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Abstract—With the development of social network platforms,
discussion forums, and question answering websites, a huge num-
ber of short messages that typically contain a few words for an
individual document are posted by online users. In these short
messages, emotions are frequently embedded for communicating
opinions, expressing friendship, and promoting influence. It is
quite valuable to detect emotions from short messages, but the
corresponding task suffers from the sparsity of feature space.
In this article, we first generate term groups co-occurring in
the same context to enrich the number of features. Then, two
basic supervised topic models are proposed to associate emotions
with topics accurately. To reduce the time cost of parameter
estimation, we further propose an accelerated algorithm for our
basic models. Extensive evaluations using three short corpora val-
idate the efficiency and effectiveness of the accelerated models
for predicting the emotions of unlabeled documents, in addition
to generate the topic-level emotion lexicons.

Index Terms—Accelerated algorithm, emotion detection, short
text analysis, topic model.
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I. INTRODUCTION

W ITH the development and popularization of social
media services, users are increasingly inclined to com-

municate and share emotions on social network platforms,
such as Twitter, Facebook, Sina Weibo, and WeChat. By using
mobile devices, it is convenient for users to express com-
ments on news or personal events, which generates large-scale
short messages that are limited in length, usually spanning sev-
eral sentences or less. Emotion detection on short messages
is therefore quite valuable to capture the emotional tendency
of social media users, for example, happy, sad, or surprise,
toward entities, brands, or events. However, the feature sparsity
of short texts brings huge challenges to traditional word-level
algorithms [1], [2]. This is because two short documents may
semantically related to each other without sharing any com-
mon words. Furthermore, a word can have multiple meanings
depending on its context [3]. Thus, another solution to emo-
tion detection attempts to extract topics first [4], [5], in which,
a topic can represent a real-world event and the topic-level
feature space is coherent by grouping semantically related
words. Then, the emotions are associated with the topics for
the emotion detection of unlabeled documents. Although the
aforementioned issue of word-level algorithms can be allevi-
ated by mapping the sparse word space to a coherent topic
space, a traditional topic model, such as the latent Dirichlet
allocation (LDA) [6], fails to generate accurate topics over
short messages. This is because a short document lacks enough
word occurrence patterns to draw statistical conclusions for
such kind of topic models [7]. Recently, Cheng et al. [8]
proposed the biterm topic model (BTM) to extract high-quality
topics from short messages. BTM assumed that two words that
co-occurred in a context (e.g., in the same document) are likely
to belong to the same topic. However, the generated topic fea-
tures of BTM may be unsuitable to predict emotions without
any guidance from labels in the training corpus. Furthermore,
BTM is too time consuming to model such large-scale word
pairs.

To address the aforementioned issues, we here develop
a weighted labeled topic model (WLTM) and an X-term
emotion-topic model (XETM) to detect emotions toward cer-
tain topics. In the generative process of WLTM, we first define
a one-to-many mapping among each emotion and multiple top-
ics, by assuming that a single emotion may be evoked by sev-
eral topics. Second, we use the emotion distributions of labeled
documents to constrain the topic probability for each feature

2168-2267 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8093-867X
https://orcid.org/0000-0003-1610-9599
https://orcid.org/0000-0001-6036-4728
https://orcid.org/0000-0002-3976-0053
https://orcid.org/0000-0003-3370-471X


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

during the training process. Finally, we employ the support
vector regression (SVR) [9] to predict emotion distributions
of unlabeled documents given the estimated topic probabil-
ity for each feature. In the generative process of XETM, we
draw the emotion-topic probability which exploits abundant
user scores over multiple emotions. Then, the topic-feature
probability is derived for estimating the emotion probabilities
of unlabeled documents. The main characteristics of WLTM
and XETM are summarized as follows. First, both WLTM and
XETM are supervised topic models which align the generated
topics to emotions using the emotion distributions of train-
ing documents for guidance. Second, the abundant features
are generated by jointly modeling emotion labels and term
groups. Particularly, a term group with X words co-occurring
in the same context is called X-term. With abundant features,
the proposed models allow us to draw statistical conclusions
for short documents. Although the sparse feature issue of short
messages can be alleviated by WLTM and XETM, the time
cost of estimating parameters is high due to the large-scale
term groups and the sampling algorithm [10]. To improve the
efficiency, we further propose the accelerated models dubbed
fWLTM and fXETM for WLTM and XETM by combining
the Alias method [11] and the Metropolis–Hastings (MH) sam-
pling [12]. Experiments using a sensibly small and unbalanced
news headlines with six emotions, a larger and balanced sen-
tences annotated with seven emotions, and a Chinese corpus
with eight emotions validate the effectiveness of the proposed
methods.

The remainder of this article is organized as follows. In
Section II, we summarize the related works on emotion detec-
tion and short text analysis. In Section III, we detail the
basic WLTM and XETM methods, and corresponding accel-
erated models called fWLTM and fXETM for short text
emotion detection. The experimental evaluations are shown
in Section IV, and we draw the conclusions in Section V.

II. RELATED WORK

As one of the basic tasks of affective computing and sen-
timent analysis [13], emotion detection aims to identify and
extract the attitudes of a subject (i.e., an opinion holder, a com-
mentator, and so forth) toward either a topic, an aspect, or the
overall tone of a document [14]. Methods of emotion detec-
tion are mainly based on the lexicons, supervised learning, and
unsupervised learning algorithms. The lexicon-based meth-
ods [5], [15]–[19] construct the word-level, concept-level, or
topic-level emotional/sentimental dictionaries to detect emo-
tions. For example, the emotion-term method [4] associated
words with emotions and used the word-emotion dictionary for
prediction. The contextual sentiment topic model (CSTM) [20]
mined connections between topics and emotions by distilling
context-independent information, which were further applied
to social emotion classification. The models based on super-
vised learning used traditional classification algorithms (e.g.,
naïve Bayes [21], maximum entropy [22], and support vec-
tor machines [23]) or deep learning models (e.g., sentiment
embedding-based method [24], deep memory network [25],

hybrid neural network [26], and Sentic LSTM and H-Sentic-
LSTM [27]) to detect emotions or sentiments from documents.
The unsupervised learning methods detected the sentimental or
emotional orientation by counting the co-occurrence frequency
between words and positive/negative terms [28]. However, the
aforementioned methods were mainly suitable to long articles
which typically contain abundant features.

With the prevalence of tweets, questions, instant-messages,
and news headlines, several strategies have been proposed
to tackle the feature sparse issue of short messages. One
solution expanded the content of short documents by trans-
ferring topical knowledge from large-scale data collections
or auxiliary long texts [29], [30], but it only achieved a
good topical distribution when the auxiliary data are closely
related to the original corpus. Furthermore, it is difficult
to determine the suitable size of external data collections.
Another solution to short text analysis exploited the aggre-
gated word co-occurrence patterns in the entire corpus for
topic learning [8], [31]. For a short document with N words,
C2

N unordered word pairs, namely, biterms, can be extracted
by assuming that two words from the same document share a
single topic. Unlike most existing document-level topic mod-
els, the above method learns topic components for a corpus
using the generated rich biterms. However, it was unsuitable
to model labeled documents due to the lack of supervision
during the training process. Furthermore, Gibbs sampling was
employed by the above model and many other topic mod-
els to estimate parameters [8], [32], which is quite time
consuming with the increase of the number of documents,
features/biterms, or topics. Therefore, we detect emotions of
short text by two supervised topic models and further develop
an MH sampling in conjunction with the Alias method for
accelerating parameter estimation.

III. FAST SUPERVISED TOPIC MODELS

Here, we first present the basic supervised topic models,
namely, WLTM and XETM for detecting emotions over short
messages. To make the topic sampling more efficient without
reducing much topic quality, we further develop accelerated
algorithms for both WLTM and XETM.

A. Problem Definition

Before illustrating our supervised topic models for short
text emotion detection, we summarize notations, variables, and
terms in Table I. Taking a collection of ND short documents
{d1, d2, . . . , dND} as an example, the issue of emotion detection
is defined as predicting the emotion distribution of unlabeled
documents conditioned to labeled data. For each labeled doc-
ument d, there are Nd words and scores/ratings over NE

emotions, which are denoted as ωd = {ω1, ω2, ω3, . . . , ωNd }
and Ed = {Ed,1, Ed,2, . . . , Ed,NE }, respectively. Using each
text as a context, we can generate NG unordered term groups
that are represented by G = {gi}NG

i=1. For instance, a short
document with four words will get six term groups when
X is 2: (ω1, ω2, ω3, ω4) ⇒ {(ω1, ω2), (ω1, ω3), (ω1, ω4),

(ω2, ω3), (ω2, ω4), (ω3, ω4)}. We represent the emotion anno-
tation information by a real-valued matrix γ with the size of
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TABLE I
NOTATIONS

Fig. 1. Label-topic projection with τ = 5.

ND × NE. Each row of γ is a document’s real-valued vec-
tor over NE emotion labels, for example, {1, 0} means that
the document is associated with the first emotion, and {3, 1}
indicates that the document is tagged to both emotions with
strengths of 3 and 1, respectively.

In the first model called WLTM, we assume that each emo-
tion can be associated with multiple topics. Take the following
two short messages as an example: “I feel surprised about
my Christmas gift” and “The examination results surprised
me.” Although both messages trigger the emotion of “sur-
prise,” we can observe that the distinct topics of “Christmas
gift” and “examination” are embedded. To this end, we define
a multiplier τ to represent how many topics per emotion
involves. Specifically, Fig. 1 presents the projection of emo-
tion labels and topics when τ equals 5, in which constant
mapping of an emotion to τ topics is adopted. This is con-
sistent to LDA’s assumption that a document can be mapped
to a given number of topics [6]. We leave the infinite map-
ping method, for example, in hierarchical Dirichlet processes
to further research, because the parameter estimation is quite
time consuming [33]. Through the above mapping of emotions
to topics, we can conveniently develop the supervised mech-
anism in WLTM. In the second model called XETM, we use
an NE × Nz matrix ϕ to denote the multinomial distributions
of emotions to topics.

B. Weighted Labeled Topic Model

The graphical representation of WLTM is shown in Fig. 2,
where observed and unobservable data are represented by
shaded and blank nodes, respectively.

After mapping each emotion to multiple topics via
multiplier τ , we could incorporate the supervision of

Fig. 2. Graphical representation of WLTM. � is the emotion label prior for
X-terms. τ indicates the number of topics associated with each emotion. �
represents the topic binary (presence/absence) indictor. i means the ith X-term.

emotion labels of training documents into topic generation.
Furthermore, the number of topics Nz can be tuned by setting
different values of τ , that is, Nz = NE×τ . Although there were
supervised topic models, such as labeled LDA (LLDA) [32]
being proposed, existing methods mainly exploited the one-to-
one correspondence between labels and topics, which renders
the number of topics must equal the size of the label set.
On the other hand, the label-topic projection in our WLTM
is one-to-many. Thus, different aspects can be discovered for
each emotion label as mentioned earlier.

To explore document labels in generating topics effectively,
we propose to extract an NG × Nz indicator matrix � for all
X-terms. For the above matrix, each row �gi is a list of binary
topic indictors (i.e., presence/absence) related to the emotion
labels of the document that contains X-term gi. In particular,
the generation of �gi is as follows. Given τ and emotion label
prior information �, for each X-term gi, �gi is the prior emo-
tion label with size of 1 × NE. Then, we construct an NE × τ

matrix Lgi which means each emotion label is linked to τ

topics, as follows:

{
Lj

gi

}NE

j=1
=

{
{1}τ if �

j
gi! = 0

{0}τ if �
j
gi = 0

(1)

where Lj
gi is the jth row of Lgi and �

j
gi is the jth element

of �gi . {1}τ and {0}τ are τ -dimensional vectors with 1 and
0, respectively. Then, we transform Lgi to a 1-D vector �gi

with NE × τ (i.e., Nz) elements by appending the vector of
following rows to the first row in turn. Take τ = 2, NE = 2,
Nz = 4, and a labeled document that contains gi with emotion

ratings �gi = {2, 0} as an example, we obtain Lgi =
[

1 1
0 0

]

according to (1) and �gi = {1, 1, 0, 0}. The generative process
of WLTM is presented as follows:

1) For each topic z ∈ [1, Nz], draw φz ∼ Dirichlet (β);
2) For each X-term gi ∈ G:
3) For each topic z ∈ [1, Nz]:
4) Generate �z

gi
∈ {0, 1} ∼ Bernoulli(·|�gi , τ );

5) Generate λgi = {z|�z
gi

= 1};
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6) Draw θ ∼ Dirichlet (·|α, λ);
7) For each X-term gi ∈ G:
8) Generate zi ∈ λgi ∼ Multinomial(·|θ, α);
9) Generate ωi,1, . . . , ωi,X ∈ gi ∼ Multinomial(φzi ).
After generating �gi in step 4, we obtain the related topic

distribution for gi in step 5. Then, the topic assignment zi is
drawn from the above distribution according to step 8, which
indicates that this restriction limits all topic assignments to the
labels of X-term. In the above key steps, note that we explore
the topics of each X-term gi in the range of label relative topics
and discard the topics not assigned to λgi .

To estimate model parameters, an approximate inference
method based on Gibbs sampling [34]–[36] can be used. First,
the conditional probability of X-term gi is estimated as follows:

P
(

gi|θ̂ , φ̂, λgi

)
=

Nz∑
z=1

P
(
ωi,1, . . . , ωi,X, zi = z|θ, φ, λgi

)

=
Nz∑

z=1

θz

X∏
x=1

φz,ωi,x . (2)

Second, the likelihood function of all X-terms that should
be maximized is given as follows:

P
(

G|θ̂ , φ̂, �
)

=
NG∏
i=1

Nz∑
z=1

θz

X∏
x=1

φz,ωi,x . (3)

Finally, the topic of each X-term gi is sampled by the
following conditional probability:

P
(
zi = z, z ∈ λgi | ˆz−i, G

)

∝ (
n−i,z + α

) ×
γdi,| z

τ |∑
z′ γdi,

∣∣∣ z′
τ

∣∣∣

X∏
x=1

(
n−i,ωi,x|z + β

)
(
n−i,·|z + Nωβ

) (4)

where ˆz−i denotes the assigned topics for the group of X-terms,
n−i,z represents the number of X-terms that are assigned to
topic z, n−i,ω|z is the number of times that word ω is assigned
to topic z, n−i,·|z is the number of times for all words that
are assigned to topic z, and the notation −i indicates that the
number does not include the current assignment of X-term
gi. We use di to represent the document from which gi is
sampled, and the absolute value of z divides by τ (i.e., |(z/τ)|)
to achieve the emotion index. Since the sampling of topics for
the ith X-term is restricted according to the emotion labels of
documents containing gi (i.e., z ∈ λgi), the label information is
injected into the probability distribution to supervise the topic
generation through a weighted mechanism.

After a given number of iterations, we record the number
of X-terms that are assigned to topic z, that is, nz, and the
number of times word ω being assigned to topic z, that is, nω|z.
Then, the probabilities of words conditioned to topics φ and
the probabilities of topics over the corpus θ are, respectively,
calculated as follows:

φz,ω = nω|z + β

n·|z + Nωβ
, θz = nz + α

NG + Nzα
. (5)

Based on the generated topic of each X-term, WLTM cal-
culates the topic proportion via computing each document’s
posterior topic probability. For each document d, the topic of

Algorithm 1 Gibbs Sampling Algorithm for WLTM
Input:

1: τ : Multiplier between topic and emotion numbers;
2: NE: Number of emotion labels;
3: α: Hyperparameter of θ ;
4: β: Hyperparameter of φz;
5: G: The X-term groups in the training set;

Output:
6: φ: Multinomial distributions of words for topics;
7: θ : Multinomial distributions of topics for the corpus;
8: procedure BUILD WLTM
9: Calculate topic numbers Nz by τ × NE;

10: Randomly initialize topic assignments for all X-terms;
11: repeat
12: for all gi = (ωi,1, ..., ωi,X) ∈ G do
13: Draw topic z according to Equation (4);
14: Update nz, nωi,1|z, ..., and nωi,X |z;
15: end for
16: until Niter times
17: Compute φ and θ by Equation (5).
18: end procedure

X-term g(d)
i = (ω

(d)
i,1 , . . . , ω

(d)
i,X) is assumed to be conditionally

independent with each other. After the generation of X-terms,
we have P(z|d) = ∑

i P(z|g(d)
i )P(g(d)

i |d), where P(g(d)
i |d) is

the frequency of X-term gi in document d, and P(z|g(d)
i ) can

be calculated by the following Bayes rule:

P
(

zi = z|g(d)
i

)
= θz∑

z′ θz′

X∏
x=1

φ
z,ω(d)

i,x∑
z′ φz′,ω(d)

i,x

. (6)

We present the Gibbs sampling algorithm that is used for
WLTM in Algorithm 1. After computing the topic probabil-
ity of each document P(z|d) as mentioned earlier, we employ
the SVR [9] to predict the emotion distributions of unlabeled
documents using P(z|d) as the input.

C. X-Term Emotion-Topic Model

Fig. 3 presents the graphical model of XETM, in which, an
emotion label ε is first generated under the constraint of prior
emotion frequencies. Second, a topic related to emotion label
ε is sampled. Finally, we generate an X-term (i.e., a group of
X words) for each document.

The generative process of XETM is shown as follows:
1) For emotion ε ∈ [1, NE], draw ϕε ∼ Dirichlet (α);
2) For each topic z ∈ [1, Nz], draw φz ∼ Dirichlet (β);
3) For each document d ∈ D:
3) For each X-term gi ∈ d:
4) Generate εi ∼ Multinomial(γd);
5) Generate zi ∼ Multinomial(δϕi );
6) Generate ωi,1, . . . , ωi,X ∈ gi ∼ Multinomial(φzi ).
In the above, εi ∈ E and zi ∈ Z are the assigned emotion

and topic for X-term gi, respectively. Specifically, ε, which is
normalized and summed up to 1, is sampled from a multino-
mial distribution with emotion ratings that are parameterized
by γ . Accordingly, we can estimate the joint probability of all
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Fig. 3. Graphical representation of XETM.

variables for each document as follows:

P(γ, ε, z, G, φ, ϕ;α, β) = P(ϕ;α)P(φ;β)P(γ )

× P(ε|γ )P(z|ε, φ)P(G|z, ϕ). (7)

Particularly, the posterior probability of emotion ε for term
gi conditioned to topics is given as follows:

P
(
εi = ε|ε̂−i, ẑ, γ, G;α, β

) ∝ α + n−i,zi|ε
Nzα + ∑

z n−i,z|ε
× γdi,ε∑

ε′ γdi,ε′
. (8)

Then, we sample a new topic conditioned to the set of X-
terms G as follows:

P
(
zi = z|ẑ−i, ε̂, γ, G;α, β

) ∝ α + n−i,z|εi

Nzα + ∑
z′ n−i,z′|εi

×
X∏

x=1

β + n−i,ωi,x|z
Nωβ + ∑

ω′ n−i,ω′|z
(9)

where the candidate topic and emotion for sampling are,
respectively, denoted as z and ε, the number of times that topic
z assigned to emotion ε is represented by nz|ε, the number of
times that word ω assigned to topic z is denoted as nω|z, and
each X-term gi in G contains X words (i.e., ωi,1, . . . , ωi,X).
The subscript −i is used for nz|ε and nω|z to indicate that the
count does not include the current ith assignment of emotions
or topics.

After the sampling of topics and emotions, the posterior
probabilities of ϕ and φ can be calculated as follows:

ϕε,z = α + nz|ε
Nzα + ∑

z′ nz′|ε
(10)

and

φz,ω = β + nω|z
Nωβ + ∑

ω′ nω′|z
. (11)

Finally, the predicted emotion distribution for a testing
document d can be estimated by

P(ε|d) = P(ε)
∏

ω,ω∈d P(ω|ε)∑
ε P(ε)

∏
ω,ω∈d P(ω|ε) (12)

Algorithm 2 Gibbs Sampling Algorithm for XETM
Input:

1: Nz: Number of topics;
2: NE: Number of emotion labels;
3: α: Hyperparameter of ϕ;
4: β: Hyperparameter of φ;
5: G: The X-term groups in the training set;

Output:
6: P(ε|d): The emotion proportion of document d;
7: procedure BUILD XETM
8: Randomly initialize topic assignments for all X-terms;
9: Randomly initialize emotion assignments for X-terms;

10: repeat
11: for all gi = (ωi,1, ..., ωi,X) ∈ G do
12: Draw emotion ε according to Equation (8);
13: Draw topic z according to Equation (9);
14: Update nz|ε , nωi,1|z, ..., and nωi,X |z;
15: end for
16: until Niter times
17: Estimate P(ε|d) by Equation (12).
18: end procedure

where P(ε) is the emotion probability distribution for the entire
training set, and the probability of word ω conditioned to
emotion ε can be estimated by integrating the latent topic z:
P(ω|ε) = ∑

z ϕε,zφz,ω. To detail the estimation of parameters,
we present the Gibbs sampling algorithm in Algorithm 2.

D. Accelerated Algorithm

Due to the high complexity of Gibbs sampling, we pro-
pose an accelerated algorithm for WLTM and XETM via a
supervised MH sampling [12] in conjunction with the Alias
method [11].

1) Alias Method: The number of topics Nz is one of the
factors that determine the time complexity in topic modeling.
The sampling procedure is very time consuming when Nz is
large. Particularly, a general discrete probability distribution
P = {p1, p2, . . . , pNz} will take O(Nz) operations to generate
a sample. On the other hand, it will take just O(1) operations if
the discrete probability distribution is a uniform distribution.
Inspired by the above property, the Alias method simulates
the characteristics of a uniform distribution by building up
an Alias table and a probability table [11]. The generation
processes of these two tables are shown in Fig. 4.

Take the sample generation from a discrete probability dis-
tribution P = {0.1, 0.2, 0.3, 0.4} as an example, the objective
is to make each entry in P to be equal to 1. We first multiply
each entry in P by 4, thus the third and the fourth entries
of P are larger than 1, while the first and the second entries
of P are less than 1. Then, we use the third and the fourth
entries to supplement the first and the second entries. During
the process, the values of the probability table (ProbTable) are
from the value of each relative entry. Furthermore, the Alias
table (AliasTable) is the index number of the supplement entry.
After the above process, we can sample an entry from these
two tables with O(1) operations as shown in Algorithm 3.

2) Metropolis–Hastings Sampling: As mentioned earlier,
we implement the Gibbs sampling algorithm for our basic
models WLTM and XETM, but with a high time cost (the
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Fig. 4. Illustration of generating the alias table and the probability table.

Algorithm 3 Sampling Process of the Alias Method
Input:

1: AliasTable and ProbTable with Nz iterms
2: procedure SAMPLING
3: x = randint(Nz)
4: y = random(0, 1)
5: if y < ProbTable[x] then
6: return x
7: else
8: return AliasTable[x]
9: end if

10: end procedure

running time will be shown in Table IX). In the Gibbs sam-
pling algorithm for WLTM and XETM, we need to draw a
topic for each X-term in each iteration. This process will be
very time consuming if the number of X-terms NG is too large.
Moreover, if we only build up an Alias table for Gibbs sam-
pling, we have to save two matrices in the Alias and probability
table for all X-terms with a total size of NG × Nz. Since NG

is quite large, the above operation not only costs time but
also wastes storage space. In light of this consideration, we
use the MH sampling [12], [37] in conjunction with the Alias
method to estimate model parameters, in which, we only need
to build up an Alias table and a probability table for each word.
The accelerated models are, respectively, called fWLTM and
fXETM, and the parameter derivation is shown in the next
part.

3) Parameter Derivation: As for the parameter deriva-
tion of fWLTM, we decompose (4) into separated parts:
[(n−i,ωi,1|z + β)/(n−i,·|z + Nωβ)],. . . , [(n−i,ωi,X |z + β)/(ni,·|z +
Nωβ)] and n−i,z + α for each X-term gi in the conditional
distribution. According to the MH sampling method, these
parts are called proposal distributions. Specifically, we denote
[(n−i,z + α)/(NG + Nzα)] as the corpus proposal pz,c and
[(n−i,ω|z + β)/(n−i,·|z + Nωβ)] as the word proposal pω|z. The
MH sampling algorithm draws a topic from pz,c, and pωi,1|z,. . . ,
pωi,X |z in turns, thus pgi(z) ∝ pz,c

∏X
x=1 pωi,x|z, where X is the

number of words in a term group gi, and it is called “cycle
proposal” [38].

For the corpus proposal distribution, we have

pz,c ∝ (nz + α) (13)

where the acceptance probability is min(1, π s→t
c ) for topic

translation s → t, and π s→t
c is given as follows:

π s→t
c = (n−i,t + α)(

n−i,s + α
)
(
n−i,·|s + Nωβ

)
(
n−i,·|t + Nωβ

) (ns + α)

(nt + α)

×
X∏

x=1

(
n−i,ωi,x|t + β

)
(
n−i,ωi,x|s + β

) (14)

where ns is the number of X-terms assigned to topic s.
During the corpus proposal sampling, we do not need to

build the Alias table and the probability table. Particularly,
we store the topic that is assigned to the ith X-term gi as
ZGi, which can be considered as an NG length vector. After
randomly sampling a topic ZGj of an X-term gj from ZG,
the current assigned topic ZGj of gj can be considered as the
translation state. Because the probability of sampling entry
from vector ZG is equal with each other, ZG is a uniform
distribution and the time complexity is O(1). Considering the
hyperparameter α in corpus proposal, we randomly set a float
number f in the range of (0, NG + Nzα). If f is less than NG,
we set an integer fint = 	f 
, else fint = 	f − NG
. Then, the
translation state/topic is ZGfint .

For the word proposal distribution (e.g., ωi,x), we have

pωi,x|z ∝
(
nωi,x|z + β

)
(
n·|z + Nωβ

) (15)

where the acceptance probability is min(1, π s→t
ωi,1

) when topic
s translates to topic t, and π s→t

ωi,1
is estimated as follows:

π s→t
ωi,x

=
(
n−i,t + α

)
(
n−i,s + α

)
(
n−i,·|s + Nωβ

)2

(
n−i,·|t + Nωβ

)2

(
nωi,x|s + β

)
(
nωi,x|t + β

)

×
(
n·|t + Nωβ

)
(
n·|s + Nωβ

)
X∏

x=1

(
n−i,ωi,x|t + β

)
(
n−i,ωi,x|s + β

) . (16)

During the word proposal topic sampling, we restrict the
states/topics of the gi to its relative topics via only sampling
from its label-related topic set λgi as mentioned earlier.

As for the parameter deviation of fXETM, we decom-
pose the conditional distribution (9) into separated parts:
[(α+n−i,z|εi)/(Nzα+∑

z′ n−i,z′|εi)] and [(β+n−i,ωi,1|z)/(Nωβ+∑
ω′ n−i,ω′|z)],. . . , [(β + n−i,ωi,X |z)/(Nωβ + ∑

ω′ n−i,ω′|z)].
Similarly, the first part is the topic-emotion proportion which
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is called emotion proposal pz|εi , the remaining parts are word
proposal pωi,1|z,. . . , pωi,X |z, respectively. Specifically, the MH
sampling for XETM draws a topic from these three proposal
in turns, thus pgi(z) ∝ pz|εi

∏X
x=1 pωi,x|z.

For the emotion proposal distribution, we have

pz|εi ∝ α + n−i,z|εi

Nzα + ∑
z′ n−i,z′|εi

(17)

where the acceptance probability is min(1, π s→t
εi

) when topic
s translates to topic t, and π s→t

εi
is estimated as follows:

π s→t
εi

=
(
α + ns|εi

)
(
α + nt|εi

)
(
α + n−i,t|εi

)
(
α + n−i,s|εi

)
(
Nωβ + ∑

ω′ n−i,ω′|s
)2

(
Nωβ + ∑

ω′ n−i,ω′|t
)2

×
X∏

x=1

(
β + n−i,ωi,x|t

)
(
β + n−i,ωi,x|s

) . (18)

For the word proposal distribution (e.g., ωi,x), we have

pωi,x|z ∝ β + n−i,ωi,x|z
Nωβ + ∑

ω′ n−i,ω′|z
(19)

where the acceptance probability is min(1, π s→t
ωi,1

) when topic
s translates to topic t, and π s→t

ωi,1
for the proposed fXETM is

estimated as follows:

π s→t
ωi,x

=
(
β + nωi,x|s

)
(
β + nωi,x|t

)
(
Nωβ + ∑

ω′ nω′|t
)

(
Nωβ + ∑

ω′ nω′|s
)

(
α + n−i,t|εi

)
(
α + n−i,s|εi

)

×
(
Nωβ + ∑

ω′ n−i,ω′|s
)2

(
Nωβ + ∑

ω′ n−i,ω′|t
)2

X∏
x=1

(
β + n−i,ωi,x|t

)
(
β + n−i,ωi,x|s

) . (20)

During each iteration of topic generation, we first sample
an emotion εi according to (8), which is less time consuming
because there are generally a few emotion labels in the datasets
(e.g., 6–8 for our employed datasets in the experiment). We
apply the above MH sampling method for the topic genera-
tion based on emotion εi, which alleviates the time-consuming
problem under a large number of topics.

E. Complexity Analysis

In the sampling process of each term group gi, nω|z in
WLTM or XETM changes slow, that is, there are only two
counters reduced and two counters added for old and new
topics, respectively. Therefore, it is unnecessary to update
the Alias table and the probability table for each sample,
which will reduce much running time. Especially, the Alias
method keeps the MH proposal (i.e., corpus proposal, emo-
tion proposal, and word proposal) over one iteration, rather
than modify it after every sampling. For the MH sampling,
the acceptance probability can be computed in O(1) time. To
achieve a better mixing rate, we combine the proposals into
a cycle proposal, such as pgi(z) ∝ pz,c

∏X
x=1 pωi,x|z for the

fWLTM and pgi(z) ∝ pz|εi

∏X
x=1 pωi,x|z for the fXETM, where a

sequence is constructed for each token by alternating between
corpus proposal and word proposal. Such cycle proposals are
theoretically guaranteed to converge as shown in [38].

According to the above formulas, we summarize different
models’ time complexity in Table II. For the accelerated mod-
els (i.e., fWLTM and fXETM), we update the Alias tables

TABLE II
TIME COMPLEXITY OF DIFFERENT MODELS

TABLE III
STATISTICS OF DATASETS

over each iteration rather than each sampling. In this table,
Niter is the number of iteration, NG is the number of gener-
ated term groups, Nω is the number of distinct words in the
corpus, and NE and Nz are the numbers of emotion labels
and topics, respectively. During each iteration of the proposed
WLTM, we have to compute the topic probability distribu-
tion for each term group using (4) and sample one topic,
so its time complexity is O(Niter × NG × Nz). As for that
of fWLTM, after the initialization of topic assignment for
each term group, we build up the Alias table and the prob-
ability table for each word, which takes O(Nω × Nz) time,
then we update these two tables over each iteration. Thus, the
time complexity of fWLTM is O(Niter × (Nω × Nz + NG)). In
each iteration of XETM, (8) computes the emotion probabil-
ity distribution for each topic to sample one emotion, and (9)
computes the topic probability distribution for each term group
to sample one topic. So the time complexity of XETM is
O(Niter × NG × (NE + Nz)). As for fXETM, the MH sampling
is applied in the topic sampling process according to (9). In
each iteration of the topic sampling step, we update the Alias
and probability tables for emotion and word proposal distri-
butions, respectively. Thus, the time complexity of fXETM is
O(Niter × (NG × NE + Nω × Nz + NE × Nz + NG)).

Specifically, we can observe that NG is always larger than
Nω when the value of X is larger than 1, and the running
time of WLTM and XETM will increase when the number of
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TABLE IV
PERFORMANCE OF WLTM WITH VARIOUS X. (a) AP ON SemEval. (b) AP ON ISEAR. (c) AP ON RenCECps. (d) HD ON SemEval. (e) HD ON ISEAR.

(f) HD ON RenCECps. (g) Accuracy ON SemEval. (h) Accuracy ON ISEAR. (i) Accuracy ON RenCECps

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

TABLE V
PERFORMANCE OF XETM WITH VARIOUS X. (a) AP ON SemEval. (b) AP ON ISEAR. (c) AP ON RenCECps. (d) HD ON SemEval. (e) HD ON ISEAR.

(f) HD ON RenCECps. (g) Accuracy ON SemEval. (h) Accuracy ON ISEAR. (i) Accuracy ON RenCECps

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

topics Nz getting larger. On the other hand, we first update the
Alias table over each iteration for fWLTM and fXETM, then
we can use the MH sampling method to sample a topic in
O(1) time for each term group. Furthermore, the accelerated
models, fWLTM and fXETM, only sample the topics from the
related topics of each term group. Thus, the actual value of Nz

in fWLTM is smaller than other topic models which compute
each topic probability for training.

IV. EXPERIMENTS

This section presents the experimental results on the
proposed models and baselines in terms of effectiveness and
efficiency.

A. Datasets

SemEval: This dataset contains 1246 news headlines with
the total score larger than 0, which is used in the 14th task

of the 4th International Workshop on Semantic Evaluations
(SemEval-2007) [1] and officially divided into a training set
with 246 documents and a testing set with 1000 documents.
The emotion labels include anger, disgust, fear, joy, sad, and
surprise, which are posited to be basic [39].

ISEAR: This dataset contains 7666 sentences annotated by
1096 participants manually according to seven emotions [40].
The emotion categories are anger, disgust, fear, joy, sadness,
shame, and guilt. For this dataset, 60%, 20%, and 20% of sen-
tences are selected randomly as the training set, the validation
set, and the testing set, respectively.

RenCECps: This corpus contains 1487 Chinese blogs with
a total of 35 096 sentences [41]. The emotion categories are
joy, hate, love, sorrow, anxiety, surprise, anger, and expect. We
limit the number of words in a sentence from 5 to 20, so as to
generate a labeled short text dataset with 19 338 sentences. For
this dataset, 60% and 40% of sentences are selected randomly
as the training set and the testing set, respectively.
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TABLE VI
PERFORMANCE STATISTICS OF DIFFERENT MODELS. (a) AP OVER SemEval. (b) AP OVER ISEAR. (c) AP OVER RenCECps. (d) HD OVER SemEval.

(e) HD OVER ISEAR. (f) HD OVER RenCECps. (g) Accuracy OVER SemEval. (h) Accuracy OVER ISEAR. (i) Accuracy OVER RenCECps

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

TABLE VII
PERFORMANCE OF THE WORD-LEVEL BASELINE MODELS. (a) Semeval. (b) ISEAR. (c) RenCECps

(a)

(b)

(c)

Table III summarizes the statistics of these three datasets,
where the number of documents and mean words of each
emotion label are calculated based on the sum of documents
having the largest score over that emotion. Note that an emo-
tion can be assessed for both categories and the strength in
SemEval and RecCECps. For example, the users annotated
four categories (i.e., “Joy,” “Fear,” “Surprise,” and “Sad”) for
a single news headline—“Test to predict breast cancer relapse
is approved” in SemEval, and scores of these categories are
38, 15, 11, and 9, respectively. Therefore, it is suggested to
take all emotion scores into account for evaluation [42], rather
than only concern about the emotion with the largest score.

B. Experimental Design

We denote WLTM and XETM that incorporate our acceler-
ated algorithm as fWLTM and fXETM, respectively. The term

groups are generated for the above three datasets. For instance,
when X is equal to 2, there are 5123 and 1 571 829 2-terms
in SemEval and ISEAR, respectively. Since the scale of
SemEval is too limited, we employ ISEAR to evaluate the effi-
ciency of fWLTM, fXETM, and other models. Some classical
approaches that do not exploit topics [1], [4], [9], and topic-
level baselines, including LLDA [32], BTM [8], emotion-topic
model (ETM) [4], CSTM [20], sentiment latent-topic model
(SLTM) [15], and siamese network-based supervised topic
model (SNSTM) [43] are implemented as baselines.

For BTM, WLTM, fWLTM, XETM, and fXETM, all term
groups are generated by taking each short text as an individual
context unit. We employ SVR [9] with radial basis function
(RBF) as the kernel function to predict emotion distributions of
unlabeled documents for WLTM, fWLTM, LLDA, and BTM.
To tune the parameters of SVR, five-fold cross-validation is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

performed on the training set for SemEval and RenCECps
and on the validation set for ISEAR. For XETM and fXETM,
the emotion distribution of each testing document is estimated
by (12). Similar to the previous studies [4], [32], [34], the
hyperparameters α and β are, respectively, set to symmetric
Dirichlet priors with values of 0.1 and 0.01, and the number
of Gibbs sampling iteration is set to 500. The running time is
recorded on a 24 core high-performance computational node
with 64G memory. To ensure the effectiveness of MH sam-
pling, we set MH sampling times to 2, which means that the
topic of an X-term is sampled twice at each iteration.

To take emotion scores into account, two fine-grained met-
rics, the averaged Pearson’s correlation coefficients (AP) and
the averaged Hellinger distance (HD), are used for evalua-
tion [1], [20], [44]. Given two vectors p and q with element
x, AP and HD are estimated as follows:

AP(p, q) =
∑

x(p(x) − p)(q(x) − q)√∑
x(p(x) − p)2

√∑
x(q(x) − q)2

HD(p, q) =
√

1

2

∑
x

(√
p(x) − √

q(x)
)2

.

In the above, p and q are the mean values of p and q,
respectively. For completeness, both AP and HD are mea-
sured between the predicted probabilities and the actual votes
over the document level (APdocument and HDdocument), and over
the emotion level (APemotion and HDemotion), respectively. The
value of AP ranges from −1 to 1, where 1 indicates a perfect
prediction with the maximum correlation coefficient, and the
value of HD ranges from 0 to 1, where 0 indicates a perfect
prediction with the minimum Hellinger distance.

We also compare the performance of different models
by a coarse-grained metric, that is, Accuracy@N (N =
1, 2, 3) [3]. Specifically, given a document d, an actual emo-
tion set EtopN@d which includes N top-ranked emotions, and
the top-ranked predicted emotion εp, Accuracyd@N is first
calculated as

Accuracyd@N =
{

1 if εp ∈ EtopN@d
0 else.

Then, Accuracy@N for the testing set D is

Accuracy@N =
∑
d∈D

Accuracyd@N

|D| .

As mentioned earlier, the topic number of WLTM that
indicates documents’ latent aspects depends on the multiplier
(i.e., τ ) between topic and emotion numbers. To evaluate the
performance of our models with different numbers of topics,
we vary τ from 1 to 15 for three datasets in our experiments,
thus the topic numbers of SemEval, ISEAR, and RenCECps
range from |NESemEval ∗ 1| = 6 to |NESemEval ∗ 15| = 90,
from |NEISEAR ∗ 1| = 7 to |NEISEAR ∗ 15| = 105, and from
|NERenCECps ∗ 1| = 8 to |NERenCECps ∗ 15| = 120, respectively.

C. Influence of X

In the first part of experiments, we evaluate the influence
of X (i.e., the number of words for each term group) on the

TABLE VIII
PERFORMANCE OF THE ACCELERATED MODELS. (a) AP OVER ISEAR.

(b) HD OVER ISEAR. (c) Accuracy OVER ISEAR

(a)

(b)

(c)

model performance by setting X to 1, 2, 3, and 4. The exper-
imental results in Tables IV and V indicate that the proposed
models perform the worst when X is set to 1 in most cases. It
is reasonable because of the number of words in a short mes-
sage is limited. We can also observe that the proposed models
perform the best when X is set to 2 mostly, which indicates
that two words are more likely to form a phrase (i.e., a seman-
tically related term) than others for these three datasets. Unless
otherwise specified, we set X to 2 in the following experiments.

D. Comparison With Baselines

Table VI presents the mean and variance of model
performance in terms of AP, HD, and Accuracy, where the
top values of each metric are highlighted in boldface.

According to the AP results, the proposed WLTM achieves
better performance than baselines on these three datasets in
most cases, except for a sightly worse performance than some
other models in terms of APdocument over SemEval. A possible
reason is that there are 28 words appearing in the 1000 test-
ing documents but not in the 246 training documents. Since
the lack of samples in tuning parameters, WLTM, LLDA,
and BTM which employ SVR for prediction may underfit
emotional distributions at the document level. By generating
emotion-topic and topic-word probabilities without parameter
tuning, the proposed XETM yields competitive performance
on APdocument. In terms of APemotion, WLTM achieves the
best mean value of 0.2411 and XETM ranks top 3 with a
value of 0.1995. Particularly, the variances of WLTM and
XETM indicate the performance stability of our two mod-
els. According to the results over ISEAR, WLTM yields
competitive performance on both evaluation metrics and the
corresponding variances rank top 3. On the other hand, XETM
cannot achieve the best results on AP, but its variances with
different multiplier values also rank top 3.

Note that the Hellinger distance measures the similarity
between two probability distributions. Table VI shows that
WLTM achieves the best performance except for HDdocument
on SemEval, in which CSTM is slightly better. These results
indicate that the predicted emotion distribution for WLTM
is quite close to the prior emotion label distribution. This is
because the generation of topics is constrained by one-to-many



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PANG et al.: FAST SUPERVISED TOPIC MODELS FOR SHORT TEXT EMOTION DETECTION 11

TABLE IX
RUNNING TIME WITH DIFFERENT VALUES OF τ OVER ISEAR (Niter = 500), UNIT: SECOND

projection between emotions and topics for WLTM, which
renders the extracted topics corresponding to relative emo-
tions. On the other hand, XETM achieves modest performance
among these three datasets. The reason may be that XETM
first samples one emotion label ε and then generates a topic
conditioned to ε. However, there are more than one emotion
label for most sentences in both SemEval and RenCECps.

As for the metrics of Accuracy@1, Accuracy@2, and
Accuracy@3, the proposed two models also perform compet-
itively. WLTM outperforms other models on both SemEval
and RenCECps. However, ETM performs better on ISEAR,
in which there are only one label for each document. As
mentioned earlier, the sampling of topics is constrained by
one emotion for ETM, thus ETM mostly samples an emotion
which is the actual label of the document.

To compare the performance of our supervised topic mod-
els on short text emotion detection statistically, we conduct
t-tests to test the assumption that the difference in performance
between paired models has a mean value of zero. T-test is con-
ducted on the proposed models (i.e., WLTM and XETM) and
the baseline models. The results indicate that the proposed
WLTM outperforms the baselines of LLDA, BTM, ETM,
CSTM, SLTM, and SNSTM significantly with p-values much
less than 0.05. The p-values between XETM and most of
baselines, except BTM, are less than 0.05. The difference in
performance between XETM and BTM is not statistically sig-
nificant with a p-value equal to 0.2856 in terms of HDdocument.
Similar results are observed for other metrics.

We also implement some word-level baseline models for
comparison, that is, ET [4], SVR [9], and SWAT [1]. The
experimental results are shown in Table VII. ET computes
P(ε) and P(w|ε) by extending naïve Bayes, and SWAT pre-
dicts emotions via aggregating the emotion of each word.
Since the input is quite sparse for both datasets, SVR based
on words achieves the worst performance in terms of AP. On
the other hand, our WLTM that employs SVR using topic
distributions as the input can outperform the conventional
SVR by a large margin. These results indicate that our mod-
els effectively extract valuable features for short text emotion
detection.

E. Evaluation on the Accelerated Algorithm

In this part, we evaluate the performance of fWLTM and
fXETM on ISEAR in terms of AP, HD, and Accuracy, and
compare the corresponding running time with topic models
based on 2-terms, i.e., WLTM, XETM, and BTM. For all
metrics, we vary τ from 1 to 15 and present the mean and
variance values in Table VIII. Specifically, the APdocument of
fWLTM reaches the best value of 0.3943 with τ = 5 and

TABLE X
EMOTION LEXICON SAMPLES FROM WLTM AND FWLTM OVER ISEAR

has an averaged value of 0.3519. Although the above mean
value is less than the averaged APdocument value of WLTM
(i.e., 0.4299), it is better than BTM with an averaged value of
0.3327. Furthermore, the averaged APemotion value of fWLTM
is 0.3519, which is very close to that of BTM (i.e., 0.3590).
Particularly, the best value of APemotion is 0.4175 for fWLTM
when τ equals to 4 or 5, which is higher than the best value
of BTM. Although WLTM achieves the highest values of
APdocument and APemotion, fWLTM is much less time consum-
ing and more efficient than WLTM as shown in the following
evaluation. On the other hand, the results of fXETM indicate
that although the averaged APdocument value of fXETM (i.e.,
0.2744) is less than that of XETM with a value of 0.2977,
the averaged APemotion reaches a value of 0.3806, which out-
performs XETM and BTM. The performance variances of
fWLTM and fXETM show that both of them have good sta-
bility. In terms of HD, fWLTM achieves a smaller value than
those of baselines, and outperforms that of XETM, which
means fWLTM generates better topic distribution conditioned
to emotion labels during the supervised training process. As
for Accuracy, the results of fWLTM are slightly lower than
WLTM but still competitive for those of baselines above.

To evaluate the above results statistically, we conduct t-tests
between the performance of fWLTM and those of WLTM and
BTM. The p-values of BTM are almost larger than 0.05, and
the mean values and variances of AP are closed to fWLTM.
Therefore, the performance of fWLTM is as competitive as
BTM. Although WLTM achieves the best performance of cor-
relation coefficients, it is expensive when training on a lager
scale of documents or features.

The t-tests between the performance of fXETM and those of
XETM and BTM is also evaluated. Specifically, the p-values
between the APemotion of fXETM and that of XETM are less
than 0.05, which means that the performance on APemotion of
fXETM is better than that of XETM statistically. Compared to
BTM, the proposed fXETM also achieves better performance
on the metric of APemotion.

Table IX presents the running time of those models with
different values of τ . In the experiment, we set the iteration
time Niter to 500, vary τ from 1 to 15, and record how many
seconds are used for these models. Although BTM performs
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TABLE XI
EMOTION LEXICON SAMPLES FROM XETM AND FXETM OVER ISEAR

competitively, it is quite time consuming. In general, the run-
ning time of fWLTM is always less than that of BTM and
WLTM when τ is larger than 1. Specifically, in terms of a
larger τ value, when τ increases by 1, the running time of
fWLTM increases by 10 s while that of WLTM increases
by more than 100 s. On the other hand, the running time of
fXETM is almost 3300 s with different values of τ , but that
of XETM is more than 4000 s finally. Moreover, with τ get-
ting larger, the values of running time of fWLTM and fXETM
increase slowly while those of the WLTM, XETM, and BTM
increase fast and become expensive. This is because the accel-
erated models spend stable time to construct the Alias table
with different τ values. As mentioned above, we construct the
Alias table for each word in each iteration, so the running time
relies on the number of different words instead of the number
of topics Nz. After constructing the Alias table, we can spend
O(1) time to sample a topic for each term group. As for Gibbs
sampling, we need compute the topic probability distribution
for each topic, which has a time complexity of O(Nz). Thus,
Gibbs sampling is computationally prohibitive under a large
Nz. In this article, by employing the Alias method and devel-
oping the supervised MH sampling, both fWLTM and fXETM
are efficient with competitive performance.

F. Emotion Lexicon Samples

As stated earlier, both WLTM and XETM are supervised
topic models using prior emotion scores to restrict the topic
probability during each sampling process. Specifically, the
proposed WLTM directly maps topics to emotion labels, while
XETM employs a topic-emotion layer to connect words and
topics, from which we can conduct a topic-emotion probability
distribution using (11). Therefore, for the example as shown in
Fig. 1, each topic of WLTM is mapped to the corresponding
emotion label. Each topic of XETM performs a probability
distribution for each emotion after sampling. In the follow-
ing text, we show the emotion lexicon samples over ISEAR
for WLTM, fWLTM, XETM, and fXETM, in which the value
of τ is 5, so the number of topics is τ × NEISEAR = 42. For
XETM and fXETM, the distribution of an emotion specific to
each topic can be estimated by (10). For these four proposed
models, the probabilities of words conditioned to each topic
are estimated according to (5) or (11).

Table X shows the emotion lexicon samples that are gen-
erated by WLTM and fWLTM. In the second and the third
columns, we present sample topics and their representative
words. The last column is the relative emotion label from our
one-to-many mapping method. As shown in the sample results,
it is convinced that both WLTM and fWLTM can effectively

generate the emotion-related words for each topic. For exam-
ple, in topic 23 from WLTM, the sample words are “win,
team, competition, prize, game,” which mostly means “a team
win in a competition and win the price,” and the emotion of
that is exactly “joy.” In topic 2 of fWTLM, the sample word
“corrupt” means the phenomenon of corruption and the related
emotion is “anger.”

Table XI shows the emotion lexicon samples from XETM
and fXETM, where the sample topics and their representative
words with the largest conditional probabilities are presented
in the second and the third columns. The distributions of seven
emotions for each topic are listed in the other columns, and
the largest values are boldfaced. First, the samples indicate
that the topics are strongly relative to one emotion label, for
example, the topic 6 from XETM has a probability of 99%
relating to the emotion of “joy,” the topic 1 from fXETM
is almost 90% relating to the emotion of “anger.” Second,
the sample words have the exact emotional expression like
the topic-related emotion. For example, the word “carnival”
in topic 6 from XETM is mostly implied in a festival event,
the word “skid” in topic 20 from fXETM means “stop the
car,” which is probably used for a traffic accident news with
the emotion of “fear.”

V. CONCLUSION

Emotion detection aims to predict emotional responses
embedded in documents. This article proposed two models,
WLTM and XETM, to address the issue of feature sparsity in
detecting emotions over short messages. In this article, we
evaluated the influence of the number of words in a term
group and compare the performance with state-of-the-art base-
lines. To reduce the time cost of estimating parameters, we
proposed the accelerated methods, fWLTM and fXETM to
generate topics and detect emotions efficiently. The experi-
mental results indicated that the accelerated models were quite
less time consuming without reducing much quality, especially
for the proposed fWLTM. Considering that users often use
sarcasm for emphasizing their sentiment [45], our future work
will focus on incorporating sarcasm detection into our method.
Furthermore, we intend to evaluate the model performance on
multimodal sentiment analysis [46]. We also plan to extend the
fast parametric topic models to nonparametric ones [47]–[49],
so as to handle text streams where the number of topics is
hard to be specified manually.
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than 70% according to the regulation of the published journal.
The new contents can be summarized in the following aspects.

1) We extend the basic proposed models by setting the
length of term groups as a flexible variable.

2) To reduce the time complexity of the generation process,
we newly propose an accelerated algorithm for our basic
models.

3) In the experiments, we evaluate and compare the
performance of our models with different lengths of a
term group.

4) To conduct in-depth analysis, we present the emotion
lexicon samples that are generated by our models.

5) We add a Chinese corpus and two metrics (i.e., the
Hellinger distance and accuracy) to evaluate the effec-
tiveness of different models comprehensively.
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