
314 Int. J. Wireless and Mobile Computing, Vol. 13, No. 4, 2017

Copyright © 2017 Inderscience Enterprises Ltd.

Analysis on fast training speed of extreme learning
machine and replacement policy

Shi-Xin Zhao*
College of Management,
Hebei University,
Baoding 071002, China
and
Department of Mathematics and Physics,
Shijiazhuang Tiedao University,
Shijiazhuang 050043, China
Email: cssxzhao@163.com
*Corresponding author

Xi-Zhao Wang
College of Computer Science and Soft Engineering,
Shenzhen University,
Shenzhen 518060, China
Email: xizhaowang@ieee.org

Li-Ying Wang and
Jun-Mei Hu
Department of Mathematics and Physics,
Shijiazhuang Tiedao University,
Shijiazhuang 050043, China
Email: wly_sjz@sohu.com
Email: hu_junmei1979@163.com

Wei-Ping Li
School of Economics and Management,
Beijing Jiaotong University,
Beijing 100044, China
Email: cppsulwp@163.com

Abstract: Extreme learning machine is known for its fast learning speed while maintaining
acceptable generalisation. Its learning process can be divided into two parts: (1) randomly assigns
input weights and biases in hidden layer, and (2) analytically determines output weights by the
use of Moore-Penrose generalised inverse. Through the analysis from theory and experiment
aspects we point out that it is the random weights assignment rather than the analytical
determination with generalised inverse that leads to its fast training speed. In fact, the calculation
of generalised inverse of hidden layer output matrix based on singular value decomposition
(SVD) has very low efficiency especially on large scale data, and even directly cannot work.
Considering this high calculation complexity reduces the learning speed of ELM conjugate
gradient is introduced as a replacement of Moore-Penrose generalised inverse and conjugate
gradient based ELM (CG-ELM) is proposed. Numerical simulations show that, in most cases,
CG-ELM achieved faster speed than ELM in the condition of maintaining similar generalisation.
Even in the case that ELM cannot work because of the huge amount of data CG-ELM attains
good performance, which illustrates that Moore-Penrose generalised inverse is not the
contribution of fast learning speed of ELM from experiment view.

Keywords: extreme learning machine; generalised inverse; SVD; conjugate gradient method.

Reference to this paper should be made as follows: Zhao, S-X., Wang, X-Z., Wang, L-Y., Hu,
J-M. and Li, W-P. (2017) ‘Analysis on fast training speed of extreme learning machine and
replacement policy’, Int. J. Wireless and Mobile Computing, Vol. 13, No. 4, pp.314–322.

 Analysis on fast training speed of extreme learning machine and replacement policy 315

Biographical notes: Shi-Xin Zhao is a PhD candidate at Hebei University. Her main research
interests include neural networks, machine learning and pattern recognition.

Xi-Zhao Wang is PhD supervisor, vice director of BDI, IEEE Fellow, and Editor-in-Chief of
IJMLC. His main research interests are machine learning and uncertainty information processing.

Li-Ying Wang is a Professor at Shijiazhuang Tiedao University. Her research interests are
reliability Engineer, stochastic models, applications of probability and statistics.

Jun-Mei Hu is a Lecturer at Shijiazhuang Tiedao University. Her main research interests include
algebra and the history of modern mathematics.

Wei-Ping Li is a post-doctoral at Beijing Jiaotong University. His research interests include
network security, Internet finance.

1 Introduction

Owing to its strong nonlinear mapping ability, robustness,
and self-learning ability, feed-forward neural networks have
been extensively studied (Kwok and Yeung, 1997; Liang
et al., 2006; Zhang and Suganthan, 2016), and have been
widely used in various areas of machine learning in the past
decades (Qiu et al., 2016; Jamli et al., 2015; Dai and Chen,
2016; Wang and Tian, 2015). Single hidden layer feed-
forward neural networks (SLFNs), as one of the most popular
feed-forward neural networks, have been extensively studied
on their learning capabilities and fault tolerant abilities
(Guliyev and Ismailov, 2016; Ding et al., 2015; Cao et al.,
2016; Wang et al., 2016). The most widely used learning
algorithm for feed-forward neural networks is called back
propagation (BP) algorithm (Marquardt, 1963; Werbos,
1994). Although Funahashi and Cybenko had proven that
SLFNs trained with BP algorithm have the ability to
approximate any continuous function with arbitrary precision,
this algorithm is relatively slow since all the parameters of
SLFNs need to be tuned through iterative procedures and
easy to fall into local minima.

In order to overcome these deficiencies of BP algorithm,
extreme learning machine (ELM) was proposed by Huang
et al. (2004, 2006). This algorithm is used to train single
hidden layer feed-forward neural networks, in which
weights linking input layer and hidden layer and biases in
the hidden layer are chosen randomly, while weights linking
hidden layer and output layer are analytically determined
though Moore-Penrose generalised inverse. For its fast
learning speed, ELM has become a hot topic in the field of
neural networks and has attracted the interest of more and
more researchers (Emilio et al., 2011; Mohammed et al.,
2011; Huang et al., 2012; Liu et al., 2015; Zhao and Wang,
2014; Wu et al., 2011; Zhu et al., 2005). The most notable
feature of ELM is the extremely fast learning speed while
maintaining acceptable generalisation. Explaining why
ELM is so fast is significant. In this paper we aim to give
some precise explanations for its fast learning speed and try
to give a replacement policy for this algorithm.

The learning process of ELM can be divided into two
parts, the first part is randomly choosing the weights linking

input layer and hidden layer and biases in hidden layer,
the second part is analytically determining the weights
between hidden layer and output layer with Moore-Penrose
generalised inverse (Huang et al., 2006). From both theory
and experiment aspects, this paper points out that it is the first
part rather than the second part that leads to the extremely fast
learning speed. Moreover, the computational of Moore-
Penrose generalised inverse even limits the learning speed of
ELM. The reason is the calculation of generalised matrix
depends on singular value decomposition (SVD), whose
computational complexity is extremely high so as to seriously
restrict training speed of ELM even directly lead the inability
on some large scale data.

Among many optimisation algorithms, such as gradient
descent (Mason et al., 1999), Newton’s method (Grippo et al.,
1986), conjugate gradient method (Hestenes and Stiefel,
1952), gravitational search algorithm (Guo et al., 2016), etc.,
we chose conjugate gradient method as a replacement
for Moore-Penrose generalised inverse. That is because
conjugate gradient method has low calculation complexity,
less storage space and fast convergence speed (Hestenes
et al., 1952). In order to overcome the high complexity of
output layer generalised inverse matrix in ELM, this paper
proposes conjugate gradient based extreme learning machine
(CG-ELM). This method uses conjugate gradient method
instead of Moore-Penrose generalised inverse to determine
the output weights of the network so as to avoid the high
complexity computation of generalised inverse. The new
proposed learning algorithm shows obvious superiority than
basic ELM in speed while maintaining similar generalisation,
even gives a good performance on a big data that cannot
operate under ELM frame on PC machine. As the fast
training speed and convenient incremental implementation,
CG-ELM has great potential for the establishment and
analysis of large scale data.

This paper is organised as follows. Section 2 gives a
brief review of ELM and analyses the complexity of SVD.
Section 3 further proposes the CG-ELM learning algorithm
after a simple introduction of conjugate gradient method.
Performance evaluation of ELM and the new proposed
algorithm are given in Section 4. Section 5 gives the
discussions and conclusion.

316 S-X. Zhao et al.

2 Brief review of extreme learning machine

In this section, we will give a brief review of extreme learning
machine (ELM) proposed in 2004 and 2006 by Huang et al.
(2004, 2006).

2.1 Extreme learning machine

ELM is a fast learning algorithm for SLFNs, the structure is
as Figure 1.

Figure 1 Structure of ELM

The mathematical model of standard SLFNs with N hidden
nodes and activation function ()g x is:

 

1 1

() ()
N N

i i j i j j i j
i i

g x g x b t  
 

     1, 2, ,j N  , (1)

where (,)j jx t are N arbitrary distinct samples in database,

1 2(, , ,)T n
j j j jnx x x x R  is input vector of the jth sample,

1 2(, , ,)T m
j j j jmt t t t R  is output vector of the jth sample.

1 2(, , ,)i i i in     is the weight vector linking the ith

hidden node to the input nodes, 1 2(, , ,)i i i im     is the

weight vector linking the ith hidden node to the output
nodes, and ib is the threshold of the ith hidden node. i jx 

denotes the inner product of i and jx .

The above N equations can be compactly written as:

H T  , (2)

where

 

 

  

1 1 1

1 1 1 1

1 1

(, , , , , , , ,)

() ()

() ()

NN N

N N

N NN N N N

H b b x x

g x b g x b

g x b g x b

 

 

 


    
 

  
     

  


  



, (3)

 

1
T

T

N N m







 
 

  
 
 

 ,
1
T

T
N N m

t

T

t


 
 

  
 
 

 . (4)

H is called the hidden layer output matrix of the neural
networks, the ith column of H is the ith hidden node output
with respect to input 1(, ,)Nx x .

Huang had proved that in such networks not all weights
need to be adjusted (Huang et al., 2006). In fact, the input
weights and biases in hidden layer needn’t be adjusted.
Once randomly given at the beginning of the study the
hidden layer output matrix H will not change. Since H is
an over-determined matrix (the sample number is much
larger than the number of hidden layer nodes so the number
of rows is much larger than the number of columns), what
we need to do is to look for a least-squares solution of

equation (2), that is to find  to satisfy:

 


 

1 1

1 1

(, , , , ,)

min (, , , , ,)

N N

N N

H b b T

H b b T


  

  



 

 

 
. (5)

This linear system can be solved by Moore-Penrose
generalised inverse as follows, the smallest norm least-
square solution of this above linear system is:

 †H T  , (6)

where †H is the Moore-Penrose generalised inverse of H .
ELM can be summarised as follows (Huang et al., 2006):

Algorithm ELM:

Input: Training set {(,) , }n m
j j j jX x t x R t R   , 1,2, ,j N  ,

activation function ()g x and hidden node number N .

Output: Output weights of SLFNs.

Step 1: Randomly assign input weights i
and biases ib ,

1, 2, ,i N  ;

Step 2: Calculate the hidden layer output matrix H ;

Step 3: Calculate the output weights as  †H T  .

From description above we know the process of ELM
can be divided into two parts, the first is randomly assigning
input weights and biases in the hidden layer, the second
is computing output weights by using Moore-Penrose
generalised inverse. The reason why Moore-Penrose
generalised inverse is selected may be that solution obtained by
Moore-Penrose generalised inverse is not only the least-squares
solution but also the smallest norm one. It had been proved
that smaller the norm of weights is, better generalisation
performance of the networks tend to have (Bartlett, 1998).
Although Moore-Penrose generalised inverse gives the
smallest norm least-squares solution, it has high computational
complexity at the same time, especially on high order matrix.
Sometimes it even means ELM cannot operate on some large
scale data as demonstrated in Section 4.

2.2 Computational complexity analysis of SVD

In ELM, the Moore-Penrose generalised inverse is obtained
by SVD, we will analyse the computational complexity as
following.

 Time complexity: The calculation of SVD is a hard
problem, whose time complexity is 3()O n , and will be

 Analysis on fast training speed of extreme learning machine and replacement policy 317

especially slow for dense mass matrix. With the growth
of matrix size, it becomes difficult to solve eigenvalue,
so the computational complexity of SVD is the third
power of growth;

 Space complexity: The calculation of SVD needs a
large amount of storage space, especially for large scale
matrix, the storage space requirement in ELM is not
acceptable.

Above analysis illustrates the high computational complexity
of SVD from theory aspect, which will be described
on some large scale data from experimental aspect in
Section 4. We try to find a new method to verify our
judgment with the way of replacing SVD by conjugate
gradient algorithm in the output weights computation
in ELM.

3 Conjugate gradient based ELM

In this section, we will first briefly introduce the conjugate
gradient method, and then propose our new method.

3.1 Conjugate gradient method

Conjugate gradient method is an iterative method for
positive definite coefficient matrix of linear equation

Ax b . (7)

To resolve this problem is to find the minimum solution of
quadratic function

1
()

2
T Tx x Ax b x   . (8)

The basic idea of conjugate gradient method is to conjugate the
negative gradient direction of current point and the last
searching direction, and set it as the next searching direction of
current point. Conjugate gradient algorithm can be described as
follows (Hestenes and Stiefel, 1952):

Algorithm conjugate gradient:

Step 1: Given coefficient matrix A , target vector b and
precision standard  . Set initial value and iteration count as:

(0) 0x  , (0) (0)r b Ax  , (0) (0)d r , 0k  ; (9)

Step 2: Calculate

    

    

T
k k

k T
k k

r r

d Ad
  , (10)

     1k k k
kx x d   , (11)

     1k k k
kr r Ad   ; (12)

Step 3: If satisfied    1k kx x    , or 1k n  , stops,

and  1kx 
 is the solution of equation Ax b , otherwise

calculate

    

    

1 1

1

T
k k

k T
k k

r r

r r


 

  , (13)

     1 1
1

k k k
kd r d 
  ; (14)

Step 4: Set 1k k  , and go back to step 2.

Conjugate gradient algorithm serves for positive definite
coefficient matrix, but the linear system (2) in ELM is an
over-determined matrix, so we change to find the key of
normal equation of (2):

T TH H H T  . (15)

The relation of original equation and normal equation is
described as follows:

Theorem 3.1: Let *x be the least-squares solution of over-
determined equation Ax b , then it is necessary and sufficient

that *x is the solution of equation T TA Ax A b .

Proof: Sufficiency: Let there exist n-dimension vector *x

satisfied *T TA Ax A b , take a n-dimension vector *x x

arbitrarily, let *y x x  , then 0y  , and

22 *

2 2

* *(,)

b Ax b Ax Ay

b Ax Ay b Ax Ay

   

    

* * *(,) 2(,) (,)b Ax b Ax Ay b Ax Ay Ay     
2 2* *

22

2 22* *

22 2

2 ()T Tb Ax y A b Ax Ay

b Ax Ay b Ax

    

     .

So *x is the least-squares solution of equation Ax = b.
Necessity: The ith component of vector r b Ax  is:

1

n

i i ik k
k

r b a x


  . (1, 2,i m )

Let
2 2

1 2 2
1 1

(, , ,) ()
m n

n i ik k
i k

I I x x x r b a x
 

     , from the

necessary condition for extreme value of multivariate function,
we have

1 1

2 () 0
m n

i ik k ij
i kj

I
b a x a

x  


   

   , (1,2,j n ).

It is

1 1 1

()
n m m

ij ik k ij i
k i i

a a x a y
  

   ,（ 1,2,j n  ）.

This can be written compactly as

T TA Ax A b .

Remark 1: Theorem 3.1 shows that if we want to find the
solution of equation Ax b , we just have to find the solution

of its normal equation T TA Ax A b . According to this

318 S-X. Zhao et al.

theorem, in order to find the solution of equation (2), this paper
changes to find the solution of its normal equation (15).

Theorem 3.2: Given equation Ax b , if coefficient matrix A
is n n , and positive definite, then the conjugate gradient
algorithm will find the exact solution in n steps at most
(Hu, 2008).

Proof: Suppose the algorithm has operated 1n  steps, but
still not find the solution vector, then the non-zero residual

(0) (n 1), ,r r  form a group of orthogonal basis of nR . In

step n , there exist (n) (i)r r , 0, , 1i n  , it is to say that
(n)r is orthogonal with a group of basis of nR , then (n) 0r  ,
(n) 0e  . So we have (n)x x .

Remark 2: Theorem 3.2 shows that for exact linear
searching conjugate gradient method, the dimensionality of
searching space will reduce one-dimensional until reduce to
zero and ends because each new searching direction is
orthogonal with all previous directions. So this theorem
provides the guarantee for the fast speed of conjugate
gradient algorithm.

3.2 CG-ELM

In view of the defect of SVD and advantages of conjugate
gradient algorithm, conjugate gradient based ELM (CG-
ELM) will be proposed based on theorems 3.1 and 3.2. This
algorithm also serves for single-hidden layer feed-forward
neural networks, randomly chooses the input weights and
biases in hidden layer, but the output weights are
determined by conjugate gradient algorithm. The algorithm
can be summarised as follows:

Algorithm CG-ELM:

Input: Training set {(,) , }n m
j j j jX x t x R t R   , 1,2, ,j N  ,

activation function ()g x , hidden node number N , standard

error  .

Output: Output weights of SLFNs.

Step 1: Randomly assign input weights i
and biases ib ,

1, 2, ,i N  ;

Step 2: Calculate the hidden layer output matrix H ;
Step 3: Calculate the output weights  of normal function

T TH H H T  by using conjugate gradient algorithm;

Step 4: Set the output weights of original system  by 
calculated in step 3.

Remark 3: From description above we can see, the only
difference between ELM and CG-ELM is in step 3. In ELM,
Moore-Penrose generalised inverse is used to find the
output weights but conjugate gradient algorithm is used in
CG-ELM.

3.3 Computational complexity of CG-ELM

 Time complexity: From conjugate gradient algorithm we
know the computations in this algorithm are mainly matrix
addition and subtraction, whose time complexity
is ()O n .

 Space complexity: Theorem 3.2 tells us, conjugate
gradient algorithm will find the exact solution in n steps
at most, which guarantees the storage space requirement in
CG-ELM is acceptable and suitable for large scale data.

Through analysis above we can see that, compared with
SVD, conjugate gradient algorithm has less time complexity
and space complexity and is more suitable for large data.
Simulation results in Section 4 also prove its advantage in
speed.

4 Performance evaluation

In this section, the performance of the proposed CG-ELM is
compared with the ELM proposed by Huang et al. (2006) on
30 data sets from UCI, in which 10 data sets are regression
problems and the other 20 are classification problems. All the
simulations are carried out in MATLAB 7.1 environment
running in a founder (4 kernel, 3.1 GHz, 4GB memory,
Windows 7 operating system). For the sake of simplicity, the
activation functions used in these two algorithms are all
sigmoid function () 1 (1 exp())g x x   , and there are 20

hidden layer nodes assigned for ELM algorithm and CG-ELM
algorithm.

4.1 Benchmarking with regression problems

The performances of ELM and CG-ELM are compared on
10 benchmark data sets of regression problem from UCI
database, in which the sixth data set is an extreme large
scale data (more than 40,000 samples). The specifications of
these data sets are listed in Table 1.

Table 1 Specifications of regression data sets

No. Data sets Samples Attributes

1 Airfoil Self-Noise 1503 5

2 Concrete Compressive Strength 1030 8

3 Computer Hardware 209 7

4 Forest Fires 517 8

5 Housing 506 13

6 Physicochemical Properties of PTS 45,730 9

7 Servo 62 3

8 Sinc 10,000 2

9 Wine Quality-red 1599 11

10 Wine Quality-white 4898 11

 Analysis on fast training speed of extreme learning machine and replacement policy 319

In our experiments, all attributes (both condition and decision
attributes) have been normalised into the range [0, 1]. Ten-fold-
cross-validation is used in all 10 regression data, which
randomly divides data into 10 parts, nine parts as training set
and one part as testing set. This process is conducted 10 times
and the average result of 100 trials is taken as the final result
and shown in Table 2 and Table 3. Evaluation standard in the
regression problem includes training time, training accuracy,
testing time and testing accuracy. The accuracy here is the root
mean square error (RMSE). Training time ratio (TTR) of ELM
and CG-ELM is shown in boldface if it is larger than 1.5 for a
case.

Table 2 Comparison of training and testing RMSE of ELM
and CG-ELM

Data sets
ELM CG-ELM

Training Testing Training Testing

1 0.0351 181.9091 0.0384 1.5323

2 0.1137 0.1169 0.1138 0.1172

3 0.0033 0.0111 0.0045 0.0104

4 0.0668 0.1076 0.0699 0.0957

5 0.1194 0.2633 0.1218 0.2182

6 0.2417 0.2419 0.2426 0.2427

7 0.1377 0.1662 0.1377 0.1709

8 0.0820 0.0821 0.0831 0.0831

9 0.1276 0.1296 0.1277 0.1296

10 0.1235 0.1243 0.1236 0.1244

Table 3 Comparison of training and testing time of ELM and
CG-ELM

Data sets
ELM CG-ELM

TTR
Training Testing Training Testing

1 0.0058 0.0003 0.0034 0.0002 1.7059

2 0.0022 0.0000 0.0012 0.0002 1.8333

3 0.0009 0.0002 0.0006 0.0002 1.5000

4 0.0014 0.0003 0.0011 0.0000 1.2727

5 0.0022 0.0005 0.0016 0.0003 1.3750

6 0.1204 0.0056 0.0498 0.0058 2.4176

7 0.0011 0.0000 0.0008 0.0000 1.3750

8 0.0236 0.0011 0.0115 0.0008 2.0521

9 0.0030 0.0005 0.0019 0.0000 1.5789

10 0.1235 0.1243 0.1236 0.1244 0.9992

As observed from Table 2, generally speaking, ELM and
CG-ELM obtain similar generalisation performance. As
shown in Table 3, CG-ELM obtains the faster training speed
than ELM in almost all cases (except data 10, but on which
almost the same speed). On six of ten data, CG-ELM runs
1.5 times faster than ELM, and the average ratio is 1.611,
which demonstrates the advantage of the CG-ELM on training
time. The training time comparison of two algorithms is shown
in Figure 2.

Figure 2 The training time comparison of ELM and CG-ELM

4.2 Benchmarking with small and medium
classification problems

The performance of ELM and CG-ELM are compared on 14
benchmark data sets of classification problems from UCI
database, the specifications of which are listed in Table 4.

Table 4 Specifications of classification data sets

No. Data sets Samples Attributes Classes

11 Blood Transfusion 748 4 2

12 Breast Cancer 699 10 2

13 Breast Cancer W-P 198 33 2

14 Credit Approval 690 7 2

15 E. Coli Genes 327 5 5

16 Haberman’s Survival 306 3 2

17 Heart Disease 270 13 2

18 Image Segmentation 2310 19 7

19 Libras Movement 360 90 15

20 Magic Telese (10%） 19,020 (10%) 10 2

21 Parkinsons 195 22 2

22 Page Blocks 5473 10 5

23 Sonar 208 60 2

24 Wine 178 13 3

Table 5 Comparison of training and testing correct
classification rate of ELM and CG-ELM

Data sets
ELM CG-ELM

Training Testing Training Testing

11 0.7703 0.7890 0.7946 0.7861

12 0.9674 0.9630 0.9685 0.9633

13 0.8213 0.7707 0.8208 0.7697

14 0.7670 0.7472 0.7652 0.7504

15 0.9009 0.8892 0.8712 0.8693

16 0.7793 0.7472 0.7740 0.7463

17 0.8443 0.8137 0.8487 0.8137

18 0.8828 0.8821 0.8629 0.8587

19 0.7003 0.6156 0.6948 0.6183

20 0.8217 0.8169 0.8217 0.8170

21 0.8827 0.8517 0.8818 0.8532

22 0.9400 0.9220 0.9239 0.9174

23 0.7714 0.7153 0.7709 0.7143

24 0.9911 0.9719 0.9842 0.9645

320 S-X. Zhao et al.

Just similar to regression case, in our classification
experiments, all condition attributes have been normalised into
the range [0,1]. Ten-fold-cross-validation is also used in all 14
classification data, and the average result of 100 trials is taken
as the final result. All results are shown in Table 5 and Table 6.
Evaluation standard in the classification problem also includes
training time, training accuracy, testing time and testing
accuracy. The accuracy here is the correct classification rate
(CCR). Training time ratio (TTR) of ELM and CG-ELM is
shown in boldface if it is larger than 2.0 for a case.

Table 6 Comparison of training and testing time of ELM and
CG-ELM

Data sets
ELM CG-ELM

TTR
Training Testing Training Testing

11 0.0052 0.0000 0.0022 0.0003 2.3636

12 0.0063 0.0000 0.0034 0.0004 1.8529

13 0.0098 0.0000 0.0038 0.0003 2.5789

14 0.0030 0.0004 0.0022 0.0008 1.3636

15 0.0083 0.0005 0.0030 0.0000 2.7667

16 0.0053 0.0000 0.0019 0.0006 2.7894

17 0.0055 0.0003 0.0027 0.0005 2.0370

18 0.0053 0.0028 0.0033 0.0013 1.6060

19 0.0180 0.0019 0.0050 0.0006 3.6000

20 0.0141 0.0009 0.0047 0.0003 3.0000

21 0.0236 0.0000 0.0031 0.0006 7.6129

22 0.0209 0.0000 0.0039 0.0006 5.3589

23 0.0045 0.0016 0.0028 0.0001 1.6071

24 0.0075 0.0003 0.0028 0.0000 2.6785

As observed from Table 5, in these classification problems,
ELM and CG-ELM also obtain similar generalisation
performance. Similar as in regression problem, as shown in
Table 6, CG-ELM also obtains the faster training speed than
ELM in all cases. On ten of fourteen data, CG-ELM runs more
than two times faster than ELM, and the average ratio is 2.944,
which is much better than that in regression problems and
shows more obvious advantage on training time. The training
time comparison of two algorithms is shown in Figure 3.

Figure 3 The training time comparison of ELM and CG-ELM

4.3 Benchmarking with very large
classification problems

The performance of ELM and CG-ELM are compared on 6
very large benchmark data sets of classification problems
from UCI database, the specifications are listed in Table 7.

Table 7 Specifications of large classification data sets

No. Data sets Samples Attributes Classes

25 Adult 48842 14 5

26 Artificial-2State 250000 10 2

27 Cod-rna 488565 8 23

28 KDD Cup 1999 Data 4000000 14(35%) 5

29
MiniBooNE particle
identification

130064 50 2

30 Skin-segmentation 245057 3 2

In this large scale classification experiments, we also
normalised all condition attributes into [0,1]. Considering about
the time, ten-fold-cross-validation is not used. For each case,
the data are divided into 10 parts and nine parts as training data,
one part as testing data before each trial of simulation. 10 trial
have been conducted for the two algorithms and the average
results are shown in Table 8 and Table 9.

Table 8 Comparison of training and testing correct
classification rate of ELM and CG-ELM

Data sets
ELM CG-ELM

Training Testing Training Testing

25 0.7671 0.7628 0.7774 0.7721

26 0.7186 0.7192 0.7183 0.7193

27 0.9497 0.9482 0.9421 0.9410

28 – – 0.9842 0.9512

29 0.8566 0.8569 0.8505 0.8496

30 0.8218 0.821 0.8212 0.8206

Table 9 Comparison of training and testing time of ELM and
CG-ELM

Data sets
ELM CG-ELM

TTR
Training Testing Training Testing

25 0.1716 0.0468 0.1560 0.0468 1.1000

26 0.5772 0.0780 0.1716 0.0780 3.3636

27 1.2636 0.1716 0.3276 0.1560 3.8571

28 – – 7.8000 0.6552 –

29 0.3120 0.0624 0.1404 0.0624 5.0000

30 0.0372 0.0050 0.0154 0.0022 2.4156

In Table 9, “–” indicates null, because the ELM algorithm
cannot run on this data.

As observed from Table 8, in the large scale classification
problems, ELM and CG-ELM also obtain similar
generalisation performance except on data 28, because ELM
cannot run on data 28. We did try to run ELM for this
application; however, it always ran out of memory in our
ordinary PC. On the other hand, CG-ELM not only can handle
this application, but also gets satisfactory results (training
accuracy 98.42% and testing accuracy 95.12%). This
application illustrates that the computational complexity of
ELM is too high because of the computation of SVD, even
leads to cannot running on some extreme large scale
applications.

 Analysis on fast training speed of extreme learning machine and replacement policy 321

As shown in Table 9, CG-ELM also obtains the faster
training speed than ELM in all cases. And on five of six
data, CG-ELM has more than two times faster than ELM,
and the average ratio is 3.1473 (without considering that
ELM cannot run in data 28), which is even a little much
better than that in small and medium problems and shows
more obvious advantage on training time. The training time
comparison of two algorithms is shown in Figure 4.

Figure 4 The training time comparison of ELM and CG-ELM

Considering we only replace Moore-Penrose generalised
inverse with conjugate gradient method and have faster training
time, we have reason to believe that it is the random assigning
of weights and biases leads to the fast training speed of ELM.
The above experiments also show that we can replace Moore-
Penrose generalised inverse with conjugate gradient method to
accelerate the training time. This strategy is especially suitable
on large scale data because CG-ELM has good performance on
some application that ELM cannot run.

4.4 Stability comparison of two algorithms

In this section, we will compare the stability of ELM and
CG-ELM by Monte Carlo method. Idea of this method is:
firstly create training data obey to specified distribution and
train ELM and CG-ELM networks; secondly create a lot of
simulation data, whose distribution just as the training data,
put them into ELM and CG-ELM networks and compute the
outputs; finally compute and compare the average variance
of simulation outputs. The network which has the smaller
variance has the better stability. That is because variance is
used to measure the deviation of a random variable from its
mathematical expectation. Greater variance means more
dispersed distribution and worse stability, and smaller variance
means more concentrated distribution and better stability.

This algorithm is described as follows:

Step 1: Create data sets A and 1 2 10, , ,D D D respectively as

the training data and simulation data, which subject to the same
distribution;

Step 2: Put the training data A into the two networks and get the
trained ELM network model and CG-ELM network model;

Step 3: Put the simulation data 1 2 10, , ,D D D into two

networks and compute the outputs;

Step 4: Compute the average variances of ten times simulation
outputs as the standard of stability.

The training data includes 10000 samples, input data includes 5
conditional attributes, which obey standard normal distribution,
and output data obey to uniform distribution on interval [0,1],
[0,10], [0,100], [–1,1], [–10,10] and [–100,100] respectively.
The change of the output interval is to make the variance more
obvious to observe.

The simulation data only includes input data, which are
10000 samples obey standard normal distribution. This
process is repeated 10 times, and the average variance is set
as the standard to compare the stability of two networks.
Table 10 lists the average variances of simulation outputs in
six different training output data. As observed from Table
10, variances of simulation outputs in two algorithms are
almost equal, which means that these two algorithms have
the similar stability.

Table 10 Stability comparison of ELM and CG-ELM

Training output interval
Average variance of simulation outputs

ELM CG-ELM

[0,1] 0.03017 0.03022

[0,10] 0.19394 0.19332

[0,100] 2.70117 2.70134

[–1,1] 0.03032 0.03030

[–10,10] 0.22231 0.22226

[–100,100] 2.83873 2.83737

5 Discussions and conclusion

In this paper we analysed the algorithm of ELM and pointed
out it is random assignment of input weights and bias in
hidden layer rather than the analytically computation of
output weights by Moore-Penrose generalisation inverse
leads to the fast training speed of ELM. In fact SVD, which
is used to obtain Moore-Penrose generalised inverse, takes a
lot of memory space and has high calculation complexity.
Especially for extreme large amounts of data, this method
is difficult to give a satisfactory result. Considering the
conjugate gradient method not only has simple procedure
but also can terminate in finite steps, conjugate gradient
based ELM (CG-ELM) was proposed. On the premise that
two algorithms have similar generalisation capability and
stability, the proposed CG-ELM has faster speed than ELM.
This demonstrates that it is the random weights assignment
rather than the Moore-Penrose generalised inverse that
leads to the fast training speed of ELM from some aspect.
Less memory space, faster training speed and convenient
incremental implementation make CG-ELM have great
potential for the establishment and analysis for large scale
data.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China (Project no. 71371063, 61672205,

322 S-X. Zhao et al.

61503252), The Science & Technology Bureau of Shenzhen
(JCYJ20150324140036825), the Natural Science Foundation
of Hebei Province (Project no. A2015210103), Youth
Foundation of Hebei Province Department of Education Fund
(Project no. QN2016140), and China Postdoctoral Science
Foundation (2016T90799).

References

Bartlett, P.L. (1998) ‘The sample complexity if pattern classification
with neural networks: the size of the weights is more important
than the size of the network’, IEEE Trans. Inf. Theory, Vol. 44,
No. 2, pp.525–536.

Cao, F., Wang, D., Zhu, H. and Wang, Y. (2016) ‘An iterative learning
algorithm for feedforward neural networks with random weights’,
Information Science, Vol. 1, No. 9, pp.546–557.

Dai, L. and Chen, X. (2016) ‘Design of online water quality
monitoring system and prediction based on probabilistic neural
network’, International Journal of Wireless and Mobile
Computing, Vol. 10, No. 4, pp.371–377.

Ding, S., Zhao, H., Xu, X. and Nie, R. (2015) ‘Extreme learning
machine: algorithm, theory and applications’, Artificial
Intelligence Review, Vol. 44, No. 1, pp.103–115.

Emilio, S.O., Juan, G.S., Martin, J.D. et al. (2011) ‘BELM: Bayesian
extreme learning machine’, IEEE Transactions on Neural
Networks, Vol. 22, No. 3, pp.505–509.

Grippo, L., Lampariello, F. and Lucidi, S. (1986) ‘A nonmonotone line
search technique for Newton’s method’, Siam Journal on
Numerical Analysis, Vol. 23, No. 4, pp.707–716.

Guliyev, N.J. and Ismailov, V.E. (2016) ‘A single hidden layer
feedforward network with only one neuron in the hidden layer
can approximate any univariate function’, Neural Computation,
Vol. 28, No. 7, pp.1289–1304.

Guo, Z.-L., Huang, H.-X., Yang, H.-G., Wang, S.-W. and Wang, H.
(2016) ‘An enhanced gravitational search algorithm for global
optimization’, International Journal of Wireless and Mobile
Computing, Vol. 10, No. 2, pp.183–190.

Hestenes, M.R. and Stiefel, E.L. (1952) ‘Methods of conjugate
gradients for solving linear systems’, Journal of Research
National Bureau Standards, Vol. 49, No. 6, pp.409–436.

Hu, M.L. (2008) Matrix Calculation and Application, Science
Press, Beijing.

Huang, G.-B., Zhou, H.M., Ding, X.J. and Zhang, R. (2012) ‘Extreme
learning machine for regression and multi-class classification’,
IEEE Transaction on System, Man, and Cybernetics-Part B:
Cybernetics, Vol. 42, No. 2, pp.513–529.

Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2004) ‘Extreme learning
machine: a new learning scheme of feedforward neural
networks’, Proceedings of International Joint Conference on
Neural Networks, Vol. 2, pp.985–990.

Huang, G.-B., Zhu, Q.-Y. and Siew, C.K. (2006) ‘Extreme learning
machine: theory and applications’, Neurocomputing, Vol. 70,
Nos. 1–3, pp.489–501.

Jamli, M.R., Ariffin, A.K. and Wahab, D.A. (2015) ‘Incorporating
feedforward neural network within finite element analysis for L-
bending springback prediction’, Expert Systems with
Applications. Vol. 42, No. 5, pp.2604–2614.

Kwok, T.Y. and Yeung, D.Y. (1997) ‘Constructive algorithm for
structure learning feedforward neural networks for regression
problems’, IEEE Transactions on Neural Networks, Vol. 8,
No. 3, pp.630–645.

Liang, N.Y., Huang, G.-B., Saratchandran, P. and Sundararajan, N.
(2006) ‘A fast and accurate online sequential algorithm for
feedforward networks’, IEEE Transactions on Neural Networks,
Vol. 17, No. 6, pp.1411–1423.

Liu, T., Hu, L., Ma, C. et al. (2015) ‘A fast approach for detection
of erythemato-squamous diseases based on extreme learning
machine with maximum relevance minimum redundancy
feature selection’, International Journal of Systems Science,
Vol. 46, No. 5, pp.919–931.

Marquardt, D.W. (1963) ‘An algorithm for least-squares estimation of
nonlinear parameters’, SIAM Journal on Applied Mathematics,
Vol. 11, pp.431–441.

Mason, L., Baxter, J., Bartlett, P. and Frean, M. (1999) ‘Boosting
algorithms as gradient descent’, Discrete Mathematics, Vol. 30,
No. 3, pp.303–304.

Mohammed, A.A., Minhas, R., Jonathan, Q.M. et al. (2011) ‘Human
face recognition based in multidimensional PCA and extreme
learning machine’, Pattern Recognition, Vol. 44, Nos. 10/11,
pp.2588–2597.

Qiu, J.-L., Zhang, L.-L., Fan, T.-H., Wang, Y. and Wang, H.-B. (2016)
‘Data fusion algorithm of multilayer neural network by ZigBee
Protocol architecture’, International Journal of Wireless and
Mobile Computing, Vol. 10, No. 3, pp.214–223.

Wang, J., Cai, Q., Chang, Q. and Zurada, J.M. (2016) ‘Convergence
analyses on sparse feedforward neural networks via group lasso
regularization’, Information Sciences, Vol. 381, pp.250–269.

Wang, M.-P. and Tian, Q. (2015) ‘Prediction of heating parameters
based on support vector machine’, International Journal of
Wireless and Mobile Computing, Vol. 8, No. 3, pp.294–300.

Werbos, P.J. (1994) The Roots of Backpropagation: From Ordered
Derivatives to Neural Networks and Political Forecasting,
John Wiley & Sons, New York, NY, USA.

Wu, J., Wang, S.T. and Chung, F.L. (2011) ‘Positive and negative
fuzzy rule system, extreme learning machine and image
classification’, International Journal of Machine Learning
and Cybernetics, Vol. 2, No. 4, pp.261–271.

Zhang, L. and Suganthan, P.N. (2016) ‘A survey of randomized
algorithms for training neural networks’, Information Science,
Vol. 364, pp.146–155.

Zhao, S.-X. and Wang, X.-Z. (2014) ‘Extreme learning machine for
interval-valued data’, Proceeding of 13th International
Conference on Machine Learning and Cybernetics, pp.388–399.

Zhu, Q.Y., Qin, A.K., Suganthan, P.N. et al. (2005) ‘Evolutionary
extreme learning machine’, Pattern Recognition, Vol. 38, No. 10,
pp.1759–1763.

