CCPs, i.e., βj = N−1, j = 1, . . . , m. Thus, the time complexity
of splitting a node in Algorithm 1 is

O

⎛

⎝mN log N + (N + 1)

m∑

j=1

βj

⎞

⎠

= O (mN log N + m(N − 1)(N + 1))

≈ O (mN(N + log N)).

We then analyze the time complexity of splitting a node
in Algorithm 3. The main complexity lies in steps 8 to 14.
According to the above analysis, steps 8 to 11 lead to a
complexity of O

(
mN log N + (N + 1)

∑m
j=1 βj

)
. We suppose

that there are no example bars in the sorted queue, thus in
steps 12 to 13, computing the number of segments for the K̂

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1269

CCPs leads to a complexity of O(N ·K̂). Then, in step 14, find-
ing the optimal CCP leads to a complexity of O(K̂). Finally,
the time complexity of splitting a node in Algorithm 3 is

O

⎛

⎝mN log N + (N + 1)

m∑

j=1

βj + (N + 1)K̂

⎞

⎠

= O
(

mN log N + m(N − 1)(N + 1) + (N + 1)K̂
)

≈ O
(

mN(N + log N) + K̂N
)
.

In most cases, the number of ASAs is much smaller than
the number of examples, i.e., m � N. Thus, when K̂ is set to
be a very small number, the time complexities for splitting a
node in both Algorithms 1 and 3 are O(N2).

V. EXPERIMENTS COMPARISONS

In this section, we conduct some experimental comparisons
to demonstrate the effectiveness of the proposed scheme.

A. Comparative Methods

As aforementioned, the segment measure can be combined
with any frequency based heuristic method. However, it is
unnecessary to implement all of them, thus we only com-
bine it with the most popular and powerful algorithm, i.e.,
C4.5. Finally, eight heuristic methods are listed as follows for
performance comparison.

1) IDE3 [21]: For splitting a node, the CCP with the
maximum information gain is selected, which adopts entropy,
i.e., (3), as the frequency measure.

2) C4.5 [33], [34]: Algorithm 1 is realized.
3) CART [7], [23]: For splitting a node, the CCP with the

maximum information gain is selected, which adopts Gini-
index, i.e., (4), as the frequency measure.

4) SIN [42]: The sin measure, i.e., (5), is applied to eval-
uate the information gain, and the CCP with the maximum
information gain is used to split a node.

5) SQRT [42]: This method has the same framework with
SIN, but it applies the sqrt measure, i.e., (6), to evaluate the
information gain.

6) PSIN [42]: This method also has the same framework
with SIN, but it applies the psin measure, i.e., (7), to evaluate
the information gain.

7) Segment+C4.5: Algorithm 3 is realized, which incorpo-
rates the proposed segment measure to C4.5.

8) Segment: This method just adopts the proposed segment
measure to induce a DT, where the CCP with the mini-
mum value of (|S1|/|S|)|Seg(S1; xji)| + (|S2|/|S|)|Seg(S2; xji)|
is selected to split a node.

B. Experimental Design

Experimental comparisons are conducted on 15 binary
University of California, Irvine (UCI) machine learning
datasets and five multiclass UCI machine learning datasets1

as listed in Table III. For these datasets, not all the attributes
are continuous. If the number of unique values in an attribute

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

is less than ten, then we treat it as a discrete attribute and delete
it from the dataset. Besides, for each attribute, the input val-
ues are normalized to [0, 1] by 1− ((xmax − x)/(xmax − xmin),
where xmax and xmin are the maximum and minimum values
among all the examples with regard to the attribute, and x is
the value to be normalized.

For all the methods, we stop splitting a node if the number
of examples in it is less than five, i.e., N̂ = 5. Besides, for
method Segment+C4.5, we tune K̂ = {2, 4, 6, 8, 10, 15, 20, 30,
40, 50} and select the best one as the final parameter. For the
15 binary datasets, we conduct 10-fold cross-validation, and
observe the average value of the 10 results. However, it is dif-
ficult to conduct 10-fold cross-validation on some multiclass
datasets. Take dataset Ecoli as an instance, the class distri-
bution 143/77/2/2/35/20/5/52 is highly unbalanced. In some
classes, there are only two examples, which are not enough to
be divided into ten folds. In this case, for the five multiclass
datasets, we conduct 5 × 2-fold cross-validation, and observe
average value of the 5×2 = 10 results. In each experiment, the
eight heuristic methods listed in Section V-A are implemented
on the same training and testing sets.

We evaluate the performance of a DT from two aspects, i.e.,
generalization capability and model complexity. The general-
ization capability is measured by the testing accuracy, while the
model complexity is mainly reflected by the number of nodes
and tree depth. Since the algorithms realized are all based on
the typical binary splitting, the number of leaf nodes is always
one more than the number of nonleaf nodes, thus only the total
number of nodes is considered. We generally have the following
expectations by incorporating the segment based measure.

1) Both the number of nodes and tree depth should be reduced
compared with the single frequency based method.

2) With a proper setting of K̂, the accuracy of the model
should be improved.

The experiments are performed under MATLAB 7.9.0,
which are executed on a computer with a 3.16-GHz Intel
Core 2 Duo CPU, a maximum 4.00-GB memory, and 64-bit
Windows 7 system.

C. Empirical Studies

Fig. 6 demonstrates the average reduction scales in the train-
ing accuracy, testing accuracy, number of nodes, and tree depth
of Segment+C4.5 compared with C4.5 with different K̂ val-
ues. As an example, if the depths of the trees induced by C4.5
and Segment+C4.5 are respectively d1 and d2, then the reduc-
tion scale in tree depth of Segment+C4.5 compared with C4.5
is calculated as ((d2 − d1)/d1) ∗ 100%. Similar calculations
are also applied to the number of nodes, training and testing
accuracies. Thus, if the reduction scale is below zero, the mea-
sure value is reduced by the segment based method, otherwise
increased. In this case, we generally hope that the reduction
scales of accuracies are above zero, meanwhile the reduction
scales of node number and tree depth are below zero. It can be
seen from Fig. 6 that, the reduction scales of the four referred
criteria are influenced by parameter K̂. Basically we have the
following observations:

1) Observation 1: The segment based methods can achieve
reductions on tree depth for all the datasets. The absolute

1270 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

(a) (b) (c) (d)

(h)

(l)

(p)

(t)

(g)

(k)

(o)

(s)

(f)

(j)

(n)

(r)

(e)

(i)

(m)

(q)

Fig. 6. Average reduction scale in accuracy and tree size of method Segment+C4.5 compared with method C4.5. (a) Haberman. (b) Ionosphere. (c) Cancer.
(d) Australian. (e) German. (f) Bupa. (g) Heart. (h) Transfusion. (i) Wdbc. (j) Wpbc. (k) Pima. (l) Plrx. (m) SPECTF. (n) CT. (o) Sonar. (p) Cotton. (q) Ecoli.
(r) Libras. (s) Vowel. (t) Yeast.

reduction scale becomes larger with the increase of K̂. This is
easy to explain, since with a larger K̂, the algorithm considers
more CCPs with approximately equal splitting performances.
In this case, there is a larger probability to select the CCP
that can lead to a lower number of segments. Obviously, a
lower number of segments is helpful in reducing the tree depth.
Besides, we make a further investigation on the segment mea-
sure, i.e., |S1|/|S||Seg(S1; xji)| + |S2|/|S||Seg(S2; xji)|. Given

two different CCPs, i.e., x1 and x2, suppose they have the
same information gain ratio, as well as the same number of
segments after splitting, i.e., |Seg(S1; x1)| + |Seg(S2; x1)| =
|Seg(S1; x2)| + |Seg(S2; x2)|. As demonstrated in Fig. 5, a
larger number of examples corresponds to a larger expected
number of segments, thus we further assume:

1) |S1|/|S| = 0.1, |S2|/|S| = 0.9, |Seg(S1; x1)| = 1 and
|Seg(S2; x1)| = 9 for x1;

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1271

(a) (b)

Fig. 7. Two DTs with different depths. (a) Tree with larger depth. (b) Tree
with lower depth.

2) |S1|/|S| = 0.5, |S2|/|S| = 0.5, |Seg(S1; x2)| = 5 and
|Seg(S2; x2)| = 5 for x2.

Then, we have |S1|/|S||Seg(S1; x1)| +
|S2|/|S||Seg(S2; x1)| = 0.82 and |S1|/|S||Seg(S1; x2)| +
|S2|/|S||Seg(S2; x2)| = 0.5. Obviously, x2 is preferred to x1.
This observation demonstrates that the segment measure tends
to select the CCP with two equally balanced sets, as a result,
the tree depth is reduced. A simple illustration is shown in
Fig. 7, where x1 may induce a DT similar to Fig. 7(a) and x2
may induce a DT similar to Fig. 7(b).

2) Observation 2: The segment based methods can also
achieve reductions on the number of nodes, but the absolute
reduction scales are much smaller than those on the tree depth.
Five typical cases could be found. First, as shown in Fig. 6(g),
the number of nodes for dataset Heart decreases gradually with
K̂ increases in the front part of the figure, and attains the mini-
mum when K̂ = 15, then becomes increasing in the latter part.
Similar trends could also be found for many other datasets, e.g.,
Haberman, Australian, German, Bupa, Pima, SPECTF, Vowel,
and Yeast. Second, as shown in Fig. 6(j) and (o), the numbers
of nodes for datasets Wpbc and Sonar keep decreasing in the
whole process, which indicate that the K̂ value that can achieve
the maximum reduction on node number may be larger than
50. Third, as shown in Fig. 6(n) and (r), the numbers of nodes
for datasets CT and Libras have no obvious change. Although
the tree depth is largely reduced, the number of nodes can-
not be reduced any more by the segment measure. Forth, as
shown in Fig. 6(c) and (i), the numbers of nodes for datasets
Cancer and Wdbc fluctuate in the whole process, with no
clear and explicit trend. Finally, as shown in Fig. 6(b) and (q),
the segment based method does not achieve any reduction,
but leads to an increase on the number of nodes for datasets
Ionosphere and Ecoli. We now try to find out the reason for the
different cases. Fig. 8 demonstrates the standard deviation of
the segment based measure values, i.e., |S1|/|S||Seg(S1; xji)|+
|S2|/|S||Seg(S2; xji)|, of the K̂ considered CCPs when split-
ting the root-node for datasets CT, Ionosphere, Heart, Pima,
Transfusion, and Australian. Similar results could also be found
when splitting other nodes. It is easy to observe that this stan-
dard deviation is large on datasets Heart, Pima, Transfusion,
and Australian. In this case, the considered CCPs have quite
different segment information, and choosing the one with the
minimum value can obviously reduce the number of nodes.
While this standard deviation is much smaller on datasets CT
and Ionosphere, and has no obvious increase even when K̂

Fig. 8. Standard deviation of segment based measure values of the K̂
considered CCPs when splitting the root-node.

becomes large. That is to say, the considered CCPs have very
close segment information. Distinguishing them is not effec-
tive enough to reduce the number of nodes, at the worst, it
may lead to an increase on this number.

3) Observation 3: In general, the training and testing accu-
racies keep a stable trend. On most datasets, the training
accuracy is slightly decreased, and the testing accuracy is slightly
increased. This observation demonstrates that incorporating the
segment measure may be helpful for tackling the over-fitting
problem. However, this statement does not hold for dataset
Ionosphere in Fig. 6. In this case, when the considered CCPs
have very close segment information, the proposed method is
not effective in both size reduction and accuracy improvement.

In conclusion, on most datasets, an appropriate value of K̂
can not only improve the generalization capability, but can
also reduce the size of tree, which is crucial to improve the
testing efficiency.

The best K̂ values among {2, 4, 6, 8, 10, 15, 20, 30, 40, 50}
for method Segment+C4.5 are listed in the last column of
Table III. With these K̂ values, Table IV summarizes the
average testing accuracy and standard deviation of the cross-
validation results of the eight heuristic methods, where the
highest testing accuracy is marked with

√
for each dataset. It

is observed that methods IDE3, C4.5, CART, SIN, Segment,
and Segment+C4.5 can respectively perform best on 3, 1,
2, 1, 1, and 12 datasets out of 20. Among them, method
Segment+C4.5 gives the best average result. Furthermore, ↑
and � are used to demonstrate that whether incorporating
the segment measure can improve the performance of single
frequency based method. Clearly, Segment+C4.5 has higher
accuracy than C4.5 on 19 datasets out of 20, it only fails to
improve the performance on dataset Ionosphere. Besides, it is
observed that method Segment gives the lowest average result,
it performs very bad in most cases, and only gives satisfactory
performance on dataset German. That is to say, the frequency
based heuristic is crucial and important for inducing a high-
performance tree. The proposed segment measure serves as an
assistant to improve the capability of the frequency measure.
It is only valid with certain constraint and threshold, which is
reflected by the parameter K̂ in Algorithm 3.

Table V reports the average tree depth and number of nodes
induced by the eight heuristic methods. For each dataset, the
minimum values are highlighted in bold face. It can be seen

1272 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

TABLE III
SELECTED DATASETS FOR PERFORMANCE COMPARISON

TABLE IV
COMPARISONS OF DIFFERENT DT INDUCTION HEURISTICS: TESTING ACCURACY

that the methods that achieve the smallest tree depth and node
number on different datasets are quite different. In fact, each
method can induce the smallest tree in some cases. Among
them, CART gives the lowest average value. However, the
comparison between C4.5 and Segment+C4.5 is clear. In the
last two columns of Table V, ↓ and � are used to demon-
strate that whether method Segment+C4.5 can reduce the tree
size of its single frequency based method C4.5. Obviously,
depth reduction is achieved on 19 datasets out of 20, and node
number reduction is achieved on 18 datasets out of 20.

The average reduction scale of tree size and the average
improvement of testing accuracy on the 20 datasets are listed
in Table VI.

Finally, we make some statistical tests on the testing accu-
racies listed in Table IV. Paired Wilcoxon’s signed rank test
is performed, which is a famous nonparametric statistical
hypothesis test for assessing that whether there exists signifi-
cant difference between the elements of two sets, or whether
one of two groups of independent observations tends to have
larger values than the other. With an unknown distribution,
the Wilcoxon’s signed rank test is safer and more rational
than the t-test. The corresponding p values are reported in
Table VII, and the significance level 0.05 is adopted. If the
p value is smaller than 0.05, the two referred methods are
considered as statistically different. It can be seen that in
some cases, the six single frequency based methods, i.e.,

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1273

TABLE V
COMPARISONS OF DIFFERENT DT INDUCTION HEURISTICS: TREE SCALE

TABLE VI
AVERAGE REDUCTION SCALE OF TREE SIZE AND AVERAGE

IMPROVEMENT OF TESTING ACCURACY OF Segment+C4.5 OVER C4.5

TABLE VII
PAIRED WILCOXON’S SIGNED RANK TESTS OF TESTING

ACCURACIES (p VALUES)

IDE3, C4.5, CART, SIN, SQRT, and PSIN, are of no signifi-
cant difference. However, all of them are statistically different
from Segment+C4.5 and Segment. Besides, Segment+C4.5
and Segment are also statistically different. Furthermore, in
order to validate that whether the several methods are statisti-
cally different from all each other, Friedman test is conducted,
where the p value is 2.7166×e−9, which is much smaller than
0.05. These observations strongly attest to the effectiveness of
the proposed scheme.

VI. CONCLUSION

Traditional DT induction models with continuous valued
attributes only consider the frequencies of classes, which fail
to differentiate the CCPs with the same or approximately

equal splitting performance. In order to tackle this problem,
the concept of segment is proposed in this paper. Theoretical
analysis demonstrates that the expected number of segments,
which is considered as the expectation of a random vari-
able, has the common features of frequency based measures
such as information entropy and Gini-index. The hybrid of
frequency and segment is then used as a measure to split
nodes. Empirical studies clearly demonstrate that the pro-
posed method is effective in both improving the generalization
capability and reducing the tree size.

Several possible research issues regarding this topic are
listed as follows.

1) The performance of the proposed method is influenced
by the parameter K̂. The optimal value of K̂ differs a
lot on different datasets. Thus, it is necessary to discuss
how to get the optimal K̂ value adaptively according to
the characteristics of a given training set.

2) As analyzed in Section IV-C, the expected number of
segment is regarded as a random variable. It is affected
by the number of examples and the frequencies of
classes in the node. It might be useful to find an analytic
expression for this expectation in general case, which
only relies on the frequencies of classes.

3) It might be interesting to extend the work to multi-
splitting environment with mixed types of attributes.
Consequently, the related analysis will be more com-
plicated.

APPENDIX

A. Description

Consider a binary classification problem, let S be a set with
N examples, and the frequency of positive class is p. Clearly,
different distributions of these examples will produce different
numbers of segments.

1274 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 7, JULY 2015

B. Problem

Given a positive integer ξ , where ξ can take values of
2, 3, . . . , M(p, N) and M(p, N) is give in (14), how many
distributions of examples in S will produce ξ segments?

C. Solution

Note that all the examples of a segment must belong to the
same class: + or −. If all examples belong to the positive
class, then we call the segment a positive segment denoted
by ⊕. If all examples belong to the negative class, then we
call it a negative segment denoted by ⊗.

No matter how to rank these examples, the distribution of
segments must be one of the following cases.

1) The first segment is a positive segment:
⊕,⊗,⊕,⊗,⊕,⊗,

2) The first segment is a negative segment:
⊗,⊕,⊗,⊕,⊗,⊕,

Let ξ+ denotes the number of positive segments and ξ−
denotes the number of negative segments. Then the following
holds.

1) ξ+ = ξ− = ξ/2 when ξ is even.
2) ξ+ = (ξ + 1)/2 and ξ− = (ξ − 1)/2 when ξ is odd and

the first segment is positive.
3) ξ+ = (ξ − 1)/2 and ξ− = (ξ + 1)/2 when ξ is odd and

the first segment is negative.
If P and Q are the numbers of ways to separate positive and

negative examples into their corresponding segments, then the
number of distributions is P · Q.

Let k = (ξ − ξ%2)/2, and Group(M, k) denotes the num-
ber of ways to separate M examples into k groups. Then, the
number of distributions for ξ segments is

T(ξ) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Group (pN, k) · Group ((1 − p)N, k)
when ξ = 2k

Group (pN, k + 1) · Group ((1 − p)N, k)+
Group (pN, k) · Group ((1 − p)N, k + 1)

when ξ = 2k + 1, pN > k, (1 − p)N > k

Group (pN, k + 1) · Group ((1 − p)N, k)
when ξ = 2k + 1, (1 − p)N = k

Group (pN, k) · Group ((1 − p)N, k + 1)

when ξ = 2k + 1, pN = k.

(19)

Based on the above discussions, the problem is simplified to
get the number of ways to separate M examples into k groups.
We first suppose that the M examples are in fixed order. In
this case, the problem is further transferred to insert k − 1
separating marks into the M examples. Obviously, this equals
to select k − 1 inserting positions from the M − 1 positions
that are between any two adjacent examples in this order. As
a result, the number of ways to separate M ordered examples
into k groups could be derived as

Group(M, k) = Ck−1
M−1

where C represents the combination. By further considering
the different ranking orders of the M examples, we get

Group(M, k) = AM
MCk−1

M−1 (20)

where A represents the permutation.
Finally, by applying (19) and (20), we get (16).

REFERENCES

[1] M. F. Amasyah and O. Ersoy, “Cline: A new decision-tree family,” IEEE
Trans. Neural Netw., vol. 19, no. 2, pp. 356–363, Feb. 2008.

[2] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “A
comparison of decision tree ensemble creation techniques,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 173–180, Jan. 2007.

[3] F. Berzal, J. C. Cubero, N. Marın, and D. Sánchez, “Building multi-
way decision trees with numerical attributes,” Inf. Sci., vol. 165, no. 1,
pp. 73–90, 2004.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Occam’s razor,” Inf. Process. Lett., vol. 24, no. 6, pp. 377–380, 1987.

[5] M. Boullé, “Khiops: A discretization method of continuous attributes
with guaranteed resistance to noise,” in Proc. 3rd Mach. Learn. Data
Mining (MLDM), Leipzig, Germany, 2003, pp. 50–64.

[6] M. Boullé, “MODL: A Bayes optimal discretization method for contin-
uous attributes,” Mach. Learn., vol. 65, no. 1, pp. 131–165, 2006.

[7] L. Breiman, L. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. Belmont, CA, USA: Wadsworth
International Group, 1984.

[8] W. Buntine and T. Niblett, “A further comparison of splitting rules for
decision-tree induction,” Mach. Learn., vol. 8, no. 1, pp. 75–85, 1992.

[9] B. Chandra and P. Paul Varghese, “Fuzzy SLIQ decision tree algo-
rithm,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 5,
pp. 1294–1301, Oct. 2008.

[10] B. Chandra and P. Paul Varghese, “Moving towards efficient decision
tree construction,” Inf. Sci., vol. 179, no. 8, pp. 1059–1069, 2009.

[11] M. Dong and R. Kothari, “Look-ahead based fuzzy decision tree induc-
tion,” IEEE Trans. Fuzzy Syst., vol. 9, no. 3, pp. 461–468, Jun. 2001.

[12] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsuper-
vised discretization of continuous features,” in Proc. 12th Int. Conf.
Mach. Learn. (ICML), San Mateo, CA, USA: Morgan Kaufmann, 1995,
pp. 194–202.

[13] T. Elomaa and J. Rousu, “General and efficient multisplitting of
numerical attributes,” Mach. Learn., vol. 36, no. 3, pp. 201–244, 1999.

[14] U. M. Fayyad and K. B. Irani, “On the handling of continuous-valued
attributes in decision tree generation,” Mach. Learn., vol. 8, no. 1,
pp. 87–102, 1992.

[15] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning,” in Proc. 13th
Int. Joint Conf. Artif. Intell. (IJCAI), Chambery, France, 1993,
pp. 1022–1027.

[16] S. R. Gaddam, V. V. Phoha, and K. S. Balagani, “K-means+ID3: A novel
method for supervised anomaly detection by cascading K-means cluster-
ing and ID3 decision tree learning methods,” IEEE Trans. Knowl. Data
Eng., vol. 19, no. 3, pp. 345–354, Mar. 2007.

[17] H. W. Hu, Y. L. Chen, and K. Tang, “A dynamic discretization approach
for constructing decision trees with a continuous label,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 11, pp. 1505–1514, Nov. 2009.

[18] Q. Hu et al., “Rank entropy based decision trees for monotonic classifi-
cation,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 11, pp. 2052–2064,
Nov. 2012.

[19] Z. Huang, T. D. Gedeon, and M. Nikravesh, “Pattern trees induction:
A new machine learning method,” IEEE Trans. Fuzzy Syst., vol. 16,
no. 4, pp. 958–970, Aug. 2008.

[20] E. Hullermeier and S. Vanderlooy, “Why fuzzy decision trees are good
rankers,” IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1233–1244,
Dec. 2009.

[21] E. B. Hunt, J. Marin, and P. J. Stone, Experiments in Induction. New
York, NY, USA: Academic Press, 1966.

[22] L. A. Kurgan and K. J. Cios, “CAIM discretization algorithm,” IEEE
Trans. Knowl. Data Eng., vol. 16, no. 2, pp. 145–153, Feb. 2004.

[23] R. J. Lewis, “An introduction to classification and regression
tree (CART) analysis,” in Proc. Annu. Meeting Soc. Acad. Emerg. Med.,
San Francisco, CA, USA, 2000, pp. 1–14.

[24] C. T. Lin et al., “Genetic algorithm-based neural fuzzy decision tree for
mixed scheduling in ATM networks,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 32, no. 6, pp. 832–845, Dec. 2002.

WANG et al.: SEGMENT BASED DT INDUCTION WITH CONTINUOUS VALUED ATTRIBUTES 1275

[25] X. Liu, X. Feng, and W. Pedrycz, “Extraction of fuzzy rules from fuzzy
decision trees: An axiomatic fuzzy sets (AFS) approach,” Data Knowl.
Eng., vol. 84, pp. 1–25, Mar. 2013.

[26] X. Liu and W. Pedrycz, “The development of fuzzy decision trees in
the framework of axiomatic fuzzy set logic,” Appl. Soft Comput., vol. 7,
no. 1, pp. 325–342, 2007.

[27] S. Lomax and S. Vadera, “A survey of cost-sensitive decision tree
induction algorithms,” ACM Comput. Surv., vol. 45, no. 2, p. 16, 2013.

[28] N. Manwani and P. S. Sastry, “Geometric decision tree,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 42, no. 1, pp. 181–192, Feb. 2012.

[29] J. K. Martin, “An exact probability metric for decision tree splitting and
stopping,” Mach. Learn., vol. 28, no. 2, pp. 257–291, 1997.

[30] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A fast scalable classifier
for data mining,” in Proc. 5th Int. Conf. Ext. Database Technol. (EDBT),
Avignon, France, 1996, pp. 18–32.

[31] T. M. Mitchell, “The need for biases in learning generalizations,” Dep.
Comput. Sci., Lab. Comput. Sci. Res., Rutgers Univ., Tech. Rep. CBM-
TR-117, 1980.

[32] W. Pedrycz and Z. A. Sosnowski, “Genetically optimized fuzzy deci-
sion trees,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 3,
pp. 633–641, Jun. 2005.

[33] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[34] J. R. Quinlan, “Improved use of continuous attributes in C4.5,” J. Artif.
Intell. Res., vol. 4, pp. 77–90, Mar. 1996.

[35] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A scalable parallel
classifier for data mining,” in Proc. 22nd Int. Conf. Very Large Data
Bases (VLDB), 1996, pp. 544–555.

[36] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55,
2001.

[37] Y. Sheng, V. V. Phoha, and S. M. Rovnyak, “A parallel decision tree-
based method for user authentication based on keystroke patterns,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 4, pp. 826–833,
Aug. 2005.

[38] S. Tsang, B. Kao, K. Y. Yip, W. S. Ho, and S. D. Lee, “Decision
trees for uncertain data,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 1,
pp. 64–78, Jan. 2011.

[39] M. van Diepen and P. H. Franses, “Evaluating chi-squared automatic
interaction detection,” Inf. Syst., vol. 31, no. 8, pp. 814–831, 2006.

[40] X. Z. Wang, L. C. Dong, and J. H. Yan, “Maximum ambiguity-based
sample selection in fuzzy decision tree induction,” IEEE Trans. Knowl.
Data Eng., vol. 24, no. 8, pp. 1491–1505, Aug. 2012.

[41] X. Z. Wang, D. S. Yeung, and E. C. C. Tsang, “A comparative study on
heuristic algorithms for generating fuzzy decision trees,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 31, no. 2, pp. 215–226, Apr. 2001.

[42] X. Z. Wang, H. Q. Zhao, and S. Wang, “The study of unstable cut-point
decision tree generation based-on the partition impurity,” in Proc. 8th
Int. Conf. Mach. Learn. Cybern., Baoding, China, 2009, pp. 1891–1897.

[43] L. Wilkinson, “Tree structured data analysis: AID, CHAID and
CART,” in Proc. Sawtooth Softw. Conf., Sun Valley, ID, USA, 1992,
pp. 431–444.

Ran Wang (S’09–M’14) received the B.Sc.
degree in computer science from the College
of Information Science and Technology, Beijing
Forestry University, Beijing, China, in 2009, and
the Ph.D. degree from the City University of Hong
Kong, Hong Kong, in 2014.

She is currently a Post-Doctoral Senior Research
Associate with the Department of Computer Science,
the City University of Hong Kong. She is also
an Assistant Researcher with the Shenzhen Key
Laboratory for High Performance Data Mining,

Shenzhen, China, the Shenzhen Institutes of Advanced Technology, Shenzhen,
and the Chinese Academy of Sciences, Beijing, in 2014. Her current research
interests include pattern recognition, machine learning, fuzzy sets and fuzzy
logic, and their related applications.

Sam Kwong (M’93–SM’04–F’13) received the
B.Sc. and M.S. degrees in electrical engineering
from the State University of New York, Buffalo,
NY, USA, and the University of Waterloo, Waterloo,
ON, Canada, in 1983 and 1985, respectively, and the
Ph.D. degree from the University of Hagen, Hagen,
Germany, in 1996.

From 1985 to 1987, he was a Diagnostic
Engineer with Control Data Canada, Mississauga,
ON, Canada. He joined Bell Northern Research
Canada as a member of Scientific Staff. In 1990,

he became a Lecturer with the Department of Electronic Engineering, the
City University of Hong Kong, Hong Kong, where he is currently a Professor
and the Head of the Department of Computer Science. His current research
interests include evolutionary computation, video coding, pattern recognition,
and machine learning.

Dr. Kwong is an Associate Editor of the IEEE TRANSACTIONS ON

INDUSTRIAL ELECTRONICS, the IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, and the Information Sciences journal.

Xi-Zhao Wang (M’03–SM’04–F’12) received the
Ph.D. degree in computer science from the Harbin
Institute of Technology, Harbin, China, in 1998.

Since 2001, he has been a Full Professor and the
Dean of the College of Mathematics and Computer
Science, Hebei University, Hebei, China. From
1998 to 2001, he was a Research Fellow with the
Department of Computing, Hong Kong Polytechnic
University, Hong Kong. Since 2014, he is also a
Professor with the College of Computer Science
and Software Engineering, Shenzhen University,

Shenzhen, China. His current research interests include supervised and unsu-
pervised learning, active learning, reinforcement learning, manifold learning,
transfer learning, unstructured learning, uncertainty, fuzzy sets and systems,
fuzzy measures and integrals, rough set, and learning from big data.

Dr. Wang was the recipient of several awards from the IEEE SMC Society.
He is a member of the Board of Governors of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC) in 2005, 2007–2009,
and 2012–2014, the Chair of the Technical Committee on Computational
Intelligence of the IEEE SMC, and a Distinguished Lecturer of the IEEE
SMC. He was the Program Co-Chair of the IEEE SMC, in 2009 and 2010.
He is an Editor-in-Chief of the International Journal of Machine Learning
and Cybernetics. He is also an Associate Editor of the IEEE TRANSACTIONS

ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, the
Information Sciences journal, and the International Journal of Pattern
Recognition and Artificial Intelligence.

Qingshan Jiang received the Ph.D. degrees in
mathematics and computer science from Chiba
University, Chiba, Japan, and from the University of
Sherbrooke, Sherbrooke, QC, Canada, in 1996 and
2002, respectively.

He is a Professor with the Shenzhen Key
Laboratory for High Performance Data Mining,
Shenzhen, China, Shenzhen Institutes of Advanced
Technology, Shenzhen, and the Chinese Academy
of Sciences, Beijing, China. He has been a Professor
with Xiamen University, Xiamen, China, since 2003.

In 1999, he was a Post-Doctoral Fellow with the Fields Institute for Research
in Mathematical Sciences, University of Toronto, Toronto, ON, Canada. His
current research interests include pattern recognition, data mining, image
processing, statistical analysis, and fuzzy logic.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

