
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Noniterative Deep Learning: Incorporating
Restricted Boltzmann Machine Into Multilayer

Random Weight Neural Networks
Xi-Zhao Wang, Fellow, IEEE, Tianlun Zhang, and Ran Wang, Member, IEEE

Abstract—A general deep learning (DL) mechanism for a
multiple hidden layer feed-forward neural network contains two
parts, i.e., 1) an unsupervised greedy layer-wise training and
2) a supervised fine-tuning which is usually an iterative pro-
cess. Although this mechanism has been demonstrated in many
fields to be able to significantly improve the generalization of
neural network, there is no clear evidence to show which one
of the two parts plays the essential role for the generalization
improvement, resulting in an argument within the DL commu-
nity. Focusing on this argument, this paper proposes a new
DL approach to train multilayer feed-forward neural networks.
This approach uses restricted Boltzmann machine (RBM) as the
layer-wise training and uses the generalized inverse of a matrix
as the supervised fine-tuning. Different from the general deep
training mechanism like back-propagation (BP), the proposed
approach does not need to iteratively tune the weights, and
therefore, has many advantages such as quick training, better
generalization, and high understandability, etc. Experimentally,
the proposed approach demonstrates an excellent performance
in comparison with BP-based DL and the traditional training
method for multilayer random weight neural networks. To a
great extent, this paper demonstrates that the supervised part
plays a more important role than the unsupervised part in
DL, which provides some new viewpoints for exploring the
essence of DL.

Index Terms—Deep learning (DL), generalized inverse of
matrix, random weight neural network (RWNN), supervised
learning, training without iteration.

Manuscript received July 6, 2016; accepted April 20, 2017. This work was
supported in part by the National Natural Science Foundation of China under
Grant 71371063, Grant 61170040, Grant 61402460, and Grant 61472257, in
part by the Natural Science Foundation of SZU under Grant 2017060, in part
by the Basic Research Project of Knowledge Innovation Program in Shenzhen
under Grant JCYJ20150324140036825, in part by the Guangdong Provincial
Science and Technology Plan Project under Grant 2013B040403005, and in
part by the HD Video Research and Development Platform for Intelligent
Analysis and Processing in Guangdong Engineering Technology Research
Centre of Colleges and Universities under Grant GCZX-A1409. This paper
was recommended by Associate Editor F. Sun. (Corresponding author:
Ran Wang.)

X.-Z. Wang is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518060, China (e-mail:
xizhaowang@ieee.org).

T. Zhang is with the Information Science and Technology
College, Dalian Maritime University, Dalian 116026, China (e-mail:
threekingdomst@163.com).

R. Wang is with the College of Mathematics and Statistics, Shenzhen
University, Shenzhen 518060, China (e-mail: wangran@szu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2701419

I. INTRODUCTION

RECENT years have witnessed successful applications
of deep neural networks (DNNs) in image classifica-

tion [5], [21] and speech recognition [4], [12]. Because of
these successful applications, many scholars and engineers in
different fields began to study the structure of feed-forward
neural networks with multiple hidden layers. Applications of
DNNs are being extended to many specific domains to deal
with complex classification and recognition problems with big
data [35], and the performance is being shown very excel-
lent [3], [20], [22]. Since Hinton started the study on DNN in
2006 [14], one can find from references many deep learn-
ing (DL) algorithms now [11], [13], [28]. Basically, two
tools have been suggested by Hinton, i.e., RBM and deep
belief network (DBN). These two tools have become the most
widely used and the most popular terms in DL. A major
reason for the successful application of DNNs to different
domains is the high capability of feature representation, i.e.,
DL can extract high quality features that have significant
semantic meanings from raw input samples through multiple
layers. It is well known that, for classification and recognition
problems, feature selection, or extraction has an essentially
important impact on the learning process as well as the output
results [23], [38], [39].

On the other hand, classifier design is the most fundamen-
tal issue for any classification problem. So far, one can find
from references a considerable number of learning approaches
to classifier design [30], [32], [34], [36], [37]. Among them,
back-propagation (BP) and their improved versions are typi-
cal training algorithms for feed-forward neural networks. We
now focus on a special approach to train feed-forward neu-
ral networks, i.e., random assignment of input weights and
biases. This training mechanism was first proposed in 1992
by Pao and Takefji [26] and Schmidt et al. [27] for single-
hidden layer feed-forward neural networks (SLFNs). It was
improved in 1994 by Pao et al. [25], which pointed out that
most linking-weights are not important, thus they are not nec-
essary to be iteratively tuned. Furthermore, the approximation
ability of this training method was demonstrated in [17], and
the universal approximation theorem of this type of neural
networks has been given implicitly in [2].

This type of neural networks and its training methodology
were further investigated in 2006 by Huang et al. [15], [16]
with the new name extreme learning machine (ELM). The
essential idea of ELM is identical to Schmidt and Pao’s

2168-2216 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:xizhaowang@ieee.org
mailto:threekingdomst@163.com
mailto:wangran@szu.edu.cn
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

works [26], [27], but there are some technical handling dif-
ferences. In ELM, the training consists of two parts. The first
part is to randomly assign weights from a predefined interval
between input and hidden layers, while the second part is ana-
lytically to compute the generalized inverse (GI) of a matrix
for weights between hidden and output layers. During the
recent decade, one can see rapid growth of studies on this type
of neural networks, including their structures [7], [31], [33]
and training algorithms [1], [6], [24], [40]. In this paper,
we call this type of neural networks as random weight neu-
ral network (RWNN) and its training mechanism as random
weight assignment (RWA). It summarizes the essence of the
works proposed in [2], [15]–[17], and [25]–[27] and aims to
highlight the impact of randomness.

It is easy to extend RWA from SLFNs to multiple-hidden
layer feed-forward neural networks (MLFNs). That is, weights
of all hidden layers are randomly assigned from a predefined
interval while weights of output layer are analytically deter-
mined by evaluating a GI of matrix or by solving the normal
system of linear matrix equations. Initially, the RWA training
strategy is to overcome the defect of the extra-high com-
putational complexity when using BP to train an MLFN.
Experimentally, RWA shows a much faster training speed than
BP while maintains similar generalization ability. However,
BP-based DL may acquire the semantic meaning of the learned
weights but RWA-based leaning cannot. The reason is that
RWA-based learning lacks the iterative tuning of weights and
highlights the training efficiency. Thus, BP-based DL can be
regarded as an approach to feature extraction but RWA-based
learning cannot.

In this paper, a new deep training approach for MLFNs is
proposed. For a classification problem, the proposed training
approach has two components. The first is an initial extrac-
tor of features based on RBM, and the second is a solution
of a system of linear matrix equations. It is noteworthy that
the proposed approach has no iterative tuning of parameters,
thus it is essentially an improved version of RWA-based train-
ing method by replacing the randomly assigned weights with
RBM-based initial weights while keeping the output layer
weights acquired analytically. Experimentally, it shows bet-
ter generalization ability than the original RWA training and
faster speed than BP-based deep training.

The remainder of this paper is organized as follows.
Sections II and III give a brief review on the related
works. Section IV proposes the new training scheme for
MLFNs. Section V conducts experimental comparisons to
show the feasibility and effectiveness of the proposed
approach. Finally, Section VI concludes this paper.

II. REVIEW ON RESTRICTED BOLTZMANN MACHINE

In this section, some basic concepts related to RBM are
recalled, and related leaning mechanism including the network
structure and the training algorithm is introduced.

RBM is a probabilistic graphical model which can be
explained by stochastic neural network. An RBM can be used
to learn a probability distribution over a set of inputs [12].
Fig. 1 shows the structure of an RBM.

Fig. 1. Structure of an RBM.

As shown in Fig. 1, the topology of RBM is a two-layer
graph. The underlying structure of the network is used to
receive the input data, which is called the visible layer rep-
resented by v = [v1, v2, . . . , vnv], and the upper structure of
the network is used to generate a new feature vector, which is
called the hidden layer represented by h = [h1, h2,hnh].
For the sake of simplicity, this section assumes that the data
of the visible and hidden layers in the RBM are subject to
Bernoulli distribution. For real-valued attributes, one can refer
to [12]. The discrete RBM only takes value 0 or 1, and its train-
ing is an unsupervised process during which only the feature
vector is needed but the tag data (i.e., the label of a sample)
is not required.

Given a training set S = {v1, v2, . . . , vN} that contains N
samples, where vm = [vm

1 , vm
2 , . . . , vm

nv
], m = 1, . . . , N is the

mth training sample. Then, RBM can be considered as an
energy model [28]. Given a set of network states (v, h), RBM
network can be corresponding to an energy value through

Eθ (v, h) = −
nv∑

j=1

ajvj −
nh∑

i=1

bihi −
nh∑

i=1

nv∑

j=1

hiwi,jvj (1)

where a = [a1, a2, . . . , anv] ∈ Rnv is the visible layer bias,
b = [b1, b2, . . . , bnh] ∈ Rnh is the hidden layer bias, and
W = [wi,j] ∈ Rnh×nv is the weight matrix.

According to (1), the joint probability distribution of a set
of visible and hidden states can be obtained by

pθ (v, h) = 1

Zθ

e−Eθ (v,h) (2)

where Zθ = ∑
v,h e−Eθ (v,h) is the normalization factor. The

likelihood function p(v|θ) can be derived by using the joint
probability distribution function (2) as follows:

p(v|θ) = 1

Zθ

∑

h

e−E(v,h|θ). (3)

Formulas (1)–(3) form a statistical mechanics model and can
be used in the training of RBM. We then introduce the training
principle for RBM.

A free energy function is defined as

FreeEntropy(v) = − ln
∑

h

e−E(v,h) (4)

and based on (4) we can rewrite (3) as

p(v|θ) = e−FreeEntropy(v)

Zθ

. (5)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: NONITERATIVE DL: INCORPORATING RBM INTO MULTILAYER RWNNs 3

Taking logarithm for both sides of equality (5) we have

ln p(v|θ) = −FreeEntropy(v) − ln Zθ . (6)

Taking a summation of equality (6) for all vectors v we obtain

ln
∏

v

p(v|θ) = −
∑

v

FreeEntropy(v) − ln
∏

v

Zθ . (7)

Equality (7) indicates that there exists a negative relation-
ship between the free energy and the likelihood function
ln

∏
v p(v|θ) for an RBM. Based on the well-known princi-

ple of minimum free energy in physical energy systems, we
suppose that the free energy term in (7) attains minimum. It
is noted that minimizing the free energy term in (7) is equiva-
lent to maximizing ln

∏
v p(v|θ), i.e., the left side of (7). Thus,

the task is to search for a set of parameters which can make
ln

∏
v p(v|θ) achieve its maximum. Noting that the logarithm

function is monotonically increasing, we only need to find a
set of parameters that can make

∏
v p(v|θ) attain its maximum.

For similarity, we abbreviate p(v|θ) as p(v).
Subsequently, we discuss how to adjust the parameters

of RBM network according to the principle of maximum
likelihood. The likelihood function is represented as

ln Lθ,S = ln
N∏

m=1

p
(
vm) =

N∑

m=1

ln p
(
vm)

. (8)

The purpose of training RBM is to get the optimal value of
parameter θ , that is

θ∗ = argmax
θ

(
ln Lθ,S

)
(9)

where θ∗ is the optimal value that makes the free energy of
RBM system be minimum. The gradient descent technique can
be used to find the maximum of ln Lθ,S with respect to the
parameter θ . Taking the partial derivative of (8) with respect
to θ , we have

∂ ln Lθ,S

∂θ
=

N∑

m=1

∂ ln p(vm)

∂θ
. (10)

Replacing parameter θ with (W, a, b), we can get the follow-
ing formulas:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ ln Lθ,S

∂wi,j
=

N∑
m=1

[
p(hi = 1|vm)vm

j − ∑
v

p(v)p(hi = 1|v)vj

]

∂ ln Lθ,S

∂aj
=

N∑
m=1

[
vm

j − ∑
v

p(v)vj

]

∂ ln Lθ,S

∂bi
=

N∑
m=1

[
p(hi = 1|vm) − ∑

v
p(v)p(hi = 1|v)

]

(11)

where i = 1, 2, . . . , nh (nh is the number of hidden layer
nodes), j = 1, 2, . . . , nv (nv is the number of visible neurons),
and the conditional probability is given by

{
p(hi = 1|v) = sigmoid

(
bi + ∑nv

j=1 wi,jvj

)

p
(
vj = 1|h) = sigmoid

(
aj + ∑nh

i=1 wi,jhi
)
.

(12)

Algorithm 1: Parameter Updating Algorithm
Input:

Training set S;
Number of iteration ITER;
Learning rate η;
Number of hidden neurons nh.

Output:
Estimation of parameters (W∗, a∗, b∗).

1 Initialize the weight matrix W, the visible layer bias a and the
hidden layer bias b based on S and nh;

2 Let W1 = W, a1 = a, b1 = b;
3 for t = 1 to ITER do
4 Compute the gradient (�Wt,�at, �bt) using (13) of CD-1;
5 Update parameters by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Wt+1 = Wt + η
(

1
N �Wt

)

at+1 = at + η
(

1
N �at

)

bt+1 = bt + η
(

1
N �bt

)
;

(14)

6 end
7 Let W∗ = WITER+1, a∗ = aITER+1, b∗ = bITER+1;
8 return (W∗, a∗, b∗).

It is still unable to update the parameters based on these gra-
dient formulas, since the complexity of computing �v is very
high, i.e., O(2nv+nh). An efficient approximation method is the
CD algorithm proposed by Hinton [10]. The gradient formulas
included in CD algorithm are listed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ln Lθ,S

∂wi,j
≈

N∑
m=1

[
p(hi = 1|v(m,0))v(m,0)

j

− p
(
hi = 1|v(m,k)

)
v(m,k)

j

]

∂ ln Lθ,S

∂aj
≈

N∑
m=1

[
v(m,0)

j − v(m,k)
j

]

∂ ln Lθ,S

∂bi
≈

N∑
m=1

[
p
(
hi = 1|v(m,0)

) − p
(
hi = 1|v(m,k)

)]

(13)

where k is the number of sampling times in CD algorithm,
which is usually equal to 1, and 0 represents the starting point
of sampling. The CD algorithm with k = 1 is called CD-1 [12].

Finally, we can use formula (13) to update parameters
(W, a, b), and the detailed steps are given in Algorithm 1.

III. RANDOM WEIGHT NEURAL NETWORKS

As aforementioned, RWNN is a feed-forward neural
network trained by the RWA mechanism. It is noteworthy
that the name RWNN refers to the network itself but the
name RWA represents the training algorithm for RWNN. The
essence of RWA is that the training process does not include
iterative tuning of weight parameters. Essentially, RWA has
two steps: 1) the weights of hidden layer nodes are randomly
selected from a given interval and 2) the weights of output
layer nodes are obtained analytically.

Given a training set X = {(xi, yi)}N
i=1 ⊂ RL × {1, . . . , C},

where xi = [xi1, xi2, . . . , xiL] is the ith training sample,
yi = [yi1, yi2, . . . , yiC] is the label vector of xi, N is the num-
ber of samples, L is the number of features, and C is the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 2: RWA: SLFNs Training Algorithm for
Classification Problems (Fig. 2)

Input:
Training set X = {(xi, yi)}N

i=1 ∈ RL × {1, . . . , C};
Tag matrix TN×C = [yT

1 , yT
2 , . . . , yT

N]T;
Interval [a, b], where a and b are real numbers (a < b).

Output:
Output function f (x).

1 Generate the hidden layer weight matrix AL×D and bias matrix
BN×D by randomly selecting real numbers from [a, b], where
D is the dimensionality of the hidden layer;

2 Compute the hidden layer output matrix through the following
formula (15)

HN×D = h(X) = sigmoid(XA + B), (15)

where

XN×L =

⎡

⎢⎢⎣

x11 x12 . . . x1L
x21 x22 . . . x2L
...

...
. . .

...
xN1 xN2 . . . xNL

⎤

⎥⎥⎦, (16)

AL×D =

⎡

⎢⎢⎣

a11 a12 . . . a1D
a21 a22 . . . a2D
...

...
. . .

...
aL1 aL2 . . . aLD

⎤

⎥⎥⎦, (17)

BN×D =

⎡

⎢⎢⎣

b11 b12 . . . b1D
b21 b22 . . . b2D
...

...
. . .

...
bN1 bN2 . . . bND

⎤

⎥⎥⎦, (18)

and Hij = sigmoid(bij + ∑L
k=1 xikakj), i = 1, . . . , N,

j = 1, . . . , D;
3 Compute the weight matrix of the output layer nodes

βD×C =
(

HTH
)−1

HTT; (19)

4 The output function is determined as

f (x) = h(x)β; (20)

5 return f (x).

Fig. 2. Single hidden layer RWNN.

number of classes. The RWA training algorithm used in this
paper obtains the weights of output layer nodes by solving
the normal system of linear matrix equations [26], [27]. The
RWA training method is given in Algorithm 2, and the overall
structure is shown in Fig. 2.

We have several remarks on the RWA training algorithm.

1) RWA is not a new algorithm. It briefly summarizes the
works of [2], [15]–[17], and [25]–[27] regarding RWA
in a training process of feed-forward neural networks.
The rename of previous works is nothing but to clarify
some confusions existing in topic.

2) It has been experimentally noted that both parameters a
and b in Algorithm 2 are sensitive to the training pro-
cess. One can see that a significant difference exists with
respect to the performance of RWA training for two sets
of parameters [a1, b1] and [a2, b2]. This indicates that
the parametric interval [a, b] has a significant impact on
RWA training, and therefore, it leads to some difficulties
for users to select this interval in real problems.

3) The training strategy of RWA was earliest proposed
in [26] and [27], but in the subsequent decade it did
not attract much interest of scholars investigating artifi-
cial neural networks. Until 2006 when the name ELM
appears in [15] and [16], this training strategy receives
extensive and intensive studies in terms of its universal
approximation ability, the extremely fast training speed,
the good generalization ability, and its applications in
various domains. According to [29], the solution of an
SLFN trained by the RWA mechanism is represented as

β =
(

I

λ
+ HTH

)−1

HTT (21)

in which a positive value (I/λ) is added to the diagonal
of HTH in the calculation of the output weights to adjust
the singularity of matrix. We take the regularizing factor
λ in (21) as a sufficiently large number, then, (21) is
approximately identical to (19).

4) The regularizing factor λ plays a role of controlling both
the amount of learned weights and the singularity of
matrix H. Since it is proven that the matrix H is of full
rank with probability 1 in [8] and therefore singularity
of matrix H is no longer a problem.

5) RWA can be easily extended to train an MLFN. We
call this training algorithm RWA1, and describe it in
Algorithm 3. The framework of RWA1 is shown in
Fig. 3(a).

It is necessary to point out that the essence of RWA1 is the
random assignment of weights for all hidden layer nodes. This
scheme determines the weight parameters without iterative
tuning by using certain strategies.

Regarding the approximation ability of RWNNs, one can
find the detailed derivation, theoretical validation, and different
explanations from [2] and [15]–[17]. Here, we will no longer
review these approximation theorems.

IV. PROPOSED TRAINING SCHEME

This section will propose a new deep training scheme for
MLFNs. The central idea is to improve the RWA1 training
algorithm (i.e., Algorithm 3) by replacing the random assign-
ment of weights with RBM-based weight initialization for all
hidden layer nodes. The determination of weights for output
layer in this scheme is identical to that in RWA1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: NONITERATIVE DL: INCORPORATING RBM INTO MULTILAYER RWNNs 5

(a) (b)

Fig. 3. Multiple hidden layer RWNNs with different training mechanisms. (a) RWA1. (b) RBM-GI.

Algorithm 3: RWA1: MLFNs Training Algorithm for
Classification Problems [Fig. 3(a)]

Input:
Training set X = {(xi, yi)}N

i=1 ∈ RL × {1, . . . , C};
Tag matrix TN×C = [yT

1 , yT
2 , . . . , yT

N]T;
Interval [a, b], where a and b are real numbers (a < b);
The number of hidden layers n.

Output:
Output function f (x).

1 Get the input feature matrix X1 by (16);
2 for i = 1 to n do
3 Randomly generate weight matrix Ai and bias matrix Bi

for the i-th hidden layer;
4 Compute random features for the i-th hidden layer

using (15)

Hi = h(Xi) = sigmoid(XiAi + Bi);
5 Let Xi+1 = Hi;
6 end
7 Calculate the weight matrix β of the output layer

β =
(

HT
n Hn

)−1
HT

n T;
8 The output function is determined as

f (x) = h(x)β;
9 return f (x).

A. Proposed Learning Framework

In the initial DBN learning framework introduced by
Hinton et al. [13], RBM plays a role of weight parameter
initialization. For a given feed-forward neural network with
multiple hidden layers, RBM is used to pretrain the weight
parameters for all hidden layer nodes and then all weight
parameters for both hidden layers and output layer are iter-
atively tuned according to the BP algorithm. The iteration
ends until the predefined stopping criterion is satisfied. This
training framework has been acknowledged as a typical DL
mechanism, which demonstrates advantages in many areas.
The key advantages include the high generalization ability and
semantic meaning of feature combination based on the learned
weights. However, it also suffers from several disadvantages,

Fig. 4. Training process.

i.e., the high computational complexity and the low conver-
gence rate of the tuning process. In order to overcome these
disadvantages, a new training scheme is proposed in this sec-
tion. In the new scheme, RBM is still used to acquire the
weight parameters for all hidden layer nodes. Afterward, the
pretrained parameters result in a system of linear matrix equa-
tions, which is solved by evaluating the GI of the matrix.
This training scheme is briefly denoted as RBM-GI. Basically,
RBM-GI can be viewed as an improved version of RWA1,
which is achieved through replacing the random assignment
of weights with RBM-based weight initialization for all hidden
layer nodes. The structure of RBM-GI is shown in Fig. 3(b),
and the training process is shown in Fig. 4.

As shown in Fig. 4, we initially train the first RBM. Then,
we use the output of the first RBM as the input of the sec-
ond RBM to be trained. This process, i.e., the output of
the ith RBM as the input of the (i + 1)th RBM, repeats
until all weights of hidden layer nodes are determined. For
a classification problem, the proposed RBM-GI is described
as Algorithm 4.

Algorithm 4 can be viewed as two parts. The first part,
i.e., steps 1–7, represents a process of unsupervised learn-
ing for training RBM parameters while the second part, i.e.,
steps 8–9, gives a process of supervised learning for estimating

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 4: RBM-GI [Fig. 3(b)]
Input:

Training set X = {(xi, yi)}N
i=1 ∈ RL × {1, . . . , C};

Tag matrix TN×C = [yT
1 , yT

2 , . . . , yT
N]T;

The number of hidden layers n;
The n-dimensional vector [m1, m2, . . . , mn] where

mj, j = 1, 2, . . . , n is the number of nodes in the j-th hidden
layer.
Output:

Output function.
1 Get the input feature matrix X by (16), let H0 = X;
2 Take H0 as the input, call Algorithm 1 to learn the parameters

between the input layer and the first hidden layer to get the
weights and bias (W1, b1);

3 for i = 1 to n do
4 Get the output matrix of the i-h hidden layer

Hi = sigmoid
(
WiHi−1 + bi

);
5 Take Hi as the input, call Algorithm 1 to learn the

parameters between the ith hidden layer and the (i + 1)th
hidden layer to get (Wi+1, bi+1, b′

i), where b′
i is called the

reconstruction bias of bi;
6 end
7 Calculate the weight matrix β of the output layer

β =
(

HT
n Hn

)−1
HT

n T;
8 The output function is given by

H1 = sigmoid(W1H0 + b1)
H2 = sigmoid(W2H1 + b2)

...
Output = βHn.

parameters of the output layer by solving the GI of matrix. It
is noteworthy that there is no iterative tuning of parameters.

B. Remarks on RBM-GI

Basically, the essences of RBM-GI are two-fold. The first
is the RBM weight initialization, which was first introduced
into DL by Hinton et al. [13]. The second is the RWA mech-
anism [26], [27], which proves that most connecting weights
are not necessarily to be iteratively tuned for a fully con-
nected feed-forward neural network. Viewing the essence of
DL proposed by Hinton et al. [12], we can find that the
key parts are also twofold, i.e., 1) the RBM-based weight
initialization and 2) the BP-based weight tuning. One inter-
esting question is: which part is more important? To answer
this question, we can conduct an experimental comparison
between random assignment weight initialization and RBM
weight initialization on different datasets by using BP algo-
rithm. Empirical studies show that, regarding the convergence
rate of BP algorithm and the impossibility of dropping into
the local minimum, RBM weight initialization is superior to
random assignment weight initialization, which inspires us to
introduce the RBM-based weight initialization into the RWA
training. One explanation for RBM being superior to random
assignment is that RBM pretraining can make the tuning start
from a better point approaching to the global optimum. These

analyses indicate that BP is the tuning algorithm body but
RBM can help BP speed-up the convergence rate and help
BP avoid dropping into local minimum. Even if RBM is not
used, BP still can work. Thus, in the proposed RBM-GI, GI
is the training algorithm body and RBM is used to improve
the performance of GI.

A significant merit of DL [13] is that the acquired weights
can lead to feature combination, which indicates explicitly
semantic meanings in specific domains [19]. It is proposed
in [9] that the combination of DBN and ELM can well handle
the problem of speech emotion recognition. Another interest-
ing question is whether or not the RBM has a key impact
on the semantic feature extraction. Some scholars stated that
the well-tuned-weight leads to the semantic feature combina-
tion when the network is convergent to the global minimum,
and RBM parameter initialization is only to improve the
algorithm convergence performance but has no impact on
the semantic feature extraction. Other scholars stated that
the global minimum is difficult to be achieved for a feed-
forward neural network with many hidden layers, since it is
a very complicated optimization problem with a considerable
number of variables, and the corresponding training data is
generally insufficient, thus RBM initialization possibly leads
to a suboptimal minimum with semantic feature combina-
tion. The idea of RBM-GI is partially consistent to the latter
standpoint.

There is a viewpoint that, with the increase of the amount
of data, the role of pretraining appears to be unimportant. This
makes the learning ability of RBM to the raw data not be fully
reflected. It implicitly stated that the weight initialization will
be unimportant for training an MLFN if the training data is
vast. Our numerical experiments do not support this viewpoint,
and the weight initialization based on RBM demonstrates its
powerful impact on DNN training without iteration.

Basically, the proposed RBM-GI approach connects an
unsupervised leaning mechanism (i.e., RBM) with a super-
vised learning methodology (i.e., solving a system of linear
matrix equations through evaluating the GI of a matrix). It
is different from conventional DL methods in two ways. The
first difference is that RBM-GI uses RBM to initially train
the weight parameters of the network and these parameters
do not need to be readjusted. The second difference is that
RBM-GI acquires the output weights by computing a GI rather
than iteratively adjust, which has much lower computational
complexity in comparison with BP-like algorithms.

V. EXPERIMENTAL COMPARISON

This section will conduct experimental comparisons to show
the feasibility and effectiveness of the proposed RBM-GI
algorithm.

A. Experiment on UCI Benchmark Datasts

In this section, we conduct experiments on various UCI
benchmark datasets.

1) Data Preparation: We select 16 representative clas-
sification datasets from UCI Machine Learning Repository,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: NONITERATIVE DL: INCORPORATING RBM INTO MULTILAYER RWNNs 7

TABLE I
SELECTED UCI BENCHMARK DATASETS FOR PERFORMANCE COMPARISON

which focus on various learning fields. These datasets con-
tain both symbolic attributes and numerical attributes, which
will be used to verify the priority of RBM-GI. The detailed
information of these datasets is shown in Table I.

Datasets 1–13 are of numerical attributes and datasets
14–16 are of symbolic attributes. Since neural networks cannot
directly deal with the symbolic data, we need to transfer the
symbolic data to numerical data. For example, suppose that
the symbolic attribute F takes values a, b, and c. We trans-
form each symbolic attribute value as an numerical attribute,
finally, a, b, and c will become three numerical attributes tak-
ing value 0 or 1. Since one symbolic attribute will be replaced
by multiple numerical attributes, the final numerical dataset
may have an obvious increase of attribute number.

2) Experimental Design: Three algorithms are listed in the
following for performance comparison.

1) RWA1: This algorithm randomly assigns the weights of
all hidden layer nodes and analytically solve the inverse
of a matrix as parameters of output layer (the details are
in Section III).

2) DBN: This is the initial DL algorithm proposed by
Hinton et al. [13]. It uses RBM to initialize the weights
for all layers and then uses BP to iteratively tune these
weight parameters until the algorithm converges or the
error attains a predefined threshold.

3) RBM-GI: This algorithm uses RBM to determine the
weights of all hidden layer nodes and uses the same
methods as in RWA1 for computing the output layer
parameters (the details are in Section IV-A).

The purpose of conducting this experiment is to compare
the performance of RWA1, DBN, and RBM-GI for training an
MLFN. We want to find their respective advantages and disad-
vantages, which may provide users some helpful guidelines to
select an algorithm for training this type of neural networks.

It is noteworthy that datasets Optical Recognition of
Handwritten Digits, Pen-Based Recognition of Handwritten
Digits, USPS, and Landsat Satellite have their standard parti-
tions of training set and testing set. As for the other datasets,
our general scheme is to randomly select 90% of the samples
as the training set and the remaining 10% as the testing set.

The number of hidden layers for the above three models is
set to be 3. For each dataset, we tune the number of hidden
nodes in the three layers for the proposed RBM-GI method,
and select the network structure that can achieve the highest
validation accuracy. Since we want to compare the perfor-
mances of the methods under the same conditions, for fair
comparison, the same network structure determined by RBM-
GI is adopted for RWA1 and DBN. The detailed structural
information have been listed in the last column of Table II.
Moreover, the interval [a, b] is set as [0, 0.1] for RWA1, and
the maximum iteration number in DBN is set as 2000. The
three algorithms are implemented in MATLAB under the hard-
ware environment with Core i7-3632QM CPU, 4GB RAM and
64-bit windows 7 operating system.

For each dataset, our experiment will write down three
index values, i.e., training accuracy, training time, and testing
accuracy. The experimental results are listed in Table II.

3) Result Analysis: For fixed number of hidden layers and
number of each hidden layer nodes, from Table II we can view
that DBN has the highest accuracy on a couple of datasets but
has the longest training time on all datasets in comparison
with the other two algorithms. RWA1 has the shortest training
time but has the lowest prediction accuracy on all datasets.
The training time of RBM-GI is slightly longer than that of
RWA1, but is far less than DBN. We highlight that RBM-GI
has the testing accuracy worse than DBN on some datasets
but better than DBN on other datasets. It is hard to say which
one is better for RBM-GI and DBN with respect to the testing
accuracy. In this way, RBM-GI can replace DBN for reducing
the computational complexity when tackling a classification
problem for big data.

It is noteworthy that the above experiments are conducted
with three fixed hidden layers. Each hidden layer has the same
number of nodes for the three algorithms. One question is
whether the number of nodes for each hidden layer has a crit-
ical impact on the testing accuracy. To answer this question we
conduct an additional experiment. Let the number of hidden
layer nodes vary, we observe the accuracy change. The hidden
structure is set as 10-10-10, 50-50-50, 100-100-100, 500-500-
500, 1000-1000-1000. The accuracy change with the network

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE II
COMPARATIVE RESULTS ON THE SELECTED UCI BENCHMARK DATASETS

Fig. 5. Testing accuracy on 5-hidden layer structures. (a) Pen-Based Recognition of Handwritten Digits. (b) Landsat Satellite.

structure on datasets pen-based recognition of handwritten dig-
its and landsat satellite is shown in Fig. 5, where the horizontal
coordinate represents the five structures and the vertical coor-
dinate denotes the testing accuracy. Basically, the results show
that the performance of RBM-GI is being improved with the
increase of hidden layer node numbers.

From Fig. 5 we can see that, with the number of hidden
nodes increasing, RBM-GI has an improved performance but
DBN has not. One speculated reason is that DBN may not
converge to its global optimum due to the insufficient number
of samples. Besides, the number of hidden layer nodes has a
critical impact on the testing accuracy of RBM-GI. This point
has been confirmed by a comparison between DBN and ELM-
autoencoder in [18] where ELM-autoencoder has a structure
more complex than DBN. Since the training complexity of
ELM-autoencoder is much lower than DBN, this type of com-
parison between two neural networks with different numbers
of hidden layer nodes is still regarded as fair.

Furthermore, RBM-GI has a training time much less than
DBN. For example, regrading the five structures in Fig. 5(a),
the training time is 1.8096 s, 6.924 s, 30.8726 s, 74.3501 s,
and 205.2973 s for RBM-GI, and is 200.71 s, 861.172 s,
5484.9 s, 27 267 s, and 154 820 s for DBN, respectively. It
is observed that, with the increase of hidden layer number,
the magnitude of time-increasing for DBN is much faster
than that for RBM-GI. In this situation, the convergence rate

of DBN is very slow, or the iteration does not converge.
Comparatively, the training complexity of RBM-GI is insen-
sitive to the increase of hidden layer nodes number, and
therefore, RBM-GI implies a great potential in handling big
data classification problems.

Finally, experimental results confirm the crucial impact of
RMB weight initialization in the proposed method. The DBN
model proposed by Hinton et al. [13], [14] is to produce a
multilayer generative model by layer-wise pretraining. The
training process uses greedy algorithm to stack a plurality of
RBMs to produce many nonlinear feature extractors, which
can be used to effectively learn complex statistical structure
in the data. Using RBM to initialize parameters of each layer
in the network can avoid shortcomings of gradient dispersion
that often occurs in global tuning. The performance of RMB
weight initialization plus BP fine tuning is much better than
that of the traditional BP algorithm in the process of DNN
training on normal sized datasets, but is not competitive on big
data. RMB weight initialization in this model plays a different
role in comparison with RBM-GI.

B. Experiment on MNIST Handwritten Dataset

In this section, we conduct experiment on the MNIST
handwritten digits recognition dataset.1 This dataset contains

1http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: NONITERATIVE DL: INCORPORATING RBM INTO MULTILAYER RWNNs 9

Fig. 6. Sample images in MNIST dataset.

TABLE III
PERFORMANCE COMPARISON ON MNIST DATASET

60 000 training samples and 10 000 testing samples. Each
sample is a 28×28-pixel gray-level image representing a hand-
written digit from classes “0”–“9.” Some sample images in this
dataset are demonstrated in Fig. 6. We use the 28 × 28 = 784
raw pixels as the input features, and compare the performances
of RWA1, DBN, and the proposed RBM-GI. The optimal
network structure for DBN on this dataset is set as 500-500-
2000 as reported in [13]. Besides, empirical studies show that
a larger number of hidden layers can improve the performance
of RWA1 and RBM-GI on this dataset. Thus, we apply four
hidden layers and tune the network structure as 700-500-500-
10000 for RWA1 and RBM-GI. The comparative results are
demonstrated in Table III. It can be observed that the proposed
RBM-GI has achieved similar results with RWA1. Compared
with DBN, although its testing accuracy is slightly lower, the
execution time is much faster. Besides, according to the results
reported in existing works, the state-of-the-art methods for this
dataset, i.e., MLP-BP [29] and deep forest [41], have achieved
testing accuracy of 97.39% and 96.80%, respectively, which
are very close to the proposed RBM-GI.

C. Experiment on ORL Face Recognition Dataset

In this section, we conduct experiment on the ORL face
recognition dataset.2 This dataset is composed of 400 face
images from 40 persons. Each person has ten images with
different face expressions from different angles. The sample
images for two persons in this dataset are demonstrated in
Fig. 7. We randomly select nine images as the training samples
for each person, and use the rest image as the testing sample.
We resize each face image into 32 × 32 pixels, and use the
32 × 32 = 1024 pixel values as the input features. Empirical
studies show that on this sataset, a smaller number of hidden
layers is suitable for DBN, and a larger number of hidden
layers can improve the performance of RWA1 and RBM-GI.
Finally, the network structure is tuned as 2500-2500-10000
for DBN, and 2500-2500-2500-10000 for RWA1 and RBM-
GI. The comparative results are demonstrated in Table IV. On
this dataset, RBM-GI and RWA1 have obvious advantage over
DBN regarding both accuracy and execution time.

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Fig. 7. Sample images in ORL dataset.

TABLE IV
PERFORMANCE COMPARISON ON ORL DATASET

VI. CONCLUSION

The general criterion for training an MLFN is the
minimization of error between computed outputs and expected
outputs. DL tries to achieve this minimization by iteratively
tuning the weight parameters based on gradient descent tech-
nique. This paper proposes the RBM-GI approach, with the
idea that the minimization is unnecessarily to be achieved by
iterative technique but can be achieved by noniterative learn-
ing method. Due to the much lower training complexity and
good generalization ability, the random assignment mecha-
nism for training an MLFN can replace the iterative tuning
mechanism for big data classification problems. It is high-
lighted that, as a noniterative training technique, the heuristic
assignment of weight parameters (such as the RBM and the
Auto-encoder) can improve the training efficiency and testing
accuracy significantly.

REFERENCES

[1] S. Balasundaram and D. Gupta, “On optimization based extreme learning
machine in primal for regression and classification by functional iterative
method,” Int. J. Mach. Learn. Cybern., vol. 7, no. 5, pp. 707–728, 2016.

[2] D. S. Broomhead and D. Lowe, “Multivariable functional interpolation
and adaptive networks,” Complex Syst., vol. 2, no. 2, pp. 321–355, 1998.

[3] K.-C. Chan, C.-K. Koh, and C. S. G. Lee, “An automatic design of
factors in a human-pose estimation system using neural networks,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 46, no. 7, pp. 875–887, Jul. 2016.

[4] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech recogni-
tion,” IEEE Audio, Speech, Language Process., vol. 20, no. 1, pp. 30–42,
Jan. 2012.

[5] C. C. Dan, U. Meier, L. M. Gambardella, and J. Schmidhuber,
“Convolutional neural network committees for handwritten character
classification,” in Proc. Int. Conf. Document Anal. Recognit., 2011,
pp. 1135–1139.

[6] S. Ding, N. Zhang, J. Zhang, X. Xu, and Z. Shi, “Unsupervised extreme
learning machine with representational features,” Int. J. Mach. Learn.
Cybern., vol. 8, no. 2, pp. 587–595, 2017.

[7] A. M. Fu, C. Dong, and L. S. Wang, “An experimental study on stability
and generalization of extreme learning machines,” Int. J. Mach. Learn.
Cybern., vol. 6, no. 1, pp. 129–135, 2015.

[8] A.-M. Fu, X.-Z. Wang, Y.-L. He, and L.-S. Wang, “A study on residence
error of training an extreme learning machine and its application to
evolutionary algorithms,” Neurocomputing, vol. 146, no. 1, pp. 75–82,
2014.

[9] K. Han, D. Yu, and I. Tashev, “Speech emotion recognition using
deep neural network and extreme learning machine,” in Proc.
INTERSPEECH, Singapore, 2014, pp. 223–227.

[10] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, 2002.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

[11] G. E. Hinton, A Practical Guide to Training Restricted Boltzmann
Machines (LNCS 7700). Heidelberg, Germany: Springer, 2012,
pp. 599–619.

[12] G. E. Hinton et al., “Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups,” IEEE
Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[13] G. E. Hinton, S. Osindero, and Y.-W. The, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[14] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[15] G.-B. Huang, L. Chen, and C. K. Siew, “Universal approximation
using incremental constructive feedforward networks with random hid-
den nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Jul. 2006.

[16] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[17] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adap-
tive function approximation and the functional-link net,” IEEE Trans.
Neural Netw., vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[18] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong,
“Representational learning with extreme learning machines for big data,”
IEEE Intell. Syst., vol. 28, no. 6, pp. 31–34, Nov./Dec. 2013.

[19] H. Lee, P. T. Pham, Y. Largman, and A. Y. Ng, “Unsupervised
feature learning for audio classification using convolutional deep
belief networks,” in Proc. NIPS, Vancouver, BC, Canada, 2009,
pp. 1096–1104.

[20] D. Li, Deep Learning for Signal and Information Processing. Boston,
MA, USA: Now, 2013.

[21] S. Li, M.-C. Lee, and C.-M. Pun, “Complex Zernike moments features
for shape-based image retrieval,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 39, no. 1, pp. 227–237, Jan. 2009.

[22] T. Li, S. Duan, J. Liu, L. Wang, and T. Huang, “A spintronic memristor-
based neural network with radial basis function for robotic manipulator
control implementation,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 4, pp. 582–588, Apr. 2016.

[23] C.-L. Liu, W.-H. Hsaio, C.-H. Lee, and H.-C. Chi, “An HMM-based
algorithm for content ranking and coherence-feature extraction,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 43, no. 2, pp. 440–450, Mar. 2013.

[24] P. Liu, Y. Huang, L. Meng, S. Gong, and G. Zhang, “Two-stage
extreme learning machine for high-dimensional data,” Int. J. Mach.
Learn. Cybern., vol. 7, no. 5, pp. 765–772, 2016.

[25] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and gener-
alization characteristics of the random vector functional-link net,”
Neurocomputing, vol. 6, no. 2, pp. 163–180, 1994.

[26] Y.-H. Pao and Y. Takefji, “Functional-link net computing: Theory,
system architecture, and functionalities,” IEEE Comput. J., vol. 25, no. 5,
pp. 76–79, May 1992.

[27] W. F. Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feedforward neural
networks with random weights,” in Proc. 11th IAPR Int. Conf. Pattern
Recognit. Conf. B Pattern Recognit. Methodol. Syst., vol. 2. The Hague,
The Netherlands, 1992, pp. 1–4.

[28] P. Smolensky, Information Processing in Dynamical System:
Foundations of Harmony Theory. Cambridge, MA, USA: MIT Press,
1986.

[29] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 809–821, Apr. 2015.

[30] R. Wang, C.-Y. Chow, and S. Kwong, “Ambiguity-based multiclass
active learning,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 242–248,
Feb. 2016.

[31] R. Wang, Y.-L. He, C.-Y. Chow, F.-F. Ou, and J. Zhang, “Learning
ELM-tree from big data based on uncertainty reduction,” Fuzzy Sets
Syst., vol. 258, pp. 79–100, Jan. 2015.

[32] R. Wang, S. Kwong, D. Chen, and J. Cao, “A vector-valued sup-
port vector machine model for multiclass problem,” Inf. Sci., vol. 235,
pp. 174–194, Jun. 2013.

[33] R. Wang, S. Kwong, and X. Wang, “A study on random weights between
input and hidden layers in extreme learning machine,” Soft Comput.,
vol. 16, no. 9, pp. 1465–1475, 2012.

[34] R. Wang, S. Kwong, X.-Z. Wang, and Q.-S. Jiang, “Segment based
decision tree induction with continuous valued attributes,” IEEE Trans.
Cybern., vol. 45, no. 7, pp. 1262–1275, Jul. 2015.

[35] X.-Z. Wang, “Learning from big data with uncertainty—Editorial,” J.
Intell. Fuzzy Syst., vol. 28, no. 5, pp. 2329–2330, 2015.

[36] X.-Z. Wang, R. A. R. Aamir, and A.-M. Fu, “Fuzziness based sample
categorization for classifier performance improvement,” J. Intell. Fuzzy
Syst., vol. 29, no. 3, pp. 1185–1196, 2015.

[37] X.-Z. Wang, R. Wang, H.-M. Feng, and H.-C. Wang, “A new approach to
classifier fusion based on upper integral,” IEEE Trans. Cybern., vol. 44,
no. 5, pp. 620–635, May 2014.

[38] Q. Wu, Z. Wang, F. Deng, Z. Chi, and D. D. Feng, “Realistic human
action recognition with multimodal feature selection and fusion,” IEEE
Trans. Syst., Man, Cybern., Syst., vol. 43, no. 4, pp. 875–885, Jul. 2013.

[39] C. Xiao and W. A. Chaovalitwongse, “Optimization models for feature
selection of decomposed nearest neighbor,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 46, no. 2, pp. 177–184, Feb. 2016.

[40] J. Zhang, S. Ding, N. Zhang, and Z. Shi, “Incremental extreme learning
machine based on deep feature embedded,” Int. J. Mach. Learn. Cybern.,
vol. 7, no. 1, pp. 111–120, 2016.

[41] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to
deep neural networks,” unpublished paper, 2017. [Online]. Available:
https://arxiv.org/abs/1702.08835

Xi-Zhao Wang (M’03–SM’04–F’12) received the
Doctoral degree in computer science from the Harbin
Institute of Technology, Harbin, China, in 1998.

From 2001 to 2014, he has been a Full Professor
and the Dean of the College of Mathematics and
Computer Science, Hebei University, Hebei, China.
From 1998 to 2001, he was a Research Fellow
with the Department of Computing, Hong Kong
Polytechnic University, Hong Kong. Since 2014,
he has been a Full Professor with the College
of Computer Science and Software Engineering,

Shenzhen University, Shenzhen, China. His current research interests include
supervised and unsupervised learning, active learning, reinforcement learning,
manifold learning, transfer learning, unstructured learning, uncertainty, fuzzy
sets and systems, fuzzy measures and integrals, rough set, and learning from
big data.

Dr. Wang was a recipient of many awards from the IEEE International
Conference on Systems, Man, and Cybernetics (SMC) Society. He is a mem-
ber of the Board of Governors of the IEEE SMC in 2005, from 2007 to
2009, and from 2012 to 2014, the Chair of the Technical Committee on
Computational Intelligence of the IEEE SMC, and a Distinguished Lecturer
of the IEEE SMC. He was the Program Co-Chair of the IEEE SMC
2009 and 2010. He is the Editor-in-Chief of the International Journal of
Machine Learning and Cybernetics. He is also an Associate Editor of the
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B:
CYBERNETICS, Information Sciences Journal, and the International Journal
of Pattern Recognition and Artificial Intelligence.

Tianlun Zhang received the bachelor’s degree in
information management and information system
from the Industrial and Commercial College, Hebei
University, Hebei, China, in 2014, and the M.Sc.
degree in software engineering from the College
of Mathematics and Information Science, Hebei
University, Hebei, in 2016. He is currently pursuing
the Ph.D. degree with the Information Science and
Technology College, Dalian Maritime University,
Dalian, China.

His current research interests include machine
learning and pattern recognition.

Ran Wang (S’09–M’14) received the B.Eng.
degree in computer science from the College
of Information Science and Technology, Beijing
Forestry University, Beijing, China, in 2009, and
the Ph.D. degree from the Department of Computer
Science, City University of Hong Kong, Hong Kong,
in 2014.

From 2014 to 2016, she was a Post-Doctoral
Researcher with the Department of Computer
Science, City University of Hong Kong. She is cur-
rently an Assistant Professor with the College of

Mathematics and Statistics, Shenzhen University, Shenzhen, China. Her cur-
rent research interests include pattern recognition, machine learning, and fuzzy
sets and fuzzy logic and their related applications.

https://arxiv.org/abs/1702.08835

