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a b s t r a c t

In the presence of skewed category distribution, most learning algorithms fail to provide favorable
performance on the representation about data characteristics. Thus learning from imbalanced data
is a crucial challenge in the field of data engineering and knowledge discovery. In this work, we
proposed an imbalanced learning method to generate minority samples for the compensation of class
distribution skews. Different from existing synthetic over-sampling techniques, the data generation is
conducted within the hyperplane rather than on the hyperline, thus the proposed method breaks down
the ties imposed by the linear interpolation. In addition, this proposed method minimizes the sampling
uncertain and risk by integrating a prior knowledge about the minority class instances. Moreover, a
multi-objective optimization combined with error bound model develops this proposed method into
an adaptive imbalanced learning. Extensive experiments have been performed on imbalanced issues,
and the experimental results demonstrate that this method can improve the performance of different
classification algorithms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the continuous increase of data availability in academia
and industry fields, the algorithms of knowledge discovery and
analysis have played essential roles in wide-ranging applications
and investigations [1,2]. However, the imbalance problems arise
frequently in practical applications, such as fraud detection [3]
and fault diagnosis [4]. In such imbalanced data, the minority
category is not rare in its own right, however, the size of minority
class instances is heavily outnumbered by that of majority class.
As a result, the data complexity tends to be amplified by the
imbalance class distribution.

When suffering from the complex imbalanced data, most stan-
dard learning algorithms are prone to the concept of majority
class, and the distributive characteristics of the minority class
are poorly learned due to the relatively under-represented data.
Consequently, the inductive bias learned from imbalanced data
fails to properly represent the minority class concept and leads
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to the unfavorable classification performance on all classes. Fur-
thermore, the approaches to the construction of classification
learning from imbalanced data are desired [5]. In several major
conferences and workshops [6–8], a great influx of attention and
high activity of advancement have been devoted to the field of
imbalanced learning. These valuable milestones facilitated the
development of imbalanced learning approaches.

In this community of imbalanced learning, data pre-processing
methods have emerged as the popular technique, which aims
at adjusting the balance degree of the skewed class distribu-
tion. The commonly deployed pre-processing technique is the re-
sampling that can be categorized into two conventional methods,
i.e., under-sampling and over-sampling [9]. The under-sampling
mechanics reduce the population of majority class samples while
keeping the original size of the minority class [10]. On the other
hand, the over-sampling approaches augment the training dataset
by adding a set of minority data, which can be the existing sam-
ples in original minority class, the synthetic samples generated
by linear interpolation [11,12] or the samples labeled by active
learning [13,14]. Motivated by these two re-sampling methods,
some joint sampling strategies were proposed to simultaneously
alter the sizes of minority and majority data. Typically, the combi-
nation is that the under-sampling of majority class is fused by the
over-sampling with replacement or synthetic samples of minority
class [11]. In addition, a more effective joint strategy employs
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Fig. 1. Illustration of the proposed method. (a) is the imbalanced data, the contours denote the distribution about minority class. (b) is the GMM, Di
min is the ith

subset of minority dataset which is divided into m groups. πi denotes the importance degree that Di
min contributes to the minority class concept. (c) is the result

of over-sampling, the red stars are the synthetic minority samples, and blue circle is the synthetic data with wrong label, (d) is the result of data clean. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ensemble learning to fuse different but related supervised learn-
ings on sampling results, which are obtained by operating various
sampling methods on one imbalanced dataset [15,16].

Studies have shown that the sampling methods do indeed aid
in the compensation of skewed class distribution, and make clas-
sification algorithms pay more attention on minority concepts [2].
These academic achievements have provided an immense oppor-
tunity to make these methods play an important role in a broad
range of applications. One of pioneering works was conducted
by Solberg et al. [17], they addressed the imbalanced problem in
oil slick detection via a joint sampling strategy. Recently, Yang
et al. [18] found that the high-impact bug reports are rare cases
in bug triage systems, and they discussed the effect of different
sampling methods in the modification of class distribution. The
similar methods were also applied into the recognition of good
successor positions which have low proportion in chess game
records [19]. Besides, imbalanced learning also has yielded a large
number of successful consequences on other domains, such as
gene recognition [20] and tool condition monitoring [21]. These
consequences imply that a balanced dataset can provide im-
proved overall classification result compared to the imbalanced
version.

Despite impressive consequences and wide applications, there
still exist several crucial challenges in developing a robust sam-
pling methodology. Essentially, on one hand, an inherent problem
is that most sampling methods can result in higher data complex-
ity, such as the data with overlapping, missing and redundant
information. On the other hand, a common problem is that the
adjusted dataset tends to have a tied distribution, which can
cause the learned rules to become too specific in certain sub-
concepts of the original data. Consequently, sampling methods
have potential risk leading to the immense hindering effects on
classification learning [2]. The reason causing these limitations
mainly roots in the sampling uncertain, which will be further
analyzed in the following sections. Generally, to deal with these
problems, much expert experience have to be devoted into the
parameter setting to control the sampling process. However, for
various imbalanced issues, it is difficult to find a shared empirical
agreement between the setting of parameters and the favor-
able classification performance, thus it is necessary to develop
a self-adaptive method that can update parameters according to
the imbalanced issue at hand. Based on these aforementioned
analyses, our focus is to conduct some further investigations on
sampling method for imbalanced learning. Fig. 1 shows the entire
imbalanced learning proposed in this paper. More concretely, our
work can be concluded as follows.

(1) We improve the synthetic over-sampling method by avoid-
ing tied regions in the distribution of adjusted dataset.
To this end, the new synthetic samples are generated in
a rational feature space with the same dimension as the
minority data. Thus the existing synthetic over-sampling
approaches are the special cases of this proposed method
in terms of data generation.

(2) We proposed an adaptive Gaussian mixture model (GMM)
based data sampling and cleaning techniques. The prior
information about minority data is provided by GMM,
which greatly improves the robustness to outliers and
noise. Meanwhile, this learned prior knowledge is used
as the guideline to eliminate the unexpected synthetic
samples, such as the data at borderline or with incorrect
annotation, which have low agreement with the distribu-
tive characteristics of minority class, and depreciate the
classification performance.

(3) We formulate a multi-objective optimization to solve the
unknown hyper-parameters in this imbalanced learning,
where a novel fitness evaluation is proposed to assess
the quality of re-balanced dataset. This is the first en-
deavor of such technique incorporating an evaluation mea-
sure into the sampling approach, and it is interesting to
show the relationship between generalization ability and
data class distribution. In a broad experimental sweep, our
method can effectively improve the performance of various
learning algorithms on extensive imbalanced issues.

2. Preliminaries

In this section, we will provide the foundation for the follow-
ing discussion. Firstly, we present the popular sampling methods
and data clean techniques in the field of imbalanced learning.
Then we recall the basic concepts related to extreme learning
machine (ELM) [22,23] used as the classification mechanism in
our method. To ease the following presentation, some notations
are established here. Given a training dataset D with N samples
(i.e., |D| = N), we have definition as: D = {(xi, ti)}, i = 1, . . . ,N ,
where xi = (xi1 · · · , xin)T is the ith sample with n-dimensional
feature, ti ∈ {0, 1}C×1 is a one-hot vector that denotes the cate-
gory identity label of xi, without losing generality, we consider
the binary-class problem, namely C = 2. In this case, the set
of minority class samples is defined as Dmin, and the majority
class set is Dmaj, so that Dmin ∩ Dmaj = Φ , Dmin ∪ Dmaj = D and
|Dmin| ≪ |Dmaj|.

2.1. Review of sampling methods for imbalanced learning

Typically, the most intuitive solution for imbalanced issues is
to adjust the imbalance ratio (IR) between minority and majority
classes [2]. Based on this intention, various sampling approaches
have been developed to modify the distributive characteristics
of imbalanced data, such as random under-sampling (RUS [24]),
random over-sampling (ROS [25]) and synthetic minority over-
sampling technique (SMOTE [11]). In particular, as shown in
Fig. 2(b-1), RUS randomly selects a subset Emaj from Dmaj, and then
removes Emaj from the original dataset D so that |D| = |Dmin| +

|Dmaj| − |Emaj|. On the contrary, ROS aims at augmenting the size
of minority class, to this end, a randomly subset Emin in Dmin is
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Fig. 2. (a-1), (b-1), (c-1), (d-1) are the illustrations of different sampling methods. The removed data are randomly selected majority samples, the replicated data
are randomly selected minority samples, the synthetic data are new minority samples generated on the line linking two near neighbors in minority class. One can
refer to these case studies, i.e., (a-2), (b-2), (c-2) and (d-2), for the sampling results.

replicated and added into D, as shown in Fig. 2(c-1). In this way,
the size of Dmin is increased by |Emin|. In the procedure of SMOTE,
the size of Dmin is augmented by artificial data instead of existing
minority data. As illustrated in Fig. 2(d-1), a synthetic data (the
star point) can be randomly generated on the line connecting one
specified minority sample with its nearest neighbor. By doing so,
the category distribution balance of D is adjusted accordingly.

Many studies [26,27] have justified that sampling methods are
useful for the improvement of classification on imbalanced data.
However, the inherent uncertain caused by random sampling
makes the drawbacks of these methods be relatively obvious. In
the case of RUS, the important and insignificant instances of ma-
jority class can be removed with the same probability, thus some
important concepts about the majority class will be missed when
removing samples from Dmaj. In regards to ROS, the noise and
normal minority samples have the same opportunity to augment
the size of minority class, thus this method has a weak ability of
anti-noise; besides, multiple copies of the same samples increase
the redundant data, and tend to cause the tied distribution in
certain regions of Dmin. SMOTE also has some inherent limitations
which will be analyzed in the following section. In particular,
these drawbacks often result in problematic consequences which
potentially hinder the imbalanced learning [28,29].

Thus, to overcome these limitations, some improved sampling
approaches have been proposed, especially, the data clean tech-
niques. Eliminating Tomek links [30] is an effective data clean
technique to remove the overlapping caused by sampling meth-
ods. A Tomek link is a sample pair (xi, xj), in which xi ∈ Dmin,
xj ∈ Dmaj, and xj is the nearest neighbor of xi, vice versa, as shown
in Fig. 3(c). If two samples form a Tomek link, either one in this
sample pair is noise or both are close to the border. Thus we can
get a clear decision boundary by removing all Tomek links. Some
similar work in this area includes the integration method of con-
densed nearest neighbor rule and Tomek Links [31], the neighbor
data clean rule based on edited nearest neighbor (ENN) [32], the
joint method SMOTE+ENN and the SMOTE+Tomek links [31].

2.2. Review of extreme learning machine

Extreme learning machine (ELM) is an efficient algorithm
to train single hidden layer feed-forward networks (SLFNs), as

shown in Fig. 4. Mathematically, a SLFN with M latent neurons
can be formulated as

fθ (xi) =
M∑
j=1

βjσ (wjxi + bj),

σ (wjxi + bj) =
1

1+ exp[−(wjxi + bj)]
,

(1)

in which wj = (wj1, wj2, . . . wjn) is a weight vector connecting
the observation vector xi with the jth latent neuron, which is
connected to the output layer via βj = (βj1, βj2, . . . , βjC )T . bj
is the threshold associating with the jth hidden node. σ is a
nonlinear activation, here the sigmoid function. θ = (w, b, β)
is the parameter set where the hidden weights and thresholds
(w, b) are randomly generated, and β = [β1, β2, . . . βM ]

T is the
output weight matrix. When given stochastic latent parameters,
the compact format of hidden output H is

H =

⎡⎢⎢⎢⎢⎣
σ (w1x1 + b1) · · · σ (wMx1 + bM )
σ (w1x2 + b1) · · · σ (wMx2 + bM )

...
. . .

...

σ (w1xN + b1) · · · σ (wMxN + bM )

⎤⎥⎥⎥⎥⎦
N×M

(2)

and the actual output matrix Y = [y1, y2, . . . yN ]T ∈ ℜN×C is

Y = Hβ. (3)

As such, the training objective is to minimize the cumulative
training error which can be described as

Minimize :
N∑
i=1

∥yi − ti∥2. (4)

The output weight matrix can be solved through the smallest
norm least-squares solution of above mentioned equation,

β̂ = H†T . (5)

Here T = [t1, t2, . . . tN ]T is the target output matrix, H† is the
Moore–Penrose generalized inverse of H . Through Eqs. (1) and
(2), one can note that the hidden features are determined by the
stochastic model parameters (w, b) and the input data, mean-
while, β is related with the hidden features H and the expected
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Fig. 3. Clean technique with Tomek Links. (a) is the original distribution of a dataset. (b) is the augmented data by linear interpolation, and the red stars are the
synthetic samples. The green frames in (c) are Tomek Links which are removed for clear borderline as shown in (d). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 4. An illustration of single hidden layer feed-forward network. This network
has three layers, i.e., input, hidden and output layers with n+1, M and C nodes,
respectively. The value of the (n + 1)th node in input layer is fixed as one,
and is connected with the thresholds. The arrows indicate the direction of data
propagation.

output T . Thus, if the hidden parameters (w, b) are fixed, β only
depends on the training data.

3. Discussion of the proposed method

In this section, we propose a novel over-sampling approach
to create synthetic samples for minority class. The overall frame-
work of this proposed imbalanced learning includes data genera-
tion and clean technique, in which a reasonable samples distri-
bution, guided sampling method and self-adaptive manner are
utilized as the basic elements to ensure the robustness of the
proposed method in different imbalanced issues.

3.1. Sample generation and clean for imbalanced learning

To adjust the proportion of balance between Dmin and Dmaj,
the synthetic over-sampling mechanism naturally follows from
its description by appending an additional minority class set Esyn
into Dmin. Consequently, the adjusted Dwith the increasing size of
Dmin is expected to have enhanced concept representation about
minority class. However, the region of the minority class will be
tied if the additional samples are created by linear interpolation
(as illustrated by Fig. 2 (d-2)). As a result, the inductive bias
becomes too specific for the tied region; in essence, overfitting.
Reasonable data distribution thus is a fundamental issue for over-
sampling methods. Depending upon the characteristic of sample
space, we employ a new data generation approach to create
synthetic examples in the feature space rather than the data
space. Concretely, the feature space corresponding to a minority
class sample under consideration can be defined as:

Ω = {xsyn|0 ≤ |xsyn − xτ |≤ R}, (6)

where xτ ∈ Dmin is considered as the sampling kernel, R =
|x̂τ − xτ |, x̂τ ∈ Dmin is the nearest neighbor of xτ . In our work,

the ith dimension of one synthetic sample xsyn can be derived in
what follows

xsyn, i = xτ i + αi|x̂τ i − xτ i|, (7)

in which αi ∈ [−1, 1] is a random value that determines the
position of xsyn, i relative to xτ i. For clear explanation, we illustrate
a special case with n = 3 (see Fig. 5), here Ω is a sphere centered
at the sampling kernel xτ = (xτ1, xτ2, xτ3), the direction (−,+,−)
and the step (Rx, Ry, Rz) jointly contribute to the synthetic sample
xsyn = (x̂τ1 − Rx, x̂τ2 + Ry, x̂τ3 − Rz). Under the control of these
random values, the new sample xsyn can be generated at random
point in Ω . The random data generation plays an important role
to avoid the tied distribution in Dmin. Consequently, this method
can effectively force the decision regions of the minority category
to be more general.

In the data generation mentioned above, the feature space
has been extended from line segment to hyperspace, however,
the selection of sampling kernel xτ is a crucial remaining issue.
In most of over-sampling approaches, the sampling kernels are
randomly selected from Dmin, in practice, this blind sampling
mechanic often accompanies with uncertain and risk, because
the noise data can be sampled with the same opportunity as
the normal instances of minority class. Thus it is necessary to
develop a guided sampling method for the data creation. To this
end, a prior based sample selection is proposed in the following
discussion.

Generally, Dmin contains disjunct clusters, as shown in Fig. 6(a),
each cluster is composed of several minority class samples. Fo-
cusing our discussion on the prior, we define these minority
class sub-concepts by using the weighted mixture of multivariate
Gaussian model, i.e.,

G(x|µ, Σ, π ) =
m∑
i=1

πig(x|µi, Σi). (8)

Here, GMM assumes that Dmin has m clusters, the ith cluster can
be represented by a Gaussian model as follows

g(x|µi, Σi) =
1

√
2π |Σi|

exp[(x− µi)TΣi
−1(x− µi)], (9)

in which µi indicates the mean, the covariance matrix Σi captures
the variance of each dimension, as well as the covariance between
any two dimensions of samples. The component weight πi de-
notes the importance degree that the ith cluster contributes to the
overall distributive characteristics of Dmin, such that 1 =

∑m
i=1 πi.

We use π = (π1, π2, . . . πm) to guide the selection of minority
class clusters. In this way, the dominant clusters of minority class
are more likely selected than the outliers. When given a selected
cluster, a membership degree set λ = (λ1, λ2, . . . λ|Dmin|) can be
derived according to the GMM, the element λi in λ denotes the
likelihood that minority sample xi belongs to this cluster. We use
λ as the sampling factor for a guided sampling process in the
selected cluster. By doing so, the instances conflicting with this
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Fig. 5. The illustration of G-SMOTE. In this case, all samples have 3 dimensions. xτ = (xτ1, xτ2, xτ3) and x̂τ = (x̂τ1, x̂τ2, x̂τ3) are sampling kernel and its nearest
neighbor, respectively. (a), (b) and (c) shows the positions of the synthetic sample in different dimensions, i.e., xsyn,1 , xsyn,2 and xsyn,3 . + and − denote the directions.
And the distance in different dimensions can be represented as Rx = |α1 × |x̂τ1 − xτ1||, Ry = |α2 × |x̂τ2 − xτ2||, Rz = |α3 × |x̂τ3 − xτ3||.

cluster will have lower chance to be selected as the sampling
kernels. Afterwards, the synthetic examples can be generated in
these Ω of selected sampling kernels, as discussed by Eqs. (6)
and (7). In this case, the examples in Esyn are rarely attributed to
noise or outliers, and can represent the main concept of minority
category.

After the data generation mentioned above, we can get the
set of synthetic samples. However, the synthetic sampling is
conducted without consideration to neighboring examples of op-
posite classes. Thus the new samples of minority class often cause
its decision boundary to spread into the other class regions. For
clear category borderline, a data cleaning technique based on
GMM prior is proposed to deal with the overlapping between
classes. To this end, the G(x|µ, Σ, π ) learned in data generation is
used to filter synthetic samples. For one minority class cluster, we
measure the importance degree of all synthetic samples by deriv-
ing the membership degree set λsyn = (λsyn,1, λsyn,2, . . . λsyn,|Esyn|).
The lower λsyn,i indicates that the ith synthetic sample has poor
agreement with the statistical characteristics of this cluster. Thus,
in each cluster, the synthetic samples with greater importance
degree are selected to augment Dmin. By doing so, the remaining
synthetic samples effectively avoid the occurrence of overlap-
ping, while enhancing the representation with respect to different
sub-concepts of minority class.

Algorithm 1 presents the entire steps about the synthetic
over-sampling based on GMM prior (G-SMOTE), the parameters
(µ, Σ, π ) are learned by Expectation–Maximization algorithm.

3.2. Self-adaptive framework for synthetic over-sampling technique

In the previous section, we discussed an improved synthetic
over-sampling approach based on GMM prior. Although theory of
this approach is appealing, technically speaking, several hyper-
parameters in Algorithm 1 are usually unknown and hard to
choose in practice. To be more actionable, this over-sampling
approach is formulated as an optimization problem with respect
to the unknown inputs of Algorithm 1. In the following discus-
sion, we use a population-based evolutionary algorithm, namely
differential evolution (DE) [33], to iteratively solve the multi-
objective optimization problem. By doing so, this over-sampling
approach can deal with different imbalanced issues in a self-
adaptive way (as illustrated in Fig. 7). The adaptive method is
summarized in Algorithm 2, in which some crucial steps are
discussed in what follows.

Chromosome Encoding: In DE, a chromosome is the candidate
solution consisting of variables to be optimized, in this case, the
sampling ratio (n1), the size of synthetic samples in each Ω

(n2), the ratio of remaining samples (n3) and the size of Gaus-
sian components (m). n1, n2 and n3 jointly control the balance
degree of the adjusted dataset. m is used to fit the number of
minority class clusters that is unknown in advance. As shown
in Fig. 6, some sub-concepts of minority class will be under-
represented if m is lower than the practical number of minority
class clusters, on the contrary, the sampling result will be over-
represented with respect to some specific clusters. In this step,
these four parameters are directly encoded as genes with nu-
merical type for one chromosome (n1, n2, n3,m). And a set of
chromosomes are simultaneously initialized to represent differ-
ent cases of parameters setting. The final evolved chromosome is
the most appropriate setting for over-sampling process.

Differential Evolution Operators: The optimization of chro-
mosomes is driven by a sequence of three evolution operators,
namely, mutation, crossover and selection. For each chromosome,
the mutation operator determines the updating direction and
step. Then the crossover operator decides whether the new genes
in updated chromosomes are retained or not. Afterwards, the
selection operator chooses the set of genes with better fitness
degree to the over-sampling task.

Fitness Evaluation: As mentioned above, a better fitness de-
gree is the goal of evolution process. In regard to our work,
the evolution of (n1, n2, n3,m) is towards an augmented dataset
with better representation about minority class. To quantify this
goal, we derive the relationship between (n1, n2, n3,m) and the
generalization capacity of classification learning. To this end,
we use the sampling result to train a classification model, here
the ELM mentioned in Section 2. When model parameters θ is
learned through D ∪ Esyn, the generalization capacity of model fθ
can be represented by the localized generalization error model
(LGEM) [34,35]

RSM (q) =
∫
Sq
(fθ (xu)− F (xu))2p(xu)dxu, (10)

in which F (xu) is the input–output rule, and p(xu) is the prob-
ability density function. For all training samples in D, Sq is the
q-union set that can be defined as Sq = Sq(x1)∪Sq(x2)∪· · · Sq(xN ),
in which Sq(xi) refers the q-neighborhood with respect to the ith
training sample xi, when given an input perturbation ∆xi, Sq(xi)
can be defined as {xu|xuj = xij+∆xij, 0 < |∆xij| < q, j = 1, . . . , n}
where the jth element in ∆xi is a small random value from the
uniform distribution with zero mean and variance σ 2

∆xij . Each
sample xu in Sq is unseen, the localized generalization error of
fθ can be interpreted as the expectation of classification loss over
these unseen samples. Therefore, in our work, we except to de-
velop the relationship between (n1, n2, n3,m) and the localized
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Fig. 6. The groups in minority class dataset. Each green frame denotes a subset in minority data. (a) shows the true but unknown division with respect to the
minority class data. (b) shows a fail case with inadequate representation about minority sub-concepts. (c) shows the redundant groups in one minority sub-concept.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
12 imbalanced datasets from KEEL.
ID Dataset IR Attributes Train Test

KEEL_1 ecoli1 3.36 7 268 68
KEEL_2 glass0 2.06 9 171 43
KEEL_3 glass1 1.82 9 171 43
KEEL_4 haberman 2.78 3 244 62
KEEL_5 new-thyroid1 5.14 5 172 43
KEEL_6 new-thyroid2 5.14 5 172 43
KEEL_7 segment0 6.02 19 1846 462
KEEL_8 vehicle0 3.25 18 676 170
KEEL_9 vehicle1 2.9 18 676 170
KEEL_10 vehicle2 2.88 18 676 170
KEEL_11 wisconsin 1.86 9 546 137
KEEL_12 yeast-2_vs_4 9.08 8 411 103

generalization error, then, by using this relation, (n1, n2, n3,m)
can be evolved towards the lower localized generalization error.
However, F (xu) and p(xu) are unknown in practice, we thus use
the error bound model of LGEM as the fitness function. According
to Hoeffdings inequality, the upper bound of Eq. (10) can be
derived as

RSM (q) ≤ [
√
ESq ((∆y)2)+

√
Remp + A]2 + ε. (11)

Here, for a given training sample xi, such that ∆y = fθ (xu) −
fθ (xi), ε = B

√
ln η/(−2N), Remp is the training error, A, B and η

respectively are difference between the highest and lowest values
in expected outputs, the possible maximum value of training loss
and the confidence of the bound. q2

3

∑M
i=1

∑M
j=1 βiβj

∑n
k=1 wikwjk

is the stochastic sensitivity measure ESq ((∆y)2) (refer to appendix
for the derivation). On the right of the Eq. (11), these items are
determined by the model parameter θ . Furthermore, when given
(w, b), β only depends on the training data. Thus, during the
whole evolution process, (w, b) are fixed, when given a candidate
solution, we use the corresponding balanced data to learn β
through Eq. (5), the trained model is employed to derive the
fitness degree, in this case, the upper bound of LGEM as described
by Eq. (11).

By doing so, for a given task at hand, GMM can appropriately
fit minority class sub-concepts by adaptively adjusting the size
of Gaussian components. Then, based on GMM prior, the guided
sampling and data clean can be performed with appropriate
parameters ξbest solved by Algorithm 2.

4. Performance evaluation and analysis

In this section, comprehensive experiments have been con-
ducted on typical imbalanced datasets from the popular Knowl-
edge Extraction based on Evolutionary Learning (KEEL) data
repository [36]. Table 1 presents the details of these datasets. In
regards to evolution metrics, typically, there are four outcomes
for a set of instances, i.e. true positive (TP), false negative (FN),
false positive (FP) and true negative (TN). These relations among

Algorithm 1: G-SMOTE
Input:

n1: sampling ratio
n2: the number of samples generated in each Ω

n3: the ratio of remaining samples
m: the number of Gaussians
Dmin: the set of minority class cases

Output:
Esyn: the synthetic minority class samples.

1 Train Gaussian mixture model Θ = (µ, Σ, π ) with m
components on Dmin via EM, the main steps at the eth
iteration are:
Expectation-Step:Q (Θ, Θe) = E[lnP(X, δ|Θ)|X, Θe

]

Maximization-Step: Θe+1
= argminQ (Θ;Θe) //X ∈ ℜN×n is the

feature matrix, δ is the missing variable.
2 Sample kernels from Dmin based on Θ , and |kernels|= |Dmin|×n1
3 Esyn=Array[n2 × |kernels|][n]
4 index = 0
5 for i← 1 to |kernels| do
6 Compute the nearest neighbor x̂i for kernels[i]
7 for j← 1 to (n2) do
8 R=distance between kernels[i] and x̂i
9 Randomly choose a point xsyn from Ω , and xsyn /∈ Esyn

10 Esyn[index]=xsyn
11 index++
12 end
13 end
14 Get the top-(n3× |Esyn|) instances with the high probability from

Esyn

the four outcomes are summarized in Fig. 8, in this work, the
minority class is positive, and the majority class is negative.
The accuracy representing the performance on all classes can be
defined as

acc =
TP + TN

TP + TN + FP + FN
. (12)

Besides, an additional measure, namely F-score, is used to eval-
uate the classification performance on positive class, and can be
defined as

F − score =
2 Pr ecision× Recall
Pr ecision+ Recall

, (13)

in which the Precision and Recall can be calculated as

Pr ecision =
TP

TP + FP
;

Recall =
TP

TP + FN
.

(14)

4.1. Comparison with different sampling methods

In this experimental part, the GA-SMOTE is compared with
several popular imbalanced learning methods, namely ROS, RUS,
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Algorithm 2: GA-SMOTE
Input:

Ge: Upper bound of generations
Pz : Size of population
Mu: Mutation factor
Cr : Crossover probability
Dmin: Minority class cases set
range = (ξmin, ξmax): Range between lower
bound ξmin and upper bound ξmax

Output: ξbest
1 Step 1) Initialization:
2 Generate an initial population {ξ 0

1 , ..., ξ 0
Pz }.

3 ξ 0
i = ξmin + rand(0, 1) ∗ (ξmax − ξmin), i = 1, 2, ..., Pz .

4 Evaluate each initial candidate solution ξ 0
i via the fitness

functions fitness(ξ g
i ):

5 (n1, n2, n3,m) = ξ
g
i , g ∈ {0, 1, ...,Ge}

6 Esyn= G-SMOTE(n1, n2, n3,m,Dmin)
7 Daug = D ∪ Esyn
8 Train ELM on Daug and return the upper bound of LGEM
with respect to ξ

g
i .

9 Step 2) Evolution:
10 for g = 1, · · · ,Ge do
11 for i = 1, · · · , Pz do
12 Step 2.1) Mutation:
13 Randomly choice two indexes r1 and r2 from

{1, · · · , Pz};
14 hg

i = ξ
g−1
i +Mu · (ξ

g−1
r1 − ξ

g−1
r2 );

15 Step 2.2) Crossover:
16 for j = 1, · · · , 4 do

17 v
g
i (j) =

{
hg
i (j), if rand(0, 1) ≤ Cr

ξ
g−1
i (j), otherwise

18 end
19 Step 2.3) Selection
20 if fitness(vg

i ) <fitness(ξ
g−1
i ) then

21 ξ
g
i = v

g
i

22 else
23 ξ

g
i = ξ

g−1
i

24 end
25 end
26 end
27 ξbest = argmin(fitness(ξGe

i )), i = 1, ..., Pz

SMOTE, SMOTE-ENN and SMOTE-TL. The classifier is the ELM
as used in Algorithm 2. During the iteration of DE, the hidden
weights and thresholds of ELM are fixed after stochastic initial-
ization. Each imbalanced dataset is re-balanced by all methods
mentioned above, and the balanced datasets are used to train
ELMs with the same (w, b), then the results on test data are
reported in Table 2. According to these consequences, one can
note that all the performance on different imbalanced data can be
significantly improved by the proposed method (average incre-
ment on accuracy and F-score are 3.33% and 26.84%, respectively),
these boosted results indicate that the GA-SMOTE can provide
favorable accuracies across overall categories, the reason is that
the bias on majority class is adjusted by the re-balanced dataset
with reasonable synthetic samples. Meanwhile, compared with
other imbalanced techniques, our method gets higher accuracy
and F-score in most cases. These improvement can demonstrate
that GA-SMOTE has better robustness, which benefits from GMM
prior and reasonable sampling space which greatly avoid inter-
ference of outliers, and enhance the controllability in sampling

process and sample synthesis. Besides, compared with other data
clean techniques (e.g., SMOTE-ENN and SMOTE-TL), GA-SMOTE
has better performance, because the data clean in the proposed
method removes the unsatisfactory synthetic samples without
losing the majority class information, and the proposed method
can adaptively work for better generalization.

4.2. Extended experiment on different classification algorithms

To further demonstrate the effectiveness of GA-SMOTE, these
balanced datasets mentioned in previous section are used to train
different classifiers, i.e. support vector machine (SVM), k-nearest
neighbors (KNN), naive Bayesian (NB), random forest (RF) and
classification and regression tree (CART). Tables 3–7 report the
results on test datasets.

By these results, we can observe that the balanced datasets
processed by our method also improve the performance of var-
ious classification algorithms, particularly for the sensitive ap-
proach to skewed category distribution, such as SVM, its results
tend to behave great difference between high accuracy and low
F-score (at least 5.3% difference), which indicates high FN rate
on minority class in tandem with high FP rate on majority class.
This mainly is due to the fact that majority class dominates
the learning algorithm. In contrast, the compensation yielded by
our method enhances the representation of few-shot instances
(average improvement of F-score is 19.58% for all classifiers). This
confirms that the generalization ability is dependent on the data
the classifiers were trained on. Compared with other imbalanced
learnings, the proposed method achieves better results in gen-
eral, especially the predication accuracy of few-shot samples is
boosted, while the FP rate of majority case is weakened. These
results indicate that the synthetic samples are more similar to
existing minority class samples due to the guidance of GMM prior,
and the extended minority data take more effective attention of
classification learning.

5. Conclusion

In this paper, we propose the GA-SMOTE which is a novel
over-sampling mechanic for imbalanced learning. GA-SMOTE im-
proves the over-sampling robustness from three aspects. On one
hand, instead the synthetic instances are generated in high di-
mensional feature space rather than a simple linear space. On
the other hand, the GMM is employed to distinguish the out-
liers from minority class instances and filter out the synthetic
instances with low agreement to the minority class concept.
Last and more importantly, an adaptive optimization method is
proposed to optimize these parameters in sampling process. By
doing so, synthetic samples can be created in an effectiveness
and efficiency way. Comprehensive experiments prove that this
proposed framework provides a more robust way to generate
minority class instances, and boost the performance of different
classification algorithms on imbalanced issues.

Appendix

Given a training sample x, the derivation about stochastic
sensitivity measure [37] can be described in what follows.

According to the Taylors series expansion: 1
1+x =

∑
∞

t=0 (−1)
t

xt , −1 < x < 1, the first item in Eq. (1) can be rewritten as

fθ (x) =
M∑
j=1

βj

∞∑
t=0

(−1)t (exp(−(wj × x+ bj)))t ,

0 < exp(−(wj × x+ bj)) < 1.

(15)
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Table 2
Accuracy/F-score of ELM.
ID ORIGIN ROS RUS SMOTE SMOTE-ENN SMOTE-TL GA-SMOTE

KEEL_1 0.8529/0.6667 0.8676/0.7429 0.8824/0.75 0.8529/0.7059 0.8529/0.7222 0.8676/0.7429 0.8971/0.7742
KEEL_2 0.8701/0.2105 0.7554/0.5066 0.7576/0.5214 0.7554/0.4978 0.7446/0.4825 0.7468/0.4891 0.8939/0.5950
KEEL_3 0.8588/0.6842 0.7941/0.6602 0.7824/0.6542 0.7882/0.6538 0.8/0.6792 0.7941/0.6729 0.8824/0.7561
KEEL_4 0.7765/0.4722 0.7059/0.5763 0.7235/0.5913 0.6941/0.5593 0.7/0.5785 0.6588/0.5538 0.7882/0.6327
KEEL_5 0.9416/0.92 0.9416/0.9184 0.9562/0.94 0.9416/0.9216 0.9197/0.8911 0.927/0.9 0.9489/0.9293
KEEL_6 0.9223/0.5 0.932/0.72 0.9029/0.6429 0.9029/0.6429 0.9029/0.6429 0.9029/0.6429 0.9515/0.7368
KEEL_7 0.7209/0.4 0.6744/0.65 0.6977/0.6667 0.6744/0.65 0.6512/0.6341 0.5581/0.5957 0.7674/0.6667
KEEL_8 0.5116/0.087 0.5116/0.4878 0.4884/0.4762 0.4884/0.4762 0.5116/0.5116 0.4884/0.5 0.5349/0.5238
KEEL_9 0.7419/0.2 0.6774/0.4737 0.5806/0.35 0.4032/0.3509 0.3871/0.3448 0.4032/0.3729 0.7742/0.5882
KEEL_10 0.8837/0.4444 0.907/0.7778 0.8605/0.7 0.907/0.7778 0.907/0.7778 0.907/0.7778 0.9767/0.9333
KEEL_11 0.907/0.6 0.6744/0.4615 0.7209/0.5 0.6512/0.4444 0.6512/0.4444 0.6512/0.4444 0.9535/0.8571
KEEL_12 0.7118/0.1695 0.7176/0.5789 0.7059/0.5763 0.7118/0.5664 0.6941/0.5593 0.6647/0.5366 0.7294/0.5818

Table 3
Accuracy/F-score of KNN.
ID ORIGIN ROS RUS SMOTE SMOTE-ENN SMOTE-TL GA-SMOTE

KEEL_1 1.0/0.9231 0.9535/0.875 0.907/0.75 0.9767/0.9333 0.9535/0.8571 0.9302/0.8 1.0/0.9767
KEEL_2 0.8434/0.8293 0.9059/0.8298 0.8765/0.7921 0.8882/0.8 0.8765/0.7879 0.8824/0.7959 0.9235/0.9176
KEEL_3 0.9524/0.8421 0.9417/0.7692 0.9515/0.8 0.9126/0.6897 0.8932/0.6452 0.8835/0.625 0.9903/0.9709
KEEL_4 0.4348/0.3377 0.6647/0.5043 0.6941/0.5806 0.7/0.5565 0.6882/0.5691 0.6824/0.5781 0.6941/0.7
KEEL_5 1.0/0.9231 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/0.9767
KEEL_6 0.9701/0.9848 0.9827/0.9429 0.8506/0.6567 0.9827/0.9429 0.9848/0.9496 0.9848/0.9496 0.9913/0.9957
KEEL_7 0.5/0.5 0.6744/0.5625 0.5581/0.4242 0.6279/0.5 0.6512/0.5455 0.6744/0.6316 0.6744/0.6744
KEEL_8 0.6897/0.6897 0.7674/0.7222 0.7442/0.6667 0.7907/0.7273 0.7209/0.6471 0.6977/0.6667 0.7907/0.7907
KEEL_9 0.75/0.7381 0.8765/0.7961 0.8235/0.7115 0.8765/0.7921 0.8588/0.7692 0.8765/0.8 0.8706/0.8706
KEEL_10 0.5/0.32 0.6452/0.45 0.629/0.4651 0.4677/0.4 0.5161/0.4828 0.4839/0.4667 0.6774/0.7258
KEEL_11 0.9895/0.9895 0.9854/0.9792 0.9854/0.9792 0.9708/0.9592 0.9781/0.9691 0.9781/0.9691 0.9927/0.9927
KEEL_12 0.7742/0.7586 0.8676/0.7429 0.8676/0.7273 0.8824/0.75 0.8529/0.7059 0.8676/0.7429 0.8971/0.8971

Table 4
Accuracy/F-score of SVM.
ID ORIGIN ROS RUS SMOTE SMOTE-ENN SMOTE-TL GA-SMOTE

KEEL_1 0.4444/0.25 0.8837/0.4444 0.7674/0.5833 0.8837/0.4444 0.8837/0.4444 0.8837/0.4444 0.8837/0.8605
KEEL_2 0.7647/0.0 0.7647/0.0 0.7765/0.0952 0.7647/0.0 0.7647/0.0 0.7706/0.0488 0.7647/0.7647
KEEL_3 0.4286/0.0 0.9612/0.8333 0.9709/0.8571 0.9515/0.8 0.9515/0.8 0.9515/0.8 0.9223/0.8932
KEEL_4 0.7412/0.0 0.7412/0.0 0.3118/0.4236 0.7412/0.0 0.2765/0.4171 0.2706/0.4151 0.7412/0.7412
KEEL_5 0.8333/0.4444 0.907/0.6 0.6744/0.5 0.9302/0.7273 0.9535/0.8333 0.9535/0.8333 0.9535/0.8837
KEEL_6 0.68/0.5957 0.9307/0.68 0.9589/0.8319 0.9524/0.8 0.9502/0.789 0.9502/0.7928 0.9307/0.9177
KEEL_7 0.6047/0.5517 0.6279/0.619 0.6279/0.619 0.6279/0.619 0.6279/0.619 0.4884/0.56 0.6047/0.6977
KEEL_8 0.8125/0.3158 0.6744/0.6667 0.6279/0.6364 0.6744/0.6667 0.7442/0.7179 0.6279/0.6364 0.8605/0.6977
KEEL_9 0.7412/0.0 0.7412/0.0 0.7824/0.2745 0.7588/0.1277 0.7588/0.1277 0.7529/0.087 0.7412/0.7412
KEEL_10 0.3125/0.0 0.6452/0.0833 0.5484/0.4815 0.5806/0.2778 0.5323/0.5085 0.5323/0.5085 0.6452/0.7258
KEEL_11 0.94/0.9495 0.9635/0.9495 0.9562/0.94 0.9562/0.94 0.9562/0.94 0.9562/0.94 0.9562/0.9635
KEEL_12 0.8/0.6667 0.8971/0.8 0.8971/0.8 0.8971/0.8 0.8824/0.7778 0.8971/0.8 0.8971/0.8676

Table 5
Accuracy/F-score of CART.
ID ORIGIN ROS RUS SMOTE SMOTE-ENN SMOTE-TL GA-SMOTE

KEEL_1 0.9333/0.8 0.9767/0.9231 0.9535/0.8571 1.0/1.0 1.0/1.0 1.0/1.0 0.9767/0.9302
KEEL_2 0.8571/0.8736 0.9294/0.85 0.9235/0.8539 0.8765/0.7273 0.9176/0.8372 0.9/0.809 0.9294/0.9353
KEEL_3 0.8696/0.8 0.9709/0.8571 0.9126/0.6897 0.9417/0.75 0.9417/0.7692 0.932/0.7407 0.9709/0.9612
KEEL_4 0.5055/0.4889 0.7412/0.4884 0.7588/0.6496 0.7706/0.6139 0.7353/0.5946 0.7412/0.6071 0.7353/0.7294
KEEL_5 1.0/1.0 1.0/1.0 0.9535/0.875 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
KEEL_6 0.9848/0.9774 0.9957/0.9851 0.9784/0.9296 0.9935/0.9778 0.9913/0.9706 0.987/0.9559 0.9957/0.9935
KEEL_7 0.5806/0.5161 0.6744/0.5333 0.6977/0.6486 0.6279/0.5 0.6977/0.6286 0.6512/0.5946 0.6977/0.6512
KEEL_8 0.6429/0.75 0.907/0.8571 0.8372/0.7742 0.7907/0.7097 0.907/0.8667 0.8605/0.8125 0.7674/0.814
KEEL_9 0.9176/0.8941 0.9588/0.9157 0.9353/0.8791 0.9765/0.9535 0.9529/0.9048 0.9529/0.9091 0.9588/0.9471
KEEL_10 0.5641/0.3226 0.6935/0.4242 0.7097/0.5714 0.6452/0.3529 0.5968/0.5283 0.4516/0.3462 0.7258/0.6613
KEEL_11 0.9574/0.8791 0.9708/0.9565 0.9708/0.9574 0.9562/0.9333 0.9416/0.9184 0.9708/0.9574 0.9708/0.9197
KEEL_12 0.6667/0.7097 0.8529/0.6875 0.8382/0.6857 0.9118/0.8125 0.8676/0.7273 0.8676/0.7273 0.8529/0.8676
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Table 6
Accuracy/F-score of NB.
ID ORIGIN ROS RUS SMOTE SMOTE-ENN SMOTE-TL GA-SMOTE

KEEL_1 0.875/0.9333 0.9767/0.9333 0.9767/0.9333 0.9767/0.9333 0.9767/0.9333 0.9767/0.9333 0.9535/0.9767
KEEL_2 0.5197/0.5323 0.6471/0.5522 0.6471/0.5385 0.6353/0.5303 0.6412/0.5344 0.6353/0.5303 0.6412/0.6588
KEEL_3 0.1538/0.1942 0.165/0.1887 0.9223/0.7143 0.1942/0.1942 0.233/0.202 0.1942/0.1942 0.8932/0.1942
KEEL_4 0.5217/0.531 0.6765/0.5455 0.6353/0.5231 0.6529/0.5354 0.6412/0.5271 0.6353/0.5373 0.6765/0.6882
KEEL_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
KEEL_6 0.7052/0.6337 0.8268/0.6154 0.8355/0.6275 0.8312/0.6214 0.8312/0.6214 0.8312/0.6214 0.8896/0.8398
KEEL_7 0.55/0.6383 0.5116/0.5532 0.5581/0.6122 0.5814/0.625 0.5349/0.6 0.5116/0.5532 0.5814/0.6047
KEEL_8 0.6364/0.6364 0.6047/0.6222 0.6279/0.6364 0.6279/0.6364 0.6279/0.6364 0.6047/0.6222 0.6279/0.6279
KEEL_9 0.5546/0.561 0.8059/0.6796 0.7824/0.6337 0.7706/0.6355 0.8059/0.6733 0.7706/0.6422 0.6882/0.7882
KEEL_10 0.5517/0.4167 0.8226/0.5926 0.8065/0.5714 0.7258/0.5405 0.7258/0.5405 0.7258/0.5641 0.7903/0.7742
KEEL_11 0.9592/0.9592 0.9708/0.9592 0.9708/0.9592 0.9635/0.9495 0.9635/0.9495 0.9635/0.9495 0.9708/0.9708
KEEL_12 0.7429/0.4167 0.4118/0.4286 0.3676/0.411 0.4559/0.4478 0.4559/0.4478 0.4559/0.4478 0.8676/0.3824

Table 7
Accuracy/F-score of RF.
ID ORIGIN ROS RUS SMOTE SMOTE-ENN SMOTE-TL GA-SMOTE

KEEL_1 1.0/1.0 0.9767/0.9231 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
KEEL_2 0.8571/0.875 0.9588/0.9136 0.9294/0.8696 0.9412/0.878 0.9588/0.9176 0.9294/0.8605 0.9353/0.9412
KEEL_3 0.8182/0.6667 0.9515/0.7619 0.932/0.72 0.9612/0.8333 0.9515/0.8 0.9515/0.8 0.9612/0.9417
KEEL_4 0.5063/0.4571 0.7765/0.5778 0.8235/0.7059 0.7941/0.6237 0.7882/0.6842 0.7706/0.6667 0.7706/0.7765
KEEL_5 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
KEEL_6 1.0/0.9924 1.0/0.9978 0.9935/0.9778 0.9978/0.9925 0.9978/0.9925 0.9957/0.9851 1.0/1.0
KEEL_7 0.5333/0.6667 0.7442/0.6452 0.7209/0.6471 0.7907/0.7097 0.6977/0.5806 0.6512/0.5946 0.6744/0.7674
KEEL_8 0.7857/0.7407 0.8605/0.7857 0.9302/0.8966 0.8372/0.7407 0.8605/0.8 0.8605/0.8125 0.8605/0.8372
KEEL_9 0.9655/0.9268 0.9765/0.9535 0.9765/0.9545 0.9941/0.9885 0.9824/0.9655 0.9882/0.9773 0.9824/0.9647
KEEL_10 0.3571/0.0833 0.6935/0.3448 0.7097/0.55 0.5645/0.3415 0.5968/0.5098 0.6129/0.5385 0.7097/0.6452
KEEL_11 0.9677/0.9574 0.9781/0.9684 0.9635/0.9474 0.9635/0.9474 0.9708/0.9583 0.9708/0.9574 0.9781/0.9708
KEEL_12 0.6875/0.6667 0.8676/0.7273 0.8824/0.7647 0.8676/0.7273 0.8824/0.7647 0.8676/0.7273 0.8529/0.8529

Fig. 7. Evolutionary procedure of imbalanced learning. The right panel shows the mutation and crossover in differential evolution. Pz is the size of population. The
red dashed framework is a candidate solution set. The left part shows the iterative optimization of differential evolution. The algorithm has two stop criteria, one
is the upper bound of iteration, the other is convergent result. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

The terms with order greater than 1 are ignored, then we have
fθ (x) ≈

∑M
j=1 βj(1− exp(−(wj × x)+ bj)).

Let Sj =
∑n

i=1 (wjixi + bj) and S∗j =
∑n

i=1(wji(xi+ ∆xi) + bj),
then ESq ((∆y)2)

= ESq ((
M∑
j=1

βj(1− exp(−S∗j ))−
M∑
j=1

βj(1− exp(−Sj)))
2)

= ESq ((
M∑
j=1

βj(exp(−Sj)− exp(−S∗j )))
2)

Let Vj = exp(−Sj) − exp(−S∗j ), then ESq ((∆y)2) =
∑M

j=1
∑M

i=1 βiβj
ESq (ViVj), we have ESq (ViVj)

= ESq (exp(−Si − Sj))− ESq (exp(−Si − S∗j ))

−ESq (exp(−S
∗

i − Sj))+ ESq (exp(−S
∗

i − S∗j )).
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Fig. 8. Confusion matrix about four outcomes.

Based on the central limit theorem, exp(Sj) and exp(S∗j ) have a
log-normal distribution, thus ESq (exp(−S

∗

i − S∗j ))

= exp(
Var(S∗i + S∗j )

2
− E(S∗i + S∗j ))

≈ 1+
Var(S∗i + S∗j )

2
− E(S∗i + S∗j ),

in which, the first item on the right hand approximates to one.
Then,

ESq (ViVj) =
1
2
(Var(S∗i + S∗j )+ Var(Si + Sj)

−Var(S∗i + Sj)− Var(Si + S∗j )).

Because Var(S∗i + S∗j ) =

Var(
n∑

k=1

(wik(xk +∆xk)+ bi)

+

n∑
k=1

(wjk(xk +∆xk)+ bj))

=

n∑
k=1

(wik + wjk)2Var(xk)+
q2

3

n∑
k=1

(wik + wjk)2

Finally, ESq ((∆y)2) = q2
3

∑M
i=1

∑M
j=1 βiβj

∑n
k=1 wikwjk.
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