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Abstract: Extreme learning machine is known for its fast learning speed while maintaining 
acceptable generalisation. Its learning process can be divided into two parts: (1) randomly assigns 
input weights and biases in hidden layer, and (2) analytically determines output weights by the 
use of Moore-Penrose generalised inverse. Through the analysis from theory and experiment 
aspects we point out that it is the random weights assignment rather than the analytical 
determination with generalised inverse that leads to its fast training speed. In fact, the calculation 
of generalised inverse of hidden layer output matrix based on singular value decomposition 
(SVD) has very low efficiency especially on large scale data, and even directly cannot work. 
Considering this high calculation complexity reduces the learning speed of ELM conjugate 
gradient is introduced as a replacement of Moore-Penrose generalised inverse and conjugate 
gradient based ELM (CG-ELM) is proposed. Numerical simulations show that, in most cases, 
CG-ELM achieved faster speed than ELM in the condition of maintaining similar generalisation. 
Even in the case that ELM cannot work because of the huge amount of data CG-ELM attains 
good performance, which illustrates that Moore-Penrose generalised inverse is not the 
contribution of fast learning speed of ELM from experiment view. 
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1 Introduction 

Owing to its strong nonlinear mapping ability, robustness, 
and self-learning ability, feed-forward neural networks have 
been extensively studied (Kwok and Yeung, 1997; Liang  
et al., 2006; Zhang and Suganthan, 2016), and have been 
widely used in various areas of machine learning in the past 
decades (Qiu et al., 2016; Jamli et al., 2015; Dai and Chen, 
2016; Wang and Tian, 2015). Single hidden layer feed-
forward neural networks (SLFNs), as one of the most popular 
feed-forward neural networks, have been extensively studied 
on their learning capabilities and fault tolerant abilities 
(Guliyev and Ismailov, 2016; Ding et al., 2015; Cao et al., 
2016; Wang et al., 2016). The most widely used learning 
algorithm for feed-forward neural networks is called back 
propagation (BP) algorithm (Marquardt, 1963; Werbos, 
1994). Although Funahashi and Cybenko had proven that 
SLFNs trained with BP algorithm have the ability to 
approximate any continuous function with arbitrary precision, 
this algorithm is relatively slow since all the parameters of 
SLFNs need to be tuned through iterative procedures and 
easy to fall into local minima. 

In order to overcome these deficiencies of BP algorithm, 
extreme learning machine (ELM) was proposed by Huang  
et al. (2004, 2006). This algorithm is used to train single 
hidden layer feed-forward neural networks, in which 
weights linking input layer and hidden layer and biases in 
the hidden layer are chosen randomly, while weights linking 
hidden layer and output layer are analytically determined 
though Moore-Penrose generalised inverse. For its fast 
learning speed, ELM has become a hot topic in the field of 
neural networks and has attracted the interest of more and 
more researchers (Emilio et al., 2011; Mohammed et al., 
2011; Huang et al., 2012; Liu et al., 2015; Zhao and Wang, 
2014; Wu et al., 2011; Zhu et al., 2005). The most notable 
feature of ELM is the extremely fast learning speed while 
maintaining acceptable generalisation. Explaining why 
ELM is so fast is significant. In this paper we aim to give 
some precise explanations for its fast learning speed and try 
to give a replacement policy for this algorithm. 

The learning process of ELM can be divided into two 
parts, the first part is randomly choosing the weights linking  
 

input layer and hidden layer and biases in hidden layer,  
the second part is analytically determining the weights  
between hidden layer and output layer with Moore-Penrose 
generalised inverse (Huang et al., 2006). From both theory 
and experiment aspects, this paper points out that it is the first 
part rather than the second part that leads to the extremely fast 
learning speed. Moreover, the computational of Moore-
Penrose generalised inverse even limits the learning speed of 
ELM. The reason is the calculation of generalised matrix 
depends on singular value decomposition (SVD), whose 
computational complexity is extremely high so as to seriously 
restrict training speed of ELM even directly lead the inability 
on some large scale data. 

Among many optimisation algorithms, such as gradient 
descent (Mason et al., 1999), Newton’s method (Grippo et al., 
1986), conjugate gradient method (Hestenes and Stiefel, 
1952), gravitational search algorithm (Guo et al., 2016), etc., 
we chose conjugate gradient method as a replacement  
for Moore-Penrose generalised inverse. That is because 
conjugate gradient method has low calculation complexity, 
less storage space and fast convergence speed (Hestenes  
et al., 1952). In order to overcome the high complexity of 
output layer generalised inverse matrix in ELM, this paper 
proposes conjugate gradient based extreme learning machine 
(CG-ELM). This method uses conjugate gradient method 
instead of Moore-Penrose generalised inverse to determine 
the output weights of the network so as to avoid the high 
complexity computation of generalised inverse. The new 
proposed learning algorithm shows obvious superiority than 
basic ELM in speed while maintaining similar generalisation, 
even gives a good performance on a big data that cannot 
operate under ELM frame on PC machine. As the fast 
training speed and convenient incremental implementation, 
CG-ELM has great potential for the establishment and 
analysis of large scale data.  

This paper is organised as follows. Section 2 gives a 
brief review of ELM and analyses the complexity of SVD. 
Section 3 further proposes the CG-ELM learning algorithm 
after a simple introduction of conjugate gradient method. 
Performance evaluation of ELM and the new proposed 
algorithm are given in Section 4. Section 5 gives the 
discussions and conclusion. 
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2 Brief review of extreme learning machine 

In this section, we will give a brief review of extreme learning 
machine (ELM) proposed in 2004 and 2006 by Huang et al. 
(2004, 2006). 

2.1 Extreme learning machine 

ELM is a fast learning algorithm for SLFNs, the structure is 
as Figure 1. 

Figure 1 Structure of ELM 

 

The mathematical model of standard SLFNs with N  hidden 
nodes and activation function ( )g x  is: 
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H is called the hidden layer output matrix of the neural 
networks, the ith column of H is the ith hidden node output 
with respect to input 1( , , )Nx x .  

Huang had proved that in such networks not all weights 
need to be adjusted (Huang et al., 2006). In fact, the input 
weights and biases in hidden layer needn’t be adjusted. 
Once randomly given at the beginning of the study the 
hidden layer output matrix H  will not change. Since H  is 
an over-determined matrix (the sample number is much 
larger than the number of hidden layer nodes so the number 
of rows is much larger than the number of columns), what 
we need to do is to look for a least-squares solution of 

equation (2), that is to find   to satisfy:  
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This linear system can be solved by Moore-Penrose 
generalised inverse as follows, the smallest norm least-
square solution of this above linear system is: 

 †H T  , (6) 

where †H  is the Moore-Penrose generalised inverse of H .  
ELM can be summarised as follows (Huang et al., 2006): 

Algorithm ELM: 

Input: Training set {( , ) , }n m
j j j jX x t x R t R   , 1,2, ,j N  , 

activation function ( )g x  and hidden node number N . 

Output: Output weights of SLFNs. 

Step 1: Randomly assign input weights i  
and biases ib , 

1, 2, ,i N  ; 

Step 2: Calculate the hidden layer output matrix H ; 

Step 3: Calculate the output weights as  †H T  . 

From description above we know the process of ELM  
can be divided into two parts, the first is randomly assigning 
input weights and biases in the hidden layer, the second  
is computing output weights by using Moore-Penrose 
generalised inverse. The reason why Moore-Penrose 
generalised inverse is selected may be that solution obtained by 
Moore-Penrose generalised inverse is not only the least-squares 
solution but also the smallest norm one. It had been proved  
that smaller the norm of weights is, better generalisation 
performance of the networks tend to have (Bartlett, 1998). 
Although Moore-Penrose generalised inverse gives the  
smallest norm least-squares solution, it has high computational 
complexity at the same time, especially on high order matrix. 
Sometimes it even means ELM cannot operate on some large 
scale data as demonstrated in Section 4.   

2.2 Computational complexity analysis of SVD 

In ELM, the Moore-Penrose generalised inverse is obtained 
by SVD, we will analyse the computational complexity as 
following. 

 Time complexity: The calculation of SVD is a hard 
problem, whose time complexity is 3( )O n , and will be 
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especially slow for dense mass matrix. With the growth 
of matrix size, it becomes difficult to solve eigenvalue, 
so the computational complexity of SVD is the third 
power of growth; 

 Space complexity: The calculation of SVD needs a 
large amount of storage space, especially for large scale 
matrix, the storage space requirement in ELM is not 
acceptable. 

Above analysis illustrates the high computational complexity 
of SVD from theory aspect, which will be described  
on some large scale data from experimental aspect in  
Section 4. We try to find a new method to verify our 
judgment with the way of replacing SVD by conjugate 
gradient algorithm in the output weights computation  
in ELM. 

3 Conjugate gradient based ELM 

In this section, we will first briefly introduce the conjugate 
gradient method, and then propose our new method. 

3.1 Conjugate gradient method 

Conjugate gradient method is an iterative method for 
positive definite coefficient matrix of linear equation 

Ax b . (7) 

To resolve this problem is to find the minimum solution of 
quadratic function  

1
( )

2
T Tx x Ax b x   . (8) 

The basic idea of conjugate gradient method is to conjugate the 
negative gradient direction of current point and the last 
searching direction, and set it as the next searching direction of 
current point. Conjugate gradient algorithm can be described as 
follows (Hestenes and Stiefel, 1952): 

Algorithm conjugate gradient: 
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Step 4: Set 1k k  , and go back to step 2. 

Conjugate gradient algorithm serves for positive definite 
coefficient matrix, but the linear system (2) in ELM is an 
over-determined matrix, so we change to find the key of 
normal equation of (2): 

T TH H H T  . (15) 

The relation of original equation and normal equation is 
described as follows: 

Theorem 3.1: Let *x  be the least-squares solution of over-
determined equation Ax b , then it is necessary and sufficient 

that *x  is the solution of equation T TA Ax A b . 

Proof: Sufficiency: Let there exist n-dimension vector *x  

satisfied *T TA Ax A b , take a n-dimension vector *x x  

arbitrarily, let *y x x  , then 0y  , and 
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So *x  is the least-squares solution of equation Ax = b. 
Necessity: The ith component of vector r b Ax   is: 
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This can be written compactly as 

T TA Ax A b . 

Remark 1: Theorem 3.1 shows that if we want to find the 
solution of equation Ax b , we just have to find the solution 

of its normal equation T TA Ax A b . According to this 
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theorem, in order to find the solution of equation (2), this paper 
changes to find the solution of its normal equation (15). 

Theorem 3.2: Given equation Ax b , if coefficient matrix A  
is n n , and positive definite, then the conjugate gradient 
algorithm will find the exact solution in n  steps at most  
(Hu, 2008). 

Proof: Suppose the algorithm has operated 1n   steps, but 
still not find the solution vector, then the non-zero residual 

(0) (n 1), ,r r   form a group of orthogonal basis of nR . In 

step n , there exist (n) (i)r r , 0, , 1i n  , it is to say that 
(n)r  is orthogonal with a group of basis of nR , then (n) 0r  , 
(n) 0e  . So we have (n)x x . 

Remark 2: Theorem 3.2 shows that for exact linear 
searching conjugate gradient method, the dimensionality of 
searching space will reduce one-dimensional until reduce to 
zero and ends because each new searching direction is 
orthogonal with all previous directions. So this theorem 
provides the guarantee for the fast speed of conjugate 
gradient algorithm.  

3.2 CG-ELM 

In view of the defect of SVD and advantages of conjugate 
gradient algorithm, conjugate gradient based ELM (CG-
ELM) will be proposed based on theorems 3.1 and 3.2. This 
algorithm also serves for single-hidden layer feed-forward 
neural networks, randomly chooses the input weights and 
biases in hidden layer, but the output weights are 
determined by conjugate gradient algorithm. The algorithm 
can be summarised as follows: 

Algorithm CG-ELM: 

Input: Training set {( , ) , }n m
j j j jX x t x R t R   , 1,2, ,j N  , 

activation function ( )g x , hidden node number N , standard 

error  . 

Output: Output weights of SLFNs. 

Step 1: Randomly assign input weights i  
and biases ib , 

1, 2, ,i N  ; 

Step 2: Calculate the hidden layer output matrix H ; 
Step 3: Calculate the output weights   of normal function 

T TH H H T   by using conjugate gradient algorithm;  

Step 4: Set the output weights of original system   by 
calculated in step 3. 

Remark 3: From description above we can see, the only 
difference between ELM and CG-ELM is in step 3. In ELM, 
Moore-Penrose generalised inverse is used to find the 
output weights but conjugate gradient algorithm is used in 
CG-ELM.  

3.3 Computational complexity of CG-ELM 

 Time complexity: From conjugate gradient algorithm we 
know the computations in this algorithm are mainly matrix 
addition and subtraction, whose time complexity  
is ( )O n .  

 Space complexity: Theorem 3.2 tells us, conjugate 
gradient algorithm will find the exact solution in n  steps 
at most, which guarantees the storage space requirement in 
CG-ELM is acceptable and suitable for large scale data. 

Through analysis above we can see that, compared with 
SVD, conjugate gradient algorithm has less time complexity 
and space complexity and is more suitable for large data. 
Simulation results in Section 4 also prove its advantage in 
speed. 

4 Performance evaluation 

In this section, the performance of the proposed CG-ELM is 
compared with the ELM proposed by Huang et al. (2006) on 
30 data sets from UCI, in which 10 data sets are regression 
problems and the other 20 are classification problems. All the 
simulations are carried out in MATLAB 7.1 environment 
running in a founder (4 kernel, 3.1 GHz, 4GB memory, 
Windows 7 operating system). For the sake of simplicity, the 
activation functions used in these two algorithms are all 
sigmoid function ( ) 1 (1 exp( ))g x x   , and there are 20 

hidden layer nodes assigned for ELM algorithm and CG-ELM 
algorithm.  

4.1 Benchmarking with regression problems 

The performances of ELM and CG-ELM are compared on 
10 benchmark data sets of regression problem from UCI 
database, in which the sixth data set is an extreme large 
scale data (more than 40,000 samples). The specifications of 
these data sets are listed in Table 1. 

Table 1 Specifications of regression data sets 

No. Data sets Samples Attributes

1 Airfoil Self-Noise 1503 5 

2 Concrete Compressive Strength 1030 8 

3 Computer Hardware 209 7 

4 Forest Fires 517 8 

5 Housing 506 13 

6 Physicochemical Properties of PTS 45,730 9 

7 Servo 62 3 

8 Sinc 10,000 2 

9 Wine Quality-red 1599 11 

10 Wine Quality-white 4898 11 
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In our experiments, all attributes (both condition and decision 
attributes) have been normalised into the range [0, 1]. Ten-fold-
cross-validation is used in all 10 regression data, which 
randomly divides data into 10 parts, nine parts as training set 
and one part as testing set. This process is conducted 10 times 
and the average result of 100 trials is taken as the final result 
and shown in Table 2 and Table 3. Evaluation standard in the 
regression problem includes training time, training accuracy, 
testing time and testing accuracy. The accuracy here is the root 
mean square error (RMSE). Training time ratio (TTR) of ELM 
and CG-ELM is shown in boldface if it is larger than 1.5 for a 
case. 

Table 2 Comparison of training and testing RMSE of ELM 
and CG-ELM 

Data sets 
ELM CG-ELM 

Training Testing Training Testing 

1 0.0351 181.9091 0.0384 1.5323 

2 0.1137 0.1169 0.1138 0.1172 

3 0.0033 0.0111 0.0045 0.0104 

4 0.0668 0.1076 0.0699 0.0957 

5 0.1194 0.2633 0.1218 0.2182 

6 0.2417 0.2419 0.2426 0.2427 

7 0.1377 0.1662 0.1377 0.1709 

8 0.0820 0.0821 0.0831 0.0831 

9 0.1276 0.1296 0.1277 0.1296 

10 0.1235 0.1243 0.1236 0.1244 

Table 3 Comparison of training and testing time of ELM and 
CG-ELM 

Data sets 
ELM CG-ELM 

TTR 
Training Testing Training Testing 

1 0.0058 0.0003 0.0034 0.0002 1.7059 

2 0.0022 0.0000 0.0012 0.0002 1.8333 

3 0.0009 0.0002 0.0006 0.0002 1.5000 

4 0.0014 0.0003 0.0011 0.0000 1.2727 

5 0.0022 0.0005 0.0016 0.0003 1.3750 

6 0.1204 0.0056 0.0498 0.0058 2.4176 

7 0.0011 0.0000 0.0008 0.0000 1.3750 

8 0.0236 0.0011 0.0115 0.0008 2.0521 

9 0.0030 0.0005 0.0019 0.0000 1.5789 

10 0.1235 0.1243 0.1236 0.1244 0.9992 

As observed from Table 2, generally speaking, ELM and 
CG-ELM obtain similar generalisation performance. As 
shown in Table 3, CG-ELM obtains the faster training speed 
than ELM in almost all cases (except data 10, but on which 
almost the same speed). On six of ten data, CG-ELM runs 
1.5 times faster than ELM, and the average ratio is 1.611, 
which demonstrates the advantage of the CG-ELM on training 
time. The training time comparison of two algorithms is shown 
in Figure 2.  

Figure 2 The training time comparison of ELM and CG-ELM 

 

4.2 Benchmarking with small and medium 
classification problems 

The performance of ELM and CG-ELM are compared on 14 
benchmark data sets of classification problems from UCI 
database, the specifications of which are listed in Table 4. 

Table 4 Specifications of classification data sets 

No. Data sets Samples Attributes Classes 

11 Blood Transfusion 748 4 2 

12 Breast Cancer 699 10 2 

13 Breast Cancer W-P 198 33 2 

14 Credit Approval 690 7 2 

15 E. Coli Genes 327 5 5 

16 Haberman’s Survival 306 3 2 

17 Heart Disease 270 13 2 

18 Image Segmentation 2310 19 7 

19 Libras Movement 360 90 15 

20 Magic Telese (10%） 19,020 (10%) 10 2 

21 Parkinsons 195 22 2 

22 Page Blocks 5473 10 5 

23 Sonar 208 60 2 

24 Wine 178 13 3 

Table 5 Comparison of training and testing correct 
classification rate of ELM and CG-ELM 

Data sets 
ELM CG-ELM 

Training Testing Training Testing 

11 0.7703 0.7890 0.7946 0.7861 

12 0.9674 0.9630 0.9685 0.9633 

13 0.8213 0.7707 0.8208 0.7697 

14 0.7670 0.7472 0.7652 0.7504 

15 0.9009 0.8892 0.8712 0.8693 

16 0.7793 0.7472 0.7740 0.7463 

17 0.8443 0.8137 0.8487 0.8137 

18 0.8828 0.8821 0.8629 0.8587 

19 0.7003 0.6156 0.6948 0.6183 

20 0.8217 0.8169 0.8217 0.8170 

21 0.8827 0.8517 0.8818 0.8532 

22 0.9400 0.9220 0.9239 0.9174 

23 0.7714 0.7153 0.7709 0.7143 

24 0.9911 0.9719 0.9842 0.9645 
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Just similar to regression case, in our classification 
experiments, all condition attributes have been normalised into 
the range [0,1]. Ten-fold-cross-validation is also used in all 14 
classification data, and the average result of 100 trials is taken 
as the final result. All results are shown in Table 5 and Table 6. 
Evaluation standard in the classification problem also includes 
training time, training accuracy, testing time and testing 
accuracy. The accuracy here is the correct classification rate 
(CCR). Training time ratio (TTR) of ELM and CG-ELM is 
shown in boldface if it is larger than 2.0 for a case. 

Table 6 Comparison of training and testing time of ELM and 
CG-ELM 

Data sets 
ELM CG-ELM 

TTR 
Training Testing Training Testing 

11 0.0052 0.0000 0.0022 0.0003 2.3636

12 0.0063 0.0000 0.0034 0.0004 1.8529

13 0.0098 0.0000 0.0038 0.0003 2.5789

14 0.0030 0.0004 0.0022 0.0008 1.3636

15 0.0083 0.0005 0.0030 0.0000 2.7667

16 0.0053 0.0000 0.0019 0.0006 2.7894

17 0.0055 0.0003 0.0027 0.0005 2.0370

18 0.0053 0.0028 0.0033 0.0013 1.6060

19 0.0180 0.0019 0.0050 0.0006 3.6000

20 0.0141 0.0009 0.0047 0.0003 3.0000

21 0.0236 0.0000 0.0031 0.0006 7.6129

22 0.0209 0.0000 0.0039 0.0006 5.3589

23 0.0045 0.0016 0.0028 0.0001 1.6071

24 0.0075 0.0003 0.0028 0.0000 2.6785

As observed from Table 5, in these classification problems, 
ELM and CG-ELM also obtain similar generalisation 
performance. Similar as in regression problem, as shown in 
Table 6, CG-ELM also obtains the faster training speed than 
ELM in all cases. On ten of fourteen data, CG-ELM runs more 
than two times faster than ELM, and the average ratio is 2.944, 
which is much better than that in regression problems and 
shows more obvious advantage on training time. The training 
time comparison of two algorithms is shown in Figure 3.  

Figure 3 The training time comparison of ELM and CG-ELM 

 

4.3 Benchmarking with very large  
classification problems 

The performance of ELM and CG-ELM are compared on 6 
very large benchmark data sets of classification problems 
from UCI database, the specifications are listed in Table 7. 

Table 7 Specifications of large classification data sets 

No. Data sets Samples Attributes Classes

25 Adult 48842 14 5 

26 Artificial-2State 250000 10 2 

27 Cod-rna 488565 8 23 

28 KDD Cup 1999 Data 4000000 14(35%) 5 

29 
MiniBooNE particle 
identification 

130064 50 2 

30 Skin-segmentation 245057 3 2 

In this large scale classification experiments, we also 
normalised all condition attributes into [0,1]. Considering about 
the time, ten-fold-cross-validation is not used. For each case, 
the data are divided into 10 parts and nine parts as training data,  
one part as testing data before each trial of simulation. 10 trial 
have been conducted for the two algorithms and the average 
results are shown in Table 8 and Table 9. 

Table 8 Comparison of training and testing correct 
classification rate of ELM and CG-ELM 

Data sets 
ELM CG-ELM 

Training Testing Training Testing 

25 0.7671 0.7628 0.7774 0.7721 

26 0.7186 0.7192 0.7183 0.7193 

27 0.9497 0.9482 0.9421 0.9410 

28 – – 0.9842 0.9512 

29 0.8566 0.8569 0.8505 0.8496 

30 0.8218 0.821 0.8212 0.8206 

Table 9 Comparison of training and testing time of ELM and 
CG-ELM 

Data sets 
ELM CG-ELM 

TTR 
Training Testing Training Testing 

25 0.1716 0.0468 0.1560 0.0468 1.1000

26 0.5772 0.0780 0.1716 0.0780 3.3636

27 1.2636 0.1716 0.3276 0.1560 3.8571

28 – – 7.8000 0.6552 – 

29 0.3120 0.0624 0.1404 0.0624 5.0000

30 0.0372 0.0050 0.0154 0.0022 2.4156

In Table 9, “–” indicates null, because the ELM algorithm 
cannot run on this data. 

As observed from Table 8, in the large scale classification 
problems, ELM and CG-ELM also obtain similar 
generalisation performance except on data 28, because ELM 
cannot run on data 28. We did try to run ELM for this 
application; however, it always ran out of memory in our 
ordinary PC. On the other hand, CG-ELM not only can handle 
this application, but also gets satisfactory results (training 
accuracy 98.42% and testing accuracy 95.12%). This 
application illustrates that the computational complexity of 
ELM is too high because of the computation of SVD, even 
leads to cannot running on some extreme large scale 
applications. 
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As shown in Table 9, CG-ELM also obtains the faster 
training speed than ELM in all cases. And on five of six 
data, CG-ELM has more than two times faster than ELM, 
and the average ratio is 3.1473 (without considering that 
ELM cannot run in data 28), which is even a little much 
better than that in small and medium problems and shows 
more obvious advantage on training time. The training time 
comparison of two algorithms is shown in Figure 4.  

Figure 4 The training time comparison of ELM and CG-ELM 

 

Considering we only replace Moore-Penrose generalised 
inverse with conjugate gradient method and have faster training 
time, we have reason to believe that it is the random assigning 
of weights and biases leads to the fast training speed of ELM. 
The above experiments also show that we can replace Moore-
Penrose generalised inverse with conjugate gradient method to 
accelerate the training time. This strategy is especially suitable 
on large scale data because CG-ELM has good performance on 
some application that ELM cannot run. 

4.4 Stability comparison of two algorithms  

In this section, we will compare the stability of ELM and 
CG-ELM by Monte Carlo method. Idea of this method is: 
firstly create training data obey to specified distribution and 
train ELM and CG-ELM networks; secondly create a lot of 
simulation data, whose distribution just as the training data, 
put them into ELM and CG-ELM networks and compute the 
outputs; finally compute and compare the average variance 
of simulation outputs. The network which has the smaller 
variance has the better stability. That is because variance is 
used to measure the deviation of a random variable from its 
mathematical expectation. Greater variance means more 
dispersed distribution and worse stability, and smaller variance 
means more concentrated distribution and better stability.  

This algorithm is described as follows: 

Step 1: Create data sets A  and 1 2 10, , ,D D D  respectively as 

the training data and simulation data, which subject to the same 
distribution; 

Step 2: Put the training data A into the two networks and get the 
trained ELM network model and CG-ELM network model; 

Step 3: Put the simulation data 1 2 10, , ,D D D  into two 

networks and compute the outputs; 

Step 4: Compute the average variances of ten times simulation 
outputs as the standard of stability.  

The training data includes 10000 samples, input data includes 5 
conditional attributes, which obey standard normal distribution, 
and output data obey to uniform distribution on interval [0,1], 
[0,10], [0,100], [–1,1], [–10,10] and [–100,100] respectively. 
The change of the output interval is to make the variance more 
obvious to observe. 

The simulation data only includes input data, which are 
10000 samples obey standard normal distribution. This 
process is repeated 10 times, and the average variance is set 
as the standard to compare the stability of two networks. 
Table 10 lists the average variances of simulation outputs in 
six different training output data. As observed from Table 
10, variances of simulation outputs in two algorithms are 
almost equal, which means that these two algorithms have 
the similar stability.  

Table 10 Stability comparison of ELM and CG-ELM 

Training output interval
Average variance of simulation outputs

ELM CG-ELM 

[0,1] 0.03017 0.03022 

[0,10] 0.19394 0.19332 

[0,100] 2.70117 2.70134 

[–1,1] 0.03032 0.03030 

[–10,10] 0.22231 0.22226 

[–100,100] 2.83873 2.83737 

5 Discussions and conclusion 

In this paper we analysed the algorithm of ELM and pointed 
out it is random assignment of input weights and bias in 
hidden layer rather than the analytically computation of 
output weights by Moore-Penrose generalisation inverse 
leads to the fast training speed of ELM. In fact SVD, which 
is used to obtain Moore-Penrose generalised inverse, takes a 
lot of memory space and has high calculation complexity. 
Especially for extreme large amounts of data, this method  
is difficult to give a satisfactory result. Considering the 
conjugate gradient method not only has simple procedure 
but also can terminate in finite steps, conjugate gradient 
based ELM (CG-ELM) was proposed. On the premise that 
two algorithms have similar generalisation capability and 
stability, the proposed CG-ELM has faster speed than ELM. 
This demonstrates that it is the random weights assignment 
rather than the Moore-Penrose generalised inverse that  
leads to the fast training speed of ELM from some aspect. 
Less memory space, faster training speed and convenient 
incremental implementation make CG-ELM have great 
potential for the establishment and analysis for large scale 
data. 
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