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a b s t r a c t 

The Fuzzy ARTMAP (FAM) network is an online supervised neural network that operates by computing 

the similarity level between the new sample and those prototype nodes stored in its network against 

a threshold. In our previous study, we have developed a multi-agent system consisting of an ensem- 

ble of FAM networks and Q-learning, known as QMACS, for data classification. In this paper, an Improved 

QMACS (IQMACS) model with trust measurement using a combination of Q-learning and Bayesian formal- 

ism is proposed. A number of benchmark and real-world problems, i.e., motor fault detection and human 

motion detection, are conducted to evaluate the effectiveness of IQMACS. Statistical features are extracted 

from real-world case studies and utilized for classification with IQMACS, QMACS, and their constituents. 

The experimental results indicate that IQMACS produces better classification performance by combining 

the outcomes of its constituents as compared with those of QMACS and other related methods. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Artificial Neural networks (ANNs), including deep learning, are

seful techniques that have been successfully applied to many

elds such as biomedical imaging [1] , diagnosis of electrical power

lant [2] , prediction [3,4] , decision making [5] and human activity

ecognition [6] . Among them, pattern classification is one of the

rimary areas that many ANNs have been used, e.g., classification

f images [7] and electroencephalogram (EEG) signals [8] , as well

s fault detection [9] . 

An ANN can be structured differently to deal with various prob-

ems, ranging from small to big and noisy data. However, it is

ell-known that each individual ANN behaves differently in tack-

ing data with various characteristics, which cover variations in

he number of input samples and the respective features in either
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oisy or noise-free conditions. To effectively handle multi-modality

roblems, ensemble methods [10] have been introduced. Given a

et of data samples, an ensemble model employs a number of in-

ividual algorithms to produce multiple predictions, and then com-

ines the predictions to make an overall final decision pertaining

o each data sample. It has been shown that ensemble methods

re able to achieve better performances than those of individual

lgorithms. 

In our previous work [11] , we have proposed an ensemble

odel consisting of supervised Fuzzy ARTMAP (FAM) [12] and

-learning [13] methodologies, i.e., Q-learning-based Multi-Agent 

lassifier System (QMACS), to tackle classification problems.

MACS is able to produce comparable results as those from state-

f-the-art methods in tackling both noisy and noise-free problems.

mportantly, QMACS includes online learning agents with the ca-

ability of learning incrementally, which is able to overcome the

tability-plasticity dilemma [12] . In other words, the model is sta-

le to remember previously learned samples, and plastic to learn

ew samples. 

Q-learning with aggregation (QA-learning) [14] , as another Q-

earning-based algorithm, is used for cooperative policy construc-
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F  
tion for independent learners. It divides the space problem into

a number of sub-regions, and then assigns a number of worker

agents to achieve the goals in each sub-region. When the worker

agents finish their duties in their corresponding sub-regions, they

are re-distributed to other active sub-regions to help other agents

to achieve their goals. Different from QA-learning, in our proposed

QAMCS, all sibling agents are assigned to perform the same task,

which is predicting the target class of the current input sample.

The team managers are responsible to select the best sibling agent

while the parent agent is responsible to select the best team man-

ager, respectively. Then, the parent agent produces the final pre-

diction pertaining to the current input sample in accordance with

the output from the best team manager. 

However, QMACS selects both the winning agent and team

based on a trust value measured for each agent. In this case, it

is possible for QMACS to select the weak agent teams to make de-

cision. In particular, pruned QFAM-based and QFAM-GA [15] -based

agent teams, which only retain the prototype nodes with a Q-value

larger than a threshold during the pruning procedure, can have

trust values higher than those in QFAM [16] -based agent team. 

In this paper, we enhance the performance of QMACS by

proposing an Improved QMACS (IQMACS) model by adding an ad-

ditional trust measurement scheme at the team level. We also

demonstrate the applicability of IQMACS and its constituents to

two problems: (i) human motion detection, and (ii) induction mo-

tor fault detection. Both cases have important industrial implica-

tions, particularly for the healthcare and manufacturing sectors. 

Recognizing and recording human activities has become an

important task in many applications, e.g., falls in elderly patients

[17] and monitoring the location of Parkinson patients [18] . To this

end, many sensing modalities and corresponding algorithms have

been proposed to recognize human motions, such as computer

vision systems [19] , sensor networks [20] , wearable sensors [21] ,

and video cameras [22] . Although the conventional methods are

able to provide good performance in recognizing human activities,

they suffer from several drawbacks. As an example, wearable sen-

sors interfere with users’ motion habits, which may compromise

recognition accuracy. Video cameras are able to represent visible

features of human actions. However, their performance relies on

illumination conditions, and image processing procedures usually

involve high computational complexity for real-time applications.

In addition, some of the methods are not effective for long-term

recognition because they need ground truths [23] . On the other

hand, smartphones are becoming common and powerful devices

with accurate sensing devices such as cameras, GPS sensors and

accelerometers. These sensing devices enable smartphones to be

used as a flexible and cost-effective tool for many applications,

such as localization, tracking, and recognizing human activities

[24] . 

On the other hand, fault detection and diagnosis of induction

motors has become an important issue due to their extensive use

in diverse industrial applications [25] . Performing online fault de-

tection and diagnosis while the motor is running can dramati-

cally reduce losses [26] . It is crucial that electric motors always

operate at their high performance and reliability, and also it is

vital to know different types of faults that may happen to in-

duction motors. These faults include: broken rotor bars, misalign-

ment, mechanical and voltage unbalance [27] . Many techniques

have been proposed to diagnose these faults, such as mechani-

cal sensors, temperature, X-ray, vibration and current signals [28] .

However, most of these techniques are expensive and are not able

to diagnose faults online. In addition, they are not able to act as

stand-alone equipment, which may cause loading issues on mo-

tors. The Motor Current Signature Analysis (MCSA) [29] technique

has been extensively used. It has the advantages of low-cost and

non-invasiveness by utilizing standard instruments. 
In both real-world case studies, the data samples are corrupted

ith noise at different levels (i.e., 10%, 30% and 50%), in order to

valuate the robustness of IQMACS. The results are compared and

uantified statistically using the bootstrap method [30] . To sum up,

he main contributions of this research include: 

• enhancement of QMACS by incorporating a trust measurement

scheme at its team level in order to mitigate the influence of

weak agent teams in making the final decision; 
• demonstration of the usefulness of IQMACS in real-world case

studies, i.e., human motion detection and motor fault detection,

which are important for the healthcare and manufacturing sec-

tors. 

The rest of this paper is organized as follows. In Section 2 , a re-

iew on human motion detection and motor fault detection is pre-

ented. The structure of Q-learning and FAM-based learning agents

re discussed in Section 3 . In Section 4 , the dynamic of IQMACS is

xplained in detail. In Section 5 , the experimental setup and the

ssociated results are presented. Conclusions and suggestion for

urther work are given in Section 6 . 

. Related work 

.1. Human motion detection 

A method for combination of integrated motion images and

igenspace technique to detect human fall was introduced in [31] .

n this method, the Multi-Layer perceptron (MLP) was employed to

lassify and determine the fall situation. The experimental results

howed that MLP was an effective method for detection of fall. In

32] , a method based on key-frame was proposed to recognize hu-

an actions. The Pyramidal Motion Feature (PMF) of each frame

as firstly extracted. Then, the AdaBoost learning algorithm was

sed to select the key frame for each action. Finally, a SVM-based

lassifier was employed to recognize actions. The experimental re-

ults showed that the proposed model outperformed those meth-

ds reported in [33,34] . FAM-BSO [35] , which is a hybrid model

f FAM and brain storm optimization (BSO), was proposed to rec-

gnize human motion, i.e., walking, running or jumping. A human

ecognition system based on pyroelectric infrared sensors and GA-

ased neural network was proposed in [36] . 

A human action recognition model was proposed in [37] to

olve the problem associated with RGB-D (Red, Green, Blue-Depth)

n human action recognition. This model was based on the outputs

f Kinect, and contained three parts: feature extraction, feature

epresentation and classification. The results demonstrated that the

roposed model significantly improved the robustness of depth

eatures and RGB features based on different actions. In [38] , a

ead detector technique using motion histogram features was pre-

ented. A new motion feature, known as the Relative Motion Dis-

ance (RMD), was proposed to combine two motion histogram fea-

ures, i.e., Histogram of Oriented Optical Flow (HOOF) and Motion

oundary Histogram (MBH). In order to distinguish human heads, a

wo stage SVM-based classifier was used. The results demonstrated

he effectiveness of the proposed model in comparison with other

ethods reported in [39,40] . In [41] , a new method using single

hannel sEMG (surface Electromyography) was proposed to iden-

ify the movement of hands. The wavelet transformation and ANN

ere employed to extract features and classify sEMG signals, re-

pectively. The experimental results indicated the efficiency of ANN

n detecting and classifying hand movement. 

.2. Motor fault detection 

In [42] , a hybrid model of fuzzy Min-Max (FMM) and CART, i.e.,

AM-CART, was proposed to detect and recognize faults of a three-
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hase induction motor. The FMM-CART model tackled both rule

xtraction and classification problems. The results demonstrated

hat FMM-CART performed better or similar in comparison with

MM and CART. Later in [43] , a hybrid model of FMM and BSO was

eveloped to classify faults of a three-phase induction motor. In

44] , a supervised ANN was used to detect motor faults and their

ocations. Firstly, the significant features were extracted from raw

ignals, and used to train the ANN. This model was able to produce

igh classification rates of faults and their locations. In [45] , motor

urrent signature analysis technique was used to monitor the mo-

ors of an unmanned aerial vehicle (UAV). 

An ANN-based approach was proposed to detect faults related

o the stator of induction motors [46] . A total of 16 parameters

ere extracted to train the ANN. The results showed that the ANN

ith 10 hidden neurons produced the best performance. A tech-

ique to detect Inter-Turn Short Circuit (ITSC) faults related to the

nduction motor stator was presented in [47] , where an ANN-based

on-invasive heuristic technique was used. This method was able

o detect ITSC faults with high accuracy. In [48] , an MLP-based net-

ork was proposed to detect ITSC faults and unbalanced supply

oltage. Fault detection was performed by monitoring the negative

equence voltage and the three-phase shift between the current

nd phase voltage. The simulation results showed that this model

ould distinguish ITSC faults and unbalanced voltage accurately. 

A fuzzy-based fault detection or diagnosis system was intro-

uced in [49] . The current of stator and timestamp were used as

he inputs to the proposed fuzzy system, and the direct torque

ontrol (DTC) technique was employed to control the system. The

utcome showed the efficiency of this system in detecting faults

or the adopted driving cycles. In [50] , a two-stage technique based

n ANN and wavelet transform was used to detect and classify the

ower quality (PQ) disturbances in the supply to induction motors.

he PQ disturbance features were extracted by applying the dis-

rete wavelet transform technique to sampled current signals. The

xtracted features were used as inputs to a feed-forward NN for

lassification of PQ disturbances. The results demonstrate that the

roposed model was a powerful network in classifying PQ distur-

ances. 

In [51] , three intelligent models, e.g., FAM, MLP and SVM, were

sed to classify the short-circuit faults in stator winding of induc-

ion motors. SVM and MLP performed better in classifying the sta-

or faults. In [52] , Naive Bayes, K-Nearest Neighbor (KNN), SVM,

LP and C4.5, were employed to identify the faults of induction

otors. The experimental results demonstrated that KNN, MLP and

VM performed better than other techniques. 

. Q-learning and the learning agents 

In this section, we introduce some preliminary knowledge for

he proposed work. We firstly present the Q-learning algorithm.

hen, the structure of the FAM-based learning agents are described

n detail. 

.1. Q-learning 

Reinforcement learning (RL) [13] is a machine learning method

hat receives a series of patterns (extracted from data samples)

rom the environment, selects the best action, and executes it.

hen, it utilizes the reinforcement signal to reward or penalize

he selected action. RL can be viewed as a class of Markov de-

ision processes (MDPs) that contains four components, i.e., state

 S ), action ( A ), transition ( T ) and reward/reinforcement function

 R ). Specifically, S = { s 0 , s 1 , . . . , s n −1 } covers all possible states, A =
 a 0 , a 1 , . . . , a m −1 } represents all actions for each state, T represents

 function that maps a state to an action, i.e., T : S × A → S , and R is

 reward function (which can be a scalar). 
Q-learning [13] is one of the most popular RL algorithms that

as been widely used to provide solutions for MDPs. Q-learning

ses temporal difference to map state-action pairs into values, i.e.,

-values. It approximates the optimal action value function by

earning the action value function (i.e., known as Q-function), as

ollows: 

(s, a ) = r(s, a ) + γV 

π (s, a ) , (1)

here r ( s, a ) is the reinforced signal, V 

π ( s, a ) is the value func-

ion of action a in state s under policy π , and γ ∈ [0, 1] is the

iscount factor. Q-learning selects an action that has the highest

 ( s, a ) score, i.e., 

 

∗ = argmax 
a ∈ A 

(Q(s, a )) . (2)

Once an action is selected, it is executed, and a reward signal

s received. Then, it moves to the next state, i.e., s ′ , and Q ( s, a ) is

pdated as follows: 

(s, a ) ← Q(s, a ) + ξ [ r + γ max 
a ′ ∈ A 

Q(s ′ , a ) − Q(s, a )] , (3)

here ξ ∈ [0, 1] is the learning rate. 

.2. Learning agents 

In the following sections, the dynamic of individual agents are

escribed. 

.2.1. QFAM 

QFAM [16] is a hybrid model of FAM [12] and Q-learning

13] for tackling classification problems. Its operation consists of

wo phases, i.e., training and test, as follows. 

Training phase: QFAM uses the FAM training process to acquire

nowledge from the training samples, and assigns a Q-value to

ach prototype node stored in its network. FAM [12] is a super-

ised neural network that combines the capability of Adaptive Res-

nance Theory (ART) with fuzzy set theory in its dynamics. As

hown in Fig. 1 , FAM contains two fuzzy ART [53] modules, i.e.,

RT a and ART b , for receiving the input and output vectors, respec-

ively, and a map-field, f ab , to map input samples into their corre-

ponding output. Each Fuzzy ART model ( ART a / ART b ) contains three

ayers: (i) pre-processing layer f a 
0 

( f b 
0 

), (ii) input layer f a 
1 

( f b 
1 

), and

iii) recognition layer f a 
2 

( f b 
2 

). Complement coding [12] is used in

he pre-processing layer to avoid the problem of category prolifer-

tion. It transfers an M -dimensional input, a ∈ [0, 1] M , into a 2M -

imensional output, as follows: 

 = ( a 1 , . . . , a M 

, 1 − a 1 , . . . , 1 − a M 

) . (4)

RT a and ART b receive the complement-coded input vector, A , and

ts corresponding target, B = (b, 1-b) , respectively. The similarity

core among current input A and the j th prototype node in f a 
2 

layer

s computed based on following choice function: 

 j = 

| A ∧ W 

a 
j 
| 

α + | W 

a 
j 
| , (5) 

here α > 0 is the choice parameter, and W 

a 
j 

≡ (w 

a 
j, 1 

, . . . , w 

a 
j, 2 M 

)

s the weight vector of the j th node in f a 
2 

. Initially, W 

a 
j, 1 

(0) =
· · = W 

a 
j, 2 M 

(0) = 1 and Q( j) = 0 is the Q-value of the j th prototype

ode, and ∧ indicates the fuzzy and operator [54] : 

(u ∧ v ) i ≡ min (u i , v i ) , (6)

here u i and v i are the i th dimension of A and W 

a 
j 

, respectively.

he node with the highest choice value in f a 
2 

is chosen as the win-

ing node, as follows: 

 J = max { T j : j = 1 , 2 , . . . , N} , (7)
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Fig. 1. The structure of FAM. 
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where J is the index of the winning node, and N is the total num-

ber of prototype nodes in f a 
2 

. Resonance is said to occur for the

selected prototype node if the following vigilance test is satisfied:

v ig(J) = 

| A ∧ W 

a 
J | 

| A | > ρa , (8)

where ρa is the vigilance parameter of ART a . However, if the con-

dition in Eq. (8) failed, the winning prototype node is de-activated,

and a new search cycle is triggered to select a new winning node.

If none of the existing prototype nodes is able to satisfy the condi-

tion in Eq. (8) , a new prototype node in f a 
2 

is created to absorb the

current input sample. Simultaneously, the same procedure takes

place in ART b . Once the vigilance tests in both ART a and ART b are

satisfied and the wining nodes are identified, the map-field vigi-

lance test is applied, as follows: 

| y b ∧ W 

ab 
J | 

| y b | > ρab , (9)

where ρab ∈ [0, 1] is the map-field vigilance parameter, W 

ab 
J 

is the

weight vector from f a 
2 

to f ab , and y b is the output vector of f b 
2 

. If

the winning node in ART b is denoted by K , then: 

y b = 

{
1 , k = K 

0 , otherwise 
. (10)

If the condition in Eq. (9) is not fulfilled, a match-tracking hap-

pens. This means that the current wining node makes an incorrect

prediction. In this case, the vigilance value of ART a is increased to

cause the ART a vigilance test to fail, as follows: 

ρa = 

| A ∧ W 

a 
J | 

| A | + δ, (11)

where δ > 0 is a small positive value. 

And the Q-value of the winning node is updated according to:

Q ( j) t = Q ( j ) t−1 + ξ [ r( j ) t + γ v ig( j ) t ] , (12)

where vig ( j ) denotes the vigilance value of the j th winning node

in f a layer (i.e., Eq. (8) ), ξ ∈ [0, 1] and γ ∈ [0, 1] are the learning

2 
ate and discount factor, respectively, and r ( j ) is the reinforcement

ignal [16] : 

( j) = 

{
1 , i f learning happens 
0 , i f match − tracking happens 

. (13)

This search cycle continues until the condition in Eq. (9) is sat-

sfied. Then, the winning node in ART a is updated to: 

 

a (new ) 
J 

= βa (A ∧ W 

a (old) 
J 

) + (1 − βa ) W 

a (old) 
J 

, (14)

here βa is the learning rate of ART a . 

Note that the Q-value of the winning node is updated in two

cenarios, i.e., match-tracking and learning. A summary of QFAM

raining phase is shown in Algorithm 1 . 

Test Phase: to predict the target class of a test sample, QFAM

rst computes the choice values ( Eq. (5) ) among current input and

ll prototype nodes in f a 
2 
, and selects those prototype nodes that

re able to satisfy the vigilance test ( Eq. (8) ). Then, it computes the

trength of those selected f a 
2 

nodes as follows [16] : 

trength ( j) = λT ( j) + (1 − λ) Q( j) , (15)

here λ∈ [0, 1] is a weighting factor. Finally, it selects the node

ith the highest strength as the winner to predict the target la-

el of the current input. Algorithm 2 summarizes the test phase of

FAM. 

.2.2. The pruned QFAM model 

As stated in the previous section, QFAM assigns a Q-value to

ach prototype node in f a 
2 

. This Q-value indicates the “goodness”

f the corresponding prototype node. In this regard, the network

omplexity of QFAM can be reduced by pruning less informative

rototype nodes. As such, prototype nodes in f a 
2 

with Q-values less

han a user-defined threshold are removed. This network is known

s the Pruned-QFAM model. 

.2.3. The QFAM-GA model 

QFAM-GA is a hybrid model of QFAM and GA for data classifica-

ion and rule extraction [15] . Increasing classification accuracy and

educing the network complexity are two important objectives. GA

s used to select an optimal subset of features [55] . The GA fitness

unction is formulated as follows: 

aximize f (s ) = W NCP .NCP (s ) − W s . | S| , (16)
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Algorithm 1 The learning phase of QFAM. 

Input: Parameters of QFAM and training samples. 

Output: Parameters of trained QFAM. 

1: for each training sample do 

2: Perform complement-coding (Eq. (4)); 

3: Determine choice value (Eq. (5)) for all prototype nodes in 

f a 
2 

, and select the node with the highest choice value as win- 

ning node; 

4: Perform the vigilance test (Eq. (8)); 

5: if the vigilance test fails then 

6: Deactivate the winning node, and go to Step 3 to select 

new winning node. 

7: end if 

8: (Simultaneously, repeat Steps 2 –7 in ART b , in order to select 

winning node ( Kth node in ART b )). 

9: Perform map-filed vigilance test (Eq. (9)); 

10: if map-field vigilance test fails then 

11: Update Q-value of the winning node in f a 
2 

(Eqs. (12) and 

(13)); 

12: Perform match-tracking (Eq. (11)). 

13: if there is no node in f a 
2 

satisfying Eq. (11) then 

14: Add a new node; 

15: Go to Step 3. 

16: end if 

17: else 

18: Update Q-value of the winning node in f a 
2 

(Eqs. (12) and 

(13)); 

19: Update the winning node in f a 
2 

(Eq. (14)). 

20: end if 

21: end for 

Algorithm 2 QFAM testing phase. 

Input: Parameters of the trained QFAM and test samples. 

Output: Performance indicator. 

1: for each test sample do 

2: Perform complement-coding (Eq. (4)); 

3: Determine choice value (Eq. (5)) for all prototype nodes in 

f a 
2 

; 

4: Perform the vigilance test (Eq. (8)), and select those nodes 

which satisfy the vigilance test; 

5: Compute the strength of the selected nodes (Eq. (15)); 

6: Select the node with the highest strength as the wining 

node; 

7: Update the performance indicator. 

8: end for 
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here NCP ( s ) denotes the number of samples which have been

lassified correctly, | S | is the number of selected features and

 < W s 	 W NCP . More details can be referred to [15] . 

. The proposed IQMACS 

Fig. 2 depicts the structure of IQMACS. It consists of three lay-

rs. The agent layer, which is placed in the bottom layer, consists

f a number of individual agents. Each agent makes decision based

n its trained model. The team managers, which are located in

he middle layer, are responsible to select the best agent of their

orresponding teams. The parent layer is responsible to make fi-

al decision by combining the outcome of its team agents. In this

tudy, IQMACS consists of three teams, and each team includes

hree agents. Specifically, team 1 includes three QFAM [16] mod-

ls, team 2 includes three pruned QFAM [15] models, while team

 includes three QFAM-GA [15] models. 
To build an IQMACS model, the data set is split into three

ub-sets, i.e., learning, validation, and test samples. All agents are

rained using the learning samples, and evaluated using the test.

he validation samples are used to compute the confusion matrix

f each agent, as follows [56] : 

M 

k = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

n 

k 
11 n 

k 
12 · · · n 

k 
1(M+1) 

n 

k 
21 n 

k 
22 · · · n 

k 
2(M+1) 

. . . 
. . . 

. . . 
. . . 

n 

k 
M1 n 

k 
M2 · · · n 

k 
M (M +1) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (17) 

here n k 
i j 
, i = 1 , . . . , M, and j = 1 , . . . , M + 1 indicates the total

umber of samples that belong to class i while have been pre-

icted as class j by agent k . Note that M + 1 represents those sam-

les that could not be classified by the corresponding agent. 

The confusion matrix can be used to calculate the uncertainty

f proposition, i.e. e k (x ) = j ( x is predicted as class j by agent k ),

s follows [56] : 

p(x ∈ C i | e k (x ) = j)) = 

n 

k 
i j 

n 

k 
j 

= 

n 

k 
i j ∑ M 

i =1 n 

k 
i j 

, i = 1 , . . . , M. (18)

The confusion matrix supports all the target classes, and for a

lassification algorithm the belief function can be formulated as

57] : 

el(x ∈ C i | e k (x ) = j k , EN) = P (x ∈ C j | e k (x ) = j k ) , i = 1 , . . . , M. 

(19) 

here EN indicates the environment in which all agents are active.

he belief functions are propagated and used in accordance with

he Bayesian formalism. Therefore, Eq. (18) can be formulated as

56] : 

el(i ) = bel(x ∈ C i | e 1 (x ) = j 1 , . . . , e k (x ) = j k , EN) 

= P (x ∈ C i | e 1 (x ) = j 1 , . . . , j k , EN) 

= 

P (e 1 (x ) = j 1 , . . . , e k (x ) = j k , EN| x ∈ C i , EN) P (x ∈ C i | EN) 

P (e 1 (x ) = j 1 , . . . , e k (x ) = j k | EN) 
. 

(20) 

o simplify Eq. (20) , it is considered that all K agents operate inde-

endently in EN . As such, 

P (e 1 (x ) = j 1 , . . . , e k (x ) = j k , EN| x ∈ C i , EN) P (x ∈ C i | EN) 

P (e 1 (x ) = j 1 , . . . , e k (x ) = j k | EN) 

= 

∏ K 
k =1 P (e k (x ) = j k , EN| x ∈ C i , EN) ∏ K 

k =1 P (e k (x ) = j k | EN) 
. (21) 

By applying Bayes rule: 

P (e k (x ) = j k , EN| x ∈ C i , EN) 

P (e k (x ) = j k | EN) 
= 

P (x ∈ C i e k (x ) = j k , EN) 

P (x ∈ C i | EN) 
, (22) 

Eq. (22) is updated to: ∏ K 
k =1 P (e k (x ) = j k , EN| x ∈ C i , EN) ∏ K 

k =1 P (e k (x ) = j k | EN) 

= 

∏ K 
k =1 P (x ∈ C i | e k (x ) = j k , EN) ∏ 

P (x ∈ C i | EN) 
. (23) 

By replacing Eqs. (23) and (22) into Eq. (21) : 

el(i ) = 

∏ K 
k =1 P (x ∈ C i | e k (x ) = j k , EN) ∏ 

P (x ∈ C i | EN) 
P (x ∈ C i | EN) . (24)

To approximate the combined belief function of K classifiers,

he independence assumption is used [58] , i.e., 
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Fig. 2. The IQMACS model contains three layers of agents: parent, team, and sibling. 
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bel(i ) = 

∏ K 
k =1 P (x ∈ C i | e k (x ) = j k , EN) ∑ M 

i =1 

∏ 

P (x ∈ C i | e k (x ) = j k ) 
. (25)

where P (x ∈ C i | e k (x ) = j k ) can be calculated using Eq. (18) . The be-

lief function resulted from integrating K agents can be used to

compute the initial trust value of each agent, as follows: 

initial trust (i ) = bel(i ) = 

∏ K 
k =1 P (x ∈ C i | e k (x ) = j k ) ∑ M 

i =1 

∏ K 
k =1 P (x ∈ C i | e k (x ) = j k ) 

. (26)

After calculating the initial trust, the trust of each agent is up-

dated based on prediction of the agent for each test sample as fol-

lows: 

 rust k agent (i ) = t rust (i − 1) + ξ (r k i −1 + γ (Q − v alue k c m 
)) , (27)

where γ ∈ [0, 1] and ξ ∈ [0, 1] are the discount factor and learning

rate, respectively, t rust k agent (i ) indicates trust value of the i th test

sample measured by agent k , and Q − v alue k c m 
represents the mean

Q-value of all prototype nodes that belong to class m of agent k

[11] : 

Q Value k 
C m 

= 

1 

Z 

Z ∑ 

z=0 

Q C mz 
, (28)

where Z and Q C mz 
( Eq. (12) ) indicate the number of prototypes in

f a 
2 

and the Q-value of the z th prototype that belong to class m ,

respectively, and r k 
i 

is the reinforcement signal generated by agent

k for the i th input as follows: 

r (i ) k = 

{
1 , cor r ect pr ediction by agent at i − 1 

−1 , incor r ect pr ediction by agent at i − 1 

, (29)

where the initial setting of r k 
i 
(t = 0) is 0. 

In our previous work, the QMACS model uses the sealed bid −
f ir st pr ice auction method to select both the winning agent and

team using Eq. (27) . This can affect the performance of QMACS

negatively. As an example, consider two different agents, i.e.,

pruned QFAM and QFAM. Given an input sample, both agents cor-

rectly predict the target class. However, the pruned QFAM agent

normally has a higher trust value, because pruned QFAM re-

tains only prototype nodes with Q-values higher than a threshold

( Eq. (28) ), which provides a higher trust value as compared with

that of QFAM. To exploit this situation, IQMACS adds another trust

measurement scheme (similar to Eq. (27) ) in the team level to
ompute the trust of each agent team, as follows: 

 rust m 

team 

(i ) = t rust m 

team 

(i − 1) + ξ (r m 

i −1 + γ (Q − v alue m 

c m 
)) , (30)

here t rust m 

team 

(i ) is the trust value of the m th team for the i th

ample, Q − V alue m 

c m 
is the Q-value of the predicted class by agent

 , r m 

i 
is the reinforced signal of the m th team, which is updated

s follows: 

 

m 

i = 

{
1 , correct prediction by team at i − 1 

−1 , incorrect prediction by team at (i − 1) 
. (31)

The initial trust value of each team is as follows: 

n − trust − team (m ) = 

1 

L 

L ∑ 

l=1 

initial l trust , (32)

here L is the total number of agents in team m , and initial l trust 

 Eq. (26) ) is the initial trust of the l -th agent. The sealed bid-first

rice auction method is used to select the best team at parent level.

 summary of IQMCAS is shown in Algorithm 3 . 

. Experimental studies 

To evaluate the applicability of IQMACS, six benchmark prob-

ems from UCI machine learning repository [59] ( Table 1 ), and two

eal-world case studies, i.e., human motion detection and motor

ault detection, were selected for experiment. Firstly, the UCI data

ets were used to compare the performance of IQMACS with those

f QMACS and other state-of-the-art voting and ensemble methods

eported in [60–62] . Then, the real-world case studies were used

o compare the performance of IQMACS with those of QMACS and

heir agent teams. The experimental parameters after several trials

ere set according to those in Table 2 . 

In this study, three performance indicators, including accuracy

ACC), sensitivity (SENS), and specificity (SPEC), were used for

erformance evaluation. SENS/SPEC is the ratio of correctly clas-

ified positive/negative samples over the total number of posi-

ive/negative samples [63] . Note that SENS and SPEC can be ap-

lied to two-class classification problems. The bootstrap method

30] was used to quantify results statistically. 

.1. UCI data sets 

In this section, six benchmark problems (four biomedical data

amples, i.e., PID, Bupa, WDBC and WBC, and two artificially gen-

rated data sets, i.e., waveform and LED) from the UCI machine
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Algorithm 3 The Improved QMACS. 

Input: The parameters of agents and data samples. 

Output: Performance indicator. 

1: Split data samples into three subsets, i.e., learning, validation 

and testing samples. 

2: for each agent do 

3: Train agent using learning samples; 

4: Update confusion matrix (Eq. (17)) using validation samples; 

5: Determine initial trust of each agent (Eq. (26)). 

6: end for 

7: for each team do 

8: Determine initial trust of each team (Eq. (32)). 

9: end for 

10: for each test sample do 

11: Predict target class by each agent; 

12: Update trust value of the agent (Eq. (27)); 

13: Use the sealed bid-first price auction to select the best agent 

at team level; 

14: Update trust of each team (Eq. (30)); 

15: Use the sealed bid-first price auction to select the best team 

at parent level; 

16: Update the performance indicator. 

17: end for 

Table 1 

Details of UCI data sets. 

Data set # of samples # of features # of classes 

Waveform Database Generator 

(Version 2) 

50 0 0 40 3 

LED display domain 10 0 0 24 10 

Pima Indian Diabetes (PID) 768 8 2 

BUPA 345 6 2 

WDBC 569 32 2 

WBC 699 10 2 

Table 2 

The experimental parameters. 

βa = βb 1 γ 0.3 Mutation probability 0.1 

αa = αb 0.001 ξ 0.3 Crossover probability 0.9 

ρb = ρab 1 W NCP 0.1 Population size 100 

ρa 0.9 W s 0.01 Stopping condition 10 0 0 

λ 0.95 Pruning 

threshold 

0.3 Number of prototypes 

replaced in each 

population 

20 

Table 4 

The ACC rates with standard deviations (SD) for the waveform data set. 

Method Waveform 

Locally weighted naive Bayes (LWNB) K = 50 [61] 81.88 ± 1.8 

Locally weighted naive Bayes (LWNB) K = 30 [61] 81.79 ± 1.9 

Locally weighted naive Bayes (LWNB) K = 100 [61] 82.34 ± 1.8 

Naive Bayes (NB) [61] 80.01 ± 1.4 

K-nearest neighbours with distance weighting 

(KNNDW) K = 5 [61] 

79.33 ± 1.8 

K-nearest neighbours with distance weighting 

(KNNDW) K = 10 [61] 

81.12 ± 2.0 

K-nearest neighbours with distance weighting 

(KNNDW) K = 20 [61] 

83.12 ± 1.9 

QMACS [11] 92.98 ± 2.0 

IQMACS 93.85 ± 1.9 
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Table 3 

The ACC, SENS and SPEC rates for biomedical data se

Method PID 

Acc (%) Sens (%) 

HM-BagMoov [60] 78.21 78.65 

Bagging [60] 77.99 75.96 

AdaBoot [60] 76.43 52.99 

Majority voting [60] 76.30 50.00 

Accuracy-Weighting [60] 77.00 65.54 

QMACS [11] 91.13 96.31 

IQMACS 92.03 96.31 

WBDC 

HM-BagMoov [60] 95.56 95.00 

Bagging [60] 94.19 94.60 

AdaBoot [60] 96.13 94.34 

Majority voting [60] 95.61 89.15 

Accuracy-Weighting [60] 96.01 94.23 

QMACS [11] 97.53 94.25 

IQMACS 97.74 95.96 
earning repository were used. In the first experiment, the biomed-

cal data sets were employed. Following the same procedure in

60] , the 10-fold cross validation was repeated 10 times (with 90%

or training (80% and 10% for learning and validation, respectively),

nd the remaining 10% for test. 

Table 3 shows the ACC, SENS and SPEC rates of IQMACS,

MACS and other methods reported in [60] , i.e., Bagging, Accuracy-

eighting, HM-BagMoov, AdaBoot and Majority voting. In term

f accuracy, IQMACS outperformed all methods for PID, Bupa and

BDC, while for WBC, both QMACS and IQMACS produced inferior

esults. In term of SENS, IQMACS outperformed QMACS and other

ethods in [60] . In term of SPEC, IQMACS recorded the highest

ate only for WBDC. 

In the second experiment, the effectiveness of IQMACS was

valuated using two noisy data sets, i.e., Waveform and LED. The

ame experimental procedure in [61,62] was followed. For the

aveform problem, the 10-fold cross-validation was repeated 10

imes. As shown in Table 4 , IQMACS yielded the highest accuracy

ate as compared with those of QMACS and other methods in [61] .

For the LED problem, two-third of the data samples were used

or training (with 56.7% for learning and 10% for validation), and

he remaining for test. Table 5 shows the error rates of IQMACS,

MACS and other methods in [62] with varying noise levels, i.e., 0%

noise-free), 10% and 25%. While, IQMACS produced inferior results

or the noise-free case, it outperformed QMACS and other methods

n [62] for both noisy cases. 

.2. Real-world case studies 

In this section, two case-studies were conducted, i.e., human

otion detection and motor fault detection. Nine time domain
ts. 

BUPA 

Spec (%) Acc (%) Sens (%) Spec (%) 

92.60 70.16 68.71 89.52 

85.00 69.02 66.72 92.90 

89.00 68.41 53.79 79.00 

90.40 71.88 45.52 91.00 

85.55 67.01 59.99 75.98 

80.33 81.12 77.29 83.39 

83.34 81.64 79.40 83.39 

WBC 

99.16 97.11 95.78 95.85 

95.04 97.57 94.13 95.08 

97.20 95.85 92.95 97.37 

99.44 96.71 97.38 95.44 

98.5 96.98 93.28 95.01 

99.25 93.50 100 81.51 

99.25 95.70 100 85.78 
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Table 5 

The error rates for the LED data set with different level of noise. 

Method level of noise 

0% 10% 25% 

Plurality (Pl) [62] 0 0.3123 0.6937 

Anti-plurality (Anti-PI) [62] 0 0.5435 0.7988 

Borda Count (BC) [62] 0 0.3063 0.7087 

Plurality with Elimination (PL-Elm) [62] 0 0.3123 0.6907 

Pairwise Comparisons (PC) [62] 0 0.3123 0.6877 

QMACS [11] 0.0454 0.2146 0.4128 

IQMACS 0.0462 0.2126 0.3945 

Table 6 

Details of human motion data set. 

Data set Extracted features Data samples 

Belt pocket 27 152 

Front pocket 27 102 

Shirt pocket 27 136 
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statistical features, e.g., mean, Crest factor, root mean square,

Skewness, standard deviation, Impulse factor, Latitude factor, Kur-

tosis and Crest factor and Shape factor, were extracted from both

data sets. These features were selected based on the study in [64] .

The data samples were normalized between 0 and 1. In order

to evaluate the effectiveness of IQMACS, QMACS and their team

agents, varying levels of noise were injected to the data samples. 

5.2.1. Human motion detection 

An accelerometer embedded in a smartphone was used to col-

lect the raw data samples [65] . Three data sets were established

with respect to the locations of smartphone: in the front, belt, and

shirt pockets of a human. After recording three activities, namely

climbing, walking, and running, statistical features were extracted

from the raw waveform signals, and normalized between 0 and 1.

The task was to classify human’s motion, whether climbing, walk-

ing or running. Table 6 shows the details of the recorded data. 

Three experiments were conducted. In the first experiment, the

performance of individual agents was evaluated. For each agent,

the 10-fold cross validation was repeated 10 times. A total of 90%

and 10% of data samples were used for learning and test, re-
Table 7 

The ACC rates (%) of individual agents with 95% confidence int

Location Method Lower bound of 

of camera 95% confidence i

QFAM 94.35 

Belt pocket Pruned QFAM 85.53 

QFAM-GA 97.47 

QFAM 93.04 

Front pocket Pruned QFAM 82.16 

QFAM-GA 97.09 

QFAM 89.42 

Shirt pocket Pruned QFAM 80.79 

QFAM-GA 96.66 

Table 8 

The number of prototypes before and after pruning with 95% confidence

Location Method Lower bound of t

of camera 95% confidence in

Belt Before pruning 61.81 

pocket After pruning 19.03 

Front Before pruning 42.44 

pocket After pruning 14.25 

Shirt Before pruning 49.71 

pocket After pruning 14.87 
pectively. The mean ACC rates with 95% confidence intervals are

hown in Table 7 . As can be seen, team 3 outperformed teams 1

nd 2. While, team 2 was not able to perform as good as team 1,

runing reduced the network complexity (as shown in Table 8 ). 

In the second experiment, 90% of data samples were used for

raining (80% for learning and 10% for validation) and 10% for test.

he mean ACC rates with 95% confidence intervals are shown in

able 9 . Team 3 outperformed two other teams for all data sets.

eam 2 was not able to achieve similar accuracy rates to those

f teams 1 and 3, owing to pruning. In general, both IQMACS and

MACS could produce better or similar results as compared with

hose of the best team by combining the outcomes of three teams.

n addition, IQMACS outperformed QMACS in term of the mean

CC rate. 

In the third experiment, the performance of IQMACS, QMACS

nd their team agents were compared in terms of ACC, SENS and

PEC. All data samples were combined into a two-class problem,

.e., data from climbing and walking were considered as one class.

herefore, a total of 390 samples with 27 statistical features be-

onging to two classes, i.e., running and walking, were used. In

ddition, noise at different levels, i.e., 10%, 30% and 50%, were

njected to the class labels of the learning samples. The 10-fold

ross validation was repeated 10 times, with 90% of data samples

or training (80% and 10% for learning and validation, respectively)

nd 10% for test. Fig. 3 shows the ACC rates. The ACC rates of all

odels reduced when the level of noise increased. Teams 1 and

 achieved similar ACC rates for noise-free data. Team 1 produced

imilar results to that of team 2 when the level of noise increased.

lthough both IQMACS and QMACS models produced comparable

esults by combining the decisions of their team agents, IQMACS

utperformed QMACS. 

The numbers of prototype nodes before and after pruning are

hown in Fig. 4 . As can be seen, the number of prototype nodes

efore pruning (team 1) increased steadily in line with increas-

ng noise level, while teams 2 and 3 approximately used the same

umbers of prototype nodes after pruning. Team 2 produced infe-

ior results but a less complex network. 

Figs. 5 and 6 show the SENS and SPEC rates of IQMACS, QMACS,

nd their team agents, respectively. Similar to ACC, both SENS and

PEC rates degraded with increasing noise level. Team 3 outper-

ormed the other two teams in terms of SENS and SPEC rates. 
ervals for human motion detection. 

the Mean Upper bound of the 

nterval 95% confidence interval 

95.39 96.29 

87.80 89.56 

98.02 98.55 

94.21 95.31 

85.62 87.47 

98.04 98.90 

91.82 92.66 

84.52 86.65 

97.52 98.09 

 intervals. 

he Mean Upper bound of the 

terval 95% confidence interval 

63.93 65.51 

20.29 21.37 

45.41 46.99 

16.72 20.14 

51.11 52.24 

17.26 19.03 
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Table 9 

The ACC rates (%) of IQMACS, QMACS and their team agents with 95% confidence intervals for human motion detection. 

Location Method Lower bound of the Mean Upper bound of the 

of camera 95% confidence interval 95% confidence interval 

Team 1 (QFAM) 89.90 92.63 93.94 

Belt Team 2 (Pruned QFAM) 84.19 86.64 88.69 

pocket Team 3 (QFAM-GA) 93.40 95.16 96.95 

QMACS 93.68 94.22 95.75 

IQMACS 95.67 96.18 96.74 

Team 1 (QFAM) 91.76 94.44 96.27 

Front Team 2 (Pruned QFAM) 69.51 76.24 82.02 

pocket Team 3 (QFAM-GA) 96.51 97.31 97.80 

QMACS 94.18 95.16 96.58 

IQMACS 96.16 97.13 97.56 

Team 1 (QFAM) 89.21 94.17 95.62 

Shirt Team 2 (Pruned QFAM) 81.19 85.73 88.45 

Pocket Team 3 (QFAM-GA) 95.77 96.61 97.17 

QMACS 94.41 95.47 96.01 

IQMACS 95.67 96.45 97.02 

Fig. 3. The ACC rates of IQMACS, QMACS and their team agents for human motion detection in the presence of noise. 

Fig. 4. The number of prototypes before and after pruning in the presence different levels of noise. 
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.2.2. Motor fault detection 

In this case study, fault detection of three-phase electric motors

as studied. Current signals of electric motors were recorded un-

er different conditions, i.e., normal, broken rotor bars, eccentric-

ty, unbalanced voltages, and stator winding faults [42] . A total of

0 data samples were recorded. In order to better represent data

amples, nine statistical features were extracted from each phase
f data samples. Therefore, each data sample was represented by

7 features (3 phases × 9 features). 

Firstly, the performance of individual agents was examined

ith the use of 10-fold cross validation (90% and 10% of data

amples for learning and test, respectively) repeated 10 times.

able 10 shows the overall results. QFAM and QFAM-GA achieved

imilar results statistically, with an overlap between their 95%
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Fig. 5. The SENS rates of IQMACS, QMACS and their team agents for human motion detection. 

Fig. 6. The SPEC rates of IQMACS, QMACS and their team agents for human motion detection. 

Table 10 

The ACC rates (%) of individual agents with 95% confidence intervals for motor 

fault detection. 

Method Lower bound of the Mean Upper bound of the 

95% confidence interval 95% confidence interval 

QFAM 98.60 99.20 99.80 

Pruned QFAM 93.20 94.80 96.20 

QFAM-GA 97.60 99.01 99.80 

Table 11 

The number of prototypes before and after pruning with 95% confidence intervals 

for motor fault detection. 

Method Lower bound of the Mean Upper bound of the 

95% confidence interval 95% confidence interval 

Before pruning 16.36 17.30 18.22 

After pruning 7.10 7.89 8.72 
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confidence intervals. Although, Pruned QFAM was not able to per-

form as good as the other two agents, it managed to reduce the

network complexity more than 50% ( Table 11 ). 

Next, the effectiveness of IQMACS and QMACS was evaluated.

The 10-fold cross validation method was used, with 80%, 10% and

10% of data samples used for learning, validation, and test, respec-

tively. The accuracy rates of IQMACS, QMACS and their constituents

are shown in Table 12 . Team 1 outperformed other teams. QMACS

performed similarly to team 3, while IQMACS produced similar re-

sults as to that of team 1 (which is the best team). 

The motor fault data set was further evaluated in a two-

class problem, e.g., faulty and fault-free. The 5-fold cross-validation
ethod was used, due to the small size, and was repeated 10

imes. A total of 60%, 20% and 20% of data samples were used for

earning, validation, and test, respectively. To further evaluate the

ffectiveness of IQMACS, the class label of training samples was in-

ected with noise levels of 10%, 30%, and 50%. 

The ACC rates of IQMACS, QMACS, and their teams are shown in

ig. 7 . The ACC scores of IQMACS and QMACS, and their teams de-

reased with increasing the level of noise. Teams 1 and 3 produced

imilar results in dealing with the noise-free problems, while team

 outperformed the other two teams when the level of noise in-

reased. Fig. 8 shows the number of prototype nodes before and af-

er pruning. QFAM was more complex as compared with QFAM-GA

nd Pruned QFAM. Again, both IQMACS and QMACS could achieve

omparable results by combining the decisions of three teams. 

The SENS and SPEC rates of IQMACS, QMACS and their teams

re shown in Figs. 9 and 10 , respectively. As expected, the SENS

nd SPEC rates of all models degraded when the level of noise in-

reased. For the noise-free data set, all teams perfectly recognized

he normal motor condition ( Fig. 9 ), while team 2 (Pruned QFAM)

chieved the highest SPEC rates as compared with those of teams

 and 3 for the noisy problem ( Fig. 10 ). 

.3. Discussion 

The empirical results demonstrate that individual ANNs pro-

uce different classification rates for various data sets with dif-

erent characteristics. As shown in Figs. 3 and 7 , although Pruned

FAM produces inferior results as compared with those from both

FAM and QFAM-GA, it achieves the highest ACC scores for the

ulti-class and noisy motor fault diagnosis problems, except for
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Table 12 

The ACC rates (%) of IQMACS, QMACS and their team agents with 95% confidence intervals 

for motor fault detection. 

Method Lower bound of the Mean Upper bound of the 

95% confidence interval 95% confidence interval 

Team 1 (QFAM) 97.80 98.60 99.40 

Team 2 (Pruned QFAM) 82.60 88.01 91.40 

Team 3 (QFAM-GA) 92.80 94.63 96.80 

QMACS 93.80 94.68 95.56 

IQMACS 97.58 98.44 99.12 

Fig. 7. The ACC rates(%) of IQMACS, QMACS and their team agents for motor fault detection. 

Fig. 8. The number of prototypes before and after pruning in presence of different levels of noise. 

Fig. 9. The SENS rates of IQMACS, QMACS and their team agents for the motor fault detection data set. 
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Fig. 10. The SPEC rates of IQMACS, QMACS and their team agents for the motor fault detection data set. 
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the case with 50% noise. In other words, Pruned QFAM has the ad-

vantage of tackling noisy problems, with a parsimonious network

structure after pruning. Both IQMACS and QMACS are able to pro-

duce promising results by combining the outcomes of individual

models. 

6. Summary 

In this paper, we have introduced IQMAC by enhancing our

previous QMACS model with an additional trust measurement

scheme at the team level. The performance of IQMACS, QMACS,

and the constituent agent teams have been evaluated using

benchmark problems as well as two real-world case studies. For

each real-world case study, statistical features were extracted to

represent the data samples for classification in noise-free and

noisy conditions. Several performance indicators including ACC,

SENS and SPEC have been computed. The outcome indicates,

although individual teams perform differently in tackling different

problems, IQMACS is able to produce promising results by com-

bining the predictions of their agent teams. In addition, IQMACS

is able to enhance the performance of QMACS through the trust

measurement at the team level. 

For further work, QFAM-based models can be replaced by other

online ANNs, e.g. FMM or probabilistic neural networks that have

similar structures as that of QFAM. Moreover, QFAM-based net-

works can be adapted to deal with function approximation prob-

lems, especially noisy functions, by exploiting the embedded Q-

learning method in the structures. 
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