
UN
CO

RR
EC

TE
D

PR
OO

F

Knowledge-Based Systems xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Knowledge-Based Systems
journal homepage: www.elsevier.com

Group theory-based optimization algorithm for solving knapsack problems☆

Yichao Hea, Xizhao Wang⁎, b

a College of Information and Engineering, Hebei GEO University, Shijiazhuang 050031, China
b College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

A R T I C L E I N F O

Keywords:
Evolutionary algorithms
Combinatorial optimization
Additive group
Direct product
Knapsack problems

A B S T R A C T

This paper proposes a group theory-based optimization algorithm (GTOA) for knapsack problems, which draws
algebraic group operations into the evolution process. The key parts of GTOA are that the feasible solution of the
knapsack problem is considered as an element of the direct product of groups and that the evolution process is
implemented by multiplication and inverse operations of the direct product of groups. Based on the algorithms
for handling infeasible solutions, GTOA is used to solve knapsack problems such as the Set-union knapsack prob-
lem, the Discounted {0-1} knapsack problem, and the Bounded knapsack problem. GTOA is validated to be an
efficient algorithm for solving knapsack problems. A comparison between GTOA and existing evolutionary al-
gorithms such as genetic algorithm, binary particle swarm optimization, binary artificial bee colony, and their
improved variations is conducted and the comparative results show that GTOA has a better performance than
other algorithms. In addition, GTOA is not only an efficient algorithm for solving knapsack problems but is also
the first paradigm that applies group theory to directly design an evolutionary algorithm.

1. Introduction

Knapsack problems (KPs) [1,2] are classical NP-complete problems
and important combinatorial optimization problems as well. Modeling
and solving KPs has great theoretical significance and practical value
in many fields such as resource allocations, capital budgets, invest-
ment decisions, industrial loading, economy and finance, and informa-
tion security [3,4]. The classic knapsack problem is the 0–1 knapsack
problem (0-1KP), and there exist many extensions of 0-1KP such as
the bounded knapsack problem (BKP),the unbounded knapsack prob-
lem (UKP), the multidimensional knapsack problem (MDKP), the mul-
tiple knapsack problem (MKP), the quadratic knapsack problem (QKP),
the set-union knapsack problem (SUKP), the discounted {0-1} knapsack
problem (D{0-1}KP), the randomized time-varying knapsack problem
(RTVKP), the quadratic multiple knapsack problem (QMKP), and the
multiple-choice multidimensional knapsack problem (MMKP) [3,5–10].

Though there are many members of the KPs-family, they can be divided
into three categories according to their representation of feasible solu-
tions.

The feasible solution of the first category of KPs can be represented
as an n-dimensional 0–1 vector Y = (y1,y2,⋯,yn)∈{0,1}n, where n is
the number of items in KPs. Obviously, 0-1KP, MDKP, QKP, D{0-1}KP,
SUKP, and RTVKP all belong to the first category of KPs. The second
category of KPs use an n-dimensional integer vector Y = (y1,y2,⋯,yn)
∈{0,1,⋯,m}n to represent a feasible solution, where n is the number of
items in KPs, m is an integer and m≥2. MKP, QMKP, and D{0-1}KP
all belong to the second category of KPs. Note that D{0-1}KP belongs
to the first and second category of KPs simultaneously. The feasible
solution of third category of KPs is an n-dimensional integer vector
Y = (y1,y2,⋯,yn)∈{0,1,⋯,m1}×{0,1,⋯,m2}×⋯×{0,1,⋯,mn}, where n
is the number of items in KPs, and m1,m2,⋯,mn are n

☆ Fully documented templates are available in the elsarticle package on CTAN.
⁎ Corresponding author.

Email addresses: heyichao@hgu.edu.cn (Y. He); xizhaowang@ieee.org, xzwang@szu.edu.cn (X. Wang)

https://doi.org/10.1016/j.knosys.2018.07.045
Received 3 February 2018; Received in revised form 27 July 2018; Accepted 31 July 2018
Available online xxx
0950-7051/ © 2018.

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Algorithm 1. IRMO.

Algorithm 2. SMO.

Algorithm 3. GTOA.

Algorithm 4. GTOA for SUKP.

positive integers in which at least two values are not equal. BKP, UKP,
and MMKP all belong to the third category of KPs.

For solving KPs, there are many algorithms which can be mainly
divided into two categories. One category consists of deterministic al-
gorithms including dynamic programming, backtracking, and branch
and bound [11,12]. The other category is non-deterministic algorithms
which contains randomized algorithms, approximation algorithms, bio-
logical algorithms, and evolutionary algorithms [2,13–15]. Since there
do not exist polynomial time deterministic algorithms to solve

KPs, non-deterministic algorithms are more suited to quickly and ap-
proximately solve the KPs in practical applications.

Evolutionary algorithms (EAs) [15,16] have been well recognized as
algorithms with swarm intelligence, which are essentially stochastic ap-
proximations. Their main advantage is that they do not need to calculate
the derivatives and gradients of the objective function, do not require
the objective function to be continuous, and do have the inherent im-
plicit parallelism and the strong ability to search for global optimization
as well. The most classic EAs include the genetic algorithm (GA) [17],

2

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Algorithm 5. D-GROA.

particle swarm optimization (PSO) [18], differential evolution (DE)
[19], harmony search algorithm (HS) [20], artificial fish swarm (AFS)
[21], ant colony optimization (ACO) [22], and artificial bee colony
(ABC) [23]. In recent years, EAs have had many successful applications
in solving optimization problems, such as numerical optimization prob-
lems [24,25], knapsack problems [26], satisfiability problems [27], and
set cover problems [28], which attract the great attention of scholars in
many fields. Currently, by simulating behaviors of biological colonies in
nature or learning from some phenomena of social activities, researchers
have put forward many new EAs consecutively, such as the firefly al-
gorithm (FFA) [29], the sine cosine algorithm (SCA) [30], the symbi-
otic organisms search (SOS) [31], the grey wolf optimizer (GWO) [32],
and teaching-learning-based optimization (TLBO) [33]. Although nature
provides us with endless inspiration, it is not perfect to design EAs solely
based on bionic thought. In addition, the performance of many newly
proposed EAs is not better than the classic ones, which accords with the
No Free Lunch Theorem [34]. It is well known that, except for GA and
ACO, almost existing EAs were initially put forward to solve numeri-
cal optimization problems and they generally could not be applied to
directly solve combinatorial optimization problems. The methods pro-
posed in the literature [35–37] that modify the evolution operator to fit
to solve problems and in the literature [38,39] that map a real vector to
a potential solution of problem are suitable only for the first category of
KPs, not for the second and third ones.

Recently, the literatures [40,41] has used permutation group to im-
prove the existing evolutionary algorithms, which are given an abstract
algebraic differential mutation of DE and a vector operations of PSO, re-
spectively, and used them to provide approaches to solving permutation
problems. In fact, group theory not only can be used to improve the ex-
isting evolutionary algorithms, but also can be used to directly design a

new evolutionary algorithm. In this paper, we will take the knapsack
problems as an example to illustrate how to design a new evolutionary
algorithm by using the direct product of groups which is generated by
the additive group of Z/nZ, the integers modulo n, where Z is the inte-
ger set. From the point of view of algebra, we can see that no matter
which category the KPs belong to, each dimensional component of its
feasible solutions can be considered as an element in the additive group
of Z/nZ which can be simplified as Zn = {0,1,⋯,n − 1}, where n is a
positive integer and n≥2. Based on the abovementioned observation, an
algebraic methodology for designing EAs is presented, and a Group The-
ory-based Optimization Algorithm (GTOA) is proposed by applying the
direct product of groups. GTOA has a universal property and is suitable
for solving KPs. The computations of SUKP, D{0-1}KP, and BKP illus-
trate that GTOA is not only easy to implement but also highly efficient.
Moreover, GTOA is also a successful example of algorithm design based
on group theory.

2. The proposed group theory-based optimization algorithm

2.1. Group and direct product of groups

The following is a brief introduction to the basic concepts and termi-
nologies of the group and direct product of groups. More details can be
found from literatures [42,43].

Let G be a nonempty set, and let * be a binary operation on G, if
(1) ∀a, b∈G, a*b∈G;
(2) ∀a,b,c∈G,(a*b)*c = a*(b*c);
(3) ∀a∈G,∃e∈G,a*e = e*a = a;
(4) ∀a∈G,∃b∈G,a*b = b*a = e, then (G, *) is a group.
Henceforth, we shall write ab instead of a*b and G instead of (G, *).

We call e the identity of G and, if ab = ba = e, then we call b the in-
verse of a, denoted by a − 1. It is clear that the inverse of e is itself.

Let G be a group, a∈G, and let i be an integer. Then, the ith power
ai of a is defined as following:

(1)

Let Zn = {0,1,⋯,n − 1}, n is a positive integer and n≥2. We define
a binary operation ⨁ on Zn as follows:

(2)

Algorithm 6. GTOA for D{0-1}KP.

3

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Algorithm 7. B-GROA.

Fig. 1. Boxplots of instance sukp300_285_0.10_0.75 when parameter

respectively.

Fig. 2. Boxplots of instance sukp300_300_0.10_0.75 when parameter

respectively.

where + is a common addition operator, x(modn) denotes the remain-
der when x is divided by n.

It is easy to see that Zn is a group for operation ⨁, and its identity
is 0. We denote − a as the inverse of a in Zn. Then, -0=0, and, if a≠0
then − a = n − a.

If G1,G2,⋯,Gk are k groups, then their direct product, denoted by
G1×G2×⋯×Gk, is the group with elements that are all ordered k tuple
(a1,a2,⋯,ak), where ai∈Gi(i = 1,2,⋯,k), and with operation

(3)

Fig. 3. Boxplots of instance sukp285_300_0.10_0.75 when parameter

respectively.

Fig. 4. Gap fitting curve of the 1st category of SUKP instances.

Fig. 5. Gap fitting curve of the 2nd category of SUKP instances.

It is easy to check that G1×G2×⋯×Gk is a group: the identity is
(e1,e2,⋯,ek) where ei is the identity of Gi (i = 1,2,⋯,k) and the inverse
(a1,a2,⋯,ak) − 1 is .

Let Zni = {0,1,⋯,ni − 1}, where ni is a positive integer and ni≥2,
i = 1,2,⋯,k. Then, Zn1×Zn2×⋯×Znk is a direct product of groups, de-
noted by Z[n1,n2,⋯,nk]. It is clear that (0,0,⋯,0) is the identity, and the
inverse of (a1,a2,⋯,ak) is − (a1,a2,⋯,ak), and

(4)

4

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Fig. 6. Gap fitting curve of the 3rd category of SUKP instances.

Fig. 7. StD histogram of the 1st category of SUKP instances.

Fig. 8. StD histogram of the 2nd category of SUKP instances.

where − ai is the inverse of ai in Zni. ∀(a1,a2,⋯,ak),
(b1,b2,⋯,bk)∈Z[n1,n2,⋯,nk], we have

(5)

The ith power of (a1,a2,⋯,ak) is i(a1,a2,⋯,ak), where i is an integer.
It is easy to see that Z[2,2,⋯,2] = {0,1}n,

Z[m + 1,m + 1,⋯,m + 1] = {0,1,⋯,m}n and
Z[m1 + 1,m2 + 1,⋯,mn + 1] =
{0,1,⋯,m1}×{0,1,⋯,m2}×⋯×{0,1,!`,mn}
.

Fig. 9. StD histogram of the 3rd category of SUKP instances.

Fig. 10. Gap fitting curve of UDKP1–10.

Fig. 11. Gap fitting curve of WDKP1–10.

2.2. Group theory-based optimization algorithm

It is easy to see that the feasible solutions of the first category of
KPs are the elements in the direct product of groups Z[2,2,⋯,2]; those
of the second category are the elements in Z[m + 1,m + 1,⋯,m + 1]
; and those of the third category are the elements in
Z[m1 + 1,m2 + 1,⋯,mn + 1]. We notice that Z[2,2,⋯,2] and
Z[m + 1,m + 1,⋯,m + 1] are special cases of
Z[m1 + 1,m2 + 1,⋯,mn + 1], respectively. Hence, the basic principle
and the pseudo-code of GTOA will be described by applying the direct
product Z[m1 + 1,m2 + 1,⋯,mn + 1].

5

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Fig. 12. Gap fitting curve of SDKP1–10.

Fig. 13. Gap fitting curve of IDKP1–10.

Fig. 14. StD histogram of UDKP1–10.

Suppose that Y = (y1,y2,⋯,yn), V = (v1,v2,⋯,vn),W = (w1,w2,⋯,wn)
are three different elements randomly selected from
Z[m1 + 1,m2 + 1,⋯,mn + 1]. A new element
X = (x1,x2,⋯,xn)∈Z[m1 + 1,m2 + 1,⋯,mn + 1] is generated by manip-
ulating a group operation on Y, V, W according to the following equa-
tion:

(6)

where xj = yj⨁[fj(vj⨁(mj + 1 − wj))], j = 1,2,⋯,n; F = (f1,f2,⋯,fn) is
an n-dimensional random vector in

Fig. 15. StD histogram of WDKP1–10.

Fig. 16. StD histogram of SDKP1–10.

Fig. 17. StD histogram of IDKP1–10.

{ − 1,0,1}n, which is called the Combinatorial Factor Vector. Since for-
mula (6) is similar to the representation of a straight-line equation, we
call it the Random Linear Combination Operator (RLCO).

It is worth to note that RLCO uses three different random elements
to produce a new element on the space Z[m1 + 1,m2 + 1,⋯,mn + 1],
which indicates it is not only a random operation but has the charac-
teristic of learning from other elements. Therefore, RLCO is a global
random search operator and exhibits the global exploration ability by
learning from others. However, it is not enough for an evolutionary al

6

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 1
Comparison among GTOA, GA, BPSO and BABC for the 1st category of SUKP.

Index Instance CBEST Algorithm Best Mean Worst StD Time

1 sukp100_85 13,283 GA 13044 12956.4 12,596 130.66 0.112
_0.10_0.75 BPSO 13082 12979.2 12,497 147.28 0.199

BABC 13251 13028.5 12763 92.63 0.210
GTOA 13251 13025.4 12763 59.70 0.134

2 sukp100_85 12,479 GA 12066 11546.0 11,296 214.94 0.119
_0.15_0.85 BPSO 12238 12089.0 11,576 128.99 0.225

BABC 12238 12155.0 12066 53.29 0.223
GTOA 12274 12029.3 11,483 127.25 0.150

3 sukp200_185 13,405 GA 13064 12492.5 12,596 320.03 1.013
_0.10_0.75 BPSO 13241 12831.6 11,687 434.69 1.640

BABC 13241 13064.4 12,808 99.57 1.562
GTOA 13405 13196.9 12932 127.43 1.160

4 sukp200_185 14,215 GA 13671 12802.9 12,332 291.66 1.133
_0.15_0.85 BPSO 14044 13380.7 12,782 332.27 1.737

BABC 13829 13359.2 12881 234.99 1.729
GTOA 14215 13285.9 12,763 276.35 1.277

5 sukp300_285 11,413 GA 10553 9980.9 9640 142.97 3.608
_0.10_0.75 BPSO 10869 10371.9 9708 240.20 5.759

BABC 10428 9994.8 9661 154.03 5.281
GTOA 11407 10674.5 10032 599.55 3.957

6 sukp300_285 12,245 GA 11016 10349.8 9906 215.13 3.899
_0.15_0.85 BPSO 12245 11034.1 10,056 581.86 5.812

BABC 12012 10902.9 9929 449.45 5.673
GTOA 12245 11533.4 10382 466.27 4.144

7 sukp400_385 11,435 GA 10083 9641.9 9370 168.94 9.779
_0.10_0.75 BPSO 11230 10580.0 9915 329.43 13.375

BABC 10766 10065.2 9515 241.45 12.976
GTOA 11435 10830.3 10051 353.33 9.165

8 sukp400_385 10,397 GA 9831 9326.8 8980 192.20 9.978
_0.15_0.85 BPSO 9990 9500.4 9081 278.67 15.076

BABC 9649 9136.0 8894 151.90 13.359
GTOA 10397 9894.6 9142 290.02 9.973

9 sukp500_485 11,716 GA 11031 10567.9 10,288 123.15 18.198
_0.10_0.75 BPSO 11473 10839.5 10,322 311.32 26.049

BABC 10784 10452.2 10,257 114.35 25.372
GTOA 11716 11171.4 10591 299.00 18.476

10 sukp500_485 9892 GA 9472 8692.7 8400 180.12 19.720
_0.15_0.85 BPSO 9446 9012.9 8627 197.57 29.790

BABC 9090 8857.9 8651 94.55 26.874
GTOA 9860 9262.0 8742 153.89 20.053

gorithm to only have the global exploration ability. An excellent evolu-
tionary algorithm should make a trade-off between exploration and ex-
ploitation, which are both indispensable factors for an evolutionary al-
gorithm to work efficiently. In the following, we propose a local search
operator over the space Z[m1 + 1,m2 + 1,⋯,mn + 1] based on the in-
verse operation, which is named the Inversion and Random Mutation
Operator (IRMO).

Let X = (x1,x2,⋯,xn)∈Z[m1 + 1,m2 + 1,⋯,mn + 1] and mi≥1
(i = 1,2,⋯,n), Pm be the mutation probability of IRMO. Then, the
pseudo-code of IRMO is described as below.

In IRMO, rand1 and rand2 are two random numbers in the interval (0,
1); the mutation probability Pm satisfies 0<Pm≤0.5; rand([0,mi] − {xi})
represents a random integer that is not equal to xi in [0, mi]. It is obvi-
ous that the probabilities of obtaining the inverse mutation (Step3) and
the random mutation (Step4) are equal. The time complexity of IRMO is
O(n).

In addition, in group Z2 = {0,1} under modulo 2, since − 0 = 0 and
− 1 = 1, the IRMO does not work for 0–1 vectors in the search space
Z[2,2,⋯,2]. Drawing lessons from the mutation operator of GA [17], a
local search operator suitable for the space Z[2,2,⋯,2] is proposed, we
name it the Switch Mutation Operator (SMO).

Let X = (x1,x2,⋯,xn)∈Z[2,2,⋯,2] and Pm be the mutation probabil-
ity of SMO. Then, the pseudo-code of SMO is described as follow:

In SMO, rand is a random number in (0,1), and the mutation proba-
bility Pm satisfies 0<Pm≤0.5. It is easy to see that the time complexity
of SMO is O(n).

Let P(t) = {Xi(t)∣1 ≤ i ≤ NP} be the t-th generation population of
GTOA, where
Xi(t) = (xi1(t),xi2(t),⋯,xin(t))∈Z[m1 + 1,m2 + 1,⋯,mn + 1] is the i-th
individual, NP is the size of the population, t is an integer and t≥0.
Fit(Xi(t)) denotes the fitness of the individual Xi(t) and its computa-
tion generally relies on the objective function. Let
B = (b1,b2,⋯,bn)∈Z[m1 + 1,m2 + 1,⋯,mn + 1] be the best individual
in P(MIT), MIT be the number of maximum iterations, and
Y = (y1,y2,⋯,yn)∈Z[m1 + 1,m2 + 1,⋯,mn + 1] be an n-dimensional
vector. For the KPs with the objective function Maxf(X), the
pseudo-code of GTOA is described as follows:

In Step 5 of GTOA, a temporary individual
Y = (y1,y2,⋯,yn)∈Z[m1 + 1,m2 + 1,⋯,mn + 1] is generated by the
RLCO operator, where Xp1(t), Xp2(t) and Xp3(t) are three different in-
dividuals randomly selected from the t-th generation population P(t).
The individual Y is mutated by SMO in Step 6 when solving the first
category of KPs and by IRMO when solving those in the second and
third categories. Noting that both MIT and NP are multiples of n,
the time complexity

7

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 2
Comparison among GTOA, GA, BPSO and BABC for the 2nd category of SUKP.

Index Instance CBEST Algorithm Best Mean Worst StD Time

1 sukp100_100 14,044 GA 14044 13806.0 13587 144.91 0.129
_0.10_0.75 BPSO 14044 13846.1 13664 62.21 0.307

BABC 13860 13734.9 13573 70.76 0.213
GTOA 14044 13792.5 13561 90.57 0.161

2 sukp100_100 13,508 GA 13145 12234.8 11582 388.66 0.143
_0.15_0.85 BPSO 13508 13428.9 13104 115.87 0.270

BABC 13508 13352.4 12837 155.14 0.244
GTOA 13508 13220.5 11988 296.61 0.175

3 sukp200_200 12,350 GA 11656 10888.7 10337 237.85 1.106
_0.10_0.75 BPSO 12019 11344.8 10641 330.30 2.221

BABC 11846 11194.3 10581 249.58 1.633
GTOA 12350 11983.4 10903 326.08 1.302

4 sukp200_200 12,317 GA 11792 10827.5 10304 334.43 1.183
_0.15_0.85 BPSO 11821 11357.2 10607 381.88 1.922

BABC 11521 10945.0 10436 255.14 1.819
GTOA 12317 11572.8 10957 242.36 1.410

5 sukp300_300 12,695 GA 12055 11755.1 11169 144.45 3.789
_0.10_0.75 BPSO 12644 12187.6 11807 180.18 6.166

BABC 12186 11945.8 11724 127.80 5.315
GTOA 12695 12464.1 11968 231.68 4.190

6 sukp300_300 11,425 GA 10666 10099.2 9549 337.42 4.106
_0.15_0.85 BPSO 11007 10409.4 9463 304.99 6.707

BABC 10382 9859.7 9476 177.02 6.019
GTOA 11425 10513.9 9477 355.88 4.398

7 sukp400_400 11,490 GA 10570 10112.4 9786 157.89 9.187
_0.10_0.75 BPSO 11310 10600.5 10022 271.05 13.419

BABC 10626 10101.1 9756 196.99 12.805
GTOA 11450 10951.9 10360 264.34 9.695

8 sukp400_400 10,915 GA 9235 8793.8 8501 169.52 9.830
_0.15_0.85 BPSO 10404 9383.6 8597 411.48 15.103

BABC 9541 9033.0 8553 194.18 12.953
GTOA 10915 9834.43 9145 312.87 10.429

9 sukp500_500 10,960 GA 10460 10185.4 9919 114.19 20.717
_0.10_0.75 BPSO 10888 10522.4 10139 166.42 28.253

BABC 10755 10328.5 10139 91.62 27.735
GTOA 10960 10626.1 10048 152.96 18.592

10 sukp500_500 10,194 GA 9496 8882.9 8577 158.21 20.379
_0.15_0.85 BPSO 9840 9447.9 8731 202.16 32.389

BABC 9318 9180.8 8833 84.91 27.813
GTOA 10194 9754.7 9044 231.77 20.291

of GTOA is O(MIT*n*NP) = O(n3), which indicates that GTOA is a sto-
chastic approximation algorithm.

3. Solving Knapsack problems by GTOA

To illustrate the effectiveness and wide application range of GTOA,
we select three typical knapsack problems, i.e., SUKP, D{0-1}KP, and
BKP, and use GTOA to solve them. Since these three problems are con-
strained optimization problems, their infeasible solutions will be un-
avoidably generated during GTOA’s solving process. At present, there
are several common methods for handling infeasible solutions, such
as the Penalty function approach, the Repair approach, the Purist ap-
proach, the Separation approach, and the Hybrid approach [44–49]. Ex-
isting studies show that the greedy strategy-based repair and optimiza-
tion methods are the best fit for KPs [9,15,44,45]. According to the
mathematical model of KPs and the greedy strategy-based repair and
optimization method, we will present the efficient approaches to solving
KPs by using GTOA.

3.1. Solving set union Knapsack problem by GTOA

The SUKP [7,50], belonging to the first category of KPs, has im-
portant application in investment decision-making, flexible manufactur-
ing systems, the database system with primary, and secondary mem-
ories [3,7,51]. Goldschmidt et al. [7] first used

hyper graph to propose a deterministic algorithm for solving SUKP
based on dynamic programming, but its time complexity is exponential,
which leads to very poor practicability. By means of the d-regular graph
theory, Ashwin Arulselvan [50] proposed an approximation algorithm

A-SUKP with the approximation ratio of based on the greedy

strategy, where d(d≥2) is the supremum of the frequencies of all ele-
ments. A-SUKP greatly improved the speed for solving SUKP. Yichao He
et al. [44] proposed a novel binary artificial bee colony (BABC) to solve
SUKP and conducted a comparison with A-SUKP showing the BABC not
only has a better performance but is also faster.

Definition of SUKP: Given a set of elements U = {1,2,⋯,m} and a
set of items S = {1,2,⋯,n}, where each item i∈S corresponds to a non-
empty subset Ui⊆U and has a profit pi >0; every element j∈U has a
weight wj >0. For any nonempty subset A⊆S, the profit of A is de-
fined as P(A) = ∑i∈Api, and the weight is W(A) = ∑j∈⋃i∈AUjwj ≤ C . For
a given knapsack capacity C, The goal of SUKP is to find a subset of
items S*⊆S, such that P(S*) is maximized and W(S*) ≤ C.

Without loss of generality, we suppose that pi (i = 1,2,⋯,n), wj
(j = 1,2,⋯,m) and C are positive integers, the set family {U1,U2,⋯,Un}
is a cover of U, where Ui⊆U and Ui≠∅; W(S) > C , and for i∈S,
∑j∈Uiwj ≤ C . Let X = (x1,x2,⋯,xn) be an n-dimensional 0–1 vector, and

8

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 3
Comparison among GTOA, GA, BPSO and BABC for the 3rd category of SUKP.

Index Instance CBEST Algorithm Best Mean Worst StD Time

1 sukp85_100 12,045 GA 11454 11092.7 10749 171.22 0.113
_0.10_0.75 BPSO 11710 11482.6 11174 189.17 0.190

BABC 11664 11182.7 10897 183.57 0.188
GTOA 12045 11388.3 11083 107.48 0.121

2 sukp85_100 12,369 GA 12124 11326.3 10369 417.00 0.131
_0.15_0.85 BPSO 12369 11750.7 11374 424.40 0.211

BABC 12369 12081.6 11710 193.79 0.217
GTOA 12369 11945.7 11251 400.84 0.126

3 sukp185_200 13,696 GA 12841 12236.6 11843 198.18 1.231
_0.10_0.75 BPSO 13497 12703.0 12247 382.50 1.572

BABC 13047 12522.8 12011 201.35 1.502
GTOA 13647 13143.5 12170 308.36 1.099

4 sukp185_200 11,298 GA 10920 10351.5 9832 208.08 1.204
_0.15_0.85 BPSO 10920 10242.5 9783 373.53 1.732

BABC 10602 10150.6 9900 152.91 1.948
GTOA 10973 10566.1 9790 292.99 1.177

5 sukp285_300 11,568 GA 10994 10640.1 10304 126.84 3.827
_0.10_0.75 BPSO 11538 11104.9 10419 190.23 5.612

BABC 11158 10775.9 10584 116.80 5.450
GTOA 11568 11202.4 10734 201.21 3.667

6 sukp285_300 11,763 GA 11093 10190.3 9737 249.76 3.990
_0.15_0.85 BPSO 11377 10529.8 9767 320.93 6.844

BABC 10528 9897.9 9622 186.53 5.571
GTOA 11377 10821.9 10004 319.23 3.947

7 sukp385_400 10,326 GA 9799 9432.8 9137 163.84 9.325
_0.10_0.75 BPSO 10252 9782.2 9089 222.64 12.985

BABC 10085 9537.5 9202 184.62 13.012
GTOA 10326 9949.3 9501 165.80 8.892

8 sukp385_400 10,302 GA 9173 8703.7 8342 154.15 9.911
_0.15_0.85 BPSO 10302 9131.5 8198 271.05 14.953

BABC 9456 9090.0 8694 156.69 13.724
GTOA 10302 9381.3 8841 286.24 9.887

9 sukp485_500 11,037 GA 10311 9993.2 9799 117.73 18.708
_0.10_0.75 BPSO 10923 10461.7 9929 232.03 26.590

BABC 10823 10483.4 9965 228.34 27.227
GTOA 11037 10658.0 10206 164.93 18.670

10 sukp485_500 9964 GA 9329 8849.5 8586 141.84 20.129
_0.15_0.85 BPSO 9589 9180.1 8631 217.33 29.108

BABC 9333 9085.6 8666 115.62 28.493
GTOA 9964 9356.3 8785 205.87 18.896

AX = {i|xi∈X∧xi = 1,1 ≤ i ≤ n}⊆S. For any i (i = 1,2,⋯,n), xi = 1 if
and only if i∈AX. By the one-to-one relationship between X and AX, the
mathematical model of SUKP is represented as:

(7)

(8)

When using GTOA to solve SUKP, every individual is an n-dimen-
sional 0–1 vector on {0, 1}n. It should be noted that any of the n-di-
mensional 0–1 vectors on {0, 1}n is only a potential solution of SUKP,
and it is a feasible solution only when satisfying the constraint (8), oth-
erwise it is an infeasible solution. Yichao He et al. [44] proposed a re-
pair and optimization algorithm S-GROA to eliminate the infeasible so-
lutions when solving SUKP by EAs. In S-GROA, dj (j = 1,2,⋯,m) de-
notes the frequency of the element j(j∈U) in subsets U1,U2,⋯,Un, and
Ti = ∑j∈Ui(wj/dj) (i = 1,2,⋯,n). On the basis of using S-GROA to deal
with infeasible solution, the algorithm for solving SUKP by GTOA can
be described as follows:

Since the time complexity of the SortAlgorithm [12] and S-GROA
[44]are O(nlogn) and O(nm), respectively, the time complexity of
Algorithm 4 is O(n3m).

3.2. Solving discounted {0-1} Knapsack problem by GTOA

Guldan [5] first proposed D{0-1}KP and gave its heuristic and de-
terministic algorithms. Aiying Rong et al. [6] defined the kernel of
D{0-1}KP and discussed the validity of solving D{0-1}KP by determin-
istic algorithm. Yichao He et al. [45] presented two evolutionary algo-
rithms FirEGA and SecEGA for solving D{0-1}KP based on GA. Further-
more, they studied deterministic algorithms and approximation algo-
rithms of D{0-1}KP in the literature [49], and note that PSO-GRDKP is
a high performance evolutionary algorithm for solving D{0-1}KP.

Definition of D{0-1}KP [5,6]: Given a set of n item groups, sup-
pose that each group i(i = 0,1,⋯,n − 1) consists of three items: 3i,
3i + 1 and 3i + 2. The item 3i has weight w3i and profit p3i, and the
item 3i + 1 has weight w3i + 1 and profit p3i + 1. The first two items
3i and 3i + 1 are paired to derive the third item 3i + 2 with profit
p3i + 2 = p3i + p3i + 1 and the discounted weight w3i + 2 , which satis-
fies w3i + 2 < w3i + w3i + 1, w3i < w3i + 2 and w3i + 1 < w3i + 2. In each
group, at most one of the three items can be selected to be placed in the
knapsack with capacity C. The problem is how to select items loaded
into the knapsack such that the total profit is maximized under the con-
dition that the total weight of the selected items does not exceed C.

9

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 4
Comparison among FirEGA, SecEGA, GPSO and GTOA for UDKP1–UDKP10.

Index Instance OPT Algorithm Best Mean Worst StD Gap

1 UDKP1 85,740 FirEGA 80593 79103.2 77935 690.01 7.740
SecEGA 78,287 76807.2 75156 798.95 10.420
GPSO 85740 85669.3 85459 67.511 0.080
GOTA 85740 85684.8 85489 53.8687 0.064

2 UDKP2 163,744 FirEGA 155039 151662 149875 1044.95 7.380
SecEGA 148043 145548 143833 883.434 11.110
GPSO 163744 163710 163566 33.076 0.020
GOTA 163744 163727 163640 23.1604 0.010

3 UDKP3 269,393 FirEGA 246698 240886 237980 1491.97 10.580
SecEGA 228823 225492 222486 1353.58 16.300
GPSO 269340 269124 268504 129.523 0.100
GOTA 269393 269305 269148 57.4767 0.033

4 UDKP4 347,599 FirEGA 321605 317319 314486 1426.85 8.710
SecEGA 305796 299978 297606 1435.46 13.700
GPSO 347541 347267 346786 147.994 0.100
GOTA 347582 347535 347462 27.6553 0.018

5 UDKP5 442,644 FirEGA 405409 399620 395367 1692.23 9.720
SecEGA 376147 370808 367574 1611.71 16.230
GPSO 441693 440555 439151 464.361 0.479
GOTA 442605 442514 442332 51.4972 0.029

6 UDKP6 536,578 FirEGA 486556 478726 474015 2233.61 10.780
SecEGA 447438 442499 438809 1765.28 17.530
GPSO 534571 532997 531429 707.305 0.670
GOTA 536563 536177 535573 215.415 0.075

7 UDKP7 635,860 FirEGA 568119 560948 556938 2441.8 11.780
SecEGA 529753 521401 518407 1813.04 18.000
GPSO 632919 631497 629352 746.345 0.690
GOTA 635311 634648 633941 323.171 0.191

8 UDKP8 650,206 FirEGA 590137 585286 580684 2078.87 9.980
SecEGA 550645 546678 543836 1449.36 15.920
GPSO 646602 644282 641659 877.06 0.910
GOTA 649514 648719 647259 416.966 0.229

9 UDKP9 718,532 FirEGA 655172 649636 645012 2023.64 9.590
SecEGA 613581 602215 605835 2003.75 16.190
GPSO 712591 710039 707289 967.617 1.180
GOTA 717243 715941 714110 533.289 0.361

10 UDKP10 779,460 FirEGA 712270 706575 701545 2013.43 9.350
SecEGA 665459 658908 655645 1723.8 15.470
GPSO 773678 771246 768946 1027.4 1.050
GOTA 778576 777781 776820 370.856 0.215

Without losing generality, we suppose that pj, wj (0 ≤ j ≤ 3n − 1),
and C are positive integers, w3i + 2 ≤ C (0 ≤ i ≤ n − 1), and

. Two mathematical models of D{0-1}KP are represented
as follows.

The first mathematical model [5,6]:

(9)

(10)

(11)

(12)

where X = (x0,x1,⋯,x3n − 1)∈{0,1}3n, xj(0 ≤ j ≤ 3n − 1) is used to indi-
cate whether the item j is loaded into knapsack. The item j is loaded into
knapsack if and only if xj = 1.

The second mathematical model [45]:

(13)

(14)

(15)
where X = (x0,x1,⋯,xn − 1)∈{0,1,2,3}n. The integer variable
xi(0 ≤ i ≤ n − 1) indicates whether there is an item of the item group i
to be loaded into the knapsack. xi = 0 indicates that no items of item
group i is loaded into the knapsack; xi = 1 expresses that the item 3i is
loaded into the knapsack; xi = 2 indicates that the item 3i + 1 is loaded
into the knapsack; xi = 3 expresses that the item 3i + 2 is loaded into
the knapsack. ⌈x⌉ is top function of x representing the smallest integer
not less than x. Obviously, the length of the feasible solution in the sec-
ond mathematical model of D{0-1}KP is 1/3 that of the first one. There-
fore, when use GTOA to solve D{0-1}KP under the second mathemati-
cal model, it can not only save storage space but also improve the algo-
rithm’s running speed.

To eliminate the infeasible solutions of D{0-1}KP, we refer to the
skill in [49] to propose a repair and optimization algorithm D-GROA.
Similar to SUKP, sort all items of the D{0-1}KP instance according to
the order of pj/wj (0 ≤ j ≤ 3n − 1) from large to small, and store the
subscripts of the items into the array H[0⋯3n − 1] according to the or-
der. Let X = (x0,x1,⋯,xn − 1)∈{0,1,2,3}n be a potential solution of the

10

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 5
Comparison among FirEGA, SecEGA, GPSO and GTOA for WDKP1–WDKP10.

Index Instance OPT Algorithm Best Mean Worst StD Gap

1 WDKP1 83,098 FirEGA 82803 82693.2 82592 52.0424 0.487
SecEGA 80014 79021.8 78096 473.674 4.905
GPSO 83098 83086.5 83058 6.85054 0.014
GOTA 83098 83083.9 83058 7.0420 0.017

2 WDKP2 138,215 FirEGA 137704 137584 137356 63.228 0.457
SecEGA 133315 132276 131337 415.619 4.297
GPSO 138215 138202 138133 18.2569 0.009
GOTA 138215 138202 138157 11.3193 0.009

3 WDKP3 256,616 FirEGA 254120 253657 253307 173.011 1.153
SecEGA 238331 235721 234025 873.581 8.143
GPSO 256616 256573 256493 24.6037 0.017
GOTA 256616 256605 256575 9.3001 0.004

4 WDKP4 315,657 FirEGA 313966 312849 311998 484.755 0.890
SecEGA 293640 290851 288764 950.06 7.859
GPSO 315653 315605 315493 32.0495 0.017
GOTA 315657 315635 315596 12.9266 0.007

5 WDKP5 428,490 FirEGA 426311 424548 423058 798.53 0.920
SecEGA 393617 390014 387992 1059.83 8.979
GPSO 428484 428419 428303 34.5386 0.017
GOTA 428487 428469 428431 12.6941 0.005

6 WDKP6 466,050 FirEGA 463185 461672 457718 1107.57 0.939
SecEGA 429208 425112 423269 1058.37 8.784
GPSO 466019 465947 465828 45.2202 0.022
GOTA 466050 466036 466008 8.3908 0.003

7 WDKP7 547,683 FirEGA 544019 541949 538126 1224.68 1.047
SecEGA 501557 496134 493845 1230.94 9.412
GPSO 547565 547355 547138 87.7251 0.060
GOTA 547675 547647 547572 17.000 0.007

8 WDKP8 576,959 FirEGA 573427 571559 563253 1495.36 0.936
SecEGA 530971 523203 520350 2157.09 9.317
GPSO 576800 576597 576339 87.4878 0.063
GOTA 576954 576904 576820 28.4346 0.010

9 WDKP9 650,660 FirEGA 647477 644820 630086 2056.06 0.898
SecEGA 598343 586770 583854 2315.5 9.819
GPSO 650502 650259 649938 107.902 0.062
GOTA 650648 650596 650450 33.5694 0.010

10 WDKP10 678,967 FirEGA 675452 673008 668239 1441.96 0.878
SecEGA 620230 606215 609964 3090.86 10.715
GPSO 678862 678662 678401 91.1195 0.045
GOTA 678945 678857 678551 63.5837 0.016

D{0-1}KP instance; ⌊x⌋ is the bottom function representing the max-
imum integer not greater than x; H[j](mod3) denotes the remainder
when H[j] is divided by 3. Then, the pseudo-code of D-GROA is de-
scribed as follows:

In D-GROA, is used as the fitness of X,
which is obtained in Step 13. The time complexity of D-GROA is O(n).

On the basis of using D-GROA to eliminate infeasible solutions, the
algorithm for solving D{0-1}KP by GTOA is given as follows.

Obviously, the time complexity of Algorithm 6 is O(n3).

3.3. Solving the bounded Knapsack problem by GTOA

The BKP [3] belongs to the third category of KPs. It is defined as fol-
lows. Let N = {1,2,⋯,n} be a set of n items to be packed into a knapsack
of size C. For j = 1,2,⋯,n, let pj, wj and bj be the profit, weight and the
number of identical copies available for the jth item, respectively, where
C and pj, wj, bj are all positive integers. The objective is to fill the knap-
sack with some items from N whose total weight is at most C and such
that their total profit is maximized. The mathematical model of BKP is
shown as follows.

(16)

(17)

(18)

where X = (x1,x2,⋯,xn)∈Z[b1 + 1,b2 + 1,⋯,bn + 1]. None of the
copies of the jth item is loaded into the knapsack when xj = 0, other-
wise xj copies of the jth item are loaded. Obviously, 0-1KP is a special
case of BKP when bj = 1(j = 1,2,⋯,n). Without loss of generality, sup-
pose there is at least one j which satisfies bj≥2, Max{bjwj∣1≤ j≤n}≤C
and .

Similar to SUKP and D{0-1}KP, we give a repair and optimization
algorithm B-GROA to handle infeasible solution: Sort all the items in
the BKP instance according to the order of pj/wj (1≤ j≤n) from large to
small, and store the subscripts sequentially into the array H[1⋯n] based
on the order. Let X = (x1,x2,⋯,xn)∈Z[b1 + 1,b2 + 1,⋯,bn + 1] denote
a potential solution of BKP. The pseudo-code of B-GROA is described as
below.

Obviously, the time complexity of B-GROA is O(n).

11

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 6
Comparison among FirEGA, SecEGA, GPSO and GTOA for SDKP1–SDKP10.

Index Instance OPT Algorithm Best Mean Worst StD Gap

1 SDKP1 94,459 FirEGA 93235 93170.8 93070 42.147 1.365
SecEGA 89769 88831.5 87463 594.911 5.958
GPSO 94449 94260.7 93818 110.235 0.210
GOTA 94452 94425.5 94329 22.8099 0.035

2 SDKP2 160,805 FirEGA 159159 159004 158859 61.538 1.120
SecEGA 153821 152059 150753 489.391 5.439
GPSO 160777 160607 160253 95.830 0.123
GOTA 160805 160769 160701 19.9885 0.022

3 SDKP3 238,248 FirEGA 235454 235241 235043 79.858 1.262
SecEGA 224997 223580 221918 543.378 6.157
GPSO 238158 237900 237606 99.133 0.146
GOTA 238243 238204 238144 21.1418 0.018

4 SDKP4 340,027 FirEGA 336353 335963 335709 122.410 1.1952
SecEGA 318510 315513 313747 851.135 7.2094
GPSO 339830 339526 339156 131.691 0.1473
GOTA 340025 339995 339933 17.6036 0.009

5 SDKP5 463,033 FirEGA 452900 447587 444255 1974.990 3.3368
SecEGA 420238 416964 413933 1291.650 9.949
GPSO 462107 461566 460906 260.874 0.317
GOTA 462980 462868 462717 48.4461 0.036

6 SDKP6 466,097 FirEGA 459254 458893 458584 162.938 1.546
SecEGA 430738 427304 425504 1031.120 8.323
GPSO 465378 464856 464171 222.960 0.266
GOTA 466074 466010 465881 33.8705 0.019

7 SDKP7 620,446 FirEGA 599361 592279 579673 3949.030 4.540
SecEGA 561224 556083 552007 1926.260 10.374
GPSO 618753 617827 616602 342.714 0.422
GOTA 620219 619978 619623 109.375 0.075

8 SDKP8 670,697 FirEGA 661276 660104 659367 426.056 1.579
SecEGA 611644 606263 603774 1446.940 9.607
GPSO 668821 668107 667341 322.923 0.386
GOTA 670304 670071 669791 124.218 0.093

9 SDKP9 739,121 FirEGA 729135 727544 727064 343.670 1.566
SecEGA 674885 667900 664580 1614.040 9.636
GPSO 736589 735805 734871 349.522 0.449
GOTA 738458 738107 737667 179.945 0.137

10 SDKP10 765,317 FirEGA 756205 753394 750757 985.464 1.558
SecEGA 708935 695557 691994 2956.08 9.115
GPSO 762603 761980 761258 288.412 0.436
GOTA 764586 764159 763609 197.927 0.151

When solving BKP by GTOA, we apply B-GROA to eliminate infeasi-
ble solution, which is similar to the procedure in SUKP and D{0-1}KP.
To avoid duplication, we omit it.

4. Experimental results and comparative studies

As we all know, GA [17,46] is one of the most commonly used clas-
sic EAs, suitable for solving combinatorial optimization problems. BPSO
[36] is a simple and effective EAs, and performs excellently when solv-
ing D{0-1}KP [49] and RTVKP [52]. Literature [44] is the only study
that uses EAs to solve SUKP, in which the proposed BABC performs bet-
ter than GA [17,46], binDE [35], ABCbin [38], and A-SUKP [50]. To
verify the performance of GTOA for solving KPs, we experimentally con-
duct a comparison between GTOA and GA, BPSO, BABC, FirEGA [45],
and SecEGA [45] for their computational performance.

All experiments are were carried out on Acer Aspire E1-570G with
Intel(R) Core(TM)i5-3337u CPU-1.8GHz, 4GB DDR3 (3.82GB available);
the operating system is Microsoft Windows 8. All algorithms are imple-
mented using C ++, and the compilation environment is Visual C ++
6.0. The figures are drawn by the MATLAB7.10.0.499 (R2010a).

4.1. Simulation results for the SUKP instances

4.1.1. Parameters setting of the algorithms
To determine the optimal value of Pm in GTOA, we solve three

instances sukp300_285_0.10_0.75, sukp300_300_0.10_0.75, and
sukp285_300_0.10_0.75 [44] by GTOA when
Pm=0.005,0.006,0.007,0.008,0.009,0.010, and 0.011. Each instance is
independently calculated 100 times. According to the box-plots in
Figs. 1–3, it is easy to see that 0.008≤Pm≤0.009 is the most reasonable
choice.

When using GTOA,GA,BPSO,and BABC to solve three kinds of
large-scale SUKP instances [44], the population size of all algorithms is
set as NP = 20, individual encoding is an n-dimensional 0–1 vector, the
iteration number is set as MIT = Max{m,n}, n is the number of items
and m is the number of elements, S-GROA [44] is used to deal with in-
feasible solutions. In GTOA, F is a random 0–1 vector, Pm = 0.008. In
GA [46], the single point crossover operator, the uniform mutation op-
erator, and the fitness proportional model are used; the crossover prob-
ability is Pc = 0.8 and the mutation probability is Pm = 0.01. In BPSO
[36], set W = 1.0, C1 = C2 = 2.0, and each dimensional component in
the n-dimensional real vector is in [− 5.0,5.0]. In BABC [44], a = 5.0
and the threshold value is limit = Max{m,n}/5.

12

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

Table 7
Comparison among FirEGA ,SecEGA, GPSO and GTOA for IDKP1–IDKP10.

Index Instance OPT Algorithm Best Mean Worst StD Gap

1 IDKP1 70,106 FirEGA 70106 70099.4 70090 7.234 0.009
SecEGA 68663 67999.8 67369 328.441 3.004
GPSO 70106 70098.1 70077 6.685 0.011
GOTA 70106 70089.3 70048 15.1772 0.024

2 IDKP2 118,268 FirEGA 118169 117869 117625 102.598 0.337
SecEGA 114434 113385 112307 446.672 4.129
GPSO 118268 118253 118202 15.687 0.013
GOTA 118268 118239 118168 23.6627 0.025

3 IDKP3 234,804 FirEGA 234497 233997 233666 175.423 0.344
SecEGA 220096 217982 216313 835.828 7.164
GPSO 234804 234796 234759 9.202 0.003
GOTA 234804 234792 234731 12.5576 0.005

4 IDKP4 282,591 FirEGA 282148 280695 278881 827.625 0.671
SecEGA 263238 260425 258922 933.402 7.844
GPSO 282591 282578 282554 9.553 0.005
GOTA 282,583 282560 282497 16.2573 0.011

5 IDKP5 335,584 FirEGA 335004 333484 329621 1173.900 0.626
SecEGA 309573 306878 304881 907.187 8.554
GPSO 335584 335580 335546 7.344 0.001
GOTA 335,580 335549 335449 27.8969 0.010

6 IDKP6 452,463 FirEGA 451680 449863 446704 1161.520 0.575
SecEGA 414090 411367 408788 1099.310 9.083
GPSO 452463 452452 452425 9.168 0.002
GOTA 452463 452438 452372 18.5076 0.006

7 IDKP7 489,149 FirEGA 488009 485592 476385 2294.280 0.727
SecEGA 451528 444316 442133 1280.310 9.166
GPSO 489149 489133 489105 8.268 0.003
GOTA 489,144 489109 489019 23.9663 0.008

8 IDKP8 533,841 FirEGA 533035 529984 514196 2308.110 0.722
SecEGA 490494 481831 478035 2215.660 9.743
GPSO 533839 533827 533808 6.246 0.003
GOTA 533,834 533807 533762 14.4209 0.006

9 IDKP9 528,144 FirEGA 526410 523982 511651 2216.130 0.788
SecEGA 489661 477001 471848 3656.220 9.684
GPSO 528140 528131 528094 9.466 0.002
GOTA 528144 528103 527998 28.6709 0.008

10 IDKP10 581,244 FirEGA 578903 576772 568903 1905.180 0.769
SecEGA 535541 521604 516445 4265.070 10.261
GPSO 581244 581230 581194 10.610 0.002
GOTA 581,234 581200 581086 24.9040 0.008

4.1.2. Calculation and comparison
In Tables 1–3 (in Appendix), CBEST is the best result currently

known for the instance. Best and Worst are the best value and the worst
value, respectively, obtained by GTOA, GA, BPSO, and BABC when solv-
ing every instance 100 times independently. Mean and StD denote the
mean value and the standard deviation, respectively, and Time is the av-
erage running time that each algorithm takes for individually solving
every instance.

Tables 1–3 illustrate that, among the 30 instances, GTOA can
achieve the best result currently known of 22 instances, BPSO does that
on 5 instances, BABC does that on 2 instances, while GA gets the best
result currently known on only one instance. Regarding the average run-
ning time, the solving speeds of GA and GTOA are almost equal and ob-
viously faster than those of BPSO and BABC. The difference between the
speeds of BABC and BPSO is small.

Since EAs are a type of stochastic approximation algorithms, in order
to evaluate its performance, we also need to consider the statistical fea-
tures of the average performance and stability of all algorithms. Com-
parisons on the average performance of all algorithms can be conducted
by using the Gap fitting curves, where the Gap metric is the relative
difference between the optimal values OPT and the mean value Mean,
whose formulation is given in (19). The closer the Gap curve is to the ab

scissa axis, the better the mean performance of the algorithm is. In ad-
dition, we can draw a histogram according to the value of StD and eval-
uate the stability of all algorithms by the distribution of columns.

(19)

Since OPT of SUKP instances is unknown, OPT is replaced by CBEST
when calculating the Gap of GTOA, GA,BPSO,and BABC. The Gap curves
for each algorithm are given in Figs. 4–6, and the histograms of StD are
drawn in Figs. 7–9.

From Figs. 4–6, we can see that the performance of GTOA is best in
the four algorithms since its average performance is much better than
those of GA, BPSO, and BABC; BPSO and BABC rank second; and GA
is the worst. Figs. 7–9 show that stability of all algorithms are basically
equal.

4.2. Simulation results for the D{0-1}KP instances

4.2.1. Parameters setting of the algorithms
Using the same method as Section 4.1.1, we find that Pm = 0.008 is

a suitable value when solving D{0-1}KP by GTOA.
FirEGA and SecEGA [45] are the most classic two EAs for solving

D{0-1}KP based on GA and different mathematical models. PSO-GRDKP
[49] is the most efficient evolutionary al

13

UNCORRECTED PROOF
Table 8
Comparisons between GA and GTOA for solving instances UBKP1–UBKP10.

GA GTOA

Instance OPT Best Mean Worst StD Best Mean Worst StD

UBKP1 201616 201616 201582.0 201499 26.904 201616 201614.0 201590 6.361
UBKP2 414114 414114 414107.0 414028 22.857 414114 414114 414114 0.0
UBKP3 594613 594610 594597.0 594574 9.181 594613 594608.0 594587 3.892
UBKP4 831629 831629 831612.0 831599 6.890 831629 831628.0 831611 4.107
UBKP5 1003643 1003642 1003632.7 1003628 4.249 1003643 1003640.2 1003626 3.820
UBKP6 1228085 1228085 1228080.5 1228073 3.220 1228085 1228079.7 1228073 2.965
UBKP7 1524770 1524770 1524764.8 1524755 5.717 1524770 1524769.0 1524759 3.056
UBKP8 1692853 1692846 1692838.5 1692829 4.493 1692853 1692847.3 1692835 4.917
UBKP9 1869142 1869138 1869133.5 1869126 3.025 1869142 1869134.8 1869127 3.385
UBKP10 2,066,060 2066060 2066057.2 2066055 1. 817 2066060 2066058.2 2066052 2.559

Table 9
Comparisons between GA and GTOA for solving instances WBKP1–WBKP10.

GA GTOA

Instance OPT Best Mean Worst StD Best Mean Worst StD

WBKP1 119312 119312 119305.0 119288 5.293 119312 119310.0 119308 1.521
WBKP2 297700 297700 297700 297700 0.0 297700 297699.8 297687 1.566
WBKP3 444156 444156 444150.0 444142 4.328 444156 444151.0 444142 3.593
WBKP4 605678 605678 605671.0 605664 2.917 605678 605676.0 605671 1.802
WBKP5 772191 772191 772188.0 772183 0.980 772191 772186.0 72183 1.708
WBKP6 890314 890313 890311.0 890309 0.774 890313 890312.0 890310 0.989
WBKP7 1045302 1045302 1045299.0 1045298 0.942 1045300 1045298.5 1045296 1.284
WBKP8 1210947 1210946 1210944.1 1210944 0.276 1210945 1210944.6 1210940 0.984
WBKP9 1407365 1407365 1407364.0 1407361 0.374 1407365 1407364.1 1407364 0.099
WBKP10 1,574,079 1574079 1574076.4 1574073 1.278 1574079 1574077.6 1574073 1.538

Table 10
Comparison between GA and GTOA for solving instances SBKP1–SBKP10.

GA GTOA

Instance OPT Best Mean Worst StD Best Mean Worst StD

SBKP1 144822 144822 144818.0 144807 3.752 144822 144813.0 144799 6.135
SBKP2 259853 259853 259852.0 259848 1.050 259853 259852.0 259832 2.974
SBKP3 433414 433414 433414.0 433411 0.490 433414 433414.0 433413 0.099
SBKP4 493847 493847 493847.0 493846 0.218 493847 493847.0 493842 0.497
SBKP5 688246 688246 688246 688246 0.0 688246 688246.0 688239 0.829
SBKP6 849526 849526 849526 849526 0.0 849526 849518.0 849512 3.457
SBKP7 1060106 1060106 1060106 1060106 0.0 1060106 1060097.0 1060094 2.786
SBKP8 1171576 1171576 1171576 1171576 0.0 1171576 1171570.2 1171566 4.430
SBKP9 1263609 1263609 1263609 1263609 0.0 1263609 1263605.2 1263599 4.434
SBKP10 1412095 1412095 1412095 1412095 0.0 1412095 1412094.9 1412089 0.611

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

gorithm for solving D{0-1}KP currently, which is proposed by using
BPSO (we denote PSO-GRDKP as GPSO for convenience). In the follow-
ing, we will use GTOA, FirEGA, SecEGA, and GPSO to solve four kinds
of large-scale D{0-1}KP instances [45]: UDKP1–UDKP10, WDKP1–UD-
KP10, SDKP1–UDKP10, IDKP1–UDKP10, and evaluate the performance
of GTOA by the comparative results.

FirEGA and GPSO use GR-DKP [49] to deal with infeasible solutions.
GTOA and SecEGA apply D-GROA to handle infeasible solutions. The it-
eration number of all algorithms is set as MIT = 10*n, where n is the
number of item groups. In GTOA, the population size is set as NP = 20
; Pm = 0.008. The population size of FirEGA and SecEGA are set as
NP = 50; the others parameters are set to be equal to those in the lit-
erature [45]. In GPSO [49], the population size is set as NP = 20; each
dimensional component in the 3n-dimensional real vector takes value in
[− 5.0,5.0]; W = 1.0 and C1 = C2 = 2.0.

4.2.2. Calculation and comparison
All experimental results are based on 100 independent runs. In

Tables 4–7 (in Appendix), OPT is the optimal value; Best and Worst rep-
resent the best and worst values among 100 calculated results respec-
tively, and Mean and StD are the expectation and the standard devia-
tion, respectively; Gap is the relative differences between Mean and OPT
for each instance, which can be calculated by (19).

From the Gap in Tables 4–7 we can know that the Gap metrics for
all algorithms are no more than 18.00, which illustrates that it is not
only feasible but also highly efficient to solve D{0-1}KP by using GTOA,
FirEGA, SecEGA, and GPSO. Furthermore, the comparison between the
Best and Worst of all algorithms shows that, except the instance IDKP1,
the Worst obtained by GTOA and GPSO compared to the other 39 in-
stances are better than the Best gained by FirEGA and SecEGA, which in-
dicates that the performances of GTOA and GPSO for solving D{0-1}KP
are much better than those of FirEGA and SecEGA. Therefore, we only
need to compare GTOA with GPSO in terms of the average performance
and the stability to verify the efficient performance of GTOA.

The Gap fitting curves of GTOA and GPSO in Figs. 10–13 show that
the maximum value of Gap for GTOA is no more than 0.4 and that for
GPSO it is no more than 1.2, which illustrates that the average perfor-
mances of both algorithms for solving D{0-1}KP are excellent. More-
over, for UDKP, WDKP and SDKP, it is obvious that the average perfor-
mance of GTOA is much better than that of GPSO, but for IDKP, GPSO
is slightly better than GTOA.

It can be known from the StD histograms of GTOA and GPSO in
Figs. 14–17 that for UDKP, WDKP and SDKP, the algorithm stability of
GTOA is better than that of GPSO, while for IDKP, GPSO is better.

The above comparative results indicate that the performances of
both GTOA and GPSO are much better than those of FirEGA and Se-
cEGA. Moreover, for UDKP, WDKP, and SDKP, GTOA has the best av-
eraged performance and stability. It confirms that solving D{0-1}KP by
GTOA is not only feasible but also highly efficient.

4.3. Simulation results for BKP instances

Among the current EAs, GA [17,46] is the only algorithm suit-
able for solving BKP since the feasible solutions of BKP are denoted
as integer vectors in Z[b1 + 1,b2 + 1,⋯,bn + 1], where bj(1≤ j≤n) is
a positive integer. Therefore, we verify

the performance of GTOA by experimentally comparing GTOA with GA
for solving large-scale BKP instances.

So far there has not yet been a report of benchmark for BKP. We gen-
erate three kinds of large-scale BKP instances according to the method
in [3].

(1) Uncorrelated instances of BKP(UBKP): pj and wj are randomly dis-
tributed in [1, R], 1≤ j≤n.

(2) Weakly correlated instances of BKP (WBKP): wj randomly distrib-
uted in [1, R], and pj randomly distributed in
such that pj≥1.

(3) Strongly correlated instances of BKP (SBKP): wj randomly distrib-
uted in [1, R] and pj = wj + 10.

In all instances, R = 1000 and where
bj(1≤ j≤n) is randomly distributed in interval [1,9]. For more details
of the BKP instances, please refer to http://xxgc.hgu.edu.cn/uploads/
heyichao/ThreekindsofBKPInstances.rar.

When using GA and GTOA to solve BKP, the iteration number is set
as MIT = 2n, n is the number of items, and we use B-GROA to eliminate
infeasible solutions. In GTOA, the population size is NP = 20, and we
use RLCO and IRMO to generate new individuals; Pm = 0.001. In GA,
the population size is NP = 50; we use single-point crossover, uniform
mutation operators, and fitness proportional model to generate new in-
dividuals; Pc = 0.8 and Pm = 0.001.

In Tables 8–10 (in Appendix), OPT is the optimal value of instance;
Best and Worst represent the best and worst values, respectively, ob-
tained by using GTOA and GA in 100 independent runs, and Mean and
StD are the mean value and standard deviation, respectively.

Tables 8–10 illustrate that in terms of Best and Worst, the absolute
error |OPT − Worst| between Worst and OPT is no more than 117. In ad-
dition, for 4/5 of all BKP instances, the OPT can be attained by both al-
gorithms, which indicates that the average performances of both GA and
GTOA are excellent. Noting that the StD values of both GA and GTOA
are no more than 27, we believe that both of GA and GTOA have very
good stability.

Although both GA and GTOA perform well for solving BKP, the in-
dexes in Tables 8–10 show that GTOA performs better when GTOA is
used to solve the UBKP instances, and GA is better than GTOA for the
SBKP instances. For the WBKP instances, both algorithms perform simi-
larly. In summary, GTOA and GA have the same performance for solving
BKP. They can efficiently solve BKP.

5. Conclusion

This paper presents an algebraic approach for designing evolution-
ary algorithms and proposes a new evolutionary algorithm GTOA by
using the direct product of groups. To verify GTOA’s effectiveness
and wide range of applications, we apply it to solve different KPs,
i.e., SUKP, D{0-1}KP, and BKP. In comparison with
GA,BPSO,GPSO,BABC,FirEGA,and SecEGA for large-scale instances of
KPs, we conclude that GTOA is not only easy to implement but also per-
forms much better.

Some remarks and further investigations in this topic are listed:
First, using the operations of a group to implement evolution search
is a new and feasible evolution search mechanism. It is not only the
innovation of algorithm design method but is also a successful par-
adigm for designing evolutionary algorithms by using the strict al-
gebra theory. Second, the pro

15

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

posed GTOA is suitable not only for KPs but also for the others com-
binatorial optimization problems, for example, the satisfiability prob-
lem [27], the set cover problem [28,53], the decision making problem
[54,55], and the machine scheduling problem [56]. Therefore, using
GTOA to solve others combinatorial optimization problem is an impor-
tant research topic. Finally, how to use GTOA to solve numerical opti-
mization problems [57], topology optimization problem [58–60], fea-
ture selection problem [61], and semi-supervised clustering [62] is an-
other topic which is worth researching in the future.

Acknowledgments

This study was partially supported by the Natural Science Founda-
tion of China (61503252 and 71371063), the scientific Research Project
Program of Colleges and Universities in Hebei Province (ZD2016005),
and the Natural Science Foundation of Hebei Province (F2016403055).

Appendix

References

[1] G.B. Dantzig, Discrete variable extremum problems, Oper. Res. 5 (2) (1957)
266–277.

[2] D.Z. Du, K.I. Ko, X.D. Hu, Design and Analysis of Approximation Algorithms,
Springer Science Business Media LLC, Berlin, 2012.

[3] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.
[4] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementa-

tions, John Wiley & Sons, Inc., New York, 1990.
[5] B. Guldan, Heuristic and Exact Algorithms for Discounted Knapsack Problems,

2007, Master thesis. Germany
[6] A. Rong, J.R. Figueira, Kathrin Klamroth, dynamic programming based algo-

rithms for the discounted {0-1} knapsack problem, Appl. Math. Comput. 218
(12) (2012) 6921–6933.

[7] O. Goldschmidt, D. Nehme, G. Yu, Note: on the set-union knapsack problem,
Naval Res. Logist. 41 (6) (1994) 833–842.

[8] T. Sara, A. Sipahioglu, A genetic algorithm for the quadratic multiple knapsack
problem, International Conference on Advances in Brain, Vision and Artificial In-
telligence, Springer-Verlag, 2007490–498. 4729

[9] Y. He, X. Zhang, W. Li, et al., Algorithms for randomized time-varying knapsack
problems, J. Comb. Optim. 31 (1) (2016) 95–117.

[10] Z.-g. Ren, Z.-r. Feng, A.-m. Zhang, Fusing ant colony optimization with la-
grangian relaxation for the multiple-choice multidimensional knapsack problem,
Inf. Sci. 182 (1) (2012) 15–29.

[11] S. Martello, D. Pisinger, P. Toth, Dynamic programming and strong bounds for
the 0–1 knapsack problem, Manage. Sci. 45 (3) (1999) 414–424.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms
(2nd Edition), the MIT Press, Cambridge, 2001.

[13] M. Darehmiraki, H.M. Nehi, Molecular solution to the 0–1 knapsack problem
based on DNA computing, Appl. Math. Comput. 187 (2) (2007) 1033–1037.

[14] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press,
Cambridge, 1995.

[15] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained parame-
ter optimization problems, Evol. Comput. 4 (1) (1996) 1–32.

[16] D. Ashlock, Evolutionary Computation for Modeling and Optimization,
Springer-Verlag, London,United Kingdom, 2006.

[17] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning,
Addison-Wesley Longman Publishing Co.,Inc., Boston, 1989.

[18] J. Kennedy, R. C. Eberhart, Particle swarm optimizatio, Proceedings of the IEEE
International Conference on Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, IV., 19951942–1948.

[19] R. Storn, K. Price, Differential evolution- a simple and efficient heuristic for
global optimization over continuous spaces, J. Global Optim. 11 (4) (1997)
341–359.

[20] Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algo-
rithm. Harmony search., Simulation 76 (2) (2001) 60–68.

[21] L.I. Xiao-Lei, A new intelligent optimization method – artificial fish swarm algo-
rithm, 2003, Ph. d. Theses.

[22] M. Dorigo, T. Sttzle, Ant Colony Optimization, MIT Press, Cambridge. MA, 2004.
[23] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical func-

tion optimization: artificial bee colony (ABC) algorithm, J. Global Optim. 39 (3)
(2007) 459–471.

[24] X. Li, Niching without niching parameters: particle swarm optimization using a
ring topology, IEEE Trans. Evol. Comput. 14 (1) (2010) 150–169.

[25] Z.-H. Zhan, J. Zhang, Y. Li, Y.-H. Shi, Orthogonal learning particle swarm opti-
mization, IEEE Trans. Evol. Comput. 15 (6) (2011) 832–847.

[26] P.C. Chu, J.E. Beasley, A genetic algorithm for the multidimensional knapsack
problem, J. Heurist. 4 (1) (1998) 63–86.

[27] J. Gottlieb, E. Marchiori, C. Rossi, Evolutionary algorithms for the satisifiability
problem, Evol. Comput. 10 (1) (2002) 35–50.

[28] J. E. Beasley, P. C. Chu, A genetic algorithm for the set covering problem, Eur. J.
Oper. Res. 94 (2) (1996) 392–404.

[29] X.S. Yang, Firefly algorithms for multimodal optimization, in stochastic algo-
rithms: foundations and applications, SAGA 2009, Lect. Notes Comput. Sci.
5792 (2009) 169–178.

[30] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems,
Knowl. Based Syst. 96 (15) (2016) 120–133.

[31] G.G. Tejani, V.J. Savsani, V.K. Patel, S. Mirjalili, Truss optimization with natural
frequency bounds using improved symbiotic organisms search, Knowl. Based
Syst. 143 (12) (2018) 162–178.

[32] S. Mirjalili, S.M. Mirjalili, A. Lewis, G.W. Optimizer, Adv. Eng. Software
69 (2014) 46–61.

[33] V.J. Savsani, G. G. Tejani, V.K. Patel, Truss topology optimization with static and
dynamic constraints using modified subpopulation teaching-learning-based opti-
mization, Eng. Optim. 48 (11) (2016) 1990–2006.

[34] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE
Trans. Evol. Comput. 1 (1) (1997) 67–82.

[35] A. P. Engelbrecht, G. Pampara, Binary differential evolution strategies, IEEE Con-
gress on Evolutionary Computation,CEC 2007,25-28 September 2007, Singapore,
20071942–1947.

[36] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm opti-
mization, Proceedings of 1997 Conference on System, Man,and Cybernetices,
19974104–4109.

[37] M.H. Kashan, N. Nahavandi, A.H. Kashan, DisABC: a new artificial bee colony al-
gorithm for binary optimization, Appl. Soft Comput. 12 (1) (2012) 342–352.

[38] M.S. Kiran, The continuous artificial bee colony algorithm for binary optimiza-
tion, Appl. Soft Comput. 33 (2015) 15–23.

[39] Y. He, X. Wang, Y. Kou, A binary differential evolution algorithm with hybrid en-
coding, J. Comput. Res. Dev. 44 (9) (2007) 1476–1484.

[40] M. Baioletti, A. Milani, V. Santucci, Algebraic particle swarm optimization for
the permutations search space, Evolutionary Computation, IEEE,
20171587–1594.

[41] V. Santucci, M. Baioletti, A. Milani, A differential evolution algorithm for the
permutation flowshop scheduling problem with total flow time criterion, IEEE
Trans. Evol. Comput. 20 (5) (2016) 682–694.

[42] D.J.S. Robinson, A Course in the Theory of Groups (2nd Edition), Springer-Ver-
lag, NewYork, 2003.

[43] J.J. Rotman, A First Course in Abstract Algebra (3rd Edition), Prentice Hall, New
Jersey, 2008.

[44] Y. He, H. Xie, T.-L. Wong, X. Wang, A novel binary artificial bee colony algo-
rithm for the set-union knapsack problem, Future Gener. Comput. Syst. 87 (1)
(2018) 77–86.

[45] Y.-C. He, X.-Z. Wang, W.-B. Li, X.-L. Zhang, Y.-Y. Chen, Research on genetic algo-
rithms for the discounted {0-1} knapsack problem, Chin. J. Comput. 38 (12)
(2016) 2614–2630.

[46] G.-l. Chen, X.-f. Wang, et al., Genetic algorithms and its applications, Science
Press, Beijing,China, 2003.

[47] C.A.C. Coello, Theoretial and numerical constraint-handling techniques used
with evolutionary algorithm-a survey of the state of art, Comput. Methods Appl.
Mech. Eng. 191 (11–12) (2002) 1245–1287.

16

UN
CO

RR
EC

TE
D

PR
OO

F

Y. He, X. Wang Knowledge-Based Systems xxx (2018) xxx-xxx

[48] T.P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary optimiza-
tion, IEEE Trans. Evol. Comput. 4 (3) (2000) 284–294.

[49] Y.-C. He, X.-Z. Wang, Y.-L. He, S.-L. Zhao, W.-B. Li, Exact and approximate algo-
rithms for discounted {0-1} knapsack problem, Inf. Sci. 369 (2016) 634–647.

[50] A. Arulselvan, A note on the set union knapsack problem, Discrete Appl. Math.
169 (41) (2014) 214–218.

[51] S. Khuller, A. Moss, J.S. Naor, The budgeted maximum coverage problem, Inf.
Process. Lett. 70 (1) (1999) 39–45.

[52] Y. He, X. Wang, et al., Exact algorithms and evolutionary algorithms for random-
ized time-varying knapsack problem, J. Software 28 (2) (2017) 185–202.

[53] Q. Xu, A. Tan, Y. Lin, A rough set method for the unicost set covering problem,
Int. J. Mach. Learn. Cybern. 8 (3) (2017) 781–792.

[54] I. Deli, Y. Subas, A ranking method of single valued neutrosophic numbers and
its applications to multi-attribute decision making problems, Int. J. Mach. Learn.
Cybern. 8 (4) (2017) 1309–1322.

[55] J. Ye, Simplified neutrosophic harmonic averaging projection-based method for
multiple attribute decision-making problems, Int. J. Mach. Learn. Cybern. 8 (3)
(2017) 981–987.

[56] Y. Ning, X. Chen, Z. Wang, X. Li, An uncertain multi-objective programming
model for machine scheduling prob

lem, Int. J. Mach. Learn. Cybern. 8 (5) (2017) 1493–1500.
[57] Y. Liang, Z. Wan, D. Fang, An improved artificial bee colony algorithm for solv-

ing constrained optimization problems, Int. J. Mach. Learn. Cybern. 8 (3) (2017)
739–754.

[58] V.J. Savsani, G.G. Tejani, V.K. Patel, P. Savsani, Modified meta-heuristics using
random mutation for truss topology optimization with static and dynamic con-
straints, J. Comput. Des. Eng. 4 (2) (2017) 106–130.

[59] G.G. Tejani, V.J. Savsani, S. Bureerat, V.K. Patel, Topology and size optimization
of trusses with static and dynamic bounds by modified symbiotic organisms
search, J. Comput. Civil Eng. 32 (2) (2017) 1–11.

[60] G.G. Tejani, V.J. Savsani, V.K. Patel, Adaptive symbiotic organisms search (SOS)
algorithm for structural design optimization, J. Comput. Des. Eng. 3 (3) (2016)
226–249.

[61] G. Aldehim, W. Wang, Determining appropriate approaches for using data in fea-
ture selection, Int. J. Mach. Learn. Cybern. 8 (3) (2017) 915–928.

[62] A.K. Alok, S. Saha, A. Ekbal, Semi-supervised clustering for gene-expression data
in multiobjective optimization framework, Int. J. Mach. Learn. Cybern. 8 (2)
(2017) 421–439.

17

	
	
	

