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Abstract—The generalization ability of a classifier learned from1

a training set is usually dependent on the classifier’s uncertainty,2

which is often described by the fuzziness of the classifier’s outputs3

on the training set. Since the exact dependency relation between4

generalization and uncertainty of a classifier is quite compli-5

cated, it is difficult to clearly or explicitly express this relation in6

general. This paper shows a specific study on this relation from7

the viewpoint of complexity of classification by choosing extreme8

learning machines as the classification algorithms. It concludes9

that the generalization ability of a classifier is statistically becom-10

ing better with the increase of uncertainty when the complexity11

of the classification problem is relatively high, and the general-12

ization ability is statistically becoming worse with the increase13

of uncertainty when the complexity is relatively low. This paper14

tries to provide some useful guidelines for improving the gener-15

alization ability of classifiers by adjusting uncertainty based on16

the problem complexity.17

Index Terms—Complexity of classification, extreme learning18

machine, generalization, uncertainty.19

I. INTRODUCTION20

CLASSIFICATION problem, as the central part in the21

fields of pattern recognition and data mining, refers22

to a task of assigning objects to one of several predefined23

class labels. Given a set of objects, the mathematical24

model of classification problem is a discrete-valued func-25

tion that maps each object to a class label. Usually, the26

process of determining the discrete-valued function from a27
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training set is called learning while the process of using 28

the determined function to classify a new object is called 29

reasoning [1]–[5]. 30

For a classification problem with c classes, the reason- 31

ing result is generally a c-dimensional vector. According to 32

the output forms of the reasoning process, existing learning 33

algorithms can be classified into two categories. In one cate- 34

gory, the c-dimensional output vector contains one component 35

of value 1 and other components of value 0. In this situa- 36

tion, the class label corresponding to the component 1 will 37

be the reasoning result. This kind of algorithms are known 38

as crisp-output algorithms, such as traditional support vector 39

machine (SVM) [6]–[10], decision tree (DT) [11], [12], etc. 40

In the other category, the c-dimensional output vector con- 41

tains components of real values within the interval [0, 1]. In 42

this situation, the class label corresponding to the maximum 43

component will be the reasoning result. If the maximum is 44

attained at more than one component, a special strategy will be 45

designed to determine the final result. This kind of algorithms 46

are acknowledged as uncertain-output algorithms, such as 47

k-nearest neighbor [2], Bayesian probability model [2], back- 48

propagation (BP) methods for training feed-forward neural 49

networks [13]–[16], etc. 50

Obviously, crisp-output algorithms are special cases of 51

uncertain-output algorithms. If an algorithm belongs to the 52

crisp category, then it belongs to the uncertain category, 53

however, it is not true conversely. Most crisp-output algo- 54

rithms can be extended to uncertain-output algorithms, such 55

as fuzzy SVM [17], fuzzy DT [18], etc. In this paper, we 56

will intensively investigate the uncertain-output algorithms, 57

which highlight the argument that uncertainty does exist in 58

the learning and reasoning processes. 59

On the other hand, generalization of a classifier is defined 60

as the rate of the correctly classified objects that are not in 61

the training set. It is the most important index for evaluating a 62

classification algorithm since the ultimate goal for developing 63

a classification model is to achieve high prediction accuracy 64

on unseen cases. Usually, the generalization of a classifier 65

depends on multiple factors. 66

1) The mathematical model, which has a direct impact on 67

both the training accuracy and testing accuracy. 68

2) The algorithm for training the model parameters, which 69

is sensitive to the prediction results. 70
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3) The data distribution: In supervised learning, there is71

a fundamental assumption that the training data has72

the same distribution as the testing data. The learning73

scheme that does not follow this fundamental assump-74

tion is referred to as transfer learning [19], which is out75

of the scope of this paper.76

Many research efforts have been made to improve the gen-77

eralization of a classifier by considering different factors.78

In this paper, we consider a particular model parameter,79

i.e., the uncertainty of the classifier’s outputs, which has been80

proven in [20] to have a close relationship with the gen-81

eralization of classifier. It has been shown in [20] that the82

uncertainty of the classifier’s outputs has a close relationship83

with the generalization capability. However, this relation-84

ship is difficult to express explicitly for general cases. In85

order to further investigate this relationship, in this paper,86

we take into account a new index, i.e., complexity of clas-87

sification, which can be measured in different ways [21]. To88

the best of our knowledge, this paper makes a first attempt89

to investigate the relationship between generalization and90

uncertainty of a classifier by incorporating the complexity of91

classification.92

In addition, choosing an appropriate classification algorithm93

is also an important issue to conduct this research. It is note-94

worthy that any uncertain-output algorithm can be used to95

study the relationship between generalization and uncertainty.96

As the commonly used classification model for various prac-97

tical problems, feed-forward neural networks will be adopted.98

The most notable algorithm to train a feed-forward neural net-99

work is BP. Although it has been proved in [15] and [16]100

that BP network has the ability to approximate any contin-101

uous function with arbitrary precision, it is often criticized102

to have the problems of slow convergence speed and local103

minima. In order to overcome these deficiencies, extreme lean-104

ing machine (ELM) has been proposed as a new training105

algorithm for single-hidden layer feed-forward neural net-106

work (SLFN) [22]. Differentiating from BP that iteratively107

tunes the weight parameters by gradient descent technique,108

ELM randomly chooses the weight parameters between input109

and hidden layers and analytically solves the weight parame-110

ters between hidden and output layers through Moore–Penrose111

generalized inverse [44]–[48]. Due to the extremely fast train-112

ing speed and good prediction performance, ELM has been113

investigated intensively and extensively in the machine learn-114

ing and data mining communities [23]–[26]. Based on the115

aforementioned advantages, we will adopt ELM as the classi-116

fication algorithm in this paper. The major theoretical issues117

of ELM can be found in [27] and [28], and the applications118

of ELM to different areas, such as sparse representation can119

be found in [29] and [30].120

The rest of this paper is organized as follows. Section II121

reviews ELMs. Section III introduces the dependency rela-122

tion between generalization and uncertainty of classifiers.123

Section IV discusses the complexity of classification problems.124

Section V analyzes the relationship between generalization and125

uncertainty by incorporating a complexity index. Experiments126

are conducted in Section VI. Finally, conclusions are given in127

Section VII.128

II. EXTREME LEARNING MACHINE 129

This section will introduce ELM, which is a noniterative 130

training algorithm for SLFNs. 131

A. Training of ELM 132

A standard SLFN for classification is a discrete function 133

mapping samples to class labels. Given a training set that 134

contains N arbitrarily distinct samples X = {(xi, ti)}N
i=1 ⊂ 135

Rn × {0, 1}c, where xi = [xi1, xi2, . . . , xin] is the ith training 136

sample, ti = [ti1, ti2, . . . , tic] is the label vector of xi, n is 137

the number of features, and c is the number of classes. An 138

SLFN with ˜N hidden nodes and activation function g(x) can 139

be expressed as 140

˜N
∑

j=1

βjg
(

wj · xi + bj
) = ti, i = 1, 2, . . . , N (1) 141

where wj = [wj1, wj2, . . . , wjn] is the weight linking the input 142

nodes to the jth hidden node, bj is the bias of the jth hidden 143

node, βj is the weight linking the jth hidden node to the out- 144

put nodes, and sigmoid function g(x) = (1/[1 + exp(−x)]) is 145

selected as the activation function. 146

In ELMs, the input weights wj and biases bj are randomly 147

chosen, and the learning can be formulated as a minimum 148

optimization problem with a regularized term 149

minβ

{

||T − Hβ||22 + μ||β||22
}

, μ > 0 (2) 150

where H is the hidden layer output matrix denoted as 151

H(w1, w2, . . . , w
˜N, b1, b2, . . . , b

˜N, x1, x2, . . . , xN) 152

=
⎡

⎢

⎣

g(w1 · x1 + b1) · · · g
(

w
˜N · x1 + b1

)

...
. . .

...

g(w1 · xN + b1) · · · g
(

w
˜N · xN + b

˜N

)

⎤

⎥

⎦

N×˜N

(3) 153

and T is the label matrix denoted as 154

T =
⎡

⎢

⎣

t1
...

tN

⎤

⎥

⎦

N×c

. (4) 155

The optimal estimation of output weights β∗ can be formu- 156

lated as a regularized least square problem 157

β ∗̃
N×c = (

HTH + μI
)−1

HTT (5) 158

where I is the identity matrix of suitable dimension and μ is 159

the regularizing factor. 160

To this end, all the parameters {w, b, β} in ELM have been 161

fixed, and the training process is finished. 162

ELMs have been proved to have the universal approxima- 163

tion capabilities [31] although the training process does not 164

include any iteration. Under the assumption of smoothness of 165

the underlying function, the universal approximation capabil- 166

ity of ELMs can be guaranteed by providing a sufficiently 167

large number of hidden nodes with certain range of w and b. 168

In comparison with BP algorithm, ELMs have a much faster 169

training speed due to the noniterative mechanism. References 170

show that ELMs can finish the training process thousands of 171

times faster than BP in some scenarios, at the same time, an 172
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acceptable learning accuracy is kept. The advantages and dis-173

advantages of ELMs are listed in Appendix A. Furthermore,174

one can find many improved versions for ELMs. The com-175

putation of weights between hidden and output layers can176

be improved through an optimization algorithm given by177

Deng et al. [32] in order to avoid over-fitting. Rong et al. [33]178

offered a pruned ELM in which the corresponding nodes179

can be removed according to the information gain to reduce180

the correlation among classes in a large network structure.181

Feng et al. [34] proposed an EM-ELM in which the weights182

are not updated when a node is added, and the algorithm183

can update the weights and adjust the network at the same184

time. Furthermore, it is found that ELMs can online deal with185

sequential data successfully [35].186

B. Generalized Inverse and Normal Equations187

In ELMs, the weights between hidden and output layers are188

calculated by the generalized inverse [36]. We briefly review189

some connections between the generalized inverse and the nor-190

mal equations. Originally, the training of ELMs contains two191

parts. The first is to randomly assign values in a specified192

interval to the weights between the input and hidden layers193

while the second is to determine the weights between the hid-194

den and output layers by computing the generalized inverse195

of the matrix H as β∗ = H†T. It is the minimum norm and196

minimum least square solution of the system of linear matrix197

equations Hβ = T. It is easy to prove that, if the matrix H is198

of full-rank, the solution of normal equation HTHβ = HTT199

is identical to β∗ = H†T.200

Noting that in Section II-A, the training process of ELMs is201

written as β∗ = (HTH+μI)−1HTT, where μ is a regularizing202

factor. This formula is identical to β∗ = H†T if the regulariz-203

ing factor takes value zero. It is proven in [24] that the matrix204

H is of full-rank with probability 1, and therefore, we can say205

that the solution of normal equation H THβ = HTT is avail-206

able with probability 1. In fact, the regularizing factor, which207

makes the solved weights as small as possible, has the effect208

to become the matrix H full of rank.209

Practically the number of rows is much larger than the210

number of columns for an input data matrix. It implies that211

the transformation from computing β∗ = H†T to solving212

the normal system of linear matrix equations HTHβ = HTT213

can save much computational load, since the order of H is214

N × ˜N but the order of HTT is ˜N × c, where N is the215

number of input samples, ˜N is the number of hidden layer216

nodes, and c is the number of classes. A lot of numeri-217

cal experiments have confirmed this saving of computational218

load.219

III. DEPENDENCY RELATION BETWEEN220

GENERALIZATION AND UNCERTAINTY221

OF CLASSIFIERS222

In this section, we will introduce the generalization and223

uncertainty of a classifier. The dependency relation between224

generalization and uncertainty is then discussed.225

A. Generalization and Uncertainty 226

Generally speaking, the purpose of learning is to acquire 227

the knowledge hidden in the data. Knowledge representation, 228

which has been well acknowledged as a bottle-neck problem 229

in machine learning and artificial intelligence for many years, 230

does not have a general definition but has many specific forms. 231

A mathematical model, such as a set of IF-THEN rules or a 232

neural network learned from a training set, can be regarded 233

as a typical form of knowledge representation. The ability 234

or performance of the learned model to predict unseen cases 235

(which are not within the training set) is called generalization. 236

Let S be a finite space of samples, F(x) be a discrete-valued 237

function defined on S, and X be a subset of S. Based on values 238

of F(x) in X, an estimator function f (x) defined on S is given 239

by using a training algorithm. The discrete-valued function 240

f (x) has the same value range as F(x). Usually we call f (x) 241

as a classifier trained by the algorithm on X. 242

Definition 1: The generalization of classifier f (x) is 243

defined as 244

G(f ) = |{x : x ∈ S − X, F(x) = f (x)}|
|S − X| (6) 245

where | | denotes the number of elements in a set. 246

Generalization is the most important index of evaluating 247

a learned model. From mathematical viewpoint, the task of 248

learning is to find a function f (x) through a training set 249

X = {(xi, ti)}N
i=1 ⊂ Rn × {0, 1}c such that f (x) can well 250

approximate the objective function F(x) both at training cases 251

and unseen cases. The difference between F(x) and f (x) is 252

called generalization error, which can be measured from differ- 253

ent angles. One method is to estimate an upper bound for it, the 254

other is to compute R = ∫

S [F(x) − f (x)]2p(x)dx, where p(x) 255

is the probability density function of input x. Experimentally, 256

the generalization can be measured by the prediction accuracy 257

of the classifier on a testing set. 258

Multiple factors have critical impacts on the generalization 259

of a classifier. 260

1) Model Selection: It is hard to select the most appropriate 261

model for a given classification task. When the training 262

data is fixed, the generalizations of two models might 263

be quite different. This is due to the data distribution, 264

i.e., a model suitable for one type of data may not be 265

appropriate for another type of data. 266

2) Training Algorithm: When a model is fixed, the subse- 267

quent work is to train the model parameters based on a 268

training set. A model with a set of trained parameters 269

has the generalization quite different from the model 270

with another set of trained parameters. 271

3) Representatives of Training Data: Since both the objec- 272

tive function and its approximating function are defined 273

on a space S, one problem is that the training set 274

X should be a reasonable sampling of the space S, 275

which directly relates to the fundamental assumption of 276

machine learning that the training set has an identical 277

distribution as the testing set has. 278

4) Model Knowledge Parameters: Different from the 279

parameters inside the model that are acquired directly 280
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from the training process, model knowledge parame-281

ters do not explicitly appear in the model, which are282

usually evaluated after the training process. For exam-283

ple, the uncertainty of classifier’s outputs is a typical284

model knowledge parameter. The relationship between285

generalization and uncertainty of a classifier is initially286

demonstrated in [20]. This paper will conduct further287

studies on this relationship through incorporating a new288

index, i.e., complexity of classification.289

B. Fuzziness of Classifier’s Outputs290

In this paper, we use fuzziness to depict the uncertainty291

of a classifier’s outputs. The term “fuzziness,” in conjunc-292

tion with the concept of fuzzy set, was first mentioned by293

Zadeh [37]. He also generalized a probability measure of294

events that cannot be described by sharply defined collection295

of points, and suggested using entropy in information the-296

ory to interpret the uncertainty associated with a fuzzy event.297

De Luca and Termini [38] for the first time clearly proposed298

three properties that a fuzziness measure should satisfy. The299

term fuzziness can be interchangeable with “ambiguity” in300

some scenarios. Klir et al. [39], [40] stated that fuzziness and301

ambiguity gave two cognitive uncertainty measures.302

As stated in [41], the fuzziness of a fuzzy set μ can be303

measured by a mapping E(μ):F(S) → [0,∞] where F(S)304

denotes the space of all fuzzy sets defined on S, satisfying305

the following axioms.306

1) E(μ) = 0 if and only if μ is a crisp set.307

2) E(μ) attains its maximum value if and only if ∀x ∈308

S: μ(x) = 0.5.309

3) If μ ≤s σ , then E(μ) ≥ E(σ ), where ≤s is defined as310

μ≤sσ ⇔ min(0.5, μ(x)) ≥ min(0.5, σ (x))311

max(0.5, μ(x)) ≤ max(0.5, σ (x)).312

4) E(μ) = E(μ′) when ∀x ∈ S: μ′(x) = 1 − μ(x).313

5) E(μ ∪ σ) + E(μ ∩ σ) = E(μ) + E(σ ).314

Based on these axioms, we further introduce the following315

definition.316

Definition 2 [32]: Let B = {μ1, μ2, . . . , μm} be a fuzzy317

set, the fuzziness of B can be defined as318

E(B) = − 1

m

m
∑

i=1

(

μi log μi + (1 − μi) log(1 − μi)
)

. (7)319

It is easy to verify that formula (7) indeed satisfies320

axioms 1–5.321

Given a set of samples X = {(xi, ti)}N
i=1 ⊂ Rn × {0, 1}c

322

and a well-trained classifier, a membership matrix U = [μij]323

can be obtained by matching each sample to the classifier,324

where μij = μj(xi) denotes the membership degree of the325

ith sample belonging to the jth class, where i = 1, 2, . . . , N326

and j = 1, 2, . . . , c. It is worth noting that each output vector327

may not be a probability distribution, i.e., μij ∈ [0, 1], and the328

equality
∑c

j=1 μij = 1 does not necessarily hold.329

Based on Definition 2, the fuzziness of the classifier’s 330

outputs for the ith sample can be expressed as 331

E(μi) = −1

c

c
∑

j=1

(

μij log μij + (

1 − μij
)

log(1 − μij)
)

. (8) 332

Having the above preliminaries, in the following, we pro- 333

pose a new concept to describe the fuzziness of a classifier’s 334

outputs on the entire training set. 335

Definition 3 (Fuzziness of a Classifier’s Outputs): Suppose 336

that a classifier is trained from training set X. Without loss 337

of generality, X is assumed to be a sufficient sampling of 338

the entire sample space. Let U = [μij]c×N be the membership 339

matrix given by matching each training sample to the classifier, 340

where c is the number of classes and N is the number of 341

samples. Then the fuzziness of the classifier’s outputs can be 342

defined as 343

E(U) = − 1

cN

N
∑

i=1

c
∑

j=1

(

μij log μij + (

1 − μij
)

log
(

1 − μij
))

. 344

(9) 345

It is noted that Definition 3 uses the fuzziness of the classi- 346

fier’s outputs on the training set. In a more rigorous manner, it 347

should be defined as the fuzziness of the classifier on the whole 348

space. Unfortunately, the fuzziness of the classifier on unseen 349

samples is unknown. According to the fundamental assump- 350

tion of supervised learning that the training set is a reasonable 351

and sufficient sampling of the entire sample space, we can use 352

the classifier’s fuzziness on the training set to approximately 353

replace the classifier’s fuzziness on the entire sample space. 354

C. Relationship Between Generalization and Fuzziness 355

Previous study [20] shows that the classifier with higher 356

fuzziness of outputs has a better generalization for com- 357

plex boundary problems when the training accuracy attains 358

a predefined threshold. Furthermore, it demonstrates that the 359

outputs of boundary samples have higher fuzziness, and 360

samples with higher fuzziness exhibit higher risk of misclas- 361

sification. By separating samples with high fuzziness from 362

samples with low fuzziness, a divide-and-conquer learning 363

algorithm based on fuzziness categorization was proposed 364

in [41]. It shows that the category of sample with low or high 365

fuzziness plays a critical role for performance improvement. 366

Although these studies confirm that a relationship between 367

fuzziness and generalization of a classifier indeed exists, it is 368

difficult to explicitly express this relationship in general. 369

In the following, we make an investigation on data set Spam, 370

which is a binary classification data set selected from UCI 371

machine learning repository. This data set contains 4601 sam- 372

ples with 57 features. We randomly split it into two parts, 373

i.e., 70% for training and 30% for testing. ELM is used to 374

construct a classifier, which generates four indexes, i.e., train- 375

ing accuracy, testing accuracy, training fuzziness, and testing 376

fuzziness. The random splitting is repeated for 100 times and 377

four indexes are recorded for each repetition. 378

We make a statistical analysis for the 100 results. First, we 379

split the interval between the minimum and maximum fuzzi- 380

ness values into ten parts with equal length and generate ten 381
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Fig. 1. Dependency relation between fuzziness and accuracy for Spam. (a) Histogram of training fuzziness. (b) Training accuracy. (c) Histogram of testing
fuzziness. (d) Testing accuracy.

levels of fuzziness. For instance, the minimum and maximum382

fuzziness values for testing are 0.4889 and 0.5798, respec-383

tively. Then, the ten fuzziness levels for testing are generated384

as level 1 = [0.4889, 0.4980), level 2 = [0.4980, 0.5071),385

level 3 = [0.5071, 0.5162),. . . , and level 10 = [0.5707,0.5798].386

Afterwards, we make a statistic for the number of experimen-387

tal trials in each fuzziness level, and plot the histograms as388

shown in Fig. 1(a) and (c). Finally, we get the average train-389

ing or testing accuracy for each fuzziness level, and plot the390

changing trends as shown in Fig. 1(b) and (d).391

One can see from Fig. 1 that the relationship between392

accuracy and fuzziness of ELM does exist for Spam. We393

further calculate the Pearson correlation coefficient. As a394

remark, Pearson correlation reflects the statistical relation-395

ship between two sets of variables with a coefficient from396

[−1, 1]. A positive/negative coefficient represents that the397

two sets of variables are positive/negative correlated, and398

the absolute value represents the correlation degree. We use399

the median to represent each fuzziness level. Taking the400

testing result as an example, the correlation coefficient is401

calculated between fuzziness vector [0.4935, 0.5025, 0.5116,402

0.5207, 0.5298, 0.5389, 0.5480, 0.5571, 0.5662, 0.5753] and403

accuracy vector [0.8536, 0.8391, 0.8279, 0.8263, 0.8214,404

0.8194, 0.8177, 0.8111, 0.8065, 0.7524]. Finally, the corre-405

lation coefficients for training and testing are calculated as406

−0.7145 and −0.8625, respectively. This tells that the accu-407

racy and fuzziness have a negative correlation for Spam,408

i.e., a higher fuzziness will lead to a lower accuracy, and the409

correlation degree is high.410

Although the above example demonstrates that the relation-411

ship between generalization and uncertainty does exist for data412

set Spam, this relationship is difficult to express explicitly for413

general cases. In the subsequent sections, we will attempt to414

make this relationship clear by incorporating a new index,415

i.e., complexity of classification.416

IV. COMPLEXITY OF CLASSIFICATION PROBLEM417

Generally, a classification problem can be described as fol-418

lows. Let S be the universal space we consider, F be a discrete419

function defined on S. For simplicity, we suppose that func-420

tion F takes values either 0 or 1, where 0 denotes one class421

and 1 denotes the other class. Given a subset of S, denoted422

as X, which is called the training set, the values of F on423

X are known, but the values of F on S − X are unknown.424

A classification problem is to find a function f such that f can 425

well approximate F both in X and S −X. Usually, F is called 426

an objective function, f is called a classifier acquired based on 427

training set X, the approximation error on X is called training 428

error, and the approximation error on S − X represents the 429

generalization ability of F. 430

The complexity of a classification problem refers to the 431

complexity of function F, which implies the difficulties of the 432

process of finding a quality f from X. Unfortunately, there is 433

no formal definition on the complexity of a discrete function. 434

From references we can find a number of indexes to describe 435

the complexity from different angles. It is noteworthy that the 436

complexity of objective function is independent on the learned 437

classifier f . Since the objective function F is unknown in real 438

applications but is known on the training set X, the indexes 439

in describing the complexity of F can be estimated through 440

the training set X and values of F on X. In the following, we 441

give several indexes to describe the complexity of F, which 442

are mainly chosen from [21]. 443

A. Fisher’s Discriminant Ratio 444

Fisher’s discriminant ratio is an old statistical index for 445

describing the difference between two populations. Suppose 446

that μ1j, μ2j, σ1j, and σ2j are the means and variances of 447

the two populations (classes) with respect to the jth attribute, 448

j = 1, . . . , n. Then, the Fisher’s discriminant ratio for the jth 449

attributes is defined as 450

fj =
(

μ1j − μ2j
)2

σ 2
1j + σ 2

2j

. (10) 451

It is easy to see that Fisher’s discriminant ratio with respect 452

to the jth attribute describes the distance between two classes 453

regarding this attribute. Intuitively, the longer the distance is, 454

the easier the classification problem is, the lower the com- 455

plexity will be. Thus, the complexity evaluating index is 456

defined as 457

Comp1 = 1

maxj
{

fj
} . (11) 458

B. Volume of Overlap Region 459

A similar measure is the volume of overlap region between 460

two class conditional distributions. It depends on, for each 461

attribute, the maximum and the minimum values of each class. 462
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Fig. 2. Intuitive illustration of volume of overlap region.

We denote Aj as the jth attribute. Then, the overlap region463

normalized by the range of the value spanned by both classes,464

for each attribute Aj, can be represented as465

vj466

= MIN
(

max(Aj, c1), max
(

Aj, c2
))− MAX

(

min(Aj, c1), min
(

Aj, c2
))

MAX
(

max
(

Aj, c1
)

, max
(

Aj, c2
))− MIN

(

min
(

Aj, c1
)

, min
(

Aj, c2
))467

(12)468

where max(Aj, c1), max(Aj, c2), min(Aj, c1), and min(Aj, c2)469

denotes the maximum and minimum values of attribute Aj in470

the two classes, respectively. Then, the complexity evaluating471

index is defined as the volume of overlap region incorporating472

all the attributes473

Comp2 =
∏n

j=1
vj (13)474

where n is the number of attributes. An intuitive illustration of475

volume of overlap region for a 2-D feature space is given in476

Fig. 2. It is noted that Comp2 = 0 if the value ranges of the two477

classes do not overlap in at least one dimension. Obviously, a478

larger value of Comp2 represents a higher complexity of the479

classification problem.480

C. Intraclass/Interclass Distance Ratio481

This measure first computes the Euclidean distance from482

each sample to its nearest neighbor within or outside the class.483

Assume that dintra
i or dinter

i is the distance between sample xi484

and its nearest neighbor within or outside the class, we have485

{

dintra
i = minj�=i,yj=yi d

(

xi, xj
)

dinter
i = minj�=i,yj �=yi d

(

xi, xj
) (14)486

where yi and yj represent the class labels of xi and xj, respec-487

tively. Then, it takes the average of all the intraclass distances488

and the average of all the interclass distances, and the ratio of489

both averages is defined as the complexity of the problem490

Comp3 =
∑N

i=1 dintra
i

∑N
i=1 dinter

i

(15)491

where N is the number of samples. Similarly, a larger value492

of Comp3 represents a higher complexity of the classification493

problem.494

Fig. 3. Two normal populations.

D. Linear Separability 495

Linear separability was intensively discussed in the early 496

literature. A simple definition to describe the linear separa- 497

bility for both separable and nonseparable cases is given by 498

Smith [42] 499

min aTt, s.t. ZTw = t ≥ b (16) 500

where a and b are arbitrary constant vectors, w is the weight 501

vector, t ≥ 0 is the error vector, and Z is a matrix in which 502

each column z is defined based on the input vector x and its 503

class label c 504

{

z = +x if c = c1
z = −x if c = c2.

(17) 505

The value of the objective function denotes the degree of being 506

separable for two class cases, that is 507

Comp4 = aTt. (18) 508

It is noted that Comp4 = 0 if the problem is linear separable. 509

Other indexes to describe the complexity of classification 510

problem can be found from [21]. 511

V. RELATIONSHIP BETWEEN GENERALIZATION 512

AND UNCERTAINTY BY INCORPORATING 513

COMPLEXITY OF CLASSIFICATION 514

In this section, we give an analysis on the relationship 515

between generalization and uncertainty by incorporating the 516

complexity of classification. Since it is difficult for us to give 517

a general analysis for all the complexity indexes, we only 518

adopt the index of Fisher’s discriminant ratio in Section IV-A, 519

and give an explanation from the viewpoint of discriminant 520

analysis, which has the principal of maximum probability. 521

Without loss of generality, we consider the 1-D case, which 522

can be easily extended to multiple-dimensional cases. A nor- 523

mal distribution with mean μ and variance σ 2, denoted by 524

N(μ, σ 2), has a probability density function 525

f (x) = 1√
2πσ

exp

(

− (x − μ)2

2σ 2

)

, −∞ < x < +∞. (19) 526

Suppose that there are two normal populations denoted by 527

N(μ1, σ
2
1 ) and N(μ2, σ

2
2 ) as shown in Fig. 3, and x(μ1 < x < 528

μ2) is a new sample that needs to be discriminated. 529

For a classification problem, each population represents a 530

class. From traditional textbook [43] we can view a simple 531

way to judge sample x belonging to which class. 532
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Let C be the cross-point between two density functions,533

i.e., C satisfies the following equation:534

1√
2πσ1

exp

(

− (C − μ1)
2

2σ 2
1

)

= 1√
2πσ2

exp

(

− (C − μ2)
2

2σ 2
2

)

.535

(20)536

It is easy to check that the cross-point locates in the interval537

(μ1, μ2). The probabilities of sample x belonging to the two538

classes, denoted as (α, β), can be approximately viewed as539

(α, β) =
(

1√
2πσ1

exp

(

− (x − μ1)
2

2σ 2
1

)

,540

1√
2πσ2

exp

(

− (x − μ2)
2

2σ 2
2

))

(21)541

which induces the following discriminant rules based on the542

principle of maximum probability.543

1) IF x < C (α > β) THEN x belongs to class I.544

2) IF x > C (α < β) THEN x belongs to class II.545

3) IF x = C (α = β) THEN the class of x is uncertain.546

We now relate these discussions about discriminant analysis547

to the theme of this paper, i.e., uncertainty and complexity of548

a classification problem. According to Section IV-A, the com-549

plexity of a classification problem can be described by means550

and variances of class distributions. It can be roughly sum-551

marized as: the complexity is going up with either increasing552

the variances (σ 2
1 , σ 2

2 ) or decreasing the difference between553

both means |μ1 − μ2|. Moreover, the uncertainty of a classi-554

fier is evaluated based on the probability vector (α, β) defined555

in (21). According to Section III, there are many specific556

formulas to evaluate the uncertainty (e.g., the fuzziness in557

Definition 3), but all of them have to satisfy the conditions558

given in Section III-B, e.g., if α < β, when α′ < α and β ′ > β,559

the uncertainty output by vector (α′, β ′) should be smaller than560

that output by (α, β). It shows that, to some extent, the differ-561

ence between the two probability values denotes the magnitude562

of uncertainty. The bigger the difference is, the smaller the563

uncertainty is. Based on these analyses, we have the following564

theorems.565

Theorem 1: Let566

g(σ ) = 1√
2πσ

(

exp

(

− (x − μ2)
2

2σ 2

)

− exp

(

− (x − μ1)
2

2σ 2

))

567

where σ > 0, μ1 < μ2, x ∈ ([(μ1 + μ2)/2], μ2), and μ1, μ2568

are considered as constants. Then, there exists a number σ1 ∈569

(0, μ2 − x) such that g(σ ) is monotonically decreasing in the570

interval (σ1,+∞).571

Proof: The proof of Theorem 1 is listed in Appendix B.572

Theorem 2: Let573

q(δ) = 1√
2π

(

exp

(

−x − (μ2 − δ)2

2

)

574

− exp

(

−x − (μ1 + δ∗)2

2

))

575

where x, μ1, and μ2 are considered as constants, μ1 < μ2,576

δ∗ = |[(μ1 − x)/(μ2 − x)]|δ, and δ > 0. Then, there exists a577

number δ1 such that q(δ) is monotonically decreasing in the 578

interval (0, δ1). 579

Proof: The proof of Theorem 2 can be derived similarly to 580

the proof of Theorem 1. 581

Theorem 3: Suppose that the conditional probability out- 582

puts of a binary classifier follow two normal distributions 583

N(μ1, σ
2) and N(μ2, σ

2), respectively, where μ1 < μ2. Let 584

α = − 1√
2πσ

exp

(

− (x − μ1)
2

2σ 2

)

β 585

= 1√
2πσ

exp

(

− (x − μ2)
2

2σ 2

)

586

and 587

E(α, β) = −1

2
(α log α + (1 − α) log(1 − α) 588

+ β log β + (1 − β) log(1 − β)). 589

Assume β = Kα where K ∈ (1, 1 + ε), then E(α, β) = 590

E(K) is monotonically decreasing with respect to K if 591

Kα > (1/2). 592

Proof: The proof of Theorem 3 is listed in Appendix C. 593

Noting that g(σ ) in Theorem 1 or q(δ) in Theorem 2 denotes 594

the difference between two probability density values, which 595

can be represented as β −α in Theorem 3. Theorem 3 directly 596

connects this difference together with the uncertainty of the 597

classifier’s outputs given in Definition 2. 598

Theorem 3 shows that the uncertainty of the classifier’s out- 599

puts is decreasing with the increase of the difference between 600

two density values, i.e., β − α, where α and β can be con- 601

sidered as the probabilities of a sample being classified as 602

classes I and II, respectively. As a result, the conclusions in 603

Theorems 1 and 2 show that the uncertainty of a classifier’s 604

outputs is becoming bigger with the increase of the complex- 605

ity of the classification problem, which is represented through 606

inflating the variance in Theorem 1 and through shrinking 607

the difference between two means in Theorem 2, respectively. 608

Since in a classification problem, the complexity is inherent 609

while the uncertainty is generated by the output of a well- 610

trained classifier which has its training and testing accuracy, 611

it is reasonable to believe that some relationships exist among 612

the accuracy, uncertainty, and complexity. 613

It is noteworthy that Theorems 1–3 cannot exactly explain 614

the relationships among the three indexes, i.e., accuracy, 615

uncertainty, and complexity. However, to a great extent, 616

they provide solid supports to the existence of the relation- 617

ships. They confirm such a fact that the classifier’s uncer- 618

tainty will be inevitably high if the classification problem 619

is complex, no matter what classifier design algorithm is 620

used. This statement further implies that a high-performance 621

classifier will have high uncertainty when the problem is 622

complex. 623

VI. EMPIRICAL STUDIES 624

In this section, we will conduct some empirical studies to 625

further analyze the relationships discussed in Section V. It 626

is noteworthy the discussions in Section V were made based 627
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TABLE I
SELECTED DATA SETS FOR EXPERIMENTS

on Comp1, i.e., Fisher’s discriminant ratio. Thus, in this sec-628

tion, we will also adopt Comp1 to evaluate the complexity of629

classification problems.630

A. Selected Data Sets631

The data sets used in the experiments are selected from632

UCI machine learning repository. The detailed information633

regarding these data sets are summarized in Table I. Since the634

complexity indexes listed in Section IV are defined for binary635

classification problems, we transfer each multiclass data set636

into binary by randomly selecting 50% classes as positive and637

the rest 50% classes as negative.638

B. Experimental Design639

The flowchart for training the classifier and evaluating the640

problem complexity is listed in Algorithm 1.641

It is noteworthy that the training algorithm adopted in this642

section is ELM. Due to the random mechanism for weight643

assignment, it is easy to repeat the experiment for many times.644

We conduct 100 experimental trials for each data set. In each645

trial, 70% data are randomly selected for training, and the646

remaining 30% data are used for testing. Each trial will pro-647

vide a different result, and we make statistics for fuzziness,648

accuracy, and complexity based on the 100 results.649

The number of hidden nodes in ELM is set as 20, and650

sigmoid activation function is utilized. The simulations are651

carried out under MATLAB R2011b, which are executed on a652

computer with an Intel Core i7-5500U CPU@2.40 GHz, 8GB653

memory, and 64-bit Windows 8 system.654

Algorithm 1: Train ELM Classifier and Compute
Evaluating Indexes

Input:
Training set X = {(xi, ti)}N

i=1 ⊂ Rn × {0, 1}c;
Activation function f (x);
Number of hidden nodes Ñ.

Output:
Fuzziness and generalization of the trained classifier;
Complexity of the classification problem.

1 Data processing: randomly divide the data set into two
parts for training and testing according to a separation
ratio.

2 Classifier training: train a ELM classifier based on the
algorithm given in section II-A.

3 Testing: test the classifier on the testing set, compute the
fuzziness (Definition 3) and generalization (testing
accuracy) of the classifier.

4 Complexity evaluation: compute the complexity of the
classification problem, i.e., Eq. (11).

C. Experimental Analysis 655

Similar to Section III-C, we make some statistical analyses 656

on the testing results. For each data set, ten fuzziness lev- 657

els are generated by equally dividing the interval between 658

the maximum and minimum fuzziness values. We use the 659

median to represent each fuzziness level. Then, the number 660

of experimental trials for each fuzziness level is counted, 661

and the average testing accuracy for each fuzziness level is 662

calculated. Fig. 4 demonstrates the changing trend of the test- 663

ing accuracy along with the level of fuzziness. It depicts 664

the dependency relation between testing accuracy and test- 665

ing fuzziness for the classification problems. Due to space 666

limit, we only plot the results for 12 data sets out of 31. 667

Furthermore, we calculate the Pearson correlation coefficient 668

between fuzziness vector and accuracy vector for each data 669

set. It is noteworthy there are ten fuzziness levels for each 670

data set. However, from Fig. 4, we can see that the high- 671

est fuzziness level (i.e., level ten) usually cause a sharp 672

change of the testing accuracy, which may interfere the sta- 673

tistical analysis for the overall results. Thus, we only use the 674

previous nine fuzziness values and their corresponding accu- 675

racy. The correlation coefficients r are listed in Table II. We 676

artificially set up some thresholds to justify the degree of 677

correlation. 678

1) If 0 ≤ |r| < 0.4, then the correlation is low. 679

2) If 0.4 ≤ |r| < 0.7, then the correlation is medium. 680

3) If 0.7 ≤ |r| ≤ 1, then the correlation is strong. 681

It is observed from Table II that the generalization and fuzzi- 682

ness have a strong or medium correlation regarding most 683

data sets. 684

The complexities of the problems are shown in Fig. 5, 685

which are sorted according to the order numbers (i.e., 1–31) 686

in Table I. In Fig. 5, we artificially set up a threshold such 687

that the complexity higher than the threshold is called high 688

otherwise is called low. In this case, one can view an implicit 689

relation among the complexity, generalization, and fuzziness. 690
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Fig. 4. Relationship between fuzziness and generalization of ELM classifier on different data sets. (a) Australian. (b) Chart. (c) Dermatology. (d) Segment.
(e) Libras. (f) OptDigits. (g) Pen. (h) Plrx. (i) Sonar. (j) Spam. (k) SPECTF. (l) Yeast.

TABLE II
PEARSON CORRELATION COEFFICIENT BETWEEN OUTPUT

FUZZINESS AND TESTING ACCURACY

The generalization of a classifier trained by ELM goes up691

with the increase of fuzziness if the complexity of the clas-692

sification problem is relatively high, while the generalization693

of a classifier trained by ELM goes down with the increase694

of fuzziness if the complexity of the classification problem is695

Fig. 5. Complexity of the classification problems.

relatively low. For instance, it can be seen from Fig. 5 that 696

the complexity values of Segment (data set 23) and Plrx (data 697

set 18) are high, in this case, the generalizations of these two 698

data sets are becoming better with the increase of fuzziness 699

as shown in Fig. 4(d) and (h). However, the complexity val- 700

ues of OptDigits (data set 30) and Spam (data set 28) are 701

low, in this case, the generalizations of these two data sets are 702

becoming worse with the increase of fuzziness as shown in 703

Fig. 4(f) and (j). 704

By learning the complexity of classification problems from 705

Fig. 5, we grasp some factors that are resulted from the 706
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Fig. 6. Relationship between fuzziness and generalization of SVM classifier on different data sets. (a) Australian. (b) Chart. (c) Dermatology. (d) Segment.
(e) Libras. (f) OptDigits. (g) Pen. (h) Plrx. (i) Sonar. (j) Spam. (k) SPECTF. (l) Yeast.

complexity of decision boundaries. It is obvious that there are707

some relations between them.708

As we know, the complexity of a classification problem709

can be intuitively regarded as the degree of difficulty for the710

problem. More specifically, it is the complexity of geometrical711

class boundary which can be seen as an equation F = 0712

that divides the sample space. In classification problem, it is713

desired to find a classifier f by training the data set locating714

next to the boundary function F = 0. The ability of function715

f to approximate function F on unseen data is the generaliza-716

tion, and the fuzziness of the classifier is the uncertainty of717

function f in dividing unseen samples.718

When it is easy to distinguish the classes by the boundary of719

function F, it will also be easy to divide the unseen samples by720

f , since the structure of training data is supposed to be similar721

to the structure of unseen data and f is an estimator of F.722

It implies that the boundary will be simple and the fuzziness723

of the boundary is low. In this situation, it is reasonable to724

believe that, with the decrease of classifier’s fuzziness, the725

generalization will be improved.726

When it is difficult to distinguish the classes by the bound-727

ary of function F, the classifier function f is also difficult to728

divide the unseen samples. It corresponds to a case of high729

complexity and complex boundary. It is inherent to output730

high fuzziness for boundary samples for any classifier, and731

therefore, we reasonably believe in this situation that, with 732

the increase of classifier’s fuzziness, the generalization may 733

be getting better. 734

D. Analysis With SVM Classifiers 735

We further realize the above studies with SVM classifiers. 736

We adopt the “LibSVM” toolbox, the penalty term C is fixed 737

as 100, and RBF kernel K(x, xi) = exp(−[||x − xi||2/2σ 2]) 738

with σ = 1 is adopted. The decision values of SVM are 739

transformed into uncertain outputs by logistic function. The 740

dependency relation between generalization and fuzziness 741

regarding the 12 data sets in Fig. 4 are demonstrated in Fig. 6. 742

It can be observed that the results are basically consistent with 743

those in Section VI-C, but the changing trends are not as clear 744

as those of ELM. As a result, ELM might be more suitable to 745

conduct this paper, since it has a higher degree of uncertainty 746

due to the random mechanism for input weights assignment. 747

VII. CONCLUSION 748

This paper finds an empirical relationship among the com- 749

plexity of a classification problem, the uncertainty of classi- 750

fier’s outputs, and the prediction accuracy of the classifier. By 751

experimental validation and theoretical explanation through a 752

simple model of discriminant analysis, it is found that with the 753
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increase of the uncertainty of the classifier’s outputs, empiri-754

cally the accuracy is upgrading for high-complexity problem755

but downgrading for low-complexity problem. Based on these756

findings, in order to choose a better classification rule for a757

practical problem, one can tune the model parameters such that758

the uncertainty becomes larger for problems with higher com-759

plexity, or smaller for problems with lower complexity under760

the condition that an acceptable training accuracy is kept.761

APPENDIX A762

FEATURES OF ELMS763

In the following, we briefly review the major advantages764

of ELMs.765

1) The first advantage of ELMs is the fast training speed.766

Since the training of ELMs does not include iterative767

tuning, it statistically shows that ELM is thousands of768

times faster than BP given a predefined threshold for769

training accuracy.770

2) Another feature of ELMs is the acceptable generaliza-771

tion ability. In comparison with other popular classifi-772

cation or regression algorithms, such as DTs, SVMs,773

logistic regressions, etc., the generalization of ELMs774

may not be the best in general. But so far, one cannot775

find a significant difference among the generalizations776

of these algorithms.777

3) The training procedure of ELMs can process online778

sequential data conveniently, which demonstrates strong779

potentials for big data analytic. It is shown that ELMs780

can effectively handle both numerical and nominal781

attributes for both classification and regression problems.782

4) Mathematically it is proven that ELMs have the uni-783

versal approximation ability if the activation function is784

differentiable. That is, ELMs can uniformly approximate785

any continuous function defined in an interval when the786

number of hidden nodes goes to infinity. This conclusion787

establishes the foundation of applying ELMs to various788

classification and regression problems.789

It is worthy noting that any learning algorithm cannot be790

consistently better than others. In the following, we list several791

disadvantages of ELMs.792

1) As aforementioned, the weights between input and hid-793

den layers in ELMs are randomly selected from an794

interval. ELMs are sensitive to this interval, and the795

change of the interval will produce quite different796

classifiers, which seriously decreases the stability.797

2) The number of hidden layer nodes is critical for building798

an ELM. A large number will lead to the generalization799

decreasing but a small number can result in the training800

error increasing. So far, how to select the number of801

hidden layer nodes is still a challenging issue.802

APPENDIX B803

PROOF OF THEOREM 1804

The original problem can be represented as805

g(σ ) = 1√
2πσ

(

exp

(

− (x − b)2

2σ 2

)

− exp

(

− (x − a)2

2σ 2

))

806

prove that there exits σ1 such that g(σ ) is monotonically 807

increasing when σ < σ1 and g(σ ) is monotonically decreasing 808

when σ > σ1. 809

The constant term
√

2π can be neglected. Let (x − a) = 810

k × (b − x) and σ = t × (b − x), the original problem can be 811

simplified as 812

g(t) = 1

t

(

exp(− 1

2t2
) − exp(− k2

2t2
)

)

, k > 1 and t > 0 813

prove that there exits t1 such that g(t) is monotonically 814

increasing when t < t1 and g(t) is monotonically decreasing 815

when t > t1. 816

We get the first-order derivation of g(t), that is 817

g′(t) = 1

t4

[

(

1 − t2
)

exp

(

− 1

2t2

)

−
(

k2 − t2
)

exp

(

− k2

2t2

)]

. 818

Having this derivation, it can be derived as follows. 819

1) When t > k, t2 − 1 > t2 − k2 > 0 and exp(−[1/2t2]) > 820

exp(−[k2/2t2]), thus (t2 − 1) exp(−[1/2t2]) > (t2 − 821

k2) exp(−[k2/2t2]), thus we have g′(t) < 0. 822

2) When k ≥ t > 1, (1 − t2) exp(−[1/2t2]) < 0, thus 823

(k2 − t2) exp(−[k2/2t2]) > 0, thus we have g′(t) < 0. 824

3) When t = 1, we have g′(t) = [1/t4][−(k2 − 825

t2) exp(−[k2/2t2])] < 0. 826

So far, we have proved that g′(t) < 0 when t ≥ 1, which 827

means that g(t) is monotonically decreasing when t ≥ 1. 828

When 1 > t > 0 and t → 0, we have [(1 − t2)/(k2 − t2)] → 829

(1/k2) and exp([(1 − k2)/2t2]) → 0 (noting that t ≤ 1 < k). 830

There exists t∗ ∈ (0, 1) such that ([(1 − t∗2)/(k2 − t∗2)] > 831

exp([(1 − k2)/2t∗2]) = [exp(1/2t∗2)/exp([k2/2t∗2])], thus 832

([(1 − t∗2) exp(−1/2t∗2)]/[(k2 − t∗2) exp(−k2/2t∗2)]) > 1, 833

thus (1 − t∗2) exp(−1/2t∗2) > (k2 − t∗2) exp(−k2/2t∗2), thus 834

g′(t∗) > 0. 835

According to Zero theorem, there exits t1 ∈ (0, 1) such that 836

g′(t1) = 0. Since g′(t) is continuous and differentiable, if all 837

the stagnation points are maximum points, then there is only 838

one stagnation point, otherwise minimum point exists. 839

We further get the second-order derivation of g(t), that is 840

g′′(t) = 1

t7

{

[

2t2
(

t2 − 1
)

− 2t2 + (1 − t2)
]

exp

(

− 1

2t2

)

841

−
[

2t2
(

t2 − k2
)

− 2t2k2 + k2
(

k2 − t2
)]

exp

(

− k2

2t2

)}

. 842

Put the stagnation point t1 into g′′(t), since (1 − t21) 843

exp(−1/2t21) − (k2 − t21) exp(−k2/2t21) = 0, we have 844

g′′(t1) = 1

t71

{

−2t21

[

exp

(

− 1

2t21

)

− k2 exp

(

− k2

2t21

)]

845

+
(

1 − t21

)

exp

(

− 1

2t21

)

− k2
(

k2 − t21

)

exp

(

− k2

2t21

)}

. 846

Based on 847

(

1 − t21

)

exp

(

− 1

2t21

)

−
(

k2 − t21

)

exp

(

− k2

2t21

)

= 0 848

k > 1 and 1 > t1 > 0 849
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we have850

exp

(

− 1

2t21

)

− k2 exp

(

− k2

2t21

)

851

= t21

[

exp

(

− 1

2t21

)

− exp

(

− k2

2t21

)]

852

> 0853

and854

(

1 − t21

)

exp

(

− 1

2t21

)

− k2
(

k2 − t21

)

exp

(

− k2

2t21

)

855

<
(

1 − t21

)

exp

(

− 1

2t21

)

−
(

k2 − t21

)

exp

(

− k2

2t21

)

856

= 0.857

Thus, g′′(t1) < 0, t1 is the maximum point, which means858

that g(t) is monotonically increasing when t < t1 and g(t) is859

monotonically decreasing when t1 < t < 1.860

To this end, we have proved that g(t) is monotonically861

increasing when t < t1 and g(t) is monotonically decreasing862

when t > t1.863

APPENDIX C864

PROOF OF THEOREM 3865

Substituting β with Kα in E(K), we have866

E(K) = −1

2

(

α log α + (1 − α) log(1 − α)867

+ Kα log(Kα) + (1 − Kα) log(1 − Kα)
)

.868

Taking derivative of E(K) with respect to K, we obtain869

dE(K)

d(K)
= −1

2
(α log(Kα) − α log(1 − Kα))870

= −α

2
log

Kα

1 − Kα
.871

It is easy to view that [dE(K)/d(K)] < 0 if Kα > (1/2),872

which completes the proof.873
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Discovering the Relationship Between
Generalization and Uncertainty by

Incorporating Complexity
of Classification

Xi-Zhao Wang, Fellow, IEEE, Ran Wang, Member, IEEE, and Chen Xu

Abstract—The generalization ability of a classifier learned from1

a training set is usually dependent on the classifier’s uncertainty,2

which is often described by the fuzziness of the classifier’s outputs3

on the training set. Since the exact dependency relation between4

generalization and uncertainty of a classifier is quite compli-5

cated, it is difficult to clearly or explicitly express this relation in6

general. This paper shows a specific study on this relation from7

the viewpoint of complexity of classification by choosing extreme8

learning machines as the classification algorithms. It concludes9

that the generalization ability of a classifier is statistically becom-10

ing better with the increase of uncertainty when the complexity11

of the classification problem is relatively high, and the general-12

ization ability is statistically becoming worse with the increase13

of uncertainty when the complexity is relatively low. This paper14

tries to provide some useful guidelines for improving the gener-15

alization ability of classifiers by adjusting uncertainty based on16

the problem complexity.17

Index Terms—Complexity of classification, extreme learning18

machine, generalization, uncertainty.19

I. INTRODUCTION20

CLASSIFICATION problem, as the central part in the21

fields of pattern recognition and data mining, refers22

to a task of assigning objects to one of several predefined23

class labels. Given a set of objects, the mathematical24

model of classification problem is a discrete-valued func-25

tion that maps each object to a class label. Usually, the26

process of determining the discrete-valued function from a27

Manuscript received July 4, 2016; revised November 28, 2016; accepted
January 11, 2017. This work was supported in part by the National Natural
Science Foundation of China under Grant 61402460, Grant 61472257,
Grant 61170040, and Grant 71371063, in part by the Basic Research
Project of Knowledge Innovation Program in Shenzhen under Grant
JCYJ20150324140036825, in part by the Guangdong Provincial Science
and Technology Plan Project under Grant 2013B040403005, and in part by
the HD Video Research and Development Platform for Intelligent Analysis
and Processing in Guangdong Engineering Technology Research Centre of
Colleges and Universities under Grant GCZX-A1409. (Corresponding author:
Ran Wang.)

X.-Z. Wang is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
xizhaowang@ieee.org).

R. Wang and C. Xu are with the College of Mathematics and Statistics,
Shenzhen University, Shenzhen 518060, China (e-mail: wangran@szu.edu.cn;
xuchen@szu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2017.2653223

training set is called learning while the process of using 28

the determined function to classify a new object is called 29

reasoning [1]–[5]. 30

For a classification problem with c classes, the reason- 31

ing result is generally a c-dimensional vector. According to 32

the output forms of the reasoning process, existing learning 33

algorithms can be classified into two categories. In one cate- 34

gory, the c-dimensional output vector contains one component 35

of value 1 and other components of value 0. In this situa- 36

tion, the class label corresponding to the component 1 will 37

be the reasoning result. This kind of algorithms are known 38

as crisp-output algorithms, such as traditional support vector 39

machine (SVM) [6]–[10], decision tree (DT) [11], [12], etc. 40

In the other category, the c-dimensional output vector con- 41

tains components of real values within the interval [0, 1]. In 42

this situation, the class label corresponding to the maximum 43

component will be the reasoning result. If the maximum is 44

attained at more than one component, a special strategy will be 45

designed to determine the final result. This kind of algorithms 46

are acknowledged as uncertain-output algorithms, such as 47

k-nearest neighbor [2], Bayesian probability model [2], back- 48

propagation (BP) methods for training feed-forward neural 49

networks [13]–[16], etc. 50

Obviously, crisp-output algorithms are special cases of 51

uncertain-output algorithms. If an algorithm belongs to the 52

crisp category, then it belongs to the uncertain category, 53

however, it is not true conversely. Most crisp-output algo- 54

rithms can be extended to uncertain-output algorithms, such 55

as fuzzy SVM [17], fuzzy DT [18], etc. In this paper, we 56

will intensively investigate the uncertain-output algorithms, 57

which highlight the argument that uncertainty does exist in 58

the learning and reasoning processes. 59

On the other hand, generalization of a classifier is defined 60

as the rate of the correctly classified objects that are not in 61

the training set. It is the most important index for evaluating a 62

classification algorithm since the ultimate goal for developing 63

a classification model is to achieve high prediction accuracy 64

on unseen cases. Usually, the generalization of a classifier 65

depends on multiple factors. 66

1) The mathematical model, which has a direct impact on 67

both the training accuracy and testing accuracy. 68

2) The algorithm for training the model parameters, which 69

is sensitive to the prediction results. 70

2168-2267 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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3) The data distribution: In supervised learning, there is71

a fundamental assumption that the training data has72

the same distribution as the testing data. The learning73

scheme that does not follow this fundamental assump-74

tion is referred to as transfer learning [19], which is out75

of the scope of this paper.76

Many research efforts have been made to improve the gen-77

eralization of a classifier by considering different factors.78

In this paper, we consider a particular model parameter,79

i.e., the uncertainty of the classifier’s outputs, which has been80

proven in [20] to have a close relationship with the gen-81

eralization of classifier. It has been shown in [20] that the82

uncertainty of the classifier’s outputs has a close relationship83

with the generalization capability. However, this relation-84

ship is difficult to express explicitly for general cases. In85

order to further investigate this relationship, in this paper,86

we take into account a new index, i.e., complexity of clas-87

sification, which can be measured in different ways [21]. To88

the best of our knowledge, this paper makes a first attempt89

to investigate the relationship between generalization and90

uncertainty of a classifier by incorporating the complexity of91

classification.92

In addition, choosing an appropriate classification algorithm93

is also an important issue to conduct this research. It is note-94

worthy that any uncertain-output algorithm can be used to95

study the relationship between generalization and uncertainty.96

As the commonly used classification model for various prac-97

tical problems, feed-forward neural networks will be adopted.98

The most notable algorithm to train a feed-forward neural net-99

work is BP. Although it has been proved in [15] and [16]100

that BP network has the ability to approximate any contin-101

uous function with arbitrary precision, it is often criticized102

to have the problems of slow convergence speed and local103

minima. In order to overcome these deficiencies, extreme lean-104

ing machine (ELM) has been proposed as a new training105

algorithm for single-hidden layer feed-forward neural net-106

work (SLFN) [22]. Differentiating from BP that iteratively107

tunes the weight parameters by gradient descent technique,108

ELM randomly chooses the weight parameters between input109

and hidden layers and analytically solves the weight parame-110

ters between hidden and output layers through Moore–Penrose111

generalized inverse [44]–[48]. Due to the extremely fast train-112

ing speed and good prediction performance, ELM has been113

investigated intensively and extensively in the machine learn-114

ing and data mining communities [23]–[26]. Based on the115

aforementioned advantages, we will adopt ELM as the classi-116

fication algorithm in this paper. The major theoretical issues117

of ELM can be found in [27] and [28], and the applications118

of ELM to different areas, such as sparse representation can119

be found in [29] and [30].120

The rest of this paper is organized as follows. Section II121

reviews ELMs. Section III introduces the dependency rela-122

tion between generalization and uncertainty of classifiers.123

Section IV discusses the complexity of classification problems.124

Section V analyzes the relationship between generalization and125

uncertainty by incorporating a complexity index. Experiments126

are conducted in Section VI. Finally, conclusions are given in127

Section VII.128

II. EXTREME LEARNING MACHINE 129

This section will introduce ELM, which is a noniterative 130

training algorithm for SLFNs. 131

A. Training of ELM 132

A standard SLFN for classification is a discrete function 133

mapping samples to class labels. Given a training set that 134

contains N arbitrarily distinct samples X = {(xi, ti)}N
i=1 ⊂ 135

Rn × {0, 1}c, where xi = [xi1, xi2, . . . , xin] is the ith training 136

sample, ti = [ti1, ti2, . . . , tic] is the label vector of xi, n is 137

the number of features, and c is the number of classes. An 138

SLFN with ˜N hidden nodes and activation function g(x) can 139

be expressed as 140

˜N
∑

j=1

βjg
(

wj · xi + bj
) = ti, i = 1, 2, . . . , N (1) 141

where wj = [wj1, wj2, . . . , wjn] is the weight linking the input 142

nodes to the jth hidden node, bj is the bias of the jth hidden 143

node, βj is the weight linking the jth hidden node to the out- 144

put nodes, and sigmoid function g(x) = (1/[1 + exp(−x)]) is 145

selected as the activation function. 146

In ELMs, the input weights wj and biases bj are randomly 147

chosen, and the learning can be formulated as a minimum 148

optimization problem with a regularized term 149

minβ

{

||T − Hβ||22 + μ||β||22
}

, μ > 0 (2) 150

where H is the hidden layer output matrix denoted as 151

H(w1, w2, . . . , w
˜N, b1, b2, . . . , b

˜N, x1, x2, . . . , xN) 152

=
⎡

⎢

⎣

g(w1 · x1 + b1) · · · g
(

w
˜N · x1 + b1

)

...
. . .

...

g(w1 · xN + b1) · · · g
(

w
˜N · xN + b

˜N

)

⎤

⎥

⎦

N×˜N

(3) 153

and T is the label matrix denoted as 154

T =
⎡

⎢

⎣

t1
...

tN

⎤

⎥

⎦

N×c

. (4) 155

The optimal estimation of output weights β∗ can be formu- 156

lated as a regularized least square problem 157

β ∗̃
N×c = (

HTH + μI
)−1

HTT (5) 158

where I is the identity matrix of suitable dimension and μ is 159

the regularizing factor. 160

To this end, all the parameters {w, b, β} in ELM have been 161

fixed, and the training process is finished. 162

ELMs have been proved to have the universal approxima- 163

tion capabilities [31] although the training process does not 164

include any iteration. Under the assumption of smoothness of 165

the underlying function, the universal approximation capabil- 166

ity of ELMs can be guaranteed by providing a sufficiently 167

large number of hidden nodes with certain range of w and b. 168

In comparison with BP algorithm, ELMs have a much faster 169

training speed due to the noniterative mechanism. References 170

show that ELMs can finish the training process thousands of 171

times faster than BP in some scenarios, at the same time, an 172
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acceptable learning accuracy is kept. The advantages and dis-173

advantages of ELMs are listed in Appendix A. Furthermore,174

one can find many improved versions for ELMs. The com-175

putation of weights between hidden and output layers can176

be improved through an optimization algorithm given by177

Deng et al. [32] in order to avoid over-fitting. Rong et al. [33]178

offered a pruned ELM in which the corresponding nodes179

can be removed according to the information gain to reduce180

the correlation among classes in a large network structure.181

Feng et al. [34] proposed an EM-ELM in which the weights182

are not updated when a node is added, and the algorithm183

can update the weights and adjust the network at the same184

time. Furthermore, it is found that ELMs can online deal with185

sequential data successfully [35].186

B. Generalized Inverse and Normal Equations187

In ELMs, the weights between hidden and output layers are188

calculated by the generalized inverse [36]. We briefly review189

some connections between the generalized inverse and the nor-190

mal equations. Originally, the training of ELMs contains two191

parts. The first is to randomly assign values in a specified192

interval to the weights between the input and hidden layers193

while the second is to determine the weights between the hid-194

den and output layers by computing the generalized inverse195

of the matrix H as β∗ = H†T. It is the minimum norm and196

minimum least square solution of the system of linear matrix197

equations Hβ = T. It is easy to prove that, if the matrix H is198

of full-rank, the solution of normal equation HTHβ = HTT199

is identical to β∗ = H†T.200

Noting that in Section II-A, the training process of ELMs is201

written as β∗ = (HTH+μI)−1HTT, where μ is a regularizing202

factor. This formula is identical to β∗ = H†T if the regulariz-203

ing factor takes value zero. It is proven in [24] that the matrix204

H is of full-rank with probability 1, and therefore, we can say205

that the solution of normal equation H THβ = HTT is avail-206

able with probability 1. In fact, the regularizing factor, which207

makes the solved weights as small as possible, has the effect208

to become the matrix H full of rank.209

Practically the number of rows is much larger than the210

number of columns for an input data matrix. It implies that211

the transformation from computing β∗ = H†T to solving212

the normal system of linear matrix equations HTHβ = HTT213

can save much computational load, since the order of H is214

N × ˜N but the order of HTT is ˜N × c, where N is the215

number of input samples, ˜N is the number of hidden layer216

nodes, and c is the number of classes. A lot of numeri-217

cal experiments have confirmed this saving of computational218

load.219

III. DEPENDENCY RELATION BETWEEN220

GENERALIZATION AND UNCERTAINTY221

OF CLASSIFIERS222

In this section, we will introduce the generalization and223

uncertainty of a classifier. The dependency relation between224

generalization and uncertainty is then discussed.225

A. Generalization and Uncertainty 226

Generally speaking, the purpose of learning is to acquire 227

the knowledge hidden in the data. Knowledge representation, 228

which has been well acknowledged as a bottle-neck problem 229

in machine learning and artificial intelligence for many years, 230

does not have a general definition but has many specific forms. 231

A mathematical model, such as a set of IF-THEN rules or a 232

neural network learned from a training set, can be regarded 233

as a typical form of knowledge representation. The ability 234

or performance of the learned model to predict unseen cases 235

(which are not within the training set) is called generalization. 236

Let S be a finite space of samples, F(x) be a discrete-valued 237

function defined on S, and X be a subset of S. Based on values 238

of F(x) in X, an estimator function f (x) defined on S is given 239

by using a training algorithm. The discrete-valued function 240

f (x) has the same value range as F(x). Usually we call f (x) 241

as a classifier trained by the algorithm on X. 242

Definition 1: The generalization of classifier f (x) is 243

defined as 244

G(f ) = |{x : x ∈ S − X, F(x) = f (x)}|
|S − X| (6) 245

where | | denotes the number of elements in a set. 246

Generalization is the most important index of evaluating 247

a learned model. From mathematical viewpoint, the task of 248

learning is to find a function f (x) through a training set 249

X = {(xi, ti)}N
i=1 ⊂ Rn × {0, 1}c such that f (x) can well 250

approximate the objective function F(x) both at training cases 251

and unseen cases. The difference between F(x) and f (x) is 252

called generalization error, which can be measured from differ- 253

ent angles. One method is to estimate an upper bound for it, the 254

other is to compute R = ∫

S [F(x) − f (x)]2p(x)dx, where p(x) 255

is the probability density function of input x. Experimentally, 256

the generalization can be measured by the prediction accuracy 257

of the classifier on a testing set. 258

Multiple factors have critical impacts on the generalization 259

of a classifier. 260

1) Model Selection: It is hard to select the most appropriate 261

model for a given classification task. When the training 262

data is fixed, the generalizations of two models might 263

be quite different. This is due to the data distribution, 264

i.e., a model suitable for one type of data may not be 265

appropriate for another type of data. 266

2) Training Algorithm: When a model is fixed, the subse- 267

quent work is to train the model parameters based on a 268

training set. A model with a set of trained parameters 269

has the generalization quite different from the model 270

with another set of trained parameters. 271

3) Representatives of Training Data: Since both the objec- 272

tive function and its approximating function are defined 273

on a space S, one problem is that the training set 274

X should be a reasonable sampling of the space S, 275

which directly relates to the fundamental assumption of 276

machine learning that the training set has an identical 277

distribution as the testing set has. 278

4) Model Knowledge Parameters: Different from the 279

parameters inside the model that are acquired directly 280
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from the training process, model knowledge parame-281

ters do not explicitly appear in the model, which are282

usually evaluated after the training process. For exam-283

ple, the uncertainty of classifier’s outputs is a typical284

model knowledge parameter. The relationship between285

generalization and uncertainty of a classifier is initially286

demonstrated in [20]. This paper will conduct further287

studies on this relationship through incorporating a new288

index, i.e., complexity of classification.289

B. Fuzziness of Classifier’s Outputs290

In this paper, we use fuzziness to depict the uncertainty291

of a classifier’s outputs. The term “fuzziness,” in conjunc-292

tion with the concept of fuzzy set, was first mentioned by293

Zadeh [37]. He also generalized a probability measure of294

events that cannot be described by sharply defined collection295

of points, and suggested using entropy in information the-296

ory to interpret the uncertainty associated with a fuzzy event.297

De Luca and Termini [38] for the first time clearly proposed298

three properties that a fuzziness measure should satisfy. The299

term fuzziness can be interchangeable with “ambiguity” in300

some scenarios. Klir et al. [39], [40] stated that fuzziness and301

ambiguity gave two cognitive uncertainty measures.302

As stated in [41], the fuzziness of a fuzzy set μ can be303

measured by a mapping E(μ):F(S) → [0,∞] where F(S)304

denotes the space of all fuzzy sets defined on S, satisfying305

the following axioms.306

1) E(μ) = 0 if and only if μ is a crisp set.307

2) E(μ) attains its maximum value if and only if ∀x ∈308

S: μ(x) = 0.5.309

3) If μ ≤s σ , then E(μ) ≥ E(σ ), where ≤s is defined as310

μ≤sσ ⇔ min(0.5, μ(x)) ≥ min(0.5, σ (x))311

max(0.5, μ(x)) ≤ max(0.5, σ (x)).312

4) E(μ) = E(μ′) when ∀x ∈ S: μ′(x) = 1 − μ(x).313

5) E(μ ∪ σ) + E(μ ∩ σ) = E(μ) + E(σ ).314

Based on these axioms, we further introduce the following315

definition.316

Definition 2 [32]: Let B = {μ1, μ2, . . . , μm} be a fuzzy317

set, the fuzziness of B can be defined as318

E(B) = − 1

m

m
∑

i=1

(

μi log μi + (1 − μi) log(1 − μi)
)

. (7)319

It is easy to verify that formula (7) indeed satisfies320

axioms 1–5.321

Given a set of samples X = {(xi, ti)}N
i=1 ⊂ Rn × {0, 1}c

322

and a well-trained classifier, a membership matrix U = [μij]323

can be obtained by matching each sample to the classifier,324

where μij = μj(xi) denotes the membership degree of the325

ith sample belonging to the jth class, where i = 1, 2, . . . , N326

and j = 1, 2, . . . , c. It is worth noting that each output vector327

may not be a probability distribution, i.e., μij ∈ [0, 1], and the328

equality
∑c

j=1 μij = 1 does not necessarily hold.329

Based on Definition 2, the fuzziness of the classifier’s 330

outputs for the ith sample can be expressed as 331

E(μi) = −1

c

c
∑

j=1

(

μij log μij + (

1 − μij
)

log(1 − μij)
)

. (8) 332

Having the above preliminaries, in the following, we pro- 333

pose a new concept to describe the fuzziness of a classifier’s 334

outputs on the entire training set. 335

Definition 3 (Fuzziness of a Classifier’s Outputs): Suppose 336

that a classifier is trained from training set X. Without loss 337

of generality, X is assumed to be a sufficient sampling of 338

the entire sample space. Let U = [μij]c×N be the membership 339

matrix given by matching each training sample to the classifier, 340

where c is the number of classes and N is the number of 341

samples. Then the fuzziness of the classifier’s outputs can be 342

defined as 343

E(U) = − 1

cN

N
∑

i=1

c
∑

j=1

(

μij log μij + (

1 − μij
)

log
(

1 − μij
))

. 344

(9) 345

It is noted that Definition 3 uses the fuzziness of the classi- 346

fier’s outputs on the training set. In a more rigorous manner, it 347

should be defined as the fuzziness of the classifier on the whole 348

space. Unfortunately, the fuzziness of the classifier on unseen 349

samples is unknown. According to the fundamental assump- 350

tion of supervised learning that the training set is a reasonable 351

and sufficient sampling of the entire sample space, we can use 352

the classifier’s fuzziness on the training set to approximately 353

replace the classifier’s fuzziness on the entire sample space. 354

C. Relationship Between Generalization and Fuzziness 355

Previous study [20] shows that the classifier with higher 356

fuzziness of outputs has a better generalization for com- 357

plex boundary problems when the training accuracy attains 358

a predefined threshold. Furthermore, it demonstrates that the 359

outputs of boundary samples have higher fuzziness, and 360

samples with higher fuzziness exhibit higher risk of misclas- 361

sification. By separating samples with high fuzziness from 362

samples with low fuzziness, a divide-and-conquer learning 363

algorithm based on fuzziness categorization was proposed 364

in [41]. It shows that the category of sample with low or high 365

fuzziness plays a critical role for performance improvement. 366

Although these studies confirm that a relationship between 367

fuzziness and generalization of a classifier indeed exists, it is 368

difficult to explicitly express this relationship in general. 369

In the following, we make an investigation on data set Spam, 370

which is a binary classification data set selected from UCI 371

machine learning repository. This data set contains 4601 sam- 372

ples with 57 features. We randomly split it into two parts, 373

i.e., 70% for training and 30% for testing. ELM is used to 374

construct a classifier, which generates four indexes, i.e., train- 375

ing accuracy, testing accuracy, training fuzziness, and testing 376

fuzziness. The random splitting is repeated for 100 times and 377

four indexes are recorded for each repetition. 378

We make a statistical analysis for the 100 results. First, we 379

split the interval between the minimum and maximum fuzzi- 380

ness values into ten parts with equal length and generate ten 381
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Fig. 1. Dependency relation between fuzziness and accuracy for Spam. (a) Histogram of training fuzziness. (b) Training accuracy. (c) Histogram of testing
fuzziness. (d) Testing accuracy.

levels of fuzziness. For instance, the minimum and maximum382

fuzziness values for testing are 0.4889 and 0.5798, respec-383

tively. Then, the ten fuzziness levels for testing are generated384

as level 1 = [0.4889, 0.4980), level 2 = [0.4980, 0.5071),385

level 3 = [0.5071, 0.5162),. . . , and level 10 = [0.5707,0.5798].386

Afterwards, we make a statistic for the number of experimen-387

tal trials in each fuzziness level, and plot the histograms as388

shown in Fig. 1(a) and (c). Finally, we get the average train-389

ing or testing accuracy for each fuzziness level, and plot the390

changing trends as shown in Fig. 1(b) and (d).391

One can see from Fig. 1 that the relationship between392

accuracy and fuzziness of ELM does exist for Spam. We393

further calculate the Pearson correlation coefficient. As a394

remark, Pearson correlation reflects the statistical relation-395

ship between two sets of variables with a coefficient from396

[−1, 1]. A positive/negative coefficient represents that the397

two sets of variables are positive/negative correlated, and398

the absolute value represents the correlation degree. We use399

the median to represent each fuzziness level. Taking the400

testing result as an example, the correlation coefficient is401

calculated between fuzziness vector [0.4935, 0.5025, 0.5116,402

0.5207, 0.5298, 0.5389, 0.5480, 0.5571, 0.5662, 0.5753] and403

accuracy vector [0.8536, 0.8391, 0.8279, 0.8263, 0.8214,404

0.8194, 0.8177, 0.8111, 0.8065, 0.7524]. Finally, the corre-405

lation coefficients for training and testing are calculated as406

−0.7145 and −0.8625, respectively. This tells that the accu-407

racy and fuzziness have a negative correlation for Spam,408

i.e., a higher fuzziness will lead to a lower accuracy, and the409

correlation degree is high.410

Although the above example demonstrates that the relation-411

ship between generalization and uncertainty does exist for data412

set Spam, this relationship is difficult to express explicitly for413

general cases. In the subsequent sections, we will attempt to414

make this relationship clear by incorporating a new index,415

i.e., complexity of classification.416

IV. COMPLEXITY OF CLASSIFICATION PROBLEM417

Generally, a classification problem can be described as fol-418

lows. Let S be the universal space we consider, F be a discrete419

function defined on S. For simplicity, we suppose that func-420

tion F takes values either 0 or 1, where 0 denotes one class421

and 1 denotes the other class. Given a subset of S, denoted422

as X, which is called the training set, the values of F on423

X are known, but the values of F on S − X are unknown.424

A classification problem is to find a function f such that f can 425

well approximate F both in X and S −X. Usually, F is called 426

an objective function, f is called a classifier acquired based on 427

training set X, the approximation error on X is called training 428

error, and the approximation error on S − X represents the 429

generalization ability of F. 430

The complexity of a classification problem refers to the 431

complexity of function F, which implies the difficulties of the 432

process of finding a quality f from X. Unfortunately, there is 433

no formal definition on the complexity of a discrete function. 434

From references we can find a number of indexes to describe 435

the complexity from different angles. It is noteworthy that the 436

complexity of objective function is independent on the learned 437

classifier f . Since the objective function F is unknown in real 438

applications but is known on the training set X, the indexes 439

in describing the complexity of F can be estimated through 440

the training set X and values of F on X. In the following, we 441

give several indexes to describe the complexity of F, which 442

are mainly chosen from [21]. 443

A. Fisher’s Discriminant Ratio 444

Fisher’s discriminant ratio is an old statistical index for 445

describing the difference between two populations. Suppose 446

that μ1j, μ2j, σ1j, and σ2j are the means and variances of 447

the two populations (classes) with respect to the jth attribute, 448

j = 1, . . . , n. Then, the Fisher’s discriminant ratio for the jth 449

attributes is defined as 450

fj =
(

μ1j − μ2j
)2

σ 2
1j + σ 2

2j

. (10) 451

It is easy to see that Fisher’s discriminant ratio with respect 452

to the jth attribute describes the distance between two classes 453

regarding this attribute. Intuitively, the longer the distance is, 454

the easier the classification problem is, the lower the com- 455

plexity will be. Thus, the complexity evaluating index is 456

defined as 457

Comp1 = 1

maxj
{

fj
} . (11) 458

B. Volume of Overlap Region 459

A similar measure is the volume of overlap region between 460

two class conditional distributions. It depends on, for each 461

attribute, the maximum and the minimum values of each class. 462
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Fig. 2. Intuitive illustration of volume of overlap region.

We denote Aj as the jth attribute. Then, the overlap region463

normalized by the range of the value spanned by both classes,464

for each attribute Aj, can be represented as465

vj466

= MIN
(

max(Aj, c1), max
(

Aj, c2
))− MAX

(

min(Aj, c1), min
(

Aj, c2
))

MAX
(

max
(

Aj, c1
)

, max
(

Aj, c2
))− MIN

(

min
(

Aj, c1
)

, min
(

Aj, c2
))467

(12)468

where max(Aj, c1), max(Aj, c2), min(Aj, c1), and min(Aj, c2)469

denotes the maximum and minimum values of attribute Aj in470

the two classes, respectively. Then, the complexity evaluating471

index is defined as the volume of overlap region incorporating472

all the attributes473

Comp2 =
∏n

j=1
vj (13)474

where n is the number of attributes. An intuitive illustration of475

volume of overlap region for a 2-D feature space is given in476

Fig. 2. It is noted that Comp2 = 0 if the value ranges of the two477

classes do not overlap in at least one dimension. Obviously, a478

larger value of Comp2 represents a higher complexity of the479

classification problem.480

C. Intraclass/Interclass Distance Ratio481

This measure first computes the Euclidean distance from482

each sample to its nearest neighbor within or outside the class.483

Assume that dintra
i or dinter

i is the distance between sample xi484

and its nearest neighbor within or outside the class, we have485

{

dintra
i = minj�=i,yj=yi d

(

xi, xj
)

dinter
i = minj�=i,yj �=yi d

(

xi, xj
) (14)486

where yi and yj represent the class labels of xi and xj, respec-487

tively. Then, it takes the average of all the intraclass distances488

and the average of all the interclass distances, and the ratio of489

both averages is defined as the complexity of the problem490

Comp3 =
∑N

i=1 dintra
i

∑N
i=1 dinter

i

(15)491

where N is the number of samples. Similarly, a larger value492

of Comp3 represents a higher complexity of the classification493

problem.494

Fig. 3. Two normal populations.

D. Linear Separability 495

Linear separability was intensively discussed in the early 496

literature. A simple definition to describe the linear separa- 497

bility for both separable and nonseparable cases is given by 498

Smith [42] 499

min aTt, s.t. ZTw = t ≥ b (16) 500

where a and b are arbitrary constant vectors, w is the weight 501

vector, t ≥ 0 is the error vector, and Z is a matrix in which 502

each column z is defined based on the input vector x and its 503

class label c 504

{

z = +x if c = c1
z = −x if c = c2.

(17) 505

The value of the objective function denotes the degree of being 506

separable for two class cases, that is 507

Comp4 = aTt. (18) 508

It is noted that Comp4 = 0 if the problem is linear separable. 509

Other indexes to describe the complexity of classification 510

problem can be found from [21]. 511

V. RELATIONSHIP BETWEEN GENERALIZATION 512

AND UNCERTAINTY BY INCORPORATING 513

COMPLEXITY OF CLASSIFICATION 514

In this section, we give an analysis on the relationship 515

between generalization and uncertainty by incorporating the 516

complexity of classification. Since it is difficult for us to give 517

a general analysis for all the complexity indexes, we only 518

adopt the index of Fisher’s discriminant ratio in Section IV-A, 519

and give an explanation from the viewpoint of discriminant 520

analysis, which has the principal of maximum probability. 521

Without loss of generality, we consider the 1-D case, which 522

can be easily extended to multiple-dimensional cases. A nor- 523

mal distribution with mean μ and variance σ 2, denoted by 524

N(μ, σ 2), has a probability density function 525

f (x) = 1√
2πσ

exp

(

− (x − μ)2

2σ 2

)

, −∞ < x < +∞. (19) 526

Suppose that there are two normal populations denoted by 527

N(μ1, σ
2
1 ) and N(μ2, σ

2
2 ) as shown in Fig. 3, and x(μ1 < x < 528

μ2) is a new sample that needs to be discriminated. 529

For a classification problem, each population represents a 530

class. From traditional textbook [43] we can view a simple 531

way to judge sample x belonging to which class. 532
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Let C be the cross-point between two density functions,533

i.e., C satisfies the following equation:534

1√
2πσ1

exp

(

− (C − μ1)
2

2σ 2
1

)

= 1√
2πσ2

exp

(

− (C − μ2)
2

2σ 2
2

)

.535

(20)536

It is easy to check that the cross-point locates in the interval537

(μ1, μ2). The probabilities of sample x belonging to the two538

classes, denoted as (α, β), can be approximately viewed as539

(α, β) =
(

1√
2πσ1

exp

(

− (x − μ1)
2

2σ 2
1

)

,540

1√
2πσ2

exp

(

− (x − μ2)
2

2σ 2
2

))

(21)541

which induces the following discriminant rules based on the542

principle of maximum probability.543

1) IF x < C (α > β) THEN x belongs to class I.544

2) IF x > C (α < β) THEN x belongs to class II.545

3) IF x = C (α = β) THEN the class of x is uncertain.546

We now relate these discussions about discriminant analysis547

to the theme of this paper, i.e., uncertainty and complexity of548

a classification problem. According to Section IV-A, the com-549

plexity of a classification problem can be described by means550

and variances of class distributions. It can be roughly sum-551

marized as: the complexity is going up with either increasing552

the variances (σ 2
1 , σ 2

2 ) or decreasing the difference between553

both means |μ1 − μ2|. Moreover, the uncertainty of a classi-554

fier is evaluated based on the probability vector (α, β) defined555

in (21). According to Section III, there are many specific556

formulas to evaluate the uncertainty (e.g., the fuzziness in557

Definition 3), but all of them have to satisfy the conditions558

given in Section III-B, e.g., if α < β, when α′ < α and β ′ > β,559

the uncertainty output by vector (α′, β ′) should be smaller than560

that output by (α, β). It shows that, to some extent, the differ-561

ence between the two probability values denotes the magnitude562

of uncertainty. The bigger the difference is, the smaller the563

uncertainty is. Based on these analyses, we have the following564

theorems.565

Theorem 1: Let566

g(σ ) = 1√
2πσ

(

exp

(

− (x − μ2)
2

2σ 2

)

− exp

(

− (x − μ1)
2

2σ 2

))

567

where σ > 0, μ1 < μ2, x ∈ ([(μ1 + μ2)/2], μ2), and μ1, μ2568

are considered as constants. Then, there exists a number σ1 ∈569

(0, μ2 − x) such that g(σ ) is monotonically decreasing in the570

interval (σ1,+∞).571

Proof: The proof of Theorem 1 is listed in Appendix B.572

Theorem 2: Let573

q(δ) = 1√
2π

(

exp

(

−x − (μ2 − δ)2

2

)

574

− exp

(

−x − (μ1 + δ∗)2

2

))

575

where x, μ1, and μ2 are considered as constants, μ1 < μ2,576

δ∗ = |[(μ1 − x)/(μ2 − x)]|δ, and δ > 0. Then, there exists a577

number δ1 such that q(δ) is monotonically decreasing in the 578

interval (0, δ1). 579

Proof: The proof of Theorem 2 can be derived similarly to 580

the proof of Theorem 1. 581

Theorem 3: Suppose that the conditional probability out- 582

puts of a binary classifier follow two normal distributions 583

N(μ1, σ
2) and N(μ2, σ

2), respectively, where μ1 < μ2. Let 584

α = − 1√
2πσ

exp

(

− (x − μ1)
2

2σ 2

)

β 585

= 1√
2πσ

exp

(

− (x − μ2)
2

2σ 2

)

586

and 587

E(α, β) = −1

2
(α log α + (1 − α) log(1 − α) 588

+ β log β + (1 − β) log(1 − β)). 589

Assume β = Kα where K ∈ (1, 1 + ε), then E(α, β) = 590

E(K) is monotonically decreasing with respect to K if 591

Kα > (1/2). 592

Proof: The proof of Theorem 3 is listed in Appendix C. 593

Noting that g(σ ) in Theorem 1 or q(δ) in Theorem 2 denotes 594

the difference between two probability density values, which 595

can be represented as β −α in Theorem 3. Theorem 3 directly 596

connects this difference together with the uncertainty of the 597

classifier’s outputs given in Definition 2. 598

Theorem 3 shows that the uncertainty of the classifier’s out- 599

puts is decreasing with the increase of the difference between 600

two density values, i.e., β − α, where α and β can be con- 601

sidered as the probabilities of a sample being classified as 602

classes I and II, respectively. As a result, the conclusions in 603

Theorems 1 and 2 show that the uncertainty of a classifier’s 604

outputs is becoming bigger with the increase of the complex- 605

ity of the classification problem, which is represented through 606

inflating the variance in Theorem 1 and through shrinking 607

the difference between two means in Theorem 2, respectively. 608

Since in a classification problem, the complexity is inherent 609

while the uncertainty is generated by the output of a well- 610

trained classifier which has its training and testing accuracy, 611

it is reasonable to believe that some relationships exist among 612

the accuracy, uncertainty, and complexity. 613

It is noteworthy that Theorems 1–3 cannot exactly explain 614

the relationships among the three indexes, i.e., accuracy, 615

uncertainty, and complexity. However, to a great extent, 616

they provide solid supports to the existence of the relation- 617

ships. They confirm such a fact that the classifier’s uncer- 618

tainty will be inevitably high if the classification problem 619

is complex, no matter what classifier design algorithm is 620

used. This statement further implies that a high-performance 621

classifier will have high uncertainty when the problem is 622

complex. 623

VI. EMPIRICAL STUDIES 624

In this section, we will conduct some empirical studies to 625

further analyze the relationships discussed in Section V. It 626

is noteworthy the discussions in Section V were made based 627
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TABLE I
SELECTED DATA SETS FOR EXPERIMENTS

on Comp1, i.e., Fisher’s discriminant ratio. Thus, in this sec-628

tion, we will also adopt Comp1 to evaluate the complexity of629

classification problems.630

A. Selected Data Sets631

The data sets used in the experiments are selected from632

UCI machine learning repository. The detailed information633

regarding these data sets are summarized in Table I. Since the634

complexity indexes listed in Section IV are defined for binary635

classification problems, we transfer each multiclass data set636

into binary by randomly selecting 50% classes as positive and637

the rest 50% classes as negative.638

B. Experimental Design639

The flowchart for training the classifier and evaluating the640

problem complexity is listed in Algorithm 1.641

It is noteworthy that the training algorithm adopted in this642

section is ELM. Due to the random mechanism for weight643

assignment, it is easy to repeat the experiment for many times.644

We conduct 100 experimental trials for each data set. In each645

trial, 70% data are randomly selected for training, and the646

remaining 30% data are used for testing. Each trial will pro-647

vide a different result, and we make statistics for fuzziness,648

accuracy, and complexity based on the 100 results.649

The number of hidden nodes in ELM is set as 20, and650

sigmoid activation function is utilized. The simulations are651

carried out under MATLAB R2011b, which are executed on a652

computer with an Intel Core i7-5500U CPU@2.40 GHz, 8GB653

memory, and 64-bit Windows 8 system.654

Algorithm 1: Train ELM Classifier and Compute
Evaluating Indexes

Input:
Training set X = {(xi, ti)}N

i=1 ⊂ Rn × {0, 1}c;
Activation function f (x);
Number of hidden nodes Ñ.

Output:
Fuzziness and generalization of the trained classifier;
Complexity of the classification problem.

1 Data processing: randomly divide the data set into two
parts for training and testing according to a separation
ratio.

2 Classifier training: train a ELM classifier based on the
algorithm given in section II-A.

3 Testing: test the classifier on the testing set, compute the
fuzziness (Definition 3) and generalization (testing
accuracy) of the classifier.

4 Complexity evaluation: compute the complexity of the
classification problem, i.e., Eq. (11).

C. Experimental Analysis 655

Similar to Section III-C, we make some statistical analyses 656

on the testing results. For each data set, ten fuzziness lev- 657

els are generated by equally dividing the interval between 658

the maximum and minimum fuzziness values. We use the 659

median to represent each fuzziness level. Then, the number 660

of experimental trials for each fuzziness level is counted, 661

and the average testing accuracy for each fuzziness level is 662

calculated. Fig. 4 demonstrates the changing trend of the test- 663

ing accuracy along with the level of fuzziness. It depicts 664

the dependency relation between testing accuracy and test- 665

ing fuzziness for the classification problems. Due to space 666

limit, we only plot the results for 12 data sets out of 31. 667

Furthermore, we calculate the Pearson correlation coefficient 668

between fuzziness vector and accuracy vector for each data 669

set. It is noteworthy there are ten fuzziness levels for each 670

data set. However, from Fig. 4, we can see that the high- 671

est fuzziness level (i.e., level ten) usually cause a sharp 672

change of the testing accuracy, which may interfere the sta- 673

tistical analysis for the overall results. Thus, we only use the 674

previous nine fuzziness values and their corresponding accu- 675

racy. The correlation coefficients r are listed in Table II. We 676

artificially set up some thresholds to justify the degree of 677

correlation. 678

1) If 0 ≤ |r| < 0.4, then the correlation is low. 679

2) If 0.4 ≤ |r| < 0.7, then the correlation is medium. 680

3) If 0.7 ≤ |r| ≤ 1, then the correlation is strong. 681

It is observed from Table II that the generalization and fuzzi- 682

ness have a strong or medium correlation regarding most 683

data sets. 684

The complexities of the problems are shown in Fig. 5, 685

which are sorted according to the order numbers (i.e., 1–31) 686

in Table I. In Fig. 5, we artificially set up a threshold such 687

that the complexity higher than the threshold is called high 688

otherwise is called low. In this case, one can view an implicit 689

relation among the complexity, generalization, and fuzziness. 690
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Fig. 4. Relationship between fuzziness and generalization of ELM classifier on different data sets. (a) Australian. (b) Chart. (c) Dermatology. (d) Segment.
(e) Libras. (f) OptDigits. (g) Pen. (h) Plrx. (i) Sonar. (j) Spam. (k) SPECTF. (l) Yeast.

TABLE II
PEARSON CORRELATION COEFFICIENT BETWEEN OUTPUT

FUZZINESS AND TESTING ACCURACY

The generalization of a classifier trained by ELM goes up691

with the increase of fuzziness if the complexity of the clas-692

sification problem is relatively high, while the generalization693

of a classifier trained by ELM goes down with the increase694

of fuzziness if the complexity of the classification problem is695

Fig. 5. Complexity of the classification problems.

relatively low. For instance, it can be seen from Fig. 5 that 696

the complexity values of Segment (data set 23) and Plrx (data 697

set 18) are high, in this case, the generalizations of these two 698

data sets are becoming better with the increase of fuzziness 699

as shown in Fig. 4(d) and (h). However, the complexity val- 700

ues of OptDigits (data set 30) and Spam (data set 28) are 701

low, in this case, the generalizations of these two data sets are 702

becoming worse with the increase of fuzziness as shown in 703

Fig. 4(f) and (j). 704

By learning the complexity of classification problems from 705

Fig. 5, we grasp some factors that are resulted from the 706
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Fig. 6. Relationship between fuzziness and generalization of SVM classifier on different data sets. (a) Australian. (b) Chart. (c) Dermatology. (d) Segment.
(e) Libras. (f) OptDigits. (g) Pen. (h) Plrx. (i) Sonar. (j) Spam. (k) SPECTF. (l) Yeast.

complexity of decision boundaries. It is obvious that there are707

some relations between them.708

As we know, the complexity of a classification problem709

can be intuitively regarded as the degree of difficulty for the710

problem. More specifically, it is the complexity of geometrical711

class boundary which can be seen as an equation F = 0712

that divides the sample space. In classification problem, it is713

desired to find a classifier f by training the data set locating714

next to the boundary function F = 0. The ability of function715

f to approximate function F on unseen data is the generaliza-716

tion, and the fuzziness of the classifier is the uncertainty of717

function f in dividing unseen samples.718

When it is easy to distinguish the classes by the boundary of719

function F, it will also be easy to divide the unseen samples by720

f , since the structure of training data is supposed to be similar721

to the structure of unseen data and f is an estimator of F.722

It implies that the boundary will be simple and the fuzziness723

of the boundary is low. In this situation, it is reasonable to724

believe that, with the decrease of classifier’s fuzziness, the725

generalization will be improved.726

When it is difficult to distinguish the classes by the bound-727

ary of function F, the classifier function f is also difficult to728

divide the unseen samples. It corresponds to a case of high729

complexity and complex boundary. It is inherent to output730

high fuzziness for boundary samples for any classifier, and731

therefore, we reasonably believe in this situation that, with 732

the increase of classifier’s fuzziness, the generalization may 733

be getting better. 734

D. Analysis With SVM Classifiers 735

We further realize the above studies with SVM classifiers. 736

We adopt the “LibSVM” toolbox, the penalty term C is fixed 737

as 100, and RBF kernel K(x, xi) = exp(−[||x − xi||2/2σ 2]) 738

with σ = 1 is adopted. The decision values of SVM are 739

transformed into uncertain outputs by logistic function. The 740

dependency relation between generalization and fuzziness 741

regarding the 12 data sets in Fig. 4 are demonstrated in Fig. 6. 742

It can be observed that the results are basically consistent with 743

those in Section VI-C, but the changing trends are not as clear 744

as those of ELM. As a result, ELM might be more suitable to 745

conduct this paper, since it has a higher degree of uncertainty 746

due to the random mechanism for input weights assignment. 747

VII. CONCLUSION 748

This paper finds an empirical relationship among the com- 749

plexity of a classification problem, the uncertainty of classi- 750

fier’s outputs, and the prediction accuracy of the classifier. By 751

experimental validation and theoretical explanation through a 752

simple model of discriminant analysis, it is found that with the 753
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increase of the uncertainty of the classifier’s outputs, empiri-754

cally the accuracy is upgrading for high-complexity problem755

but downgrading for low-complexity problem. Based on these756

findings, in order to choose a better classification rule for a757

practical problem, one can tune the model parameters such that758

the uncertainty becomes larger for problems with higher com-759

plexity, or smaller for problems with lower complexity under760

the condition that an acceptable training accuracy is kept.761

APPENDIX A762

FEATURES OF ELMS763

In the following, we briefly review the major advantages764

of ELMs.765

1) The first advantage of ELMs is the fast training speed.766

Since the training of ELMs does not include iterative767

tuning, it statistically shows that ELM is thousands of768

times faster than BP given a predefined threshold for769

training accuracy.770

2) Another feature of ELMs is the acceptable generaliza-771

tion ability. In comparison with other popular classifi-772

cation or regression algorithms, such as DTs, SVMs,773

logistic regressions, etc., the generalization of ELMs774

may not be the best in general. But so far, one cannot775

find a significant difference among the generalizations776

of these algorithms.777

3) The training procedure of ELMs can process online778

sequential data conveniently, which demonstrates strong779

potentials for big data analytic. It is shown that ELMs780

can effectively handle both numerical and nominal781

attributes for both classification and regression problems.782

4) Mathematically it is proven that ELMs have the uni-783

versal approximation ability if the activation function is784

differentiable. That is, ELMs can uniformly approximate785

any continuous function defined in an interval when the786

number of hidden nodes goes to infinity. This conclusion787

establishes the foundation of applying ELMs to various788

classification and regression problems.789

It is worthy noting that any learning algorithm cannot be790

consistently better than others. In the following, we list several791

disadvantages of ELMs.792

1) As aforementioned, the weights between input and hid-793

den layers in ELMs are randomly selected from an794

interval. ELMs are sensitive to this interval, and the795

change of the interval will produce quite different796

classifiers, which seriously decreases the stability.797

2) The number of hidden layer nodes is critical for building798

an ELM. A large number will lead to the generalization799

decreasing but a small number can result in the training800

error increasing. So far, how to select the number of801

hidden layer nodes is still a challenging issue.802

APPENDIX B803

PROOF OF THEOREM 1804

The original problem can be represented as805

g(σ ) = 1√
2πσ

(

exp

(

− (x − b)2

2σ 2

)

− exp

(

− (x − a)2

2σ 2

))

806

prove that there exits σ1 such that g(σ ) is monotonically 807

increasing when σ < σ1 and g(σ ) is monotonically decreasing 808

when σ > σ1. 809

The constant term
√

2π can be neglected. Let (x − a) = 810

k × (b − x) and σ = t × (b − x), the original problem can be 811

simplified as 812

g(t) = 1

t

(

exp(− 1

2t2
) − exp(− k2

2t2
)

)

, k > 1 and t > 0 813

prove that there exits t1 such that g(t) is monotonically 814

increasing when t < t1 and g(t) is monotonically decreasing 815

when t > t1. 816

We get the first-order derivation of g(t), that is 817

g′(t) = 1

t4

[

(

1 − t2
)

exp

(

− 1

2t2

)

−
(

k2 − t2
)

exp

(

− k2

2t2

)]

. 818

Having this derivation, it can be derived as follows. 819

1) When t > k, t2 − 1 > t2 − k2 > 0 and exp(−[1/2t2]) > 820

exp(−[k2/2t2]), thus (t2 − 1) exp(−[1/2t2]) > (t2 − 821

k2) exp(−[k2/2t2]), thus we have g′(t) < 0. 822

2) When k ≥ t > 1, (1 − t2) exp(−[1/2t2]) < 0, thus 823

(k2 − t2) exp(−[k2/2t2]) > 0, thus we have g′(t) < 0. 824

3) When t = 1, we have g′(t) = [1/t4][−(k2 − 825

t2) exp(−[k2/2t2])] < 0. 826

So far, we have proved that g′(t) < 0 when t ≥ 1, which 827

means that g(t) is monotonically decreasing when t ≥ 1. 828

When 1 > t > 0 and t → 0, we have [(1 − t2)/(k2 − t2)] → 829

(1/k2) and exp([(1 − k2)/2t2]) → 0 (noting that t ≤ 1 < k). 830

There exists t∗ ∈ (0, 1) such that ([(1 − t∗2)/(k2 − t∗2)] > 831

exp([(1 − k2)/2t∗2]) = [exp(1/2t∗2)/exp([k2/2t∗2])], thus 832

([(1 − t∗2) exp(−1/2t∗2)]/[(k2 − t∗2) exp(−k2/2t∗2)]) > 1, 833

thus (1 − t∗2) exp(−1/2t∗2) > (k2 − t∗2) exp(−k2/2t∗2), thus 834

g′(t∗) > 0. 835

According to Zero theorem, there exits t1 ∈ (0, 1) such that 836

g′(t1) = 0. Since g′(t) is continuous and differentiable, if all 837

the stagnation points are maximum points, then there is only 838

one stagnation point, otherwise minimum point exists. 839

We further get the second-order derivation of g(t), that is 840

g′′(t) = 1

t7

{

[

2t2
(

t2 − 1
)

− 2t2 + (1 − t2)
]

exp

(

− 1

2t2

)

841

−
[

2t2
(

t2 − k2
)

− 2t2k2 + k2
(

k2 − t2
)]

exp

(

− k2

2t2

)}

. 842

Put the stagnation point t1 into g′′(t), since (1 − t21) 843

exp(−1/2t21) − (k2 − t21) exp(−k2/2t21) = 0, we have 844

g′′(t1) = 1

t71

{

−2t21

[

exp

(

− 1

2t21

)

− k2 exp

(

− k2

2t21

)]

845

+
(

1 − t21

)

exp

(

− 1

2t21

)

− k2
(

k2 − t21

)

exp

(

− k2

2t21

)}

. 846

Based on 847

(

1 − t21

)

exp

(

− 1

2t21

)

−
(

k2 − t21

)

exp

(

− k2

2t21

)

= 0 848

k > 1 and 1 > t1 > 0 849
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we have850

exp

(

− 1

2t21

)

− k2 exp

(

− k2

2t21

)

851

= t21

[

exp

(

− 1

2t21

)

− exp

(

− k2

2t21

)]

852

> 0853

and854

(

1 − t21

)

exp

(

− 1

2t21

)

− k2
(

k2 − t21

)

exp

(

− k2

2t21

)

855

<
(

1 − t21

)

exp

(

− 1

2t21

)

−
(

k2 − t21

)

exp

(

− k2

2t21

)

856

= 0.857

Thus, g′′(t1) < 0, t1 is the maximum point, which means858

that g(t) is monotonically increasing when t < t1 and g(t) is859

monotonically decreasing when t1 < t < 1.860

To this end, we have proved that g(t) is monotonically861

increasing when t < t1 and g(t) is monotonically decreasing862

when t > t1.863

APPENDIX C864

PROOF OF THEOREM 3865

Substituting β with Kα in E(K), we have866

E(K) = −1

2

(

α log α + (1 − α) log(1 − α)867

+ Kα log(Kα) + (1 − Kα) log(1 − Kα)
)

.868

Taking derivative of E(K) with respect to K, we obtain869

dE(K)

d(K)
= −1

2
(α log(Kα) − α log(1 − Kα))870

= −α

2
log

Kα

1 − Kα
.871

It is easy to view that [dE(K)/d(K)] < 0 if Kα > (1/2),872

which completes the proof.873
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