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Abstract—Finding customer groups from transaction data is
very important for retail and e-commerce companies. Recently,
a “Purchase Tree” data structure is proposed to compress the
customer transaction data and a local PurTree spectral clus-
tering method is proposed to cluster the customer transaction
data. However, in the PurTree distance, the node weights for the
children nodes of a parent node are set as equal and the dif-
ferences between different nodes are not distinguished. In this
paper, we propose a two-level subspace weighting spectral clus-
tering (TSW) algorithm for customer transaction data. In the
new method, a PurTree subspace metric is proposed to mea-
sure the dissimilarity between two customers represented by two
purchase trees, in which a set of level weights are introduced
to distinguish the importance of different tree levels and a set
of sparse node weights are introduced to distinguish the impor-
tance of different tree nodes in a purchase tree. TSW learns an
adaptive similarity matrix from the local distances in order to
better uncover the cluster structure buried in the customer trans-
action data. Simultaneously, it learns a set of level weights and
a set of sparse node weights in the PurTree subspace distance.
An iterative optimization algorithm is proposed to optimize the
proposed model. We also present an efficient method to compute
a regularization parameter in TSW. TSW was compared with
six clustering algorithms on ten benchmark data sets and the
experimental results show the superiority of the new method.

Index Terms—Clustering, clustering tree, customer segmenta-
tion, two level weighting.

I. INTRODUCTION

TRANSACTION data is the collection of daily shopping
transactions of customers at a retail company. As one of

the most critical tasks in modern marketing and customer rela-
tionship management, clustering of customer transaction data
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is used to partition customers into different customer groups
based on their purchase behaviors, so that the customers in the
same cluster bought more similar goods to each other than
to those in other clusters. The early segmentation methods
use general variables like customer demographics, lifestyle,
attitude, and psychology, because such variables are intuitive
and easy to operate [1]. With the rapid increase of customer
behavior data, the new study turns to use product specific
variables such as items purchased [2]–[4]. Although some
methods which cluster item set data were proposed [4]–[6],
these methods are time-consuming and are not able to han-
dle the huge amount of transaction records. On the other
side, most work employed hierarchical agglomerative cluster-
ing algorithm which are not scalable to large-scale transaction
data [4]–[7]. In the past decades, researchers have proposed
many clustering algorithms, such as spectral clustering [8],
subspace clustering [9], nonnegative low-rank matrix factor-
ization [10], spectral clustering [11], ensemble clustering [12],
etc. However, few methods have been used for clustering
transaction data.

Recently, Chen et al. [13], [14] proposed a PurTreeClust
clustering algorithm for customer segmentation from large-
scale transaction data. In this algorithm, a product tree is used
to organize the categories in the transaction data, in which
the leaf nodes denote products and the internal nodes rep-
resent product categories. A customer’s transaction records
can be compressed into a purchase tree, in which each prod-
uct (item) bought by a customer corresponds to a leaf node
in the product tree. Therefore, the set of customer transac-
tion records are compressed into a set of purchase trees, in
which each purchase tree represents a customer’s purchase
behavior. Then customer segmentation can be performed by
clustering of these purchase trees. A PurTree distance metric
was defined to compute the difference between two purchase
trees, and a PurTreeClust algorithm was proposed to cluster
purchase trees. The PurTreeClust algorithm first builds a cover
tree for indexing the purchase tree data set, then selects initial
cluster centers with a fast leveled density estimation method.
Finally, the clustering result is obtained by assigning each
customer to its nearest cluster center. However, it is difficult
to adjust level weights in the PurTree distance and there is
no optimization method for the clustering result. To conquer
the above problem, Chen et al. [15] further proposed a local
PurTree spectral clustering method, which can learn an adap-
tive similarity matrix from the local distances and the level
weights in the PurTree distance simultaneously. In the new
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method, the node weights in the PurTree distance are set as
equal for the children nodes of a parent node and a parame-
ter γ is used to control the level weights β. However, since
a product tree often consists of hundreds of thousands nodes,
it is desired to learn a set of sparse node weights such that
only a few important nodes are considered for computing the
distance. Moreover, it is difficult to set proper γ .

In the past decade, soft subspace clustering has
been an important research topic in cluster analysis.
Many subspace clustering methods have been proposed
for clustering of high-dimensional data, such as W-
k-means [16], LAC [17], EWKM [18], ESSC [19],
TW-k-means [20], FG-k-means [21], DSKmeans [22],
and TWCC [23]. Such methods assign weights to individual
variables and reduce the affection of noise features by
assigning them with low weights, thus being useful for
high-dimensional data. However, all above methods only
work for flat features but cannot work for the tree structure
features in the purchase tree data. Inspired by these work
in subspace clustering, we propose to assign a set of sparse
weights to the nodes in a purchase tree and learn these
weights such that the important nodes are assigned with
large weights while the noise nodes are assigned with small
weights that are close to zero.

In this paper, we propose a two-level subspace weight-
ing spectral clustering (TSW) algorithm to solve the above
shortcomings. A PurTree subspace metric is proposed to mea-
sure the difference between two trees, in which a set of node
weights are to be learned. The new model learns an adaptive
similarity matrix and a set of sparse node weights simul-
taneously. We present an iterative optimization algorithm to
optimize the proposed model, and an efficient method to com-
pute a proper regularization parameter. Experimental results
on ten benchmark data sets show the superior performance of
TSW.

The rest of this paper is organized as follows. Notations and
preliminaries are given in Section II. We present the PurTree
subspace distance in Section III, and the TSW algorithm in
Section V. The experimental results and analysis are presented
in Section VI. The conclusions and future work are given in
Section VII.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce the notations and preliminaries
used in this paper.

A. Notations

Let T be a rooted tree with nodes N(T) and edges E(T) ⊆
N(T) × N(T). The root of T is denoted by root(T). A node
without children is a leaf node, and otherwise an internal node.
For an edge (u, v) ∈ E(T), node u is the parent node and v is
the child node, i.e., Pv(T) = u and v ∈ Cu(T). The descen-
dants of v, the nodes in all paths reachable from v to leaf
nodes, is denoted as des(v). The level of a node is defined by
1 + (the number of edges between the node and the root node).
Nl(T) represents nodes in the lth level of T . The height of tree

T , denoted by H(T), is the number of edges on the longest
downward path between the root node and a leaf node.

B. Product Tree and Purchase Tree

Let � be a rooted tree used to systematically organize the
items with multiple levels of categories, in which each leaf
node represents an item and each internal node represents a
category. All leaf nodes in � are assumed to have equal depth
in [13]. A purchase tree ϕ is used to illustrate the items bought
by a customer, which is a subgraph of �, i.e., N(ϕ) ⊆ N(�),
E(ϕ) ⊆ E(�). Given a leaf node u ∈ N(ϕ), the path from
root(ϕ) to u also exists in �. For each purchase tree ϕ, we
have H(ϕ) = H(�).

C. PurTree Metric Distance

Given a product tree � and a set of n purchase trees � =
{ϕ1, . . . , ϕn} where ϕi ∈ �, let H(�) be the height of these
purchase trees, root(ϕ) be the empty root node of the purchase
tree. The PurTree distance is defined as follows [13].

Definition 1: Given a product tree � and n purchase trees
� = {ϕ1, . . . , ϕn} where ϕi ∈ �, the PurTree distance between
ϕi and ϕj is defined as

d
(
ϕi, ϕj

) =
H(�)∑

l=1

βl

∑

v∈Nl(ϕi)∪Nl(ϕj)

αvδv
(
ϕi, ϕj

)
(1)

where δv(ϕi, ϕj) is the Jaccard distance of ϕi and ϕj on an
internal node v, which is defined as

δv
(
ϕi, ϕj

) = 1 −
∣
∣Cv(ϕi)

⋂
Cv
(
ϕj
)∣∣

∣∣Cv(ϕi)
⋃

Cv
(
ϕj
)∣∣ (2)

and αv is the node weight for node v ∈ N(�) which is defined
as

αv =
{

1 if v = root(�)
αu|Cu(ϕi)
⋃

Cu(ϕj)| where v ∈ Cu(ϕi)
⋃

Cu
(
ϕj
) (3)

and βl is the lth level weight. {β1, . . . , βH(�)} is a geometric
sequence with common ratio γ (γ >= 0) under constraint∑H(�)

l=1 βl = 1, defined as

βl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−γ

1−γ H(�) γ
l−1 for γ > 0 and γ �= 1

1
H(�)

for γ = 1
1 for γ = 0 and l = 1
0 for γ = 0 and 1 < l ≤ H(�).

(4)

III. PURTREE SUBSPACE METRIC

In (1), the node weights α are set as equal values for the
children nodes of a parent node and a parameter γ is used to
control the level weights β. However, since a product tree often
consists of hundreds of thousands nodes, it is desired to learn
a set of sparse node weights such that only a few important
nodes are considered for computing the distance. Moreover,
it is difficult to set proper γ . To solve above problems, we
propose a new PurTree subspace distance which is defined as
follows.
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Fig. 1. Example of node weights and level weights in the PurTree subspace
distance.

Definition 2: Given a product tree � and a set of n purchase
trees � = {ϕ1, . . . , ϕn}, ϕi ∈ �, the PurTree subspace distance
between two purchase trees ϕi and ϕj is defined as

d
(
ϕi, ϕj, α,	

) =
H(�)∑

l=1

αl

∑

v∈Nl(ϕi)∪Nl(ϕj)

ωvδv
(
ϕi, ϕj

)
(5)

where δv(ϕi, ϕj) is defined in (2). α = {αl}H(�)
l=1 is the level

weights that sum to 1, in which αl is the weight for the lth
level. 	 = {ωv|v ∈ N(�)} consists of N(�) node weights,
in which ωv is the weight for node v. 	 is defined under the
following constraint:

⎧
⎨

⎩

∀v ∈ N(�), ωv ∈ [0, 1]
∑H(�)

l=1

∑
v∈Nl(�) ωv = H(�)∑

t∈Cv(�) ωt = ωv.

(6)

Fig. 1 shows an example of node weights and level weights
in the PurTree distance. The following theorem states the
properties of 	.

Theorem 1: ∀1 ≤ l ≤ H(�),
∑

v∈Nl(�) ωv = 1.
Proof: ∀1 ≤ l ≤ H(�), we can verify that

∑

v∈Nl(�)

ωv =
∑

v∈Nl(�)

∑

t∈Cv(�)

ωt =
∑

t∈Nl+1(�)

ωt.

Then we have
∑

v∈Nl(�) ωv = 1.
Theorem 2: Given two purchase trees ϕi, ϕj in �,

d(ϕi, ϕj,	) ∈ [0, 1].
Proof: Since δv(ϕi, ϕj) lies in [0, 1], we can verify that

d(ϕi, ϕj, α,	) ≥ 0 and

d
(
ϕi, ϕj, α,	

) =
H(�)∑

l=1

αl

∑

v∈Nl(�)

ωvδv
(
ϕi, ϕj

)

≤
H(�)∑

l=1

αl

∑

v∈Nl(�)

ωv =
H(�)∑

l=1

αl = 1 (7)

which completes the proof.
Theorem 3: d(ϕi, ϕj, α,	) defined in (5) is a metric.
Proof: Since the Jaccard distance is a metric, we can

verify that d(ϕi, ϕj, α,	) = d(ϕj, ϕi, α,	) (symmetry),
d(ϕi, ϕi, α,	) = 0 (reflexivity) and d(ϕi, ϕj, α,	) ≥ 0 for
all ϕi and ϕj in � (positivity).

Fig. 2. Example of cover tree.

Given three purchase trees ϕi, ϕj, and ϕt

d
(
ϕi, ϕj, α,	

)+ d
(
ϕj, ϕt,	

)

=
H(�)∑

l=1

αl

∑

v∈Nl(ϕi)∪Nl(ϕj)

ωvδv
(
ϕi, ϕj, α, ω

)

+
H(�)∑

l=1

αl

∑

v∈Nl(ϕj)∪Nl(ϕt)

ωvδv
(
ϕj, ϕt, α, ω

)

=
H(�)∑

l=1

αl

∑

v∈Nl(ϕi)∪Nl(ϕj)

ωv
[
δv
(
ϕi, ϕj

)+ δv
(
ϕj, ϕt

)]

≥
H(�)∑

l=1

αl

∑

v∈Nl(ϕi)∪Nl(ϕt)

ωvδv(ϕi, ϕt)

= d(ϕi, ϕt, α,	) (8)

which indicates that the new distance satisfies triangle inequal-
ity. Therefore, it is a metric.

IV. FAST k-NEAREST NEIGHBOR

SEARCH WITH COVER TREE

Cover tree is a leveled tree data structure for fast nearest
neighbor operations in metric space [24]. Let CT be a cover
tree on a data set D, as shown in Fig. 2. Each level in CT is
indexed by an integer scale l which increases from bottom to
top. Denote the set of objects in D associated with the nodes
at level l as CSl. Here, each object in D appears at most once
in each level, but may be associated with multiple nodes in
the tree. CT obeys the following invariants for all levels.

1) Nesting: CSl ∈ CSl−1. If an object p ∈ D appears in CSl,
then p is associated with a node in each lower level.

2) Covering: For each object p ∈ CSl−1, there exists a
q ∈ CSl such that d(p, q) < 2l and the node in level l
associated with q is a parent of the node in level l − 1
associated with p.

3) Separation: For two different objects r, q ∈ CSl,
d(r, q) > 2l, where d is a metric defined on D. Let
c be the expansion constant of S, which is a measure of
the intrinsic dimensionality (as defined in [25]).

CT has the following properties.
1) The number of children of any node p is bounded by c4.
2) The maximum depth of any point p is O(c2 log(n)).
To find the k-nearest neighbors of a point p from a cover tree

CT , we descend through the tree from the top level to bottom
level, keeping track of a subset Qi ∈ CSi of nodes that may
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Algorithm 1 Find-kNN (Cover Tree CT , Object p, Number
of Nearest Neighbors k, and Base Parameter α)

1: Input: the nearest neighbors of p in CT .
2: Set Q∞ = C∞, where C∞ is the root level of CT .
3: Set R = C∞
4: for i = ∞ to -∞ do
5: Set Q′ = {Cq : q ∈ Qi}.
6: Set Q = Q′ ∪ R.
7: if |Q| ≥ k then
8: Form R with k nearest objects in Q, i.e., |R| =

max k, |Q| and ∀q ∈ R and q′ ∈ Q − R, d(p, q) ≤ d(p, q′).
9: β = maxq∈R d(p, q).

10: Form cover set Qi−1 = {q ∈ Q′:d(p, q) ≤ β + 2i}.
11: else
12: Form cover set Qi−1 = {q ∈ Q′}.
13: end if
14: end for
15: If |Q| > k, update Q by only retaining the k-nearest

neighbor of p. Return Q as the ultimate result.

contain the k-nearest neighbors of p as descendants. The algo-
rithm for finding the k-nearest neighbors of an object p from
a cover tree CT is shown in Algorithm 1, which iteratively
constructs Qi−1 by expanding Qi to its children in CSi−1 and
throwing away any child q that cannot lead to the k-nearest
neighborhoods of p. Although the algorithm is stated using
an infinite levels, it only needs to operate at most the height
levels of CT .

Fig. 3 shows an example of 4-nearest neighbors search, in
which nodes in light color represent the candidate k-nearest
neighbors. Here, Qi, Q, R, and β are variables in Algorithm 1.

The following theorem ensures the correctness of
Algorithm 1.

Theorem 4: Given a cover tree CT built on D, Find −
kNN(CT, p, k, α) returns the exact k-nearest neighbors of p
in D.

Proof: For any q ∈ CSi−1, the distance between q and any
descendant q′ is bounded by d(q, q′) ≤ ∑−∞

j=i−1 2j = 2i. If q
is a k-nearest neighbor of p, we have d(p, q) ≤ β. Since d is
a metric, according to the triangularity, d(p, q′) ≤ d(p, q) +
d(q, q′) ≤ 2i + β. So Qi−1 in step 10 can never throw out
a grandparent of the k-nearest neighbor of q. Eventually, k-
nearest neighbors are in Qi and step 15 returns the exact k-
nearest neighbors of p.

V. TWO-LEVEL SUBSPACE WEIGHTING

SPECTRAL CLUSTERING

To segment customers according to the customer transaction
records, we first represent each customer as a purchase tree.
Then customer segmentation can be performed by clustering of
these purchase trees. Assume that we have obtained a product
tree � and n purchase trees � = {ϕ1, . . . , ϕn} in which ϕi is
associated with the ith customer, we want to cluster � into c
clusters, from which the customer segmentation result can be

Fig. 3. Process of finding 4-nearest neighbors in the cover tree from top to
bottom by Algorithm 1. Variables in searching the (a) level 1, (b) level 0, and
(c) level −1.

obtained. Inspired by the work in [26], we learn a new graph
represented by affinity matrix P = [pij]n×n, in which pij is the
probability that two trees ϕi and ϕj are connected. In order
to find c clusters from �, we hope that the graph constructed
from P only consists of c connected components. To achieve
this goal, we present the following problem to simultaneously
learn the node weights ω, level weights α, and the connection
probability matrix P

min
P,	

n∑

i,j=1

⎡

⎣
H(�)∑

l=1

αl

∑

v∈Nl(�)

ωvdv
ijpij + λp2

ij

⎤

⎦+ θ

H(�)∑

l=1

α2
l

+ η

H(�)∑

l=1

∑

v∈Nl(�)

ω2
v (9)
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subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i, pT
i 1 = 1, pij ∈ [0, 1]

αT1 = 1, αl ∈ [0, 1]
∑H(�)

l=1

∑
v∈Nl(�) ωv = H(�), ωv ∈ [0, 1]∑

t∈Cv(�) ωt = ωv

rank(LP) = n − c
(10)

where dv
ij is the abbreviation of δv(ϕi, ϕj) which is computed

according to (2), LP = DP − [(PT + P)/2] is the Laplacian
matrix, the degree matrix DP ∈ R

n×n is defined as a diagonal
matrix in which dij = ∑n

j=1 [(pij + pji)/2], λ and η are two
regularization parameters.

The first term in (9) is the pairwise product of the PurTree
subspace distance and connection probability, in which a
smaller distance d(ϕi, ϕj,	) is assigned with a larger proba-
bility pij. The second and third terms are regularization terms
of P and 	, where λ and η are two regularization parame-
ters. The rank constraint rank(LP) = n − c is imposed to LP,
such that the sparse graph constructed from P only consists
of c connected components [27], [28]. The final clustering
results can be obtained by assigning the objects in the same
connected component in the graph constructed from P to the
same cluster.

On the other hand, the constraint rank(LP) = n − c is
equivalent to the following problem [26]:

min
F∈Rn×c,FT F=I

2μTr
(
FTLPF

)
(11)

where μ is a large enough parameter.
Then we reform problem (9) as the following problem:

min
n∑

i,j=1

⎡

⎣
H(�)∑

l=1

αl

∑

v∈Nl(�)

ωvdv
ijpij + λp2

ij

⎤

⎦+ θ

H(�)∑

l=1

α2
l

+ η

H(�)∑

l=1

∑

v∈Nl(�)

ω2
v + 2μTr

(
FTLPF

)
(12)

subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i, pT
i 1 = 1, pij ∈ [0, 1]

αT1 = 1, αl ∈ [0, 1]
∑H(�)

l=1

∑
v∈Nl(�) ωv = H(�), ωv ∈ [0, 1]∑

t∈Cv(�) ωt = ωv

FTF = I, F ∈ R
n×c.

(13)

We can apply the alternative optimization approach to solve
problem (12). In the following, we show how to update each
of four variables.

A. Update F With P, α, and 	 Fixed

When P, α, and 	 are fixed, problem (12) becomes

min
F∈Rn×c,FT F=I

Tr
(
FTLPF

)
. (14)

The optimal solution F in problem (14) is formed by c
eigenvectors of LP which corresponds to its c smallest eigen-
values [26].

B. Update P With F, α, and 	 Fixed

When F, α, and 	 are fixed, problem (12) becomes

min
n∑

i,j=1

H(�)∑

l=1

∑

v∈Nl(�)

ωvdv
ijpij + λ

n∑

i

∑

j∈Mi

p2
ij

+ 2μTr
(
FTLPF

)

s.t. P,∀i,
∑

j∈Mi

pij = 1, pij ∈ [0, 1]. (15)

It can be verified that

2Tr
(
FTLPF

) =
n∑

i=1

∑

j∈Mi

pij
∥∥fi − fj

∥∥2
2

where fi ∈ R
c×1 is the transpose of the ith row of F. Then

problem (12) can be rewritten as

min
P

n∑

i,j=1

⎡

⎣

⎛

⎝
H(�)∑

l=1

αl

∑

v∈Nl(�)

ωvdv
ij + μ‖fi − fj‖2

2

⎞

⎠pij + λp2
ij

⎤

⎦

s.t. ∀i,
∑

j∈Mi

pij = 1, pij ∈ [0, 1]. (16)

Since problem (16) is independent between different
pi, we can solve it individually for each pi (the vector
form of [pi1, . . . , pin]). Denote df

ij = ‖fi − fj‖2
2, d�

ij =
∑H(�)

l=1 αl
∑

v∈Nl(�) ωvdv
ij, and di ∈ R

n×1 as a vector with the

jth element as dij = d�
ij + μdf

ij.
The Lagrangian function of problem (16) for pi is

L(pi, χ, τ ) = λ
∑

j∈Mi

p2
ij +

∑

j∈Mi

dijpij

+ χ

⎛

⎝
∑

j∈Mi

pij − 1

⎞

⎠− pT
i τ (17)

where χ and positive vector τ are Lagrangian multipliers.
It can be verified that the optima p∗

ij is

p∗
ij =

(
− 1

2λ

[
dij + χ∗]

)

+
(18)

where a+ = max(a, 0). So we can obtain the optimal solution
of p∗

ij if we know χ∗. Since
∑

j∈Mi
p∗

ij = 1, we can obtain χ∗
by solving the following root finding problem:

f
(
χ∗) =

∑

j∈Mi

(
− 1

2λ

[
dij + χ∗]

)

+
− 1 = 0. (19)

Note that χ∗ ≥ 0, f ′(χ∗) ≤ 0 and f ′(χ∗) is a piecewise
linear and convex function, we can use the Newton method to
find the root of f (χ∗) = 0.

C. Update α With P, F, and 	 Fixed

When P, F, and 	 are fixed, problem (12) becomes

min
H(�)∑

l=1

n∑

i,j=1

∑

v∈Nl(�)

ωvdv
ijpijαl + θ

H(�)∑

l=1

α2
l

s.t. αT1 = 1, αl ∈ [0, 1]. (20)
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Let El =∑n
i,j=1

∑
v∈Nl(�) ωvdv

ijpij. The Lagrangian function
of problem (20) for α is

L(α, χ, τ ) =
H(�)∑

l=1

Elαl + θ

H(�)∑

l=1

α2
l + κ

⎛

⎝
H(�)∑

l=1

αl − 1

⎞

⎠− αTτ

(21)

where κ and positive vector τ are Lagrangian multipliers.
According to the KKT condition [29], we have

⎧
⎪⎪⎨

⎪⎪⎩

∂L(ωv|v∈Nl(�)
)

∂αl
= El + 2θTα + κ = 0

∂L(ωv|v∈Nl(�)
)

∂χ
=∑H(�)

l=1 αl − 1 = 0
∀v ∈ Ct, τv = 0.

(22)

It can be verified that the optima αl can be obtained by
solving the following problem:

{
αl =

(
− 1

2θ

[∑n
i,j=1

∑
v∈Nl(�) ωvdv

ijpij + κ
])

+∑H(�)
l=1 αl = 1.

(23)

It can be verified that the optima α∗
l is

α∗
l =

⎛

⎝− 1

2θ

⎡

⎣
n∑

i,j=1

∑

v∈Nl(�)

ωvdv
ijpij + κ∗

⎤

⎦

⎞

⎠

+
(24)

where a+ = max(a, 0). So we can obtain the optimal solution
of α∗

l if we know κ∗. Since
∑H(�)

l=1 α∗
l = 1, we can obtain κ∗

by solving the following root finding problem:

f
(
κ∗) =

H(�)∑

l=1

⎛

⎝− 1

2θ

⎡

⎣
n∑

i,j=1

∑

v∈Nl(�)

ωvdv
ijpij + κ∗

⎤

⎦

⎞

⎠

+
− 1 = 0.

(25)

Note that κ∗ ≥ 0, f ′(κ∗) ≤ 0 and f ′(κ∗) is a piecewise
linear and convex function, we can use the Newton method to
find the root of f (κ∗) = 0.

D. Update 	 With P, F, and α Fixed

When P, F, and α are fixed, problem (12) becomes

min
n∑

i,j=1

H(�)∑

l=1

αl

∑

v∈Nl(�)

ωvdv
ijpij

+ η

H(�)∑

l=1

αl

∑

t∈Nl(�)

∑

v∈Ct

ω2
v (26)

subject to

{∑H(�)
l=1

∑
v∈Nl(�) ωv = H(�), ωv ∈ [0, 1]∑

t∈Cv(�) ωt = ωv.

(27)

According to Theorem 1, the sum of node weights in
each level is a constant value 1. Therefore, we can sequently
optimize the node weights level by level. We first let
ωRoot = 1. Given an internal node t ∈ Nl(�), we fix ωt and
solve the following problem for {ωv|v ∈ Ct}:

min∑
v∈Ct ωv=ωt

n∑

i,j=1

∑

v∈Ct

ωvdv
ijpij + η

∑

v∈Ct

ω2
v . (28)

The Lagrangian function of problem (28) is

L(ωv|v ∈ Ct) =
∑

v∈Ct

ωv

n∑

i,j=1

dv
ijpij + η

∑

v∈Ct

ω2
v

+ ζt

⎛

⎝
∑

v∈Ct

ωv − ωt

⎞

⎠−
∑

v∈Ct

τvωv (29)

where t = Pv, ζt ≥ 0 and {τv ≥ 0|v ∈ Ct} are multipliers.
It can be verified that the optima ω∗

v is

ω∗
v =

⎛

⎝− 1

2η

⎡

⎣
n∑

i,j=1

dv
ijpij + ζ ∗

t

⎤

⎦

⎞

⎠

+
(30)

where t is the children of v and a+ = max(a, 0). So we
can obtain the optimal solution of ω∗

v if we know ζ ∗
t . Since∑

v∈Ct
ωv = ωt, we can obtain ω∗

v by solving the following
root finding problem:

f (ζ ∗) =
∑

v∈Ct

⎛

⎝− 1

2η

⎡

⎣
n∑

i,j=1

dv
ijpij + ζ ∗

t

⎤

⎦

⎞

⎠

+
− ωt = 0. (31)

Note that ζ ∗ ≥ 0, f ′(ζ ∗) ≤ 0 and f ′(ζ ∗) is a piecewise
linear and convex function, we can use the Newton method to
find the root of f (ζ ∗) = 0.

E. Determination of λ

Since a transaction data set often consists of a large number
of users, it is useful to explore the local connectivity during the
clustering process. Assuming that P is a sparse graph in which
each pi contains at most k positive values for its k-nearest
neighbors. However, it is impossible to select the real k-nearest
neighbors at the start because 	 is unknown. To simplify the
computation, we select approximate k-nearest neighbors at the
start, where the node weights ωv ∈ 	 are defined as

ωv =
{

1
H(�)

if v = Root(�)
ωt|Ct| if v ∈ Ct.

(32)

Then we from a partially ordered set {de
ij|1 ≤ j ≤ n, j �= i},

in which de
ij is the jth small value. The k-nearest neighbors

Mi for ϕi can be formed by selecting k smallest values in
{de

ij|1 ≤ j ≤ n, j �= i}. According to (24), we know that pij is
negatively proportional to dij. If we wish pi contains at most k
positive values, we can set a proper λ such that only k-nearest
neighbors Mi for ϕi are with positive pij. According to (24),
we know that

{
− dik+χ

2λi
> 0

− di,k+1+χ

2λi
≤ 0

(33)

where dik is the kth smallest distance to ϕi.
According to the constraint

∑
j∈Mi

pij = 1, we have

χ = −2λi

k
− 1

k

∑

j∈Mi

dij. (34)
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So we have the following inequality for λi according
to (33) and (34):

k

2
dik − 1

2

∑

j∈Mi

dij < λi ≤ k

2
di,k+1 − 1

2

∑

j∈Mi

dij. (35)

In problem (9), we wish pi contains exactly k positive val-
ues. Therefore, λ can be set as its upper bound. However, it
is impossible to compute the exact upper bound λi since the
node weights ω change in each iteration. We turn to compute
an approximate upper bound of λ with equal level weights of
ω, and set λi as the approximate upper bound

λi = k

2
de

i,k+1 − 1

2

∑

j∈Mi

de
ij (36)

where de
ij is the PurTree subspace distance computed with 	

defined in (32).
The overall λ can be set to the mean of {λ1, . . . , λn}

λ = 1

2n

n∑

i=1

⎛

⎝kde
i,k+1 −

∑

j∈Mi

de
ij

⎞

⎠. (37)

According to (24), the optimal solution of pij for k-nearest
neighbors is

pij =
(

− 1

2λ

[
dij + χ

])

+
(38)

where χ can be computed from
∑

j∈Mi
pij = 1 and all df

ij are
set as 0.

F. Optimization Algorithm

The detailed algorithm to solve the problem (12), named
TSW, is summarized in Algorithm 2.1 Given a set of n pur-
chase trees � = {ϕ1, . . . , ϕn}, we want to cluster � into
c clusters. F, 	 and P in (12) are iteratively solved until
problem (12) converges. The final clustering result can be
obtained from the connected components in the graph con-
structed from P. If the algorithm needs r iterations to converge,
the complexity of the TSW algorithm is O(rkn2).

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we report the experimental results on ten
real-life transaction data sets and investigate the effectiveness
and scalability of TSW.

A. Benchmark Data and Evaluation Methods

Ten real-life transaction data sets were used to investigate
the effectiveness and scalability of the proposed algorithm. D1
was built from a superstore’s transactional data set,2 which
consists of 8399 transaction records from 796 customers.
D2–D6 were built from five subsets of a super market’s transac-
tional data, which contains up to 25 million newest transaction
records. D7–D10 were built from four subsets of a year of pur-
chase history transaction data from the kaggle competition,3

1In practice, μ can be set according to the method used in [26].
2https://community.tableau.com/docs/DOC-1236
3http://www.kaggle.com/c/acquire-valued-shoppers-challenge/data

TABLE I
CHARACTERISTICS OF TEN CUSTOMER TRANSACTION DATA SETS

Algorithm 2 TSW Algorithm to Solve Problem (12)
1: Input: A set of n purchase trees � = {ϕ1, . . . , ϕn}, two

regularization parameters θ and η, the number of nearest
neighbors k, and the number of clusters c.

2: Initialize 	 according to Eq. (32) and find k nearest neigh-
bors Mi for each ϕi with Algorithm 1, in which the
node weights in the PurTree subspace distance defined
in Eq. (32).

3: Initialize λ according to Eq. (37).
4: Initialize P according to Eq. (38), in which df

ij is set as 0.
5: repeat
6: Update F by selecting c eigenvector of LP = DP −

PT+P
2 which corresponds to its c smallest eigenvalues.

7: Update α according to Eq. (23).
8: for l = 2 to H(�) do
9: for ∀ v ∈ Nl(�) do

10: Update ω according to Eq. (30).
11: end for
12: end for
13: Update P according to Eq. (38).
14: until (converges)
15: Output: Find the connected components in the graph

constructed from P, and assign the objects in the same
connected component to the same cluster.

which contains more than 349 million transaction records. All
data sets were converted to purchase tree data sets with the
code in https://github.com/xjchensz/PTREE. The characteris-
tics of ten data sets are shown in Table I, in which D2–D6
contain five levels and other five data sets contain four levels.

Since the ten data sets in Table I contain no labels,
we use internal validation method to evaluate the clustering
results. Given c clusters C, the commonly used internal valida-
tion method log(Wk) = log{∑c

l=1(1/[2|Cl|])∑i,j∈Cl
d(ϕi, ϕj)}.

However, log(Wk) is affected by c and the weights in both
PurTree distance and PurTree subspace distance. We may get
different log(Wk) even for the same clustering result, with dif-
ferent node weights ω. So we normalize log(Wk) with the sum
of all distances. In this paper, we use the normalized log(Wk)
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TABLE II
PERFORMANCE COMPARISON OF NLW (Mean ± Standard Deviation) BY SEVEN CLUSTERING ALGORITHMS ON TEN BENCHMARK DATA SETS

(THE BEST RESULT ON EACH DATA SET IS HIGHLIGHTED IN BOLD)

for evaluating a clustering result, which is computed as [15]

NLW(C) = log

⎧
⎨

⎩

c∑

l=1

1

2|Cl|
∑

i,j∈Cl

d
(
ϕi, ϕj

)
⎫
⎬

⎭

− log

⎛

⎝
n∑

i,j=1

d
(
ϕi, ϕj

)
⎞

⎠ (39)

where C consists of c clusters. The lower the NLW(C), the
better the clustering result.

B. Results and Analysis

We used all ten data sets to compare the effectiveness
of the TSW algorithm with six clustering algorithms, i.e.,
DBSCAN, HAC, Ncut [30], RCut [31], PurTreeClust [13],
and LPS [15]. In this experiment, we selected five inte-
gers {10, 20, 30, 40, 50} for c. The similarity matrices for
DBSCAN, HAC, Ncut, RCut, and PurTreeClust were com-
puted as 1 minus the PurTree distance matrices, in which
γ was set as the same values used in [13], i.e., γ =
{0, 0.2, 0.8, 1, 2, 1000}. Twenty integers from 5 to 100
were used for k in DBSCAN, PurTreeClust, LPS and
TSW. The other parameters of all methods were set in
the same strategy to make the experiments fair enough,
i.e., {10−3, 10−2, 10−1, 100, 101, 102, 103}. For DBSCAN, we
also set eps as 95 values from 0.25 to 0.5 and minPts as
95 values from 1% to 10% of the number of objects. For
each clustering algorithm, we computed the average NLW
from the clustering results. The results are shown in Table II,
in which the mean and standard deviation of NLW are
reported. From these results, we can see that TSW produced
the highest NLW on eight data sets. For example, on D7–D10
which consists of more than 80 thousands of products, TSW
achieves a greater than 7% average improvement compared
with the second-best method LPS. On D1, TSW even achieves
a nearly 26% average improvement compared with the second-
best method PurTreeClust. Besides TSW, LPS produced better
results than the other methods.

We select a clustering result of TSW with 20 clusters on
D4 to check whether the uncovered clusters are meaning-
ful. We first compute the average sparsity of the purchase
trees in 20 clusters, where the sparsity of the lth level in ϕi

Fig. 4. Average sparsity of purchase trees in each of 20 clusters uncovered
by TSW on D4.

(a) (b)

(c)

Fig. 5. NLW versus (a) θ , (b) η, and (c) k on D4.

with respect to the product tree � is defined as S l
�(ϕi) =

[(|Nl(ϕi)|)/(|Nl(�)|)] [14]. Then the results are drawn in
Fig. 4. From this figure, we can observe that the average spar-
sity of the 20 clusters are very different which indicates that
the 20 clusters consist of different Purchase tree structures.
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(a) (b) (c)

Fig. 6. Level weights versus (a) θ , (b) η, and (c) k on D4.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Node weights 	 versus θ on D4. (a) {ωv|v ∈ N2(�)} versus θ . (b) {ωv|v ∈ N3(�)} versus θ . (c) {ωv|v ∈ N4(�)} versus θ . (d) Percentages of
positive {ωv|v ∈ N2(�)} versus θ . (e) Percentages of positive {ωv|v ∈ N3(�)} versus θ . (f) Percentages of positive {ωv|v ∈ N4(�)} versus θ .

To investigate the buying habits in difference clusters, we
merge all purchase trees in a cluster into a purchase tree
and study their differences. Experimental results show that
some customer group prefer buying sport equipments, some
customer group prefer buying domestic appliances, and some
customer group prefer buying different kind of foods.

To study the important products in distinguishing the cluster
structure, we select the important products from a cluster-
ing result according to the learned node weights by setting a
proper threshold σ to form the important node set {v|ωv ≥ σ }.
Table III shows some samples of the most important products
selected from the clustering results of TSW on D4 according
the average node weights.

C. Parameter Sensitivity Study

We select D4 to analyze the change of NLW with three
parameters θ , η, and k. The relationships between the average
NLW and three parameters are shown in Fig. 5. From
these figures, we can see that the average NLW are mainly
affected by θ , and it is nearly stable with the change of
k. NLW decrease with the decrease of θ . In such case,
important levels will be assigned to bigger level weights.
NLW also decreases as η decrease. According to (30), we
know that more nodes will be assigned to positive node
weights as η increases. This indicates that the learned level
weights and sparse node weights indeed improve the clustering
performance. We also observe that θ has greater influence in
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Node weights 	 versus η on D4. (a) {ωv|v ∈ N2(�)} versus η. (b) {ωv|v ∈ N3(�)} versus η. (c) {ωv|v ∈ N4(�)} versus η. (d) Percentages of
positive {ωv|v ∈ N2(�)} versus η. (e) Percentages of positive {ωv|v ∈ N3(�)} versus η. (f) Percentages of positive {ωv|v ∈ N4(�)} versus η.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Node weights 	 versus k on D4. (a) {ωv|v ∈ N2(�)} versus k. (b) {ωv|v ∈ N3(�)} versus k. (c) {ωv|v ∈ N4(�)} versus k. (d) Percentages of positive
{ωv|v ∈ N2(�)} versus k. (e) Percentages of positive {ωv|v ∈ N3(�)} versus k. (f) Percentages of positive {ωv|v ∈ N4(�)} versus k.

NLW than η. In real-applications, we can perform hierarchy
grid search to choose the proper θ , η, and k for better
result.

D. Weights Analysis

The relationships between the average level weights and
three parameters θ , η, and k on D4 are shown in Fig. 6. From
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TABLE III
SAMPLES OF MOST IMPORTANT PRODUCTS SELECTED FROM THE

CLUSTERING RESULTS OF TSW ON D4, WHERE σ IS A THRESHOLD

these figures, we can see that the average NLW are mainly
affected by θ , and it is nearly stable with the change of both
η and k. As θ increases, the level weights become flatter.

The relationships between the node weights 	 and three
parameters θ , η, and k are shown in Figs. 7–9. From these
figures, we can observe that the node weights 	 are mainly
affected by η and it is nearly stable with the change of θ and
k. The ratio of positive values in 	 increases with the increase
of η, which can be verified according to (30). We also observe
that the node weight distributions in different levels are highly
correlated. Specifically, the average weight decreases with the
increase of the tree level. This can be verified according to
Theorem 1 which indicates that the sum of node weights in dif-
ferent levels are equal, and the fact that the high level contains
more nodes than low level. With the increase of the tree level,
the number of positive weights decreases rapidly. In real-world
applications, we can adjust the distribution of 	 by η.

VII. CONCLUSION

In this paper, we have presented a TSW algorithm for
customer transaction data. In the new method, a customer’s
transaction records are compressed into a “Purchase Tree,”
and a PurTree subspace distance is proposed to measure the
dissimilarity between two customers represented by two pur-
chase trees. A set of tree level weights and a set of sparse tree
node weights are introduced into the PurTree subspace dis-
tance and to be learned. An iterative optimization algorithm
TSW is proposed to optimize the new clustering model, in
which a local similarity matrix and the two types of weights
are simultaneously learned. Experimental results on ten real-
life data sets have demonstrated the superior performance of
the new method.

However, TSW has a high computational complexity of
O(rkn2), where n is the number of purchase trees, k is the num-
ber of neighbors, and r is the number of iterations. In future
work, we will improve this method for larger scale transac-
tion data. Moreover, we will include additional information
into the tree nodes, e.g., cost, quantity, etc., to form attributed
PurTree. In such case, we will study new distance and new
clustering method for the attributed PurTree data.
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