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a b s t r a c t 

This paper proposes a feature transformation method to improve the performance of clus- 

tering and classification, which is named as weight-matrix learning (WML). A feed-forward 

neural network is particularly designed for WML, which aims to learn the optimal weights 

by minimizing an objective function similar to cross-entropy, and the training process is 

finished based on the technique of batch gradient descent or stochastic gradient descent. 

The proposed feature transformation is linear, which is a non-trivial extension of a previ- 

ous technique named feature-weight learning (FWL). Essentially, WML can be considered 

as a learning technique of departing 0.5-similarity, since it can make the samples with 

similarity larger than 0.5 closer and the samples with similarity lower than 0.5 farther 

away. From this perspective, WML is identified as an off-center technique with the center 

of 0.5-similarity. Theoretically and experimentally, it is validated that WML can signifi- 

cantly improve the performance of some clustering algorithms like k -means, and enhance 

the performance of some classification algorithms like random weight neural network. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Feature transformation is critical for machine learning tasks such as clustering, classification, regression, and semi-

supervised learning, etc. For a clustering (classification) task, if the similarity of samples is made large within a cluster

(class) and made small among different clusters (classes) through a feature transformation, the difficulty of the clustering

(classification) task will be possibly reduced. A similarity measure is usually associated with a distance metric. In order to

get a better distance metric for the transformed data, learning techniques have been proposed and extensively studied. A

better metric has led to an improvement of performance in both supervised and unsupervised learning [27] . 

Learning a good distance metric in feature space is a key issue in many models. The goal of distance metric learning is

to learn a transformation matrix, in order to transform the samples from the original space to a new feature space such

that the similarity of samples can be measured in a better way. In the past decade, researchers have carried out a lot of

studies on distance metric learning [4,21,23,28,29] . According to the availability of labels in the training set, the algorithms

can be divided into two categories, i.e., supervised and unsupervised distance metric learning. The main idea of supervised

distance metric learning is using the prior knowledge of training samples, through optimizing a certain objective function,
∗ Corresponding author. 
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to obtain a metric matrix such that data points from the same class are put closely together whereas those from different

classes are moved far apart. Unsupervised distance metric learning is a more challenging task due to the lack of labels. Most

of them can be used to mine the underlying manifold structure of data, e.g., learning a basic low-dimensional manifold that

preserves the geometric relationships (such as distance) among the observed samples. 

Many metric-based learning methods have been extensively studied, e.g., Yeung and Wang et al. [24,30] proposed a

feature-weight learning (FWL) method to acquire a weight vector for the input features. It helps getting a better similar-

ity measure for weighted data, and is used to improve the performance of clustering algorithms. FWL is an unsupervised

method that has been successfully applied to clustering algorithms like fuzzy c -means. The main idea is to use the infor-

mation of training samples, through minimizing the fuzziness of the similarity matrix, to obtain a weight vector for the

features. By weighting each feature, it gets a weighted Euclidean distance for each pair of samples, as a result, samples

in the same group will have higher similarities and samples of different groups will have lower similarities. In FWL, the

weighting technique is a mature processing technology that has been successfully applied to various fields such as fuzzy

soft multiset [5] , decision making [12,13] , and so on. However, FWL assigns each feature a single weight without consid-

ering the relations among different f eatures. In order to solve this problem, in this paper, we will propose a new method

named weight-matrix learning (WML). The contributions of this article are summarized as follows. 

• We propose the WML method, which aims to learn a matrix that transforms the data from the original space to a new

feature space. The data in the new feature space will have a better representation for clustering and classification, i.e.,

samples with similarity larger than 0.5 will be closer and samples with similarity smaller than 0.5 will be farther away.

From this perspective, WML is identified as an off-center technique with the center of 0.5-similarity. As a result, it can

help reduce the difficulty of the learning task. 

• WML is a non-trivial extension of FWL. FWL assigns each feature a single weight without considering the relations

among different features. WML extends the weight vector in FWL to an ordinary square matrix with full rank. Since

the non-diagonal elements in the matrix are generally non-zero, it can take advantage of the inter-correlations among

features. In addition, extending the weight vector to a square matrix enlarges the modifiability of the transformation,

thereby enhancing the data transformation capability. 

• The similarity measurement in WML is based on a pseudo-distance, i.e., the square of weighted distance, rather than the

distance itself. This improvement reduces the complexity for computing the similarity matrix to some extent. 

• We place the WML into a feed-forward neural network (FFNN). The network structure gives a good explanation for

WML. Moreover, classical techniques like stochastic gradient descent, batch gradient descent, and other gradient-based

algorithms can be used for training. 

• We demonstrate theoretically and experimentally that WML can significantly reduce the uncertainty of similarity matrix

thereby improve the performance of clustering and classification. 

The remainder of this paper is organized as follows. Section 2 proposes the WML method for feature transforma-

tion. In Section 3 , the advantages of the proposed WML method compared with the existing FWL method are discussed.

Section 4 experimentally compares and analyzes the impact of FWL and WML on clustering and classification tasks. Finally,

Section 5 concludes the paper. 

2. The proposed WML method 

It is demonstrated in [30] that in a learning problem, uncertainty is inevitable when making decision for a sample. This

uncertainty is usually caused by the fuzziness of the similarity matrix. In this section, we will propose the WML method,

which essentially performs a feature transformation to reduce the uncertainty of similarity matrix, thereby reduces the

difficulty of the learning task. The proposed WML method is unsupervised, but the transformed data can be used in both

supervised and unsupervised learning. Thus, WML can be treated as a data pre-processing technique. 

2.1. Feature transformation 

Suppose that S ⊂ R 

n is a data set containing N column vectors, which is represented as 

S = { � x i | � x i ∈ R 

n , i = 1 , 2 , · · · , N} . (1)

S can be converted into a new data set by a transformation matrix W , i.e., 

S W 

= { � y i | � y i = W 

�
 x i , i = 1 , 2 , · · · , N} . (2)

Assume that W is a ˜ n × n matrix, thus 

1. when ˜ n > n, W 

�
 x i increases the number of features for each sample; 

2. when ˜ n < n, W 

�
 x i performs a dimensionality reduction for each sample; 

3. when ˜ n = n, W 

�
 x i is essentially a feature transformation process that converts the n original features to n new features. 

In this paper, we only consider the third case, i.e., ˜ n = n . Thus, W = [ w i j ] n ×n can be treated as a weight matrix with full

rank, and how to learn the optimal W will be the key issue throughout the paper. 
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The weight matrix W will affect the distance measures of samples. The Euclidean distance between two vectors is defined

as 

d 2 ( � x p , � x q ) = 

n ∑ 

j=1 

(x jp − x jq ) 
2 , (3)

where {
�
 x p = [ x 1 p , x 2 p , · · · , x np ] 

� 

�
 x q = [ x 1 q , x 2 q , · · · , x nq ] 

� (4)

Noting that d 2 ( � x p , � x q ) can also be expressed as 

d 2 ( � x p , � x q ) = ‖ 

�
 x p − �

 x q ‖ 

2 = ( � x p − �
 x q ) 

� ( � x p − �
 x q ) , (5)

and we have 

d 2 ( � y p , � y q ) = ‖ 

�
 y p − �

 y q ‖ 

2 = ( � y p − �
 y q ) � ( � y p − �

 y q ) = (W ( � x p − �
 x q )) � (W ( � x p − �

 x q )) = ( � x p − �
 x q ) � (W 

� W )( � x p − �
 x q ) . (6)

Since W is a full rank matrix, W 

� W is an orthogonal matrix. It is worth noting that, the Euclidean distance between the

transformed vectors � y p and 

�
 y q is the Mahalanobis distance between the original vectors � x p and 

�
 x q . 

2.2. Uncertainty and fuzziness of similarity matrix 

Similarity of samples is usually measured by a distance metric. For example, Euclidean distance was used in [26] to

measure the similarity between data points. Different from this work, in this paper, Mahalanobis distance is applied. The

similarity between 

�
 x p and 

�
 x q under the transformation of matrix W is defined by the following equation 

ρ(W ) 
pq = 

1 

1 + β · d (W ) 
pq 

. (7)

In Eq. (7) , d (W ) 
pq is defined as 

d (W ) 
pq = d 2 ( � y p , � y q ) = ( � x p − �

 x q ) 
� (W 

� W )( � x p − �
 x q ) , (8)

β is a positive number that can be calculated by solving Eq. (9) , 

2 

N(N − 1) 

∑ 

q>p 

ρ(I) 
pq = 0 . 5 , (9)

where N is the number of samples, ρ(I) 
pq is the value of ρ(W ) 

pq at W = I, indicating the similarity between the original points

�
 x p and 

�
 x q without transformation. Intuitively, parameter β is to balance the data distribution in order to have an average

sample similarity around 0.5. Then, the similarity matrix of samples in S under the transformation of matrix W is formulated

as 

ρ(W ) 
S 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ρ(W ) 
11 

ρ(W ) 
12 

. . . ρ(W ) 
1 N 

ρ(W ) 
21 

ρ(W ) 
22 

. . . ρ(W ) 
2 N 

. . . 
. . . 

. . . 
. . . 

ρ(W ) 
N1 

ρ(W ) 
N2 

. . . ρ(W ) 
NN 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (10)

According to Basak et al. [1] , the uncertainty of this similarity matrix could be reduced by minimizing the following

objective function: 

E(W ) = 

1 

N(N − 1) 

∑ 

q<p 

E pq (W ) = 

1 

N(N − 1) 

∑ 

q<p 

[
ρ(W ) 

pq (1 − ρ(I) 
pq ) + ρ(I) 

pq (1 − ρ(W ) 
pq ) 

]
, (11)

where N is the number of samples, W is the feature transformation matrix, ρ(W ) 
pq is defined in Eq. (7) , and ρ(I) 

pq is mentioned

in Eq. (9) . 

The objective function E ( W ) is derived from a simple function, i.e., 

f (x, y ) = y (1 − x ) + x (1 − y ) , where 0 ≤ x, y ≤ 1 . (12)

From this function, we have ∂ f 
∂x 

= 1 − 2 y , thus ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂ f 

∂x 
> 0 , when y < 0 . 5 

∂ f 
< 0 , when y > 0 . 5 

(13)
∂x 
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Therefore, from Eq. (11) , we know that E ( W ) with respect to ρ(W ) 
pq is a strictly monotonically increasing function under the

condition of fixed ρ(I) 
pq < 0 . 5 and is a strictly monotonically decreasing function under the condition of fixed ρ(I) 

pq > 0 . 5 . Based

on this statement, we have the following equality: 

Lim 

[ ρ(W ) 
pq → 0 , ρ(I) 

pq < 0 . 5] or [ ρ(W ) 
pq → 1 , ρ(I) 

pq > 0 . 5] 
E pq (W ) = min E pq (W ) . (14) 

Thus, minimizing Eq. (11) implies that the new similarity of transformed samples by matrix W tends to be 1 (0) if the

old similarity of original samples is greater (less) than 0.5. In a learning problem, a consensus is that samples within the

same cluster (class) tend to have higher similarities, i.e., > 0.5, and samples from different clusters (classes) tend to have

lower similarities, i.e., < 0.5. Therefore, under the influence of matrix W , the average sample similarity within the same

cluster (class) will increase and the average sample similarity among different clusters (classes) will decrease. 

Moreover, according to [1] , the fuzziness of the similarity matrix ρ(W ) 
S 

can be defined as 

Fuzziness (ρ(W ) 
S 

) = − 1 
N (N −1) 

∑ 

q<p 

[
ρ(W ) 

pq log ρ(W ) 
pq + (1 − ρ(W ) 

pq ) log (1 − ρ(W ) 
pq ) 

]
. (15) 

As we can see from Eq. (15) , the farther the value of ρ(W ) 
pq from 0.5, the smaller the fuzziness value is. The values in the

similarity matrix can be made away from 0.5 by minimizing the objective function Eq. (11) . So the fuzziness of the similarity

matrix will decrease as E ( W ) decreases. 

2.3. Algorithm description 

We use the gradient descent technique to learn the feature transformation matrix W by minimizing Eq. (11) . The change

in W , denoted as �W , is defined as 

�W = −η
∂E(W ) 

∂W 

(16) 

where η is the learning rate. Specifically, ∂E(W ) 
∂W 

is defined as 

∂E(W ) 

∂W 

� 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂E(W ) 

∂w 11 

∂E(W ) 

∂w 12 

. . . 
∂E(W ) 

∂w 1 n 

∂E(W ) 

∂w 21 

∂E(W ) 

∂w 22 

. . . 
∂E(W ) 

∂w 2 n 

. . . 
. . . 

. . . 
. . . 

∂E(W ) 

∂w n 1 

∂E(W ) 

∂w n 2 

. . . 
∂E(W ) 

∂w nn 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (17) 

In computing 
∂E(W ) 

∂W 

, the following expression is used 

∂E(W ) 

∂W 

= 

1 

N(N − 1) 

∑ 

q<p 

(1 − 2 · ρ(I) 
pq ) ·

∂ρ(W ) 
pq 

∂d (W ) 
pq 

· ∂d (W ) 
pq 

∂W 

, (18) 

where ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∂ρ(W ) 
pq 

∂d (W ) 
pq 

= 

−β

(1 + β · d (W ) 
pq ) 2 

∂d (W ) 
pq 

∂W 

= 2( � x p − �
 x q )( � x p − �

 x q ) � W 

� 

(19) 

The learning rate η for each epoch can be given empirically or determined by 

E (W − η
∂E (W ) 

∂W 

) = min λ> 0 E 

(
W − λ

∂E(W ) 

∂W 

)
. (20) 

Generally, Eq. (20) is designed to get a suitable learning step-length for the next epoch. Calculating a suitable step-length

for each epoch instead of using a fixed step-length may speed up the training process. 

Finally, the training process for W is described in Algorithm 1 . After training, we can get a well-learned transformation

matrix W and the objective function E ( W ) will reach a local minimum. That is, the fuzziness of similarity matrix with

transformation matrix W will be much smaller than the fuzziness of similarity matrix without transformation. 

In is noteworthy that σ in Algorithm 1 is an early stopping threshold, the training will be stopped before the maximum

number of epoches if the decrease of the loss value in the current iteration compared with the previous iteration is less

than σ . Usually, the decrease of the loss value becomes less and less as the number of epoches increases. Thus, the learning

could be stopped earlier with a larger σ and later with a smaller σ . Based on our experience, a large value of σ may cause
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Algorithm 1: WML algorithm. 

Input : Data set S = { � x i | � x i ⊂ R 

n , i = 1 , 2 , · · · , N} ; maximum number of epoches M, early stopping threshold σ . 

Output : Transformation matrix W . 

1 Initialize W = I, epo=0; 

2 Calculate β by solving Equation (9) for Equation (7); 

3 Calculate E 0 (W ) based on Equation (11); 

4 while epo + 1 ≤ M do 

5 Calculate ∂E (W ) 
∂W 

according to Equation (18); 

6 Get the learning rate η by solving Equation (20); 

7 Update W = W + �W , epo = epo + 1 ; 

8 Calculate E epo (W ) based on Equation (11); 

9 if | E epo (W ) − E epo−1 (W ) | < σ then 

10 break ; 

11 end 

12 end 

13 return Transformation matrix W . 

Fig. 1. Network representation for WML. 

 

 

 

 

 

 

 

 

 

the learning process to terminate prematurely, resulting in bad performance. Thus, σ is set as a very small number, i.e.,

0.001. 

3. Advantages of WML 

Intuitively, the proposed WML can be represented as a FFNN as shown in Fig. 1 . The input of the network is a pair of

original data, the output is the objective function E ( W ) to be minimized, the weight between the first layer and the second

layer is the transformation matrix W which is shared by the upper and lower connections. This neural network model can

be trained by the batch gradient descent algorithm or the stochastic gradient descent algorithm. Our aim in this phase is to

get a well-learned matrix W for data transformation through training the network. 

It is noteworthy that when the transformation matrix W is restricted to be a diagonal matrix, the proposed WML method

degenerates back to the previous FWL method in [24,30] , which has been successfully applied to improve clustering per-

formance. In other words, WML is an improvement and extension of FWL. Compared with FWL, WML has the following

advantages. 

3.1. Stronger feature transformation capability 

The parameter space of FWL is ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

W = 

⎡ 

⎢ ⎢ ⎣ 

w 11 0 . . . 0 

0 w 22 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . w nn 

⎤ 

⎥ ⎥ ⎦ 

∣∣∣w ii 	 = 0 , i = 1 , . . . , n 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

, (21)
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and the parameter space of the proposed WML is ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

W = 

⎡ 

⎢ ⎢ ⎣ 

w 11 w 12 . . . w 1 n 

w 21 w 22 . . . w 2 n 

. . . 
. . . 

. . . 
. . . 

w n 1 w n 2 . . . w nn 

⎤ 

⎥ ⎥ ⎦ 

∣∣∣W ∈ R 

n ×n is a full rank matrix 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

. (22) 

Obviously, the parameter space of FWL is a true subset of the parameter space of WML, both FWL and WML have the same

objective function, i.e., Eq. (11) . 

Given an original sample � x i = [ x i 1 , x i 2 , . . . , x in ] 
� , traditional FWL will transform it to a new sample � y i = [ y i 1 , y i 2 , . . . , y in ] 

� ,
where y i j = x i j × w j j , j = 1 , . . . , n . In this case, each attribute of � y i is completely and independently decided by the corre-

sponding attribute of � x i . 

However, the proposed WML will transform 

�
 x i to another sample � y i = [ y i 1 , y i 2 , . . . , y in ] 

� , where y i j = 

∑ n 
k =1 x ik × w jk , j =

1 , . . . , n . Since the non-diagonal elements in the transformation matrix W are generally non-zero, each attribute of � y i is a

weighted sum of all the attributes in 

�
 x i . That means, each new feature is a linear combination of all the original features,

and the weights of the original features are learned by Algorithm 1 from the training data. From this perspective, we can

say that WML takes advantage of the inter-correlations among attributes. 

In order to intuitively observe the feature transformation capability of FWL and WML, we take data set Iris as an exam-

ple, and draw the data distributions before and after transformation. For convenience, the first and second features in Iris

are selected for visualization. Fig. 2 demonstrates the distributions of original data, data transformed by FWL and data trans-

formed by WML. Obviously, both FWL and WML can affect the data distribution, but in Fig. 2 (c), the data transformed by

WML has the smallest within-class sample distance and the largest between-class sample distance. By comparing Fig. 2 (a)

and (b), it is observed that FWL only realizes a scaling for each feature. While by comparing Fig. 2 (a) and (c), it can be in-

vestigated that WML makes the data of the same category more compact and the data of different categories sparser. Thus,

WML possesses a stronger feature transformation capability than FWL. 

3.2. Less uncertainty of similarity matrix 

WML can get a similarity matrix with less uncertainty in comparison with FWL. Given the similarity matrix of original

data, the objective function used by both WML and FWL, i.e., Eq. (11) , is to decrease the values of the elements smaller than

0.5, and to increase the values of the elements larger than 0.5. In the following, we make an intuitive illustration. Suppose

we have a randomly generated data set, i.e., 

S = { (0 . 420 , 0 . 750 , 0 . 640 , 0 . 200) , (0 . 880 , 0 . 300 , 0 . 550 , 0 . 900) , (0 . 774 , 0 . 467 , 0 . 877 , 0 . 660) , 

(0 . 241 , 0 . 259 , 0 . 822 , 0 . 885) } . (23) 

Based on Eq. (7) , we can compute the original similarity matrix ρ(I) 
S 

, i.e., 

ρ(I) 
S 

= 

⎡ 

⎢ ⎣ 

1 . 0 0 0 0 . 428 0 . 509 0 . 448 

0 . 428 1 . 0 0 0 0 . 612 0 . 506 

0 . 509 0 . 612 1 . 0 0 0 0 . 536 

0 . 448 0 . 506 0 . 536 1 . 0 0 0 

⎤ 

⎥ ⎦ 

, (24) 

where the balance parameter β is calculated as 0.602. After training by FWL and WML respectively, we get two new simi-

larity matrices, i.e., 

ρ(F W L ) 
S 

= 

⎡ 

⎢ ⎣ 

1 . 0 0 0 0 . 302 0 . 397 0 . 304 

0 . 302 1 . 0 0 0 0 . 556 0 . 776 

0 . 397 0 . 556 1 . 0 0 0 0 . 552 

0 . 304 0 . 776 0 . 552 1 . 0 0 0 

⎤ 

⎥ ⎦ 

, (25) 

and 

ρ(W ML ) 
S 

= 

⎡ 

⎢ ⎣ 

1 . 0 0 0 0 . 248 0 . 436 0 . 251 

0 . 248 1 . 0 0 0 0 . 734 0 . 996 

0 . 436 0 . 734 1 . 0 0 0 0 . 741 

0 . 251 0 . 996 0 . 741 1 . 0 0 0 

⎤ 

⎥ ⎦ 

. (26) 

It can be seen that in matrix ρ(I) 
S 

, the elements smaller than 0.5 include (0.428, 0.448) and the elements larger than 0.5

include (0.509, 0.612, 0.506, 0.536). After FWL training, the corresponding elements become (0.302, 0.304) and (0.397, 0.556,

0.776, 0.552), respectively. After WML training, the corresponding elements become (0.248, 0.251) and (0.436, 0.734, 0.996,

0.741), respectively. Obviously, the values in ρ(W ML ) 
S 

is farther away from 0.5 than those in ρ(F ML ) 
S 

. That is, the proposed

WML method obtains a similarity matrix with less uncertainty. 
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Fig. 2. Data distribution in Iris before and after transformation. 

 

3.3. Lower fuzziness of similarity matrix 

WML can significantly reduce the fuzziness of the similarity matrix. Mathematically, minimizing the objective function 

min W ∈R 

n ×n 

[
ρ(W ) 

pq (1 − ρ(I) 
pq ) + ρ(I) 

pq (1 − ρ(W ) 
pq ) 

]
(27)
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Fig. 3. The loss of FWL and WML. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

implies that { 

ρ(W ) 
pq ↓ 0 ( if ρ(I) 

pq < 0 . 5) 

ρ(W ) 
pq ↑ 1 ( if ρ(I) 

pq > 0 . 5) 
, (28) 

which makes 

Fuzziness (ρ(W ) 
S 

) � 

[
ρ(W ) 

pq log ρ(W ) 
pq + (1 − ρ(W ) 

pq ) log (1 − ρ(W ) 
pq ) 

]
(29) 

go to its minimum. Similar to the analysis for uncertainty, it is easy to validate that the decrease of fuzziness in WML is

more significant than that in FWL. 

3.4. Time complexity 

WML requires fewer iterations than FWL. In WML, there are more elements in the transformation matrix and the range

of values for the elements is enlarged, which allow the objective function to find a better solution in each iteration and

speed up the training. Continue to consider the data set given in (23) . After training by both FWL and WML, we get the

trend graphs of the loss function as shown in Fig. 3 , where the learning rate η used in both methods is 0.01. From this figure,

we can see that the loss function of WML has converged after about 2300 iterations, but the loss function of FWL can only

converge after 6500 iterations. Furthermore, the objective function in WML has a minimum generally smaller than that

of FWL. However, it is noteworthy that although WML requires fewer iterations than FWL, it is computationally intensive

and requires longer time in each iteration. As a solution, we can use parallel technique to reduce the running time of each

iteration for WML. For example, in Fig. 1 , � x p is taken as an input sample. The transformation for � x p , i.e., 

�
 y p = W n ×n � x p , (30) 

has a complexity of O ( n 2 ). This transformation operation can be well parallelized, i.e., ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

y 1 p = 

�
 w 

� 
1 
�
 x p 

y 2 p = 

�
 w 

� 
2 
�
 x p 

. . . 
y np = 

�
 w 

� 
n � x p 

, (31) 

where �
 w 

� 
i 

is the i th row of W n × n , y ip is the i th element of � y p , and i = 1 , . . . , n . Thus, the transformation for a sample in

parallel WML has a complexity of O ( n ), which is the same as that in FWL. In the feedback process of neural network, such

parallel method can also be used to reduce the running time of WML. That is, there is no obvious difference between the

time complexity of WML under parallel mechanism and the time complexity of FWL in each iteration. 

In summary, compared with FWL, the proposed WML has a stronger feature transformation capability, it can obtain a

better similarity matrix with less uncertainty, and the time complexity in parallel WML is low. 

4. Empirical studies 

In order to verify the advantages of WML, in this section, we treat WML as a data pre-processing technique, and use the

transformed data as the input for both unsupervised and supervised learning, i.e., clustering and classification. 
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4.1. Selected models for validation 

For clustering, we know that k -means is one of the most classical algorithms. It determines the cluster indices of sam-

ples based on distances. Basically, samples close to each other will be assigned to the same cluster, and samples far away

from each other will be assigned to different clusters. As analyzed in Section 2.2 , the proposed WML can make nearly lo-

cated samples closer and far-away samples farther away. From this perspective, it can improve the performance of k -means.

Therefore, we choose k -means as a representative of clustering algorithms to verify the feasibility of WML. 

For classification, there are many algorithms from different theoretical and practical perspectives. As analyzed in

Section 3 , the proposed WML can be represented as a FFNN. Thus, we choose FFNN for the experiment. Specifically, we adopt

the most classical Backpropagation (BP) based algorithm, and a fast variant, i.e., random weight neural network (RWNN). Be-

sides, we also want to verify that whether WML is effective when the supervised learning algorithm has nothing to do with

sample distances or similarity metrics. As a representative of this category, C4.5 is used, which is a well-known decision

tree model consists of a set of IF-THEN rules. 

The details of the selected algorithms are described as follows. 

• k -means: The main idea of k -means is to cluster with k points in space, which are called centroids. It calculates the

Euclidean distance between the k centroids and each sample, and assign each sample to the cluster with the closest

centroid [10] . Average of samples in each cluster is calculated as a new centroid iteratively until the best clustering

result is obtained. The implementation of k -means is described in Algorithm 2 . 

Algorithm 2: k -mean clustering algorithm. 

Input : Training set S = { � x i | � x i ⊂ R 

n , i = 1 , · · · , N} , number of clusters k . 

Output : Centroid vectors � μ(1) , � μ(2) , . . . , � μ(k ) . 

1 Randomly select k samples from S as the initial centroids � μ(1) , � μ(2) , . . . , � μ(k ) ; 

2 repeat 

3 for each � x i , i = 1 , . . . , N do 

4 Compute d 2 ( � x i , � μ( j) ) where j = 1 , . . . , k ; 

5 Mark the cluster for � x i by argmin j=1 , ... ,k d 
2 ( � x i , � μ( j) ) ; 

6 end 

7 for j = 1 , . . . , k do 

8 Recalculate the centroid for each cluster C j , i.e., � μ( j) = 

1 
|C j | 

∑ 

�
 x ∈C j � x ; 

9 end 

10 until � μ(1) , � μ(2) , . . . , � μ(k ) have no change; 

11 return Centroid vectors � μ(1) , � μ(2) , . . . , � μ(k ) . 

• FFNN: FFNN is formed by a plurality of M-P neurons [15] connected in a hierarchical structure. It consists of one input

layer, one or multiple hidden layers, and one output layer. BP is the most classical training algorithm, which adopts

gradient-descent technique to adjust the connection weights and biases between neurons according to the training data.

There are several parameters in FFNN, i.e., number of hidden layers, number of neurons in each hidden layer, learning

rate, and the activation function. The implementation details of FFNN is omitted here due to its complexity. 

• RWNN: RWNN was first proposed in [17,20] for single-hidden layer FFNN. It was improved in [16,25] as a non-iterative

training algorithm in which the hidden weights and biases are randomly selected while the output weights are obtained

analytically. The implementation of RWNN is described in Algorithm 3 , and more details of RWNN can be referred to the

literatures [3,8,9,11,14,22,31] . 

Algorithm 3: RWNN training algorithm. 

Input : Training set S = { ( � x i , � t i ) } N i =1 
⊂ R 

n × { 0 , 1 } C ; activation function g(x ) ; number of hidden node ˜ N . 

Output : Input weights w j and biases b j , and output weights α. 

1 Randomly assign input weights w j and biases b j where j = 1 , 2 , . . . , ˜ N ; 

2 Calculate the hidden layer output matrix H; 

3 Calculate the output weights α = H 

† T where H 

† is the Moore–Penrose generalized inverse of matrix H. 

• C4.5: C4.5 is a classical decision tree induction algorithm. It adopts the concept of entropy to measure the degree of

uncertainty for an attribute, and the attribute with the maximum information gain or gain rate is selected for expanding
a node [32] . The implementation of C4.5 is described in Algorithm 4 . 
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Algorithm 4: C4.5 decision tree induction algorithm. 

Input : Training set S = { ( � x i , � t i ) } N i =1 
⊂ R 

n × { 0 , 1 } C ; attribute set A = { a j } n j=1 
; threshold number ˆ N to stop splitting a 

node. 

Output : The constructed decision tree. 

1 Initialize 
 as an empty set; 

2 Consider the set of all examples as the root-node, and add it to 
; 

3 while 
 is not empty do 

4 Select a node from 
, denoted by X ; 

5 if | X | < 

ˆ N then 

6 Treat X as a leaf node and assign it label l ∗ = argmax l=1 , ... ,C p l ; 

7 else 

8 Select expanding attribute a ∗ ∈ A with the maximum gain rate; 

9 for Each value a v ∗ in a ∗ do 

10 Denote X v as a subset of samples in S with a ∗ = a v ∗; 

11 if all the examples in X v come from the same class l ∗ then 

12 Treat X v as a leaf node and assign it label l ∗; 

13 else 

14 Add X v to 
; 

15 end 

16 end 

17 end 

18 Remove X from 
; 

19 end 

20 return The constructed decision tree. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Evaluation indexes 

In general, classification results can be evaluated by the most commonly used metrics like training accuracy, testing ac-

curacy, precision, recall, and F1-score, etc. While the evaluation on clustering results will be harder due to the unavailability

of ground truth. In the following, we will introduce several evaluation indexes for clustering. 

Clustering validation indexes can be classified into three categories: internal, external and relative. Rendón et al.

[18] pointed out that the internal indexes can reflect the performance more accurately than external ones. Thus, we only

focus on four internal indexes. 

Davies–Bouldin Index (DBI). DBI [6] reflects the compactness of the data in the same cluster and the sparseness of the data

in different clusters, which is defined as 

DBI = 

1 

k 

k ∑ 

i =1 

max j =1 , ... ,k, j 	 = i 

1 
|C i | 

∑ 

�
 x ∈C i d ( � x , � μ(i ) ) + 

1 
|C j | 

∑ 

�
 x ∈C j d ( � x , � μ( j) ) 

d( � μ(i ) , � μ( j) ) 
, (32) 

where k is the number of clusters, C i and C j represent the i th and the j th clusters, �
 μ(i ) and 

�
 μ( j) represent the centroid

vectors of C i and C j , and d ( · , · ) is a distance metric. A smaller value of DBI indicates a better clustering performance. 

Dunn Index (DI). DI [7] reflects the compactness of the two closest clusters and the sparseness of the sparsest cluster, which

is defined as 

DI = 

min �
 x ∈C i , � x ′ ∈C j ,i 	 = j d( � x , � x ′ ) 

max 1 ≤ j≤k max �
 x , � x ′ ∈C j d( � x , � x ′ ) , (33) 

where k is the number of clusters, C i and C j represent the i th and the j th clusters, and d ( · , · ) is a distance metric. A larger

value of DI represents a better clustering result. 

Calinski–Harabasz Index (CHI). CHI [2] reflects the quality of the clustering results by calculating the scatter matrix inside a

cluster and the scatter matrix between different clusters. The CHI is defined as 

CHI = 

trace (S B ) 

trace (S W 

) 
· N − 1 

N − k 
, (34) 

where S B and S W 

are the between-cluster scatter matrix and the within cluster scatter matrix, N is the number of samples,

and k is the number of clusters. We have trace (S B ) = 

∑ k 
i =1 |C i | × d 2 ( � μ(i ) , � μ) and trace (S W 

) = 

∑ k 
i =1 

∑ 

�
 x ∈C i d 

2 ( � x , � μ(i ) ) , where

C i is the i th cluster, �
 μ(i ) is the centroid of C i , �

 μ is the centroid of the entire data set, and d ( · , · ) is a distance metric. A

larger value of CHI indicates a better clustering result. 
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Table 1 

Detailed information of selected data sets. 

No. Data set # Instances # Attributes # Classes Class distribution Attribute type 

1 abalone 4177 8 3 1307/1342/1528 Categorical/Integer/Real 

2 Autism Screening Adult 704 21 2 514/190 Integer 

3 auto-mpg 392 8 3 79/244/68 Categorical/Real 

4 breast-cancer 682 10 2 443/239 Integer 

5 breast-cancer-P 194 33 2 147/47 Integer/Real 

6 BHP looding attack on OBS 1060 22 4 494/150/115/300 Integer 

7 cmc 1473 9 2 1364/109 Categorical/Integer 

8 credit 666 15 2 299/367 Categorical/Integer/Real 

9 data_banknote_authentication 1372 5 2 761/610 Real 

10 glass 214 9 6 29/69/76/17/9/14 Real 

11 ionosphere 351 32 2 224/127 Integer/Real 

12 page-blocks 5473 10 5 115/4912/329/28/88 Integer/Real 

13 waveform 5000 21 3 1666/1666/1668 Real 

14 waveform- + noise 5000 40 3 1666/1666/1668 Real 

15 Wireless Indoor Localization 2000 7 4 500/500/500/500 Real 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Silhouette Index (SI). SI [19] is an internal clustering indicator, which is applicable to tasks whose actual category informa-

tion is unknown. Suppose that sample � x i is categorized into cluster C p . Let d 1 = 

1 
|C p | 

∑ 

�
 x ∈C p d( � x , � x i ) be the average distance

between sample � x i and all the samples in C p . Cluster C q is the closest cluster to C p , i.e., C q = argmin C j 	 = C p d( � μ( j) , � μ(p) ) . Let

d 2 = 

1 
|C q | 

∑ 

�
 x ∈C q d( � x , � x i ) be the average distance between sample � x i and all the samples in cluster C q . Then, SI for � x i is defined

as 

SI( � x i ) = 

d 2 − d 1 
max (d 1 , d 2 ) 

, (35)

and the overall SI value is calculated as 

SI = 

1 

N 

N ∑ 

i =1 

SI( � x i ) , (36)

where N is the number of samples. A larger value of SI indicates a better clustering performance. 

4.3. Experimental setup 

We select 15 data sets from UCI machine learning repositoty 1 to conduct the empirical studies. The details of the data

sets are shown in Table 1 . 10 × 5-fold cross-validation was conducted. That means, we randomly split the data set into 5

equal parts, each time we use 4 parts for training and the other part for testing. This process is repeated for 10 times and

the average results are investigated. The experiments are implemented in Python and run on a computer with the Deepin

operating system, an i3-6100 CPU, and 8 GB of RAM. The learning rate η in FWL and WML is set as 0.01, the initial value of

W in WML is set as I . The number of clusters k in the k -means algorithm is set as the number of labels in the data set. The

number of hidden layer nodes ˜ N in RWNN is set as 20. The number of hidden layers, the number of hidden nodes in each

hidden layer, and the learning rate of FFNN are set as 1, 50, and 0.01 respectively. Sigmoid activation function is used in both

RWNN and FFNN. The threshold number ˆ N in C4.5 is set as 1. Since WML cannot process the data with different attribute

ranges very well, we perform Min-Max normalization for each feature. Specifically, for each feature, the input values are

normalized to [0,1] by 1 − (x max − x ) / (x max − x min ) , where x max and x min are the maximum and minimum values among all

the samples with regard to the feature, and x is the value to be normalized. In this case, WML can be applied to attributes

with the same range. 

We apply k -means clustering algorithm directly on the input features of the data sets without using the label information,

and apply RWNN, FFNN and C4.5 on the entire data sets with label information. For clustering, the four indexes introduced

in Section 4.2 are used to evaluate the results, where Mahalanobis distance is used as the distance metric d ( · , · ). As for

classification, training accuracy, testing accuracy, precision, recall, and F1-score are used as the evaluation criteria. 

4.4. Performance analysis for clustering 

Table 2 reports the results of k -means clustering algorithm trained on the original data, data transformed by FWL, and

data transformed by WML regarding the four internal evaluation indexes. The lower the score of index DBI , the better the

clustering result, and the higher the scores of indexes DI, SI and CHI , the better the clustering result. It can be seen that

regarding these four internal indexes, k -means with the proposed WML performs the best, and k -means with FWL performs
1 http://archive.ics.uci.edu/ml/ . 
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Table 2 

Clustering result. 

Data set BDIo BDIv BDIm DIo DIv DIm SIo SIv SIm CHIo CHIv CHIm 

1 0.632 0.623 0.632 2.711 2.576 2.669 0.492 0.479 0.493 8972.904 8183.404 9010.698 

2 0.509 0.651 0.497 3.595 2.566 3.770 0.626 0.502 0.636 1973.938 1195.186 2030.390 

3 0.910 1.043 0.416 1.376 1.214 3.891 0.416 0.382 0.670 971.499 875.311 2260.749 

4 0.352 0.361 0.351 3.939 3.763 4.031 0.773 0.764 0.773 3847.265 3564.813 3869.452 

5 1.024 1.052 1.020 1.895 1.844 1.907 0.374 0.351 0.374 135.193 128.361 136.362 

6 1.119 1.389 0.804 1.271 0.947 2.020 0.374 0.343 0.459 1862.613 1577.130 2750.340 

7 1.045 1.474 0.956 1.792 1.318 1.907 0.364 0.308 0.411 1172.700 424.323 1445.951 

8 0.968 0.968 0.779 2.037 2.037 2.316 0.409 0.409 0.538 588.437 588.437 996.411 

9 0.712 0.734 0.712 2.524 2.289 2.593 0.494 0.444 0.498 2131.796 1655.016 2190.536 

10 2.916 2.086 0.854 0.142 0.202 0.619 0.161 0.219 0.556 256.805 435.778 773.423 

11 0.880 0.884 0.833 1.574 1.558 1.891 0.453 0.451 0.495 315.978 310.652 377.790 

12 1.113 1.694 0.933 0.924 0.638 0.937 0.323 0.185 0.344 3719.115 1275.166 4863.434 

13 0.753 0.752 0.547 2.507 2.537 3.503 0.373 0.371 0.553 9241.689 9194.467 16911.388 

14 0.744 0.743 0.536 2.600 2.595 3.668 0.370 0.371 0.562 9060.994 9074.919 17456.016 

15 0.664 0.652 0.508 2.130 2.178 3.630 0.485 0.495 0.604 571.023 582.997 845.076 

Note: DBIo is the value of DBI on the original data; DBIv is the value of DBI on the data transformed by FWL; DBIm is the value of DBI on 

the data transformed by WML, and so on for DI, SI , and CHI . 

 

 

 

 

 

 

 

 

 

 

 

 

similarly or even worse than original k -means. It is worth noting that WML achieved much better results on data set 3, 6, 10,

12, 13, 14 and 15. By observing Table 1 , a common feature of these data sets can be found, i.e., they have a relatively large

number of clusters. Thus, a preliminary conclusion is that WML is good at processing data with a cluster number greater

than or equal to 3. Figs. 4–7 further provide the visualizations of the clustering results regarding the four evaluation indexes.

It is noticed that the advantage of k -means algorithm with WML becomes very obvious by the visualization, especially on

the problems like data sets 3, 6, 10, 12, 13, 14 and 15. 

Essentially, k -means clustering algorithm determines the cluster indices of samples based on distances. Samples close to

each other will be assigned to the same cluster, and samples far away from each other will be assigned to different clusters.

As analyzed in Section 2.2 , WML can make nearly located points closer and far-away points farther away. Among the four

indexes, DBI, DI and SI are distance-based metrics. Thus, WML can improve the performance of k -means regarding these

indexes. Moreover, it is indicated in [2] that data with lower within-cluster distance and higher between-cluster distance

can get a higher CHI score. Since WML can generally reduce the within-cluster distance and increase the between-cluster

distance, the performance regarding CHI score can also be improved. Finally, it is concluded that WML can significantly

improve the performance of k -means regarding all the considered indexes. 
Fig. 4. Visualization of clustering results regarding DBI (the lower, the better). 
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Fig. 5. Visualization of clustering results regarding DI (the higher, the better). 

Fig. 6. Visualization of clustering results regarding SI (the higher, the better). 

 

 

 

 

 

4.5. Performance analysis for classification 

WML can generate a better similarity matrix with lower uncertainty for the data, and the data with lower uncertainty

can help improve the performance of some supervised learning algorithms. 

Tables 3 and 4 report the training and testing accuracy of RWNN, FFNN, and C4.5 on the original data, data transformed

by FWL, and data transformed by WML, respectively. It is observed from Table 3 that the model learned on the original data

obtains the best training accuracy in most cases. However, regarding the testing accuracy in Table 4 , this advantage of the

original data disappears. For RWNN, FFNN, and C4.5, the one using WML obtains the best result on half or more than half
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Fig. 7. Visualization of clustering results regarding CHI (the higher, the better). 

Table 3 

Classification result: training accuracy. 

Data set RWNNo RWNNv RWNNm FFNNo FFNNv FFNNm C4.5o C4.5v C4.5m 

1 0.582 0.568 0.572 0.541 0.535 0.536 1.000 1.000 1.000 

2 0.958 0.947 0.944 0.984 0.983 0.955 1.000 1.000 1.000 

3 0.854 0.785 0.783 0.736 0.724 0.701 1.000 1.000 1.000 

4 0.978 0.969 0.973 0.971 0.972 0.973 1.000 1.000 1.000 

5 0.831 0.812 0.773 0.847 0.843 0.779 1.000 1.000 1.000 

6 0.903 0.842 0.903 0.721 0.697 0.710 1.000 1.000 1.000 

7 0.926 0.926 0.925 0.926 0.926 0.925 1.000 1.000 1.000 

8 0.882 0.854 0.874 0.871 0.874 0.871 1.000 1.000 1.000 

9 0.999 0.998 0.997 0.978 0.955 0.981 1.000 1.000 1.000 

10 0.798 0.734 0.727 0.664 0.616 0.582 1.000 1.000 1.000 

11 0.854 0.808 0.814 0.925 0.917 0.898 1.000 1.000 1.000 

12 0.956 0.933 0.943 0.913 0.906 0.898 0.998 0.998 0.998 

13 0.852 0.825 0.850 0.855 0.851 0.830 1.000 1.000 1.000 

14 0.818 0.764 0.795 0.846 0.844 0.829 1.000 1.000 1.000 

15 0.998 0.982 0.997 0.991 0.985 0.965 1.000 1.000 1.000 

Note: The method with subscript o represents the result on the original data; the method with subscript v 

represents the result on the data transformed by FWL; the method with subscript m represents the result on 

the data transformed by WML. 

 

 

 

 

 

 

 

 

 

 

 

 

of the data sets. This observation indicates that the data transformed by WML might be useful for handling the over-fitting

problem, thus improving the performance of some supervised learning algorithms. 

Tables 5–7 further report the precision, recall, and F1-score of RWNN, FFNN, and C4.5 on the original data, data trans-

formed by FWL, and data transformed by WML. For these evaluation indexes, RWNN with WML can achieve the best result

on about half of the data sets, but the improvement of FFNN and C4.5 with WML is not satisfactory in some cases. 

RWNN and FFNN are network structures that reflect the mapping relationship between the feature space of the data and

the category space. The complexity of the feature space directly affects the performance of RWNN and FFNN. The proposed

WML performs a linear transformation on the data, which can reduce the uncertainty of the similarity matrix. Noting that

the uncertainty of the similarity matrix may be closely related to the complexity of the feature space, thus, decreasing the

uncertainty of the similarity matrix may reduce the complexity of the feature space. However, the underlying mechanism

is still not clear, and theoretical support is also missing. Thus, network structures with WML are difficult to analyze in the

current stage, leading to unsatisfactory performance in some cases as shown in the tables. As for C4.5, it is a rule-based

learning algorithm that iteratively selects the expanding attribute with the highest information gain rate. During the whole

process, the learning has nothing to do with similarity matrix or distance evaluation, thus, from theoretical perspective,
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Table 4 

Classification result: testing accuracy. 

Data set RWNNo RWNNv RWNNm FFNNo FFNNv FFNNm C4.5o C4.5v C4.5m 

1 0.562 0.557 0.555 0.527 0.526 0.532 0.498 0.498 0.491 

2 0.951 0.939 0.959 0.970 0.978 0.966 1.000 1.000 0.970 

3 0.776 0.733 0.737 0.682 0.684 0.692 0.792 0.792 0.689 

4 0.967 0.964 0.969 0.961 0.969 0.973 0.939 0.939 0.955 

5 0.687 0.715 0.792 0.769 0.772 0.818 0.618 0.618 0.649 

6 0.882 0.795 0.890 0.686 0.686 0.698 1.000 1.000 1.000 

7 0.929 0.920 0.926 0.930 0.920 0.931 0.882 0.882 0.871 

8 0.875 0.843 0.883 0.868 0.866 0.887 0.830 0.830 0.810 

9 0.996 0.997 0.995 0.977 0.964 0.978 0.981 0.981 0.981 

10 0.600 0.656 0.640 0.619 0.642 0.544 0.637 0.637 0.623 

11 0.801 0.765 0.812 0.876 0.865 0.873 0.894 0.894 0.851 

12 0.950 0.930 0.946 0.917 0.900 0.902 0.960 0.960 0.939 

13 0.841 0.817 0.851 0.848 0.849 0.830 0.751 0.751 0.794 

14 0.820 0.753 0.792 0.847 0.846 0.832 0.749 0.749 0.817 

15 0.961 0.947 0.981 0.983 0.961 0.972 0.944 0.944 0.950 

Note: The method with subscript o represents the result on the original data; the method with subscript v 

represents the result on the data transformed by FWL; the method with subscript m represents the result on 

the data transformed by WML. 

Table 5 

Classification result: testing precision. 

Data set RWNNo RWNNv RWNNm FFNNo FFNNv FFNNm C4.5o C4.5v C4.5m 

1 0.555 0.549 0.547 0.517 0.518 0.516 0.500 0.500 0.494 

2 0.926 0.954 0.951 0.966 0.973 0.950 1.000 1.000 0.961 

3 0.702 0.656 0.624 0.574 0.579 0.558 0.735 0.735 0.588 

4 0.965 0.962 0.966 0.959 0.964 0.969 0.936 0.936 0.954 

5 0.561 0.581 0.454 0.771 0.776 0.513 0.530 0.530 0.504 

6 0.868 0.743 0.878 0.705 0.724 0.719 1.000 1.000 1.000 

7 0.465 0.460 0.463 0.465 0.460 0.463 0.572 0.572 0.547 

8 0.876 0.842 0.884 0.869 0.864 0.888 0.831 0.831 0.810 

9 0.995 0.997 0.995 0.975 0.962 0.976 0.981 0.981 0.980 

10 0.545 0.534 0.548 0.399 0.375 0.346 0.577 0.577 0.610 

11 0.862 0.798 0.836 0.883 0.875 0.914 0.889 0.889 0.835 

12 0.84 0.861 0.878 0.334 0.326 0.214 0.785 0.785 0.673 

13 0.842 0.817 0.851 0.849 0.850 0.836 0.750 0.750 0.794 

14 0.821 0.753 0.793 0.848 0.847 0.838 0.749 0.749 0.818 

15 0.959 0.951 0.980 0.982 0.956 0.969 0.953 0.953 0.953 

Note: The method with subscript o represents the result on the original data; the method with subscript v 

represents the result on the data transformed by FWL; the method with subscript m represents the result on 

the data transformed by WML. 

Table 6 

Classification result: testing recall. 

Data set RWNNo RWNNv RWNNm FFNNo FFNNv FFNNm C4.5o C4.5v C4.5m 

1 0.564 0.558 0.557 0.526 0.523 0.530 0.502 0.502 0.494 

2 0.959 0.895 0.946 0.959 0.971 0.966 1.000 1.000 0.964 

3 0.696 0.646 0.616 0.554 0.564 0.559 0.716 0.716 0.583 

4 0.964 0.960 0.965 0.955 0.969 0.972 0.931 0.931 0.947 

5 0.529 0.544 0.494 0.624 0.609 0.548 0.524 0.524 0.501 

6 0.880 0.779 0.886 0.689 0.660 0.675 1.000 1.000 1.000 

7 0.500 0.500 0.500 0.500 0.500 0.500 0.586 0.586 0.556 

8 0.879 0.844 0.886 0.873 0.871 0.887 0.828 0.828 0.807 

9 0.996 0.998 0.996 0.979 0.966 0.980 0.981 0.981 0.981 

10 0.538 0.517 0.549 0.442 0.437 0.388 0.620 0.620 0.589 

11 0.736 0.707 0.715 0.850 0.836 0.814 0.883 0.883 0.829 

12 0.589 0.458 0.573 0.269 0.231 0.210 0.795 0.795 0.638 

13 0.841 0.817 0.851 0.847 0.849 0.831 0.750 0.750 0.794 

14 0.821 0.753 0.793 0.847 0.846 0.833 0.749 0.749 0.818 

15 0.970 0.948 0.984 0.985 0.968 0.976 0.942 0.942 0.959 

Note: The method with subscript o represents the result on the original data; the method with subscript v 

represents the result on the data transformed by FWL; the method with subscript m represents the result on 

the data transformed by WML. 
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Table 7 

Classification result: testing F1-score. 

Data set RWNNo RWNNv RWNNm FFNNo FFNNv FFNNm C4.5o C4.5v C4.5m 

1 0.547 0.540 0.545 0.496 0.488 0.494 0.497 0.497 0.491 

2 0.952 0.937 0.959 0.970 0.978 0.966 1.000 1.000 0.970 

3 0.777 0.732 0.727 0.669 0.676 0.672 0.790 0.790 0.688 

4 0.967 0.964 0.969 0.960 0.969 0.973 0.938 0.938 0.955 

5 0.640 0.662 0.738 0.724 0.726 0.768 0.616 0.616 0.677 

6 0.875 0.768 0.884 0.664 0.670 0.679 1.000 1.000 1.000 

7 0.896 0.881 0.891 0.896 0.881 0.891 0.885 0.885 0.874 

8 0.875 0.844 0.883 0.868 0.866 0.887 0.829 0.829 0.809 

9 0.996 0.997 0.995 0.977 0.964 0.978 0.981 0.981 0.981 

10 0.594 0.633 0.606 0.564 0.593 0.479 0.646 0.646 0.618 

11 0.779 0.741 0.779 0.873 0.861 0.864 0.894 0.894 0.850 

12 0.944 0.915 0.936 0.889 0.863 0.857 0.960 0.960 0.939 

13 0.841 0.816 0.850 0.847 0.848 0.828 0.751 0.751 0.794 

14 0.820 0.752 0.790 0.846 0.845 0.830 0.749 0.749 0.818 

15 0.961 0.947 0.981 0.983 0.962 0.972 0.944 0.944 0.950 

Note: The method with subscript o represents the result on the original data; the method with subscript v 

represents the result on the data transformed by FWL; the method with subscript m represents the result on 

the data transformed by WML. 

Table 8 

Execution time of FWL and WML (Seconds). 

Data set FWL WML WML with 4 Threads 

1 157.40 207.02 73.94 

2 11.25 6.83 5.69 

3 10.04 5.06 4.29 

4 9.47 7.17 5.87 

5 8.81 6.24 5.20 

6 12.33 8.67 7.05 

7 25.67 37.04 20.58 

8 12.88 8.77 7.31 

9 21.94 33.38 19.64 

10 12.00 7.01 5.84 

11 13.97 8.76 6.74 

12 290.11 400.94 125.29 

13 239.81 331.89 107.06 

14 259.90 332.70 107.32 

15 10.83 4.35 3.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

there is no supporting points for WML to improve the performance of C4.5, which is consistent with our experimental

results. 

Through the above analysis, it can be concluded that WML can significantly improve the performance of clustering al-

gorithms like k -means. It can enhance the performance of classification algorithms like RWNN in some cases, but further

researches are needed to discover the underlying reasons and theoretical supports. 

4.6. Execution time 

Finally, Table 8 reports the execution time of FWL, WML in serial, and WML in parallel on the data sets. In serial, WML

has an advantage in running time on small data sets, but it is more time-consuming on larger ones. We use multi-threading

technique to accelerate the training of WML. In parallel, the running time of WML is greatly reduced, which is much shorter

than that of FWL. 

5. Concluding remarks 

The proposed WML method improves the existing FWL method by extending the weight vector into a square matrix and

changes the calculation formula for similarity matrix. Such changes can enlarge the searchable range of the loss function,

obtain a better similarity matrix, and enhance the data transformation capability. Experimental results show that WML

performs better than FWL for some clustering algorithms like k -means, and improves the performance of some classification

algorithms such as RWNN. There are few disadvantages of WML, i.e., (1) more variables need to be trained and the time

complexity is higher under serial condition; (2) it needs to calculate the distance matrix of the data set, which is a memory

consuming operation. Our future works regarding this topic are listed as follows: (1) the transformation matrix W is a square

matrix, which means that the transformed data set has the same number of features as the original data set, discussing the
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transformation with a non-square matrix will also be useful; (2) WML is essentially a linear transformation of the data, we

will try to extend it to nonlinear case; (3) it will be interesting to discuss that which supervised learning algorithms are

suitable for WML, and also try to discover the underlying reasons. 
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