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Incremental Perspective for Feature Selection Based
on Fuzzy Rough Sets

Yanyan Yang , Degang Chen, Hui Wang, and Xizhao Wang, Fellow, IEEE

Abstract—Feature selection based on fuzzy rough sets is an ef-
fective approach to select a compact feature subset that optimally
predicts a given decision label. Despite being studied extensively,
most existing methods of fuzzy rough set based feature selection
are restricted to computing the whole dataset in batch, which is
often costly or even intractable for large datasets. To improve the
time efficiency, we investigate the incremental perspective for fuzzy
rough set based feature selection assuming data can be presented
in sample subsets one after another. The key challenge for the
incremental perspective is how to add and delete features with
the subsequent arrival of sample subsets. We tackle this challenge
with strategies of adding and deleting features based on the rela-
tive discernibility relations that are updated as subsets arrive se-
quentially. Two incremental algorithms for fuzzy rough set based
feature selection are designed based on the strategies. One updates
the selected features as each sample subset arrives, and outputs
the final feature subset where no sample subset is left. The other
updates the relative discernibility relations but only performs fea-
ture selection where there is no further subset arriving. Exper-
imental comparisons suggest our incremental algorithms expe-
dite fuzzy rough set based feature selection without compromising
performance.

Index Terms—Attribute reduction, feature selection, fuzzy
rough sets, incremental learning, relative discernibility relation.

I. INTRODUCTION

F EATURE selection is a commonly used preprocessing step
in machine learning, data mining, and pattern recognition.

It is a process of selecting a compact and informative subset from
the original features that can be used for building a satisfactory
predictive model [1], [2]. In recent years, data have become
increasingly larger and larger in both size and dimensionality,
which poses serious challenges for most of the existing feature
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selection algorithms. Therefore, efficient feature selection from
large datasets is one such challenge.

The fuzzy rough set theory [3], [4] provides the basis for an
effective approach to feature selection through the use of a fuzzy
similarity relation, which describes the similarity between pairs
of data samples (i.e., instances). Fuzzy rough set is mainly used
in classification to address the inconsistency between features
and decision labels, i.e., some samples have the similar feature
values but different decision labels. The inconsistency can be
measured by using the lower approximation in fuzzy rough sets
to assign a membership to every sample with respect to decision
labels. By keeping the membership of every sample unchanged,
fuzzy rough set based feature selection (FS-FRS), usually called
attribute reduction, can remove redundant or irrelevant features
to find an informative feature subset [6].

Despite the extensive investigation in the literature, most ex-
isting methods of FS-FRS are restricted to the batch processing,
which handles all samples of a dataset in batch mode all at once.
Quite often, this is uneconomic, and even impractical for large
datasets that easily exceed the memory capacity. This reveals
one weakness of those batch algorithms in terms of the runtime.
New feature selection algorithms are thus needed that scale well
with the increase of data size [7], [8]. Incremental feature selec-
tion has been explored recently to deal with the case in which
data arrive sequentially (that is dynamic) or a large dataset (due
to its big size) has to be cut into small subsets that are then
presented sequentially. There are some state-of-the-art methods
for incremental feature selection based on rough sets. Although
these incremental methods are more efficient than batch fea-
ture selection methods based on rough sets, they do not provide
an essential insight into the incremental mechanism of FS-FRS
from the viewpoint of the successive arrival of sample subsets.

Motivated by the above observations, we take an incremental
approach where a real-valued dataset is divided into a sequence
of sample subsets that are added in succession, and each
sample subset is sequentially processed upon its arrival. In the
incremental approach, we present the strategies of adding and
deleting features based on the relative discernibility relations
that are updated as sample subsets arrive continuously. Based
on the strategies, we design two incremental algorithms for
FS-FRS: 1) updating the selected feature subset where each
sample subset arrives, and 2) only performing feature selection
where no sample subset is left. In the first version, upon the
arrival of each subset, the relative discernibility relations of
each feature and the feature set are incrementally computed
to update the selected feature subset. When there is no further
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sample subset arriving, the feature subset will become the final
one for the whole dataset. In the second version, we update the
relative discernibility relations of each feature and the feature
set every time a sample subset arrives. When no further subset
arrives, the obtained relative discernibility relations are used to
search for the final feature subset. Theoretically, it is clear that
the second algorithm is more efficient than the first one as it
does not update the feature subset every time a sample subset
arrives. This fact will be validated in our experimental results.

The unique contributions that distinguish this paper from the
existing batch feature selection methods and incremental feature
selection methods in the framework of rough sets are threefold.

1) Our work integrates the incremental fashion into FS-FRS
from a dataset.

2) The strategies of adding and deleting features are devel-
oped based on the updated relative discernibility relations
of each feature and the feature set.

3) Two efficient incremental algorithms for FS-FRS are pre-
sented to start with an empty set to compute a reduct from
the dataset, with extensive experimental comparisons.

The remainder of the paper is organized as follows. Related
works are discussed in Section II. In Section III, some prelim-
inaries on fuzzy rough sets are presented. In Section IV, the
relative discernibility relation based algorithm for feature selec-
tion is presented based on fuzzy rough sets. The incremental
algorithms of FS-FRS are presented in Section V. In Section
VI, experimental results demonstrate the time efficiency of our
proposed incremental algorithms without sacrificing the quality
of selected features. This paper is concluded with a summary in
Section VII.

II. RELATED WORKS

Our work to be presented in this paper is closely related to
the following studies: The batch methods of FS-FRS, rough set
based incremental rules, rough set based incremental approxi-
mations, and rough set based incremental feature selection. In
the following sections, we review some important related works
in terms of the above four aspects.

A. Batch Methods of FS-FRS

Many efforts have been made to investigate FS-FRS. As a
pioneering work on FS-FRS, Jesen and Shen [9] proposed a
dependence function based heuristic algorithm to find a reduct.
Other research works on FS-FRS mostly improve the method
in [9]. For example, Bhatt et al. [10] defined a compact domain
to improve the time efficiency of the algorithm in [9]. Hu et al.
[11] proposed an information entropy based algorithm for fea-
ture selection with fuzzy rough sets. In [12], a fuzzy extension to
crisp discernibility matrices was proposed to search for a feature
subset. It has been noted in [13] that these heuristic algorithms
cannot find a proper reduct but an overreduct or underreduct
due to their stop criteria. To find proper reducts, Tsang et al.
[5] introduced the discernibility matrix based approach to fuzzy
rough sets, which requires heavy computational load since it
computes and searches for every element in the discernibility
matrix. To improve the time efficiency in [5], Chen et al. [13]

developed the sample pair selection method to search for all min-
imal elements in the discernibility matrix, and only employed
all minimal elements to find reducts of a fuzzy decision table.
Wang et al. [14] proposed a fitting model for FS-FRS to better
reflect the classification ability of a selected feature subset.

Despite the extensive investigations in the literature, the
works discussed above are restricted to the batch computing,
which handles all samples of a dataset all at once. Such batch
methods are often costly, and even intractable for large datasets
that easily exceed the memory capacity. This inevitably poses
great challenges to traditional batch methods of FS-FRS. As
an efficient technique, the incremental approach has been in-
troduced into rough sets to update knowledge such as decision
rules, approximations, feature selection from dynamic datasets
in which samples, features or feature values vary with time.

B. Rough Set Based Incremental Decision Rules

There are several works for updating decision rules from dy-
namic datasets. Fan et al. [15] proposed an incremental method
for updating decision rules by analyzing different cases of
strength index change. Shan et al. [16] updated decision rules
by updating the decision matrices and decision functions at the
arrival of a sample. A rule induction method was proposed in
[17] based on fuzzy rough sets when samples vary. Zheng et al.
[18] investigated a tree-based method of updating decision rules
with the arrival of samples. Blaszczynski and Slowinski [19]
proposed an algorithm for updating decision rules in terms of
adding samples by extending the Apriori algorithm to the vari-
able consistency dominance based rough set. Tripathy et al. [20]
proposed an enhanced rule induction algorithm (ELEM)-based
algorithm to update decision rules with the arrival of a sample.
Tsumoto [21] proposed an algorithm for updating decision rules
based on the accuracy and coverage with the arrival of a sample.
When coarsening and refining attribute values, Chen et al. [22]
investigated the dynamic maintenance of decision rules.

C. Rough Set Based Incremental Approximations

Many researchers have focused on incrementally updating
approximations based on rough sets with the variations of the
feature set, the feature value, and the sample set, respectively.

With the variation of the feature set, Chan [23] presented an
incremental method for updating approximations. Li et al. [24]
proposed methods to update approximations of the characteris-
tic relation based rough sets by the variations of the upper and
lower boundary regions. Cheng [25] proposed two incremental
methods for fast computing the rough fuzzy approximation
based on the boundary set and the cut sets of a fuzzy set, re-
spectively. Zhang et al. [26] proposed an incremental approach
for updating approximations of set-valued information systems
based on the probabilistic neighborhood rough set model.
Li et al. [27] proposed an incremental algorithm for updating ap-
proximations based on P -generalized decision of a sample. Luo
et al. [28] focused on dynamically maintaining approximations
in set-valued ordered decision systems. Yang et al. [29] updated
multigranulation rough approximations with the increasing
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granular structures. Liu et al. [30] investigated the incremental
method of updating approximations in probabilistic rough sets.

Chen et al. [31] proposed an incremental algorithm for ap-
proximations of a concept when coarsening or refining feature
values. In incomplete ordered decision systems, Chen et al. [32]
presented a method to dynamically maintain approximations of
upward and downward unions when feature values change. Luo
et al. [33] proposed two incremental algorithms for computing
rough approximations with respect to the addition and removal
of criteria values.

With varying the sample set, Chen et al. [34] designed incre-
mental methods for updating approximations based on variable
precision rough set model. Zhang et al. [35] proposed a method
of updating approximations based on neighborhood rough sets.
Li et al. [36] proposed a dynamic maintenance approach for up-
dating approximations in the ordered information system. Luo
et al. [37] presented two incremental algorithms for computing
approximations in disjunctive/conjunctive set-valued informa-
tion systems. Zhang et al. [38] developed a novel matrix-based
algorithm for fast updating approximations in dynamic com-
posite information systems. Zeng et al. [39] proposed an in-
cremental approach for updating approximations of Gaussian
kernelized fuzzy rough sets with the variation of the sample set.
Luo et al. [40] proposed incremental algorithms for updating
approximations in decision theoretic rough sets with respect to
the addition and deletion of samples.

D. Rough Set Based Incremental Feature Selection

Many attempts have been made to investigate rough set based
incremental feature selection with the variations of the feature
set, the feature values, and the sample set, respectively.

When adding features, Wang et al. [41] developed a dimen-
sion (i.e., feature) incremental strategy for feature subset based
on the updating mechanisms of three measures of information
entropy. With adding and deleting features, Shu et al. [42] pro-
posed two algorithms for updating feature selection by the incre-
mental computation of the positive region in incomplete decision
systems. As the feature set varies dynamically, an incremental
feature selection algorithm was proposed in [43] by updating
knowledge granulation in the set-valued information system.
When adding and deleting features, Zeng et al. [44] employed
the dependence function to analyze the incremental mechanisms
for feature selection based on Gaussian kernelized fuzzy rough
sets in hybrid information systems.

With dynamically varying feature values, Wang et al. [45] de-
veloped an incremental algorithm for feature selection based on
the incremental computation of three representative information
entropies. For single sample and multiple samples with varying
feature values, Shu et al. [46] developed two incremental feature
selection algorithms based on the incremental computation of
the positive region.

With the arrival of a sample, Liu [47] proposed an incremental
feature selection algorithm to find the minimal reduct from an
information system without decision labels. When adding a new
sample into a decision table, Hu et al. [48] proposed an incre-
mental feature selection based on the positive region. Afterward,

Hu et al. [49] proposed an incremental algorithm for finding all
reducts based on the modified discernibility matrix. At the ar-
rival of a new sample, Yang [50] proposed an incremental feature
selection algorithm by updating the discernibility matrix. At the
arrival of a sample, Chen et al. [51] proposed an incremental al-
gorithm for feature selection based on variable precision rough
sets by the strategies of adding and deleting features. As a sample
with real-valued features arrives, Li et al. [60] investigated the
incremental mechanisms for feature selection based on neigh-
borhood rough sets. When a group of samples arrives, Liang
et al. [52] developed a group incremental algorithm for feature
selection based on the investigation of incremental mechanisms
for three measures of information entropy including Shannon’s
entropy, complementary entropy, and combination entropy. To
address the time/space complexity issue of the current incre-
mental feature selection algorithms, Yang et al. [53] presented
a novel incremental algorithm for rough set based feature se-
lection by integrating an active sample selection process that
discards useless incoming samples and selects useful incoming
samples into the feature selection process that determines how
to add and delete features in the current selected feature subset.

From what have been discussed above, FS-FRS has not yet
been studied incrementally from the viewpoint of the sample
subset sequence, where a dataset is divided into a sequence of
sample subsets to be added in succession. This motivates our
study in this paper.

III. PRELIMINARIES

This section reviews fuzzy logical operators, fuzzy approxi-
mation operators and FS-FRS.

A. Fuzzy Logical Operators

In this section, we present and exemplify five fuzzy logical
operators [3], [54], namely t- norm, t- conorm, negator, dual,
residual implication and its dual operation.

t- norm is a function T : [0, 1] × [0, 1] → [0, 1] satisfying the
following:

1) commutativity: T (x, y) = T (y, x);
2) associativity: T (T (x, y), z) = T (x, T (y, z));
3) monotonicity: x ≤ α, y ≤ β, T (x, y) ≤ T (α, β);
4) boundary condition: T (x, 1) = T (1, x) = x.
The most popular continuous t- norms include the stan-

dard min operator TM (x, y) = min{x, y}, the algebraic prod-
uct TP (x, y) = x · y, and the Lukasiewicz t-norm TL (x, y) =
max{0, x + y − 1}.

t-conorm is an increasing, commutative, and associative func-
tion S : [0, 1] × [0, 1] → [0, 1] satisfying the boundary con-
dition ∀x ∈ [0, 1], S(x, 0) = x. The well-known continuous
t-conorms include the standard max operator SM (x, y) =
max{x, y}, the probabilistic sum SP (x, y) = x + y − x · y,
and the bounded sum SL (x, y) = min{1, x + y}.

A negator N is a decreasing function N : [0, 1] → [0, 1]
satisfying N(0) = 1 and N(1) = 0. NS (x) = 1 − x is called
the standard negator. A negator N is called involutive if
N(N(x)) = x, ∀x ∈ [0, 1]. A t-norm T and a t-conorm S are
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called dual with respect to N iff S(N(x), N(y)) = N(T (x, y))
and T (N(x), N(y)) = N(S(x, y)).

Let X : U → [0, 1] be a fuzzy set and F (U) be the fuzzy
power set on U . For each X ∈ F (U), the symbol coN X is
denoted as the fuzzy complement of X determined by a negator
N , i.e., for every x ∈ U , (coN X)(x) = N(N(x)).

Given a lower semicontinuous triangular norm T , the T -
residuated implication is a function ϑ : [0, 1] × [0, 1] → [0, 1]
satisfying ϑ(x, y) = sup{z ∈ [0, 1] : T (x, z) ≤ y} for ∀x, y ∈
[0, 1]. T -residuated implications include the Lukasiewicz impli-
cation ϑL based on TL : ϑL (x, y) = min{1 − x + y, 1}.

Given an upper semicontinuous triangular conorm S, the
dual of T -residuated implication with respect to N is a func-
tion σ : [0, 1] × [0, 1] → [0, 1] that satisfies σ(x, y) = inf{z ∈
[0, 1], S(x, z) ≥ y} for every x, y ∈ [0, 1]. ϑ and σ are dual in
terms of N if ∀x, y ∈ [0, 1], σ(x, y) = N(ϑ(N(x), N(y))) or
ϑ(x, y) = N(σ(N(x), N(y))).

B. Fuzzy Rough Sets

Let U be a finite set of samples and R a binary relation on
U , R is called a fuzzy T -similarity relation if for ∀x, y, z ∈
U , it satisfies reflexivity (R(x, x) = 1), symmetry (R(x, y) =
R(y, x)), and T-transitive (T (R(x, y), R(y, z)) ≤ R(x, z)).

Fuzzy rough sets were introduced by Dubois and Prade [3],
[4], and then studied in [58] and [59]. For ∀X ∈ F (U), the
fuzzy approximation operators can be summarized as follows:

RT X(x) = sup
u∈U

T (R(x, u),X(u));

RS X(x) = inf
u∈U

S(N(R(x, u)),X(u));

RσX(x) = sup
u∈U

σ(N(R(x, u)),X(u));

RϑX(x) = inf
u∈U

ϑ(R(x, u),X(u)).

From the viewpoint of the granular computing, (RT ,Rϑ ) and
(Rσ ,RS ) are two pairs of approximation operators, since they
can be represented by their individual fuzzy granules: RT xλ

and Rσxλ. Based on the granular structure, Chen et al. [55]
characterized FS-FRS. Due to space limitations, this paper only
concerns about the pair (RT ,Rϑ ), and it has been noted in [55]
that the corresponding conclusions for the pair (Rσ ,RS ) can be
similarly obtained.

C. Fuzzy Rough Set Based Feature Selection

In this section, we mainly review FS-FRS, and the discerni-
bility matrix based approach to obtain a selected feature subset
[55].

In this paper, (U,R ∪ D) is used to represent a fuzzy de-
cision system, where U is the universe of discourse, R is the
set of real-valued features, and D = {d} is the set of sym-
bol decision feature. The subset P ⊆ R can be represented
by a fuzzy T -similarity relation P (x, y) for ∀x, y ∈ U , and
P (x, y) = mina∈P (a(x, y)). Where no confusion arises, we use
the set R to represent its corresponding similarity relation in the
rest of this paper.

Assume U/D = {[x]D : x ∈ U} is the decision parti-
tion of U , where [x]D = {y ∈ U : d(x) = d(y)} is called

the decision class to which the sample x belongs. The
membership function of the decision class [x]D is de-
fined as [x]D (y) =

{
1, y ∈ [x]D ; 0, y /∈ [x]D . Thus,

for x ∈ U , we have RT [y]D (x) = supu∈[y ]D R(x, u) and
Rϑ [y]D (x) = infu /∈[y ]D ϑ(R(x, u), 0).

The positive region of R with respect to D is defined as
PosR (D)(x) =

⋃
X∈U/D RϑX(x) for every x ∈ U .

According to Yang et al. [56], PosR (D)(x) = Rϑ [x]D (x)
holds for ∀x ∈ U , which actually means that the membership
degree of each sample belonging to the positive region gets its
value at the lower approximation of its corresponding decision
class. By preserving the positive region unchanged, FS-FRS is
defined as follows.

Definition 1 ([56]): Let (U,R ∪ D) be a fuzzy decision ta-
ble. A subset P ⊆ R is called a reduct of R relative to D,
if the following conditions are satisfied: 1) PosP (D)(x) =
PosR (D)(x) for ∀x ∈ U ; 2) for ∀a ∈ P , there exists y ∈ U
satisfying PosP −{a}(D)(y) < PosR (D)(y).

The first condition means that a reduct P can preserve the
positive region. The second one implies that for ∀a ∈ P , P −
{a} cannot preserve the positive region. Hence, a reduct P is
a minimal feature subset that keeps the positive region. As a
commonly used procedure for reducts, the discernibility matrix
based approach in [5] is briefly stated as follows.

Let U = {x1 , x2 , . . . , xn}, MD (U,R) = (cij )n×n is called
the discernibility matrix of (U,R ∪ D), if

cij =

{
{a ∈ R : T (a(xi, xj ), λ(xi)) = 0}, d(xi) 	= d(xj );

∅, otherwise

is the discernibility feature set discerning (xi, xj ). λ(xi) =
PosR (D)(xi) = infu /∈[xi ]D ϑ(R(xi, u), 0) is the membership
degree of xi belonging to the positive region.

fD (U,R) =
∧

c i j ∈M D (U , R )

ci j 	=∅
{∨ cij} is called the discernibil-

ity function of (U,R ∪ D). If fD (U,R) =
∨t

k=1 (
∧

Ak ) is the
minimal disjunctive normal form of fD (U,R), RedD (R) =
{A1 , . . . , At} is then the set of all the reducts. The intersec-
tion of all the reducts is denoted as CoreD (R) =

⋂
RedD (R),

which is called the relative core of (U,R ∪ D). However, it is
sufficient to find one reduct in many real-world applications.
The following theorems are the basis of finding a reduct.

Theorem 1 ([57]): CoreD (R) = {a : cij = {a} ∈ MD

(U,R)}.
Theorem 2 ([57]): P ⊆ R is a reduct of R iff the following

conditions hold: 1) P
⋂

cij 	= ∅ for ∀cij 	= ∅; 2) for ∀a ∈ P ,
there exists cij 	= ∅ satisfying (P − {a})⋂

cij = ∅.
Theorem 1 implies that the core is the union of all singletons

in the discernibility matrix, whereas Theorem 2 is a convenient
way to test if a feature subset is a reduct. The first condition
states that it is enough to use a reduct to together distinguish the
sample pairs, of which the corresponding discernibility feature
sets are not empty; the second one states that each feature in P is
individually necessary. Therefore, a reduct is a minimal feature
subset discerning these sample pairs, of which the corresponding
discernibility feature sets are not empty.
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IV. RELATIVE DISCERNIBILITY RELATION PRESERVED

ALGORITHM FOR FS-FRS

The relative discernibility relation of a feature was introduced
in [13] and [57] to characterize indispensable and dispensable
condition features. In this section, the relative discernibility re-
lation is employed to characterize FS-FRS. By preserving the
relative discernibility relation of the feature set, an algorithm is
then developed to select a feature subset based on fuzzy rough
sets.

Definition 2 ([57]): Let (U,R ∪ D) be a fuzzy decision ta-
ble. The relative discernibility relation of a ∈ R with respect
to D is defined as DIS(a) = {(xi, xj ) : T (a(xi, xj ), λ(xi)) =
0, d(xi) 	= d(xj )} where λ(xi) = PosR (D)(xi).

The relative discernibility relation of a feature is actually
the set of all sample pairs that can be discerned by this fea-
ture. That is, (xi, xj ) ∈ DIS(a) means that the feature a can
discern the sample pair (xi, xj ). By Definition 2, (xi, xj ) ∈
DIS(a) indicates that a ∈ cij holds for every cij 	= ∅. This
fact implies cij = {a ∈ R : (xi, xj ) ∈ DIS(a)} and DIS(a) =
{(xi, xj ) : a ∈ cij}. The relative discernibility relation of R is
denoted by DIS(R) = ∪a∈R DIS(a). With the relative discerni-
bility relation, we develop the following theorem to characterize
the core.

Theorem 3: CoreD (R) = {a ∈ R : ∃(xi, xj ) ∈ DIS(a), s.t.
(xi, xj ) /∈ DIS(R − {a})}.

By Theorem 3, if there exists a sample pair that can only
be discerned by the feature a but cannot be discerned by any
feature in R − {a}, then a belongs to the core. Based on the rel-
ative discernibility relation, we develop the following theorem
to characterize FS-FRS.

Theorem 4: A subset P ⊆ R is a reduct of R if and only if the
following conditions hold: 1) DIS(P ) = DIS(R); 2) ∀a ∈ P ,
DIS(P − {a}) 	= DIS(R).

Proof: 1) DIS(R) = DIS(P ) ⇔ ∀(xi, xj ) ∈ DIS(R),
(xi, xj ) ∈ DIS(P ) ⇔ ∀(xi, xj ) ∈ DIS(R),∃a ∈ P , s.t.,
(xi, xj ) ∈ DIS(a) ⇔ ∀cij 	= ∅,∃a ∈ P , s.t., a ∈ cij ⇔
∀cij 	= ∅, P ∩ cij 	= ∅.

2) ∀a ∈ P , DIS(P − {a}) 	= DIS(R) ⇔ ∀a ∈ P , ∃(xi, xj )
∈ DIS(R), s.t., (xi, xj ) /∈ DIS(P − {a}) ⇔∀a ∈ P , ∃cij 	= ∅,
s.t., (P − {a}) ∩ cij = ∅. �

According to Theorem 4, FS-FRS is a minimal feature subset
discerning sample pairs that can be discerned by R. Based on
this, we can design the relative discernibility relation preserved
algorithm for finding one reduct with fuzzy rough sets.

By preserving the relative discernibility relation of R,
Algorithm 1 computes one reduct from a fuzzy decision ta-
ble. Step 1 computes the membership degree of each sample
belonging to the positive region in a fuzzy decision table with
a time complexity of O(|U |2 |D|). Step 2 computes the relative
discernibility relations of each feature and the feature set with
a time complexity of O(|U |2 |R|). Step 3 computes the core of
the fuzzy decision table with a time complexity of O(|U |2 |R|).
Steps 5–8 always select a feature that maximizes the incre-
ment of sample pairs at each loop, with a time complexity of
O(|U |2 |R|). To sum up, the time complexity of Algorithm 1 is
O(|U |2 |R|).

Algorithm 1: Fuzzy Rough Set Based Feature Selection
(FS-FRS).

Input: A fuzzy decision table (U,R ∪ D).
Output: A feature subset of (U,R ∪ D): red.

1: For each xi ∈ U , compute λ(xi) = Rϑ [xi ]D (xi);
2: For each feature a ∈ R, compute DIS(a), and

DIS(R);
3: Compute CoreD (R) according to Theorem 3;
4: Let red = CoreD (R) and DIS(red) =

⋃
a∈CoreD (R)

DIS(a);
5: while DIS(R) 	= DIS(red) do
6: Select a0 ∈ R − red satisfying

|DIS(red ∪ {a0})| = max
a∈R−red

{|DIS(red ∪ {a})|}

7: Let red = red ∪ {a0}, DIS(red) = DIS(red) ∪
DIS(a0);

8: end while
9: return red.

Algorithm 1 is a novel structural method of discerning sample
pairs for selecting features. Our experimental part will demon-
strate its feasibility and effectiveness. Algorithm 1 further pro-
vides the theoretical foundation for the incremental perspective
of FS-FRS in the next section, and will be a baseline algorithm in
our experimental comparisons. As with all fuzzy rough set based
batch methods, however, Algorithm 1 computes all samples of a
dataset all at once. For large datasets, they are often costly, and
even impractical since they easily exceed the memory capacity.
In order to enhance the efficacy of the batch methods, the next
section will study the incremental solution to FS-FRS.

V. INCREMENTAL PERSPECTIVE FOR FS-FRS

This section investigates the incremental perspective for FS-
FRS assuming data can be presented in sample subsets that
arrive one after another. Rather than computing all samples of
the dataset in batch, we handle sample subsets one by one so
that FS-FRS can be performed from the incremental perspec-
tive. An incremental manner is first employed to compute the
relative discernibility relations of each feature and the feature
set with sample subsets arriving continuously. Based on the up-
dated relations, an insight into the incremental process of feature
selection is gained to reveal how to add and delete features. By
the adoption of the incremental process, two incremental al-
gorithms for FS-FRS are designed to employ the incremental
fashion to compute a reduct from a real-valued dataset.

A. Incremental Environment and Notations

This section describes the incremental environment and the
used symbols.

We assume that (U,R ∪ D) is a fuzzy decision table in this
paper. In order to employ the incremental fashion to compute a
reduct of (U,R ∪ D), we divide the universe U into a sample
subset sequence {Uk}m

k=1 , each of which is called an incoming
subset. Clearly, the following conditions must be satisfied:



1262 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 3, JUNE 2018

1) U = ∪m
k=1Uk ;

2) Ui ∩ Uj = ∅ for i 	= j.
In our incremental environment, sample subsets arrive one by

one. The previously arriving subsets are stored in a temporary
pool T that is initialized to an empty set. More specially, when
U1 is added into T , the temporary pool is updated as U1 ; with
U2 arriving, the temporary pool is changed into U1 ∪ U2 ; . . .;
with Um arriving, the temporary pool is changed into the whole
universe U . In a word, the temporary pool T always changes as
the first, . . ., mth subsets arrive successively.

In the temporary decision table (T,R ∪ D), λT (xi) is the
membership degree of xi ∈ T belonging to the positive re-
gion of (T,R ∪ D), DIST (a) is the relative discernibility re-
lation of a ∈ R, DIST (R) is the relative discernibility relation
of R, and redT is a reduct of (T,R ∪ D). Before adding any
subset from U , all results from (T,R ∪ D) are empty since
the temporary pool T is initialized to the empty set. In an
incoming decision subtable (Uk ,R ∪ D), λk (xi) is the mem-
bership degree of xi ∈ Uk belonging to the positive region of
(Uk ,R ∪ D), DISk (a) is the relative discernibility relation of
a ∈ R, and DISk (R) is the relative discernibility relation of
R. With Uk arriving, the temporary decision table is changed
into (T ∪ Uk ,R ∪ D). Based on the previously results, we
can incrementally compute the membership degree λ(xi) for
xi ∈ T ∪ Uk , DIS(a), DIS(R), and redT in (T ∪ Uk ,R ∪ D).
It is evident that we obtain a reduct of (U,R ∪ D) when there
is no incoming sample subset.

B. Updating the Relative Discernibility Relation

From what has been discussed in Section III, the membership
degree of each sample belonging to the positive region is a
necessary step in computing the relative discernibility relation
of each feature. Thus, this section first incrementally computes
the membership degree with the arrival of a sample subset, and
then incrementally computes the relative discernibility relations
of each feature and the feature set.

When a subtable (Uk ,R ∪ D) is added into (T,R ∪ D), the
following theorem gains an insight into the incremental compu-
tation of λ(xi) for xi ∈ T ∪ Uk .

Theorem 5: For xi ∈ T ∪ Uk , we have

λ(xi) =

⎧
⎨

⎩

λT (xi) ∧ inf
u∈Uk ,d(xi ) 	=d(u)

ϑ(R(xi, u), 0), xi ∈ T,

λk (xi) ∧ inf
u∈T ,d(xi ) 	=d(u)

ϑ(R(xi, u), 0), xi ∈ Uk

where a ∧ b is the minimum of a and b.
Proof: Since λT (xi) = infu∈T ,d(u) 	=d(xi ) ϑ(R(xi, u), 0)

holds for (T,R ∪ D), for ∀xi ∈ T we have

λ(xi) = inf
u /∈[xi ]D

ϑ(R(xi, u), 0)

= inf
u∈T ,d(u) 	=d(xi )

ϑ(R(xi, u), 0) ∧

inf
u∈Uk ,d(u) 	=d(xi )

ϑ(R(xi, u), 0)

= λT (xi) ∧ inf
u∈Uk ,d(xi ) 	=d(u)

ϑ(R(xi, u), 0).

Similarly, λ(xi) = infu∈Uk ,d(u) 	=d(xi ) ϑ(R(xi, u), 0) holds
for (Uk ,R ∪ D). Thus, for ∀xi ∈ Uk , we have

λ(xi) = inf
u /∈[xi ]D

ϑ(R(xi, u), 0)

= inf
u∈T ,d(u) 	=d(xi )

ϑ(R(xi, u), 0) ∧

inf
u∈Uk ,d(u) 	=d(xi )

ϑ(R(xi, u), 0)

= λk (xi) ∧ inf
u∈T ,d(xi ) 	=d(u)

ϑ(R(xi, u), 0).

Hence, we prove this theorem. �
Theorem 5 implies λ(xi) ≤ λT (xi) holds for ∀xi ∈ T , and

λ(xi) ≤ λk (xi) holds for ∀xi ∈ Uk . According to Theorem 5, in
order to incrementally compute λ(xi) for xi ∈ T ∪ Uk , we only
need to compute infu∈T ,d(xi ) 	=d(u) ϑ(R(xi, u), 0) for xi ∈ Uk

and infu∈Uk ,d(xi ) 	=d(u) ϑ(R(xi, u), 0) for xi ∈ T .
In what follows, we incrementally compute the relative dis-

cernibility relations of each feature and the feature set in
(T ∪ Uk ,R ∪ D). The following theorem is given to show the
relationship among DIS(a), DISk (a), and DIST (a).

Theorem 6: For ∀a ∈ R, we have DIST (a) ∪ DISk (a) ⊆
DIS(a).

Proof: DIST (a) ∪ DISk (a) ⊆ DIS(a) holds for ∀a ∈ R.
For ∀xi ∈ T , we have λ(xi) ≤ λT (xi). Thus, by the mono-
tonity of T - norm, T (a(xi, xj ), λ(xi)) = 0 holds for (T ∪
Uk ,R ∪ D), which implies (xi, xj ) ∈ DIS(a), i.e., DIST (a) ⊆
DIS(a). In a similar way, for ∀(xi, xj ) ∈ DISk (a), we have
T (a(xi, xj ), λk (xi)) = 0, which implies T (a(xi, xj ), λ(xi)) =
0 since λ(xi) ≤ λk (xi) holds for ∀xi ∈ Uk . Thus, we have
(xi, xj ) ∈ DIS(a), which implies DISk (a) ⊆ DIS(a). There-
fore, we can get DIST (a) ∪ DISk (a) ⊆ DIS(a) for ∀a ∈ R. �

By Theorem 6, for ∀a ∈ R, both DIST (a) and DISk (a)
are the subsets of DIS(a). The following theorem incre-
mentally computes the new sample pairs in DIS(a) for
∀a ∈ R.

Theorem 7: For ∀a ∈ R, the following statements hold:
1) for xi, xj ∈ T and d(xi) 	= d(xj ), if T (a(xi, xj ), λ(xi)) =

0, then (xi, xj ) ∈ DIS(a);
2) for xi, xj ∈ Uk and d(xi) 	= d(xj ), if T (a(xi, xj ),

λ(xi)) = 0, then (xi, xj ) ∈ DIS(a);
3) for xi ∈ T, xj ∈ Uk , and d(xi) 	= d(xj ), if T (a(xi, xj ),

λ(xi)) = 0, then (xi, xj ) ∈ DIS(a); if T (a(xj , xi), λ(xj )) = 0,
then (xj , xi) ∈ DIS(a).

Proof: By Definition 2, we can easily prove this theorem. �
By Theorem 7, we design Algorithm 2 to update the relative

discernibility relations of each feature and the feature set.
Algorithm 2 is mainly made up of two parts: 1) updating

λ(xi) for ∀xi ∈ T ∪ Uk ; 2) updating DIS(a) for ∀a ∈ R, and
DIS(R). The time complexity of part 1) is O(|T ||Uk ||R|), and
that of part 2) is O((|T |2 − |DIST (a)|)|R|). Therefore, the time
complexity of Algorithm 2 is max(O(|T ||Uk ||R|), O((|T |2 −
|DIST (a)|)|R|)).

C. Incremental Process of FS-FRS

When a sample subset Uk enters into the temporary pool T ,
the current reduct redT either satisfies DIS(R) = DIS(redT ), or
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Algorithm 2: Updating the Relative Discernibility Relation.

Input: 1) A current sample set T ; 2) λT (xi) for each
xi ∈ T ; 3) DIST (a) for each a ∈ R, and DIST (R); 4) An
incoming sample subset Uk .

Output:DIS(a) for a ∈ R, and DIS(R).
1: According to Definition 2, compute DISk (a) for

∀a ∈ R, and DISk (R) in (Uk ,R ∪ D);
2: By Theorem 6, compute λ(xi) for each xi ∈ T ∪ Uk ;
3: Let DIS(R) = DIST (R) ∪ DISk (R);
4: for each a ∈ R do
5: Let DIS(a) = DIST (a) ∪ DISk (a);
6: For each (xi, xj ) /∈ DIST (a) satisfying ∀xi, xj ∈ T

and d(xi) 	= d(xj ),
if T (a(xi, xj ), λ(xi)) = 0, then let DIS(a) =
DIS(a) ∪ (xi, xj ) and DIS(R) = DIS(R) ∪
(xi, xj );

7: For each (xi, xj ) /∈ DISk (a) satisfying ∀xi, xj ∈ Uk

and d(xi) 	= d(xj ),
if T (a(xi, xj ), λ(xi)) = 0, then let DIS(a) =
DIS(a) ∪ (xi, xj ) and DIS(R) = DIS(R) ∪
(xi, xj );

8: For xi ∈ T, xj ∈ Uk , and d(xi) 	= d(xj ),
if T (a(xi, xj ), λ(xi)) = 0, then let DIS(a) =
DIS(a) ∪ (xi, xj ) and DIS(R) = DIS(R) ∪
(xi, xj );
if T (a(xj , xi), λ(xj )) = 0, then let DIS(a) =
DIS(a) ∪ (xj , xi) and DIS(R) = DIS(R) ∪
(xj , xi);

9: end for
10: return DIS(a) for each a ∈ R, and DIS(R).

not. That is, there are two cases: 1) DIS(R) = DIS(redT ); 2)
DIS(R) 	= DIS(redT ). For the two cases, we study the incre-
mental process of feature selection by developing the strategies
of adding and deleting features.

Case 1: DIS(R) = DIS(redT ).
Theorem 8: DIS(R) = DIS(redT ) implies that redT con-

tains a reduct of (T ∪ Uk ,R ∪ D).
Proof: DIS(R) = DIS(redT ) indicates any sample pair that

can be discerned by R can also be discerned by redT . By The-
orem 4, redT contains a reduct of (T ∪ Uk ,R ∪ D).

According to Theorem 8, redT is either a reduct of the up-
dated temporary decision table (T ∪ Uk ,R ∪ D), or it properly
contains a reduct of (T ∪ Uk ,R ∪ D). To compute a reduct of
(T ∪ Uk ,R ∪ D), we develop the following strategy.

First Strategy of Feature Deletion: Feature a ∈ redT can be
deleted from redT if DIS(redT − {a}) = DIS(R).

The First Strategy of Feature Deletion indicates that redT −
{a} can still discern all sample pairs that are discerned by R
in the updated temporary decision table, so that the feature
a ∈ redT can be deleted from redT . If the strategy does not
hold for ∀a ∈ redT , then by Theorem 4, redT is also a reduct
of (T ∪ Uk ,R ∪ D). Otherwise, if the strategy holds for ∃a ∈
redT , then any sample pair that is discerned by R can also be
discerned by redT − {a}, which implies that a can be deleted

from redT . We can continue the strategy of deleting features
until the strategy does not hold. Thus, we can obtain a reduct of
the updated temporary decision table.

Case 2: DIS(R) 	= DIS(redT ).
Case 2 implies redT is not a reduct of the updated temporary

decision table, since it does not satisfy condition 1) of The-
orem 4. Thus, we need to add some features B ⊆ R − redT

into redT until DIS(R) = DIS(redT ∪ B). By Theorem 4, we
develop the following strategy of adding features.

Strategy of Feature Addition: Feature subset B ∈ R − redT

can be added into redT if B is a minimal addition subset satis-
fying DIS(redT ∪ B) = DIS(R).

By Strategy of Feature Addition, redT ∪ B can discern all
sample pairs that are discerned by R. This fact implies redT ∪
B contains a reduct of (T ∪ Uk ,R ∪ D). That is, there may
be redundant features in redT ∪ B. The following strategy is
developed to obtain a reduct of (T ∪ Uk ,R ∪ D).

Second Strategy of Feature Deletion: Feature a can be deleted
from redT ∪ B if DIS((redT ∪ B) − {a}) = DIS(R).

If the strategy of deleting features does not hold for ∀a ∈
redT ∪ B, then redT ∪ B is a reduct of the updated temporary
decision table by Theorem 4. If the strategy holds for ∃a ∈
redT ∪ B, then a should be deleted from redT ∪ B by Theorem
4. By continuing Second Strategy of Feature Deletion, we can
obtain a reduct of the updated temporary decision table.

To be brief, if an incoming subset is in Case 1, we apply First
Strategy of Feature Deletion to obtain a reduct of the updated
temporary decision table; if an incoming subset is in Case 2, we
can first apply Strategy of Feature Addition to add the feature
set B ∈ R − redT , and then use Second Strategy of Feature
Deletion to delete redundant features from redT ∪ B.

Remark 1: Removing redundant features is the key task for
selecting an optimal feature subset [62]. Due to the measure-
ment error, the complete removal of redundancy is not good.
Hence, it is suggested that a useful principle is needed to con-
trol the level of redundancy in the process of selecting features.
In fact, there may be more than one optimal feature subset on a
dataset. In the framework of fuzzy rough sets, the redundancy
is related to a selected feature subset [63]. That is, a feature is
redundant related to an optimal feature subset, but not redun-
dant related to other optimal feature subsets. In the proposed
methods, a feature a is said to be redundant related to a feature
subset P , if DIS(P ) = DIS(R) and DIS(P ) = DIS(P ∪ {a}).
The definition of redundancy implies that the sample pairs dis-
cerned by the redundant feature can always be discerned by
an optimal feature subset. Therefore, our proposed methods
can control the level of redundancy, and remove the redundant
features related to a selected feature subset. Features can be
categorized into essential feature, derogatory feature, indiffer-
ent feature, and redundant feature. In the framework of fuzzy
rough set, the essential feature naturally belongs to the core
that is obtained according to Theorem 3. Our proposed meth-
ods can discard derogatory feature by judging whether sample
pairs discerned by it can be discerned by any feature subset.
Indifferent feature can be discarded since it does not provide the
discernibility information about sample pairs in the proposed
framework.
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Fig. 1. First incremental version of FS-FRS.

D. Incremental Perspective for FS-FRS

This section investigates FS-FRS in the incremental environ-
ment. Two incremental versions of FS-FRS are designed by
judging whether to compute a reduct with sample subsets arriv-
ing sequentially. In terms of the two incremental versions, we
present two corresponding algorithms to incrementally select a
feature subset from a dataset.

Version 1: Perform feature selection with each sample subset
arriving.

In this version, we update the selected feature subset each time
a sample subset arrives. That is, with the arrival of each sample
subset, the reduct of a temporary decision table is updated based
on the incremental computation of the relative discernibility
relations. If it is Case 1, we perform First Strategy of Feature
deletion; if it is Case 2, we perform Strategy of Feature Addition
and then Second Strategy of Feature Deletion. This process is
repeated until there is no incoming subset left, resulting in a
final reduct from the whole dataset. The flow chart of Version 1
is shown in Fig. 1.

By incremental version, we propose the following incremen-
tal algorithm for FS-FRS.

Algorithm 3 computes a reduct starting from an empty
temporary pool. Step 1 initializes T and these results from
(T,R ∪ D) as empty sets. Step 3 selects a sample subset that
will be added into T . Step 4 incrementally computes the rela-
tive discernibility relations of each feature and the feature set
in the updated temporary decision table, with a time complex-
ity of max(O(|T ||Uk ||R|), O((|T |2 − |DIST (a)|)|R|)). Step 6
decides whether it is Case 1 or Case 2, with the time complex-
ity of O(|(T ∪ Uk )2 ||R|). Steps 6–10 perform the strategies of
adding features, with a time complexity of O(|R|). Steps 11–14
perform the strategies of deleting features, with a time com-
plexity of O(|R|). Hence, the time complexity of Algorithm 3
is max(O(|T ||Uk ||R|), O((|T |2 − |DIST (a)|)|R|)).

At each iteration, however, Version 1 updates a selected
feature subset, which is often time-consuming. To accelerate

Algorithm 3: First Incremental Version for Fuzzy Rough
Set Based Feature Selection (IV-FS-FRS-1).

Input: 1) The sample subset sequence: U = {Uk}m
k=1 ;

2) The feature set: R; 3) The decision set: D;
Output:

A reduct of (U,R ∪ D): red;
1: Initialize: 1) red = ∅; 2) The pool to store the

previously incoming samples T = ∅; 3) DIST (a) = ∅
for each a ∈ R, and DIST (R) = ∅; 4) Iterations k = 1;

2: while U is not empty do
3: Observe a sample subset Uk from U , and add it

into T ;
4: According to Algorithm 2, compute DIS(a) for

each a ∈ R and DIS(R) in (T ∪ Uk ,R ∪ D);
5: Let DIST (a) = DIS(a) for each a ∈ R, and

DIST (R) = DIS(R);
6: while DIST (R) 	= DIST (red) do
7: For each a ∈ R − red, compute DIST

(red ∪ {a});
8: Select the feature a0 ∈ R − red satisfying

|DIST (red ∪ {a0})|
= max

a∈R−red
|DIST (red) ∪ DIST (a)| ;

9: Let red = red ∪ {a0}, and DIST (red) = DIST

(red) ∪ DIST (a0);
10: end while
11: while DIST (R) = DIST (red) do
12: For each a ∈ red, compute DIST (red − {a});
13: Select a0 ∈ red satisfying DIST (R) = DIST

(red − {a0}), and let red = red − {a0};
14: end while
15: Let U = U − Uk , T = T ∪ Uk , k = k + 1;
16: end while
17: return red.
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Fig. 2. Second incremental version of FS-FRS.

Version 1, the feature subset is not updated each time a sample
subset comes, yielding the following incremental version.

Version 2: Perform feature selection when there is no further
sample subset arriving.

This version begins with an empty set to compute the se-
lected features from the whole dataset when no incoming subset
is left. Upon the arrival of each subset, we only update the rel-
ative discernibility relations of each feature and the feature set.
When there is no incoming subset, we obtain the final relative
discernibility relations of each feature and the feature set on the
whole dataset. Based on the final relations, we utilize Strategy
of Feature Addition and Second Strategy of Feature Deletion
to compute a final reduct of the fuzzy decision table. The flow
chart is shown in Fig. 2.

The following algorithm is formulated to compute a reduct
from a dataset based on Version 2.

In Algorithm 4, Step 1 initializes T and these results from
(T,R ∪ D) as empty sets. Steps 2–4 updates the relative
discernibility relations of each feature and the feature set,
with the time complexity of max(O(|T ||Uk ||R|), O((|T |2 −
|DIST (a)|)|R|)). Steps 8–12 perform Strategy of Feature Ad-
dition, with the time complexity of O(|R|). Steps 13–16 per-
form Second Strategy of Feature Deletion, with a time com-
plexity of O(|R|). Hence, the time complexity of Algorithm 4
is max(O(|T ||Uk ||R|), O((|T |2 − |DIST (a)|)|R|)).

Remark 2: Two proposed incremental algorithms expedite
FS-FRS, which will be demonstrated in the next section. How-
ever, there are different operation processes between them. Upon
the arrival of a sample subset, Version 1 updates the selected fea-
ture subset, whereas Version 2 only performs feature selection
where there is no further sample subset. Obviously, Version 2
saves some runtime without updating the feature subset each
time a sample subset arrives, which can be shown in our ex-
perimental comparisons. In fact, Version 1 is more applicable
to dynamic datasets with sample arriving, since it can find a

Algorithm 4: Second Incremental Version for Fuzzy Rough
Set Based Feature Selection (IV-FS-FRS-2).

Input: 1) The sample set sequence U = {Uk}m
k=1 ; 2) The

feature set: R; 3) The decision set D;
Output: A reduct of (U,R ∪ D): red;

1: Initialize: 1) red = ∅; 2) The temporary pool to store
the previously incoming samples T = ∅; 3) DIST (a)
= ∅ for each a ∈ R, and DIS(R) = ∅; 4) Iterations
k = 1;

2: while U is not empty do
3: Observe a sample subset Uk from U , and add it

into T ;
4: By Algorithm 2, compute DIS(a) for each a ∈ R

and DIS(R) in (T ∪ Uk ,R ∪ D);
5: Let DIST (a) = DIS(a) for each a ∈ R, and

DIST (R) = DIS(R);
6: Let U = U − Uk , T = T ∪ Uk , and k = k + 1;
7: end while
8: while DIST (R) 	= DIST (red) do
9: For each a ∈ R − red, compute DIST (red ∪ {a});

10: Select the feature a0 ∈ R − red satisfying

|DIST (red ∪ {a0})|
= max

a∈R−red
|DIST (red) ∪ DIST (a)| ;

11: Let red = red ∪ {a0}, and DIST (red) = DIST

(red) ∪ DIST (a0);
12: end while
13: while DIST (R) = DIST (red) do
14: For each a ∈ red, compute DIST (red − {a});
15: Select a0 ∈ red satisfying DIST (R) = DIST

(red − {a0}), and let red = red − {a0};
16: end while
17: return red.

real-time feature subset. Unlike Version 1, Version 2 is more
suitable to large datasets that can be presented in sample subsets
to be added sequentially, with selecting the feature subset where
there is no further sample subset arriving.

Remark 3: It is a good idea to introduce the true sliding
window into the incremental operation of FS-FRS, in which we
can use the proposed strategies of adding and deleting features
to update the selected feature subset within a window. However,
a temporally localized reduct that is often different from a real
reduct of the dataset is obtained based on samples within this
current window. The quality of the temporary reduct is expected
to be low. This implies that the choice of the window size is
not arbitrary. It usually depends on the domain in question and
the samples of all data streams, which is clearly nontrivial.
Once the window size nw is determined, the sliding window
operation commences so that at most nw samples are visible
to the incremental computation of feature selection. During the
sliding window, however, it is problematic in determining which
outdated samples are filtered out and which future samples
are received. From this perspective, it is time-consuming in
performing the sliding window operation, since one has to
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consider the relation between each sample and all samples
of the whole dataset in the framework of fuzzy rough sets.
Therefore, to solve the above shortcomings, we will study
the combination of the incremental operation and the sliding
window in the future work.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance
of our proposed incremental algorithms for FS-FRS on several
UCI datasets. Four batch algorithms are selected as baseline al-
gorithms for comparisons with second incremental version for
FS-FRS (IV-FS-FRS-2) to show the effectiveness of the pro-
posed incremental version. They are FS-FRS (Algorithm 1),
the discernibility matrix based algorithm [55] (denoted by Ma-
trix), the dependence function based algorithm [58] (denoted
by Dependence), and fuzzy entropy based algorithm [61] (de-
noted by Entropy) that is actually stochastic. The efficiency of
IV-FS-FRS-2 is further demonstrated via comparisons with first
incremental version for FS-FRS (IV-FS-FRS-1) (Algorithm 3)
and the neighbor rough set based incremental algorithm [60]
(denoted by INFS) that incrementally selects a feature subset
from a real-valued dataset with samples arriving one by one.

A. Experimental Design

The hardware environment: Intel (R) Xeon (R) CPU X5690
@3.47 GHz 3.46 GHz (2 processors), and 64.0 GB.

The software environment: MATLAB 2012b.
Dataset: Ten real-valued datasets from UCI Machine Learn-

ing Repository are used (see Table I) in our experimental com-
parisons.

Data split: To perform our proposed IV-FS-FRS-1 and IV-
FS-FRS-2, each dataset in Table I is randomly divided into 10
sample subsets with equal size. So, these subsets are made up
of a sample subset sequence.

Classifier: K-nearest neighbor classifier (K is set as 3) is used
to test the classification accuracy of features selected by several
comparison algorithms. Tenfold cross validation is applied to
the ten datasets.

Fuzziness of the real-valued dataset: For a real-valued feature
a, the feature value of each sample is normalized as a(xi) =

a(xi )−minj a(xj )
maxj a(xj )−minj a(xj ) , xi ∈ U. Thus, a(xi) ∈ [0, 1] for ∀xi ∈ U .

A fuzzy similarity relation for a is defined as a(xi, xj ) = 1 −
|a(xi) − a(xj )| for xi, xj ∈ U .

Triangular norm: TL is used in our experiments.

B. Comparisons of IV-FS-FRS-2 and Four Batch Algorithms

This section evaluates the effectiveness of IV-FS-FRS-2 on
ten datasets in terms of the following aspects. One is to compare
the runtime of IV-FS-FRS-2 and four batch algorithms. The
other is to compare the size and the accuracy of the features
selected by IV-FS-FRS-2, FS-FRS, Matrix, Dependence, and
Entropy. The experimental results are summarized in Tables II–
IV, where the symbol “*” means this method cannot select
a feature subset from the dataset in the current software and
hardware environments.

TABLE I
DESCRIPTION OF THE DATASETS

Dataset Abbreviation Samples Feature Class

Sonar Sonar 208 60 2
Spect Spect 267 44 2
Iono Iono 351 34 2
Libras movement Libras 360 90 15
WDBC WDBC 569 30 2
QSAR biodegradation QSAR 1055 41 2
Parkinsons multiple Park 1208 28 2
Waveform Wave 5000 21 3
Thyroid Thyroid 9172 28 50
Gamma Gamma 19 020 10 2

TABLE II
RUNTIME (S) OF IV-FS-FRS-2 AND FOUR BATCH ALGORITHMS

Dataset IV-FS-FRS-2 FS-FRS Matrix Dependence Entropy

Sonar 3.08 66.40 15.42 682.08 8.47
Spect 2.01 75.58 21.22 480.70 11.03
Iono 2.07 77.71 27.42 515.49 14.03
Libras 15.35 439.56 216.95 743.32 20.59
WDBC 7.12 285.36 73.97 120.14 37.53
QSAR 28.23 136.41 516.37 787.97 311.16
Park 21.67 91.06 467.23 336.44 311.70
Wave 199.88 6233.82 3121.04 4365.85 5779.02
Thyroid 15 705.43 66 795.98 43 878.87 44 923.65 83 400.09
Gamma 19 174.40 * * * *

Table II presents that in comparison with the four batch al-
gorithms, IV-FS-FRS-2 greatly reduces the runtime of selecting
features from each selected dataset. For example, the runtime of
IV-FS-FRS-2 shows a decrease up to 3.49%, 7.08%, 2.07%, and
74.55% of that FS-FRS, Matrix, Dependence, and Entropy on
“Libras,” respectively; the runtime of IV-FS-FRS-2 decreases to
20.69%, 5.47%, 3.58%, and 9.07% of that of FS-FRS, Matrix,
Dependence, and Entropy on “QSAR,” respectively. Moreover,
we can see from Table II that on “Gamma,” FS-FRS, Matrix,
Dependence, and Entropy cannot obtain a selected feature sub-
set, but IV-FS-FRS-2 can compute a feature subset under the
current software and hardware environments. This fact implies
that it is possible to employ IV-FS-FRS-2 to obtain a selected
feature subset from large-scale datasets. Therefore, IV-FS-FRS-
2 can not only expedite feature selection based on fuzzy rough
sets, but also deal with large-scale datasets.

Table III presents that the average size of features obtained by
IV-FS-FRS-2 (23.8) is less than that of feature subsets selected
by “Raw” (38.6), FS-FRS (37.11), Matrix (37.67), Dependence
(31.89), and Entropy (27.33). The reason is that IV-FS-FRS-2
has the step of removing redundant features. Furthermore,
Table IV presents the accuracy of features selected by IV-
FS-FRS-2, FS-FRS, Matrix, Dependence, and Entropy, where
“Raw” represents the accuracy of all features and “Advantages”
is the number of times that the accuracy of a method is superior
to “Raw” on the ten datasets. From Table IV, we can see that
the accuracy of IV-FS-FRS-2 is higher than “Raw” on five
selected datasets; the accuracy of FS-FRS is better than “Raw”
on five datasets; both Matrix and Dependence have advantages
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TABLE III
SIZE OF FEATURES SELECTED BY IV-FS-FRS-2 AND FOUR BATCH ALGORITHMS

Dataset Raw IV-FS-FRS-2 FS-FRS Matrix Dependence Entropy

Sonar 60 20 57 57 52 19
Spect 44 31 44 44 38 30
Iono 34 27 28 29 30 25
Libras 90 51 72 72 47 52
WDBC 30 24 30 30 25 24
QSAR 41 34 40 35 33 34
Park 28 24 27 27 17 24
Wave 21 17 19 18 17 21
Thyroid 28 5 17 27 28 17
Gamma 10 5 * * * *
Average 38.6 23.8 37.11 37.67 31.89 27.33

TABLE IV
CLASSIFICATION ACCURACY OF FEATURES SELECTED BY IV-FS-FRS-2 AND

FOUR BATCH ALGORITHMS

Dataset Raw IV-FS-FRS-2 FS-FRS Matrix Dependence Entropy

Sonar 0.8612 0.7983 0.8364 0.8417 0.8324 0.7976
Spect 0.7120 0.7376 0.7148 0.7303 0.7151 0.7150
Iono 0.6379 0.8545 0.8574 0.8660 0.8547 0.6406
Libras 0.7944 0.7639 0.7722 0.7806 0.7806 0.7611
WDBC 0.9596 0.9666 0.9684 0.9737 0.9701 0.9649
QSAR 0.8455 0.8427 0.8371 0.8388 0.8379 0.8417
Park 0.9835 0.9859 0.9851 0.9843 0.9876 0.9653
Wave 0.7960 0.7972 0.8008 0.7614 0.7738 0.7946
Thyroid 0.8210 0.8209 0.7606 0.8201 0.8204 0.7813
Gamma 0.8302 0.7985 * * * *
Advantages 5 5 4 4 3

over “Raw” on four datasets; and Entropy outperforms “Raw”
on three datasets. These facts indicate that IV-FS-FRS-2 and
FS-FRS can improve the accuracy of “Raw,” with ignoring the
fact that Matrix and Dependence are better than IV-FS-FRS-2
and FS-FRS on “Iono,” “WDBC,” and “Park.” Furthermore, on
“Sonar,” “Libras,” “QSAR,” and “Thyroid,” all of several com-
parisons algorithms are close to “Raw,” where IV-FS-FRS-2
and FS-FRS are superior to Matrix, Dependence, and Entropy
on “QSAR” and “Thyroid.” Hence, we can draw the conclusion
from the above facts that our proposed methods can improve
the accuracy of “Raw” on most of the selected datasets.

C. Comparison of IV-FS-FRS-2, IV-FS-FRS-1, and INFS

In this section, IV-FS-FRS-2 is compared with IV-FS-FRS-1
and INFS on the ten datasets. These comparisons focus on the
runtime, the size and accuracy of the selected features, as well as
the discussion that is suggested to show how the sample subset
sequence size has an influence on the overall efficacy of the
proposed incremental algorithms. The experimental results are
summarized in Table V, and Figs. 3–5.

Table V presents that IV-FS-FRS-2 is more efficient than IV-
FS-FRS-1, and IV-FS-FRS-1 is more efficient than INFS on the
ten datasets. There may be the following reasons. The first one is
with each subset arriving, IV-FS-FRS-2 only updates the relative
discernibility relations without performing feature selection,
whereas IV-FS-FRS-1 updates the selected feature subset by

updating the relative discernibility relations. The second one is
upon the arrival of a sample subset, our proposed incremental
algorithms can handle it all at once, while INFS needs to
deal with them one at a time. The third one is our proposed
incremental algorithms are designed based on the strategies of
adding and deleting features, whereas INFS has no investiga-
tions for how to add and delete features. Hence, in comparisons
with INFS, our proposed incremental algorithms can save the
runtime of obtaining a feature subset from a real-valued dataset,
and IV-FS-FRS-2 is much faster than IV-FS-FRS-1 and INFS.

Moreover, Table V presents different sizes of features selected
by three incremental algorithms, since with a sample subset
arriving IV-FS-FRS-1 and INFS updates the selected feature
subset while IV-FS-FRS-2 performs feature selection where no
subset is left. On most of the selected datasets, the accuracy
of our proposed incremental algorithms is higher than that of
INFS. Therefore, IV-FS-FRS-2 can find a comparable feature
subset from a real-valued dataset in a much shorter time.

Fig. 3 depicts the detailed changes of the runtime of IV-FS-
FRS-1 and IV-FS-FRS-2 with subsets continuously arriving.
Fig. 3 shows IV-FS-FRS-2 is faster than IV-FS-FRS-1 with the
first nine subsets arriving. The reason is with the arrival of the
first nine subsets, IV-FS-FRS-1 updates selected features based
on the incremental computation of the relative discernibility
relations, whereas IV-FS-FRS-2 only incrementally computes
the relative discernibility relations without performing feature
selection. Thereby, IV-FS-FRS-2 saves the runtime with the
first nine subsets arriving. Furthermore, we can also observe
that compared with IV-FS-FRS-1, IV-FS-FRS-2 consumes more
runtime with the arrival of the final subset of each dataset, since
IV-FS-FRS-2 performs feature selection starting with an empty
set, whereas IV-FS-FRS-1 updates the selected features based
on a current feature subset.

To show the influence of the sequence size on the efficacy
of our incremental algorithms, each dataset is randomly divided
into 2–10 parts with equal size. The results are depicted in Figs. 4
and 5, where the x-axis is the sequence size. Fig. 4 displays IV-
FS-FRS-1 and IV-FS-FRS-2 are consistently much faster than
INFS with changing the sequence size on each dataset. There
may be the following reasons. One is with a sample subset
arriving, our proposed incremental algorithms can handle them
all at once, whereas INFS has to be run for many times. The
other is our proposed incremental algorithms are designed by the
strategies of adding and deleting features, whereas INFS has no
investigation for how to add and delete features. Furthermore,
Fig. 4 indicates that the runtime of IV-FS-FRS-1 and IV-FS-
FRS-2 basically increases with increasing the sequence size.
From Fig. 4, we can also conclude that our proposed algorithms
are more efficient than INFS when the sequence size ranges
from 2 to 4.

Fig. 5 shows the number and accuracy of features selected
by IV-FS-FRS-1, IV-FS-FRS-2, and INFS as the sequence size
changes from 2 to 10. Fig. 5 indicates the number of features se-
lected by IV-FS-FRS-2 and INFS is basically stable with chang-
ing the sequence size, whereas the number of features selected
by IV-FS-FRS-1 fluctuates significantly. Moreover, the accuracy
of features selected by IV-FS-FRS-2 and INFS changes a little,
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Fig. 3. Runtime of IV-FS-FRS-1 and IV-FS-FRS-2 with respect to subsets continuously arriving.
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Fig. 4. Runtime of IV-FS-FRS-1, IV-FS-FRS-2, and INFS as the size of the sample subset sequence changes.
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Fig. 5. Number and accuracy of features selected by IV-FS-FRS-1, IV-FS-FRS-2, and INFS as the size of the sample subset sequence changes.
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TABLE V
EXPERIMENTAL RESULTS OF IV-FS-FRS-1, IV-FS-FRS-2, AND INFS

Dataset IV-FS-FRS-1 IV-FS-FRS-2 INFS

Runtime/s No. Accuracy Runtime/s No. Accuracy Runtime/s No. Accuracy

Sonar 8.56 8 0.7881 3.08 20 0.7983 14.85 4 0.76
Spect 5.31 14 0.7600 2.01 31 0.7376 30.50 5 0.7372
Iono 4.57 13 0.8690 2.07 27 0.8545 13.58 30 0.6123
Libras 44.64 35 0.7722 15.35 51 0.7639 64.44 5 0.6556
WDBC 9.48 15 0.9526 7.12 24 0.9666 83.35 4 0.9438
QSAR 39.30 12 0.7764 28.23 34 0.8427 137.30 12 0.8408
Park 31.25 9 0.6598 21.67 24 0.9859 813.37 4 0.9301
Wave 1930.77 3 0.5482 199.88 17 0.7972 67 861.76 7 0.6810
Thyroid 29 291.57 4 0.8205 15705.43 5 0.8209 84 539.64 23 0.8132
Gamma 38 238.69 6 0.8315 19174.40 5 0.7985 65 438.97 10 0.8364

whereas the accuracy of IV-FS-FRS-1 fluctuates significantly.
The accuracy of IV-FS-FRS-2 outperforms that of “Raw” on six
datasets. These facts demonstrate the efficiency and stability of
IV-FS-FRS-2.

VII. CONCLUSION AND FUTURE WORK

To expedite feature selection from large datasets, we study the
incremental approach to FS-FRS assuming a dataset can be di-
vided into some sample subsets to be presented sequentially. By
an insight into the incremental change of feature subset as sam-
ple subsets are presented and processed sequentially, we propose
strategies for adding and deleting features based on the updated
relative discernibility relations. To exploit the strategies, we de-
sign two incremental versions for FS-FRS. One updates the
relative discernibility relations and the feature subset as sample
subsets arrive sequentially, and outputs the feature subset where
there is no sample subset. The other only updates the relative
discernibility relations as sample subsets arrive continuously,
and then computes the feature subset where no sample subset is
left, which is just the feature subset from the whole dataset. The
experimental results demonstrate the following facts.

1) Our incremental approach can expedite feature selection
based fuzzy rough set.

2) It is possible to employ our incremental approach to han-
dle large datasets.

3) Our second version is more efficient than our first one.
Based on the above results, some further investigations are as

follows.
1) The global optimization techniques can find a global op-

timal feature subset that may improve the accuracy of a
classifier to some extent. As suggested, hence, we will fo-
cus on the incremental mechanisms for the global optimal
method to improve the time efficiency.

2) To overcome the excess storage of fuzzy relation matrices,
we will design a novel incremental method for feature
selection so that it can efficiently handle big datasets.

3) Considering the feasibility of the true sliding window, we
will introduce it into the incremental process of feature
subset, in order to further accelerate FS-FRS and improve
the accuracy of feature subset.

4) We will investigate how to select the size of the sample
subset sequence.
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