
A Hierarchical-Tree-Based Method
for Generative Zero-Shot Learning

Xizhao Wang, Zhongwu Xie, Weipeng Cao(B), and Zhong Ming

College of Computer Science and Software Engineering, Shenzhen University,
Shenzhen 518060, China
caoweipeng@szu.edu.cn

Abstract. It is currently a popular practice to use the class semantic
information and the conditional generative adversarial network (CGAN)
technique to generate visual features for the unseen classes in zero-shot
learning (ZSL). However, there is currently no good ways to ensure that
the generated visual features can always be beneficial to the prediction of
the unseen classes. To alleviate this problem, we propose a hierarchical-
tree-based method for constraining the generation process of CGAN,
which can tune the generated visual features based on the multi-level
class information. Moreover, to enhance the mapping ability of the model
from the visual space to the semantic space, we add a multi-expert mod-
ule to the traditional single mapping channel, which helps the model to
mine the mapping relationship between the visual space and the semantic
space. Extensive experimental results on five benchmark data sets show
that our method can achieve better generalization ability than other
existing generative ZSL algorithms.

Keywords: Zero-shot learning · Hierarchical tree · Generative
adversarial networks

1 Introduction

In real-world applications, especially in medical image recognition and wild ani-
mal recognition scenarios, sometimes there are no training samples for some
classes due to the difficulty of obtaining data or the high cost of labeling
them [13]. We call these classes unseen classes, and the corresponding is seen
classes, which refer to the classes that have corresponding labeled samples and
can be directly used for model training. To enable the model to accurately pre-
dict unseen classes, zero-shot learning (ZSL) [22,31] was proposed, which aims
to recognize these classes without any training samples with the help of their
side information (i.e., the description information of the classes). Generally, the

This work was supported by National Natural Science Foundation of China (61836005,
61976141, 61732011), and the Opening Project of Shanghai Trusted Industrial Control
Platform (TICPSH202003008-ZC).
X. Wang and Z. Xie—Joint first authors.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12453, pp. 352–364, 2020.
https://doi.org/10.1007/978-3-030-60239-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60239-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-60239-0_24

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 353

side information corresponding to these classes is encoded into semantic vectors
of the same dimension, and related techniques include: attribute [7], gaze [14],
word2vec [28], etc.

According to the different testing settings, the existing ZSL algorithms can
be divided into two categories: conventional zero-shot learning (CZSL) and gen-
eralized zero-shot learning (GZSL). For CZSL, testing samples only contain the
unseen classes samples; for GZSL, the testing samples include both the seen and
unseen classes samples. It is clear that the testing setting of GZSL is closer to
the real world than that of CZSL [30]. At present, there are two main strate-
gies to realize ZSL: embedding strategy and generative strategy. The embedding
strategy follows the assumption that the distributions of the seen classes and the
unseen classes in both the visual space and the semantic space are similar [13],
and the main implementation is to transfer the mapping relationship learned
from the seen classes to the recognition of the unseen classes. The advantage of
this strategy is that it is easy to implement, but its disadvantage is that it may
cause the model to suffer from the hubness problem [24] and bias problem [33].

Inspired by generative adversarial networks (GAN) [10], many GAN-based
generative ZSL algorithms have been proposed in recent years [8,17,31]. In gen-
eral, these algorithms aim to use random noises and the semantic vectors to
generate pseudo samples and then transform the ZSL task into the general super-
vised learning task. This generative strategy is straightforward but suffers from
the following weakness: the generators of these algorithms are easy to generate
unrepresentative visual features, especially for the unseen classes. To alleviate
this problem, in [17], the authors proposed to use a regressor (the same to the
module R in Fig. 1), which can enhance the correlation between the generated
features and the known semantic vectors to a certain extent. But it can not guar-
antee the quality of these features [9], especially for the unseen classes, because
the information used to constrain the generator is still too scarce.

Fig. 1. The framework of our method

To solve the above problems, we propose a novel constraint method based
on the class hierarchy tree to guide the generator to generate more useful visual
features for the current ZSL task. Specifically, we first use the K-means technique
to build a class hierarchy tree based on the semantic vectors corresponding to the
classes and then use the multi-level class information to evaluate the quality of

354 X. Wang et al.

the generated features. In other words, the generated features can be evaluated
from multiple dimensions and the corresponding evaluation loss can be used to
guide the update of the generator. Moreover, to enhance the mapping ability of
the model from the visual space to the semantic space, we add a multi-expert
module, which can embed a variety of different structures or algorithms.

The main contributions of this paper can be summarized as follows: (1) We
propose to use a class hierarchy tree to constrain the generator of the generative
ZSL algorithms for the first time, which can make it generate more representative
visual features for model training; (2) We propose to add a multi-expert module,
which is beneficial to mine the relationship between the visual space and the
semantic space; (3) Extensive experiments on five benchmarks verify that our
method outperforms the previous state-of-the-art approaches.

2 Preliminaries

2.1 Generative Adversarial Networks (GAN)

GAN [10] can be used to generate images (or text) from random noise, and
its architecture usually contains two modules: generator and discriminator. The
input of the generator is random noise z that follows a specific distribution
(e.g., z ∼ N(0, 1)). During training, the generator and the discriminator are
trained in an adversarial manner, that is, the generator tries its best to generate
fake samples to fool the discriminator, while the discriminator does its best to
distinguish samples as whether they come from the generator or the original
training data set. When the discriminator cannot distinguish the real samples
from the generated samples, the model training is completed. At this point, we
think that the generator has learned the distribution of the original samples.

In recent years, GAN has received extensive attention, and some notable work
includes: in [19], the authors proposed that the label information can be added
to the input of the generator and the discriminator, so that the model can better
capture the data distribution under the specific class constraints. Different from
[19,26] and [25] use sentence descriptions as the auxiliary constraints. In [3], the
authors proposed to use the Wasserstein distance to alleviate the problem of
unstable model training and model collapse in GAN. In [11], the authors pro-
posed an improved WGAN, which can accelerate its training speed. At present,
it has become a popular practice to integrate Wasserstein distance into condi-
tional GAN (CGAN), and various CWGAN algorithms and applications have
been proposed [6,32].

2.2 Generative Methods for Zero-Shot Learning

In recent years, the generative strategy has been widely concerned in the field
of ZSL, because once one can generate training samples for unseen classes in
some way, then the ZSL tasks become the general supervised learning tasks.
Related representative work includes: in [20], the authors used the conditional

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 355

variable auto-encoder to generate the unseen classes samples. Using CGAN to
generate training samples for the unseen classes is currently a hot research topic.
In this learning paradigm, the input of the generator is usually the semantic
vectors corresponding to the unseen classes and the random noise following a
specific distribution. Here the semantic vectors play the role of constraining the
output generated by CGAN. In [31], the authors pointed out that it is easier
to generate low-dimension visual features through the generator than directly
generating pixel-level images, and their experimental results showed that using
the generated features can also improve the generalization ability of the model.
Similar work also includes [8,17], etc. Note that the generator in our method
also generates visual features rather than the pixel-level images.

2.3 Constraints are Necessary

In [31], the authors demonstrated that it is difficult for CWGAN to ensure that
the generated features are beneficial to the final model decision. To optimize
this problem, they proposed f-CLSWGAN, which uses a classifier trained based
on the seen classes samples to evaluate the quality of the generated features
and uses the corresponding evaluation loss to constrain the update of the gen-
erator. Their experimental results show that even if only additional constraints
are imposed on the seen classes, this method can still effectively improve the
generalization ability of the final model. In [8], the authors pointed out that
if we do not constrain the generated features for the unseen classes during the
update of the generator, it will cause the distribution of the generated unseen
classes features to be far from their true distribution. To solve this problem, they
proposed Cycle-CLSWGAN, which can alleviate the above problem by recon-
structing the generated features back to their corresponding semantic vectors.
Similar work also includes AFC-GAN [17]. The difference between AFC-GAN
and Cycle-CLSWGAN is that the regressor used in the former is pre-trained,
and its internal parameters will not be updated throughout the training process,
while the latter will update these parameters.

3 The Details of Our Method

3.1 Notations

In this study, X represents the visual space, A represents the visual space, and
Y represents the label space. In ZSL, generally the original data set (D) will
be divided into the seen classes set DS and the unseen classes set DU , where
DS = {x, y, a(y)|x ∈ XS , y ∈ YS , a(y) ∈ AS}, DU = {x, y, a(y)|x ∈ XU , y ∈
YU , a(y) ∈ AU}, and Y = YS ∪ YU , YS ∩ YU = ∅.

In the experiment, we used the testing setup of GZSL, that is, the testing
samples can come from both the unseen and seen classes. Therefore, DS will
also be divided into two subsets: the subset for training DTr

S and the subset for
testing DTe

S . So the original data set was finally divided into three parts: DTr
S ,

DTe
S , and DTe

U .

356 X. Wang et al.

3.2 The Basic Idea of Our Method

The basic idea of our method is to optimize the constraints of CWGAN to make
the generated features more conducive to the final model decision. The difficulty
here is how to evaluate the quality of the generated features during the training
process, and then tune the generator based on the evaluation feedback. In [17],
the authors pointed out that the generated features should be able to be recon-
structed into their corresponding semantic vectors. However, the method they
proposed mainly helped the prediction of the seen classes [9], but the constraints
on the generated unseen classes features are insufficient.

Inspired by their work, we propose a hierarchical-tree-based constraint
method to provide more information about the unseen classes for the gener-
ator in CWGAN. Specifically, first, we use the K-means technique to cluster the
semantic vectors corresponding to the seen and unseen classes to form a class
hierarchy tree (as shown in Fig. 2). Note that the higher-level ancestor nodes are
the high-level abstraction of the concepts of the child nodes.

Fig. 2. Tree-building process.

During training, the model first maps the generated features to the semantic
space and then uses the above class hierarchy tree to evaluate their quality and
obtain the corresponding loss. This loss will provide the generator with addi-
tional constraint information. The class hierarchy tree can evaluate whether the
generated features conform to the semantic features of the classes from mul-
tiple dimensions, thereby guiding the generator to generate better visual fea-
tures. Moreover, the multi-level tree structure also gives us the opportunity to
use multi-expert modules (i.e., the mapping channels) to enhance the feature
extraction ability of the model (as shown in Fig. 3), which helps the model to
better mine the relationship between the visual space and the semantic space.

Fig. 3. The architecture of the regressor used in our method.

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 357

3.3 Details of Our Method

The basic framework used in our method is CWGAN, where the input of the
generator is the random noise (i.e., z, z ∼ N(0, 1)) and the semantic vector (i.e.,
a) corresponding to each specific class, and its output is the generated visual
features. The loss of the generator can be obtained as follows:

LG = −E[D(G(z, a), a)] − ηE[logP (y|G(z, a)) − βE[t|R(G(z, a)]] (1)

where the first term is the Wasserstein loss [3], the second item is the classifica-
tion loss for evaluating the quality of the generated features, and the last item is
the reconstruction loss. η and β are the trade-off parameters. t is the identifier
corresponding to the hierarchical tree.

The loss of the discriminator can be calculated as follows:

LD = E[D(G(z, a), a)] − E[D(x, a)] + λE[(‖∇x̂D(x̂, a)‖2 − 1)]2 (2)

where the last term refers to the penalty loss, which is also known as the Lipschitz
constraint [11], in which x̂ = μx + (1 − μ)x̃, μ ∼ U(0, 1). Here λ is a penalty
parameter, which was set to 10 in our study.

The global optimization objective of our model is:

min
G

max
D

LGAN = E[D(x, a)] − E[D(G(z, a), a)]

−λE[(‖∇x̂D(x̂, a)‖2 − 1)]2 − ηE[logP (y|G(z, a)) − βE[t|R(G(z, a))]]
(3)

After training, one can use the generator to augment the original training
data set of the ZSL task, thereby improving the generalization ability of the
model. It is worth mentioning that to improve the prediction accuracy of the
ZSL model, we adopted the ensemble learning framework designed in [17] to make
predictions. Specifically, we trained classifiers fv and fs based on the training
data provided by visual features and labels, and the training data provided
by semantic vectors and labels, respectively. The final prediction results of the
model are determined by these two classifiers:

y = argmax [fv(x) + λ̂fs((g(x))] (4)

where λ̂ is the trade-off parameter.
The learning framework of our method is shown in Fig. 1, which contains a

generator, a discriminator (D), a classifier (P), and a regressor (R). The training
process of the regressor can be summarized as Algorithm 1. The training methods
of other modules are the same as traditional methods.

4 Experiments

4.1 Datasets

In the experiment, we selected five benchmark data sets to evaluate the perfor-
mance of our method, including Animals with Attributes1 (AWA1) [16], Ani-
mals with Attributes2 (AWA2) [30], Caltech-UCSD Bird-200-2011 (CUB) [29],

358 X. Wang et al.

Oxford Flowers (FLO) [21], and SUN Scene Recognition (SUN) [23]. The details
of the data sets are shown in Table 1.

Algorithm 1. The training process of the regressor
1: Input: Training data D=(XTr

S , AS , AU); the number of nodes at each level in the
class hierarchy tree, which is represented by array arr, and arr[0] represents the
number of leaf nodes; the learning rate α; and the trade-off parameters β0, β1, ...,
βn.

2: Output: The parameters (i.e., θr) of the regressor.
3: Step1: K-means clustering

if len(arr) == 1:
return A;

temp att = A;
while i < len(arr) − 1 do:

node = arr[i];
kmean = Kmeans(n clusters=node).fit(temp att);
cluster center = kmean.cluster center ;
save cluster center;
temp att = cluster center;

4: Step2: Build the framework of the regressor R according to the architecture of
each expert module.

5: Step3: Let Tij represent the aj of the i-th layer.
while not done do:

6: pred0, pred1, ..., predn = R(x|x ∈ jth class);
7: L = βi

∑n
i=0 ‖predi − Tij‖2;

8: θr = θr − α∇θr (L);
9: return θr;

Table 1. The details of the experimental data sets

Dataset AWA1 AWA2 CUB FLO SUN

Images 30475 37322 11788 8189 14340

Attributes 85 85 312 1024 102

Seen classes 40 40 150 82 645

Unseen classes 10 10 50 20 72

To make a fair comparison with other ZSL algorithms, we used the same
division method as [30] for the AWA1, AWA2, CUB, and SUN data sets; for
FLO, we used the division method mentioned in [26]. A pre-trained ResNet-
101 [12] model was chosen as the feature extractor for all the ZSL algorithms.

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 359

4.2 Implementation Details

As shown in Fig. 1, our learning framework mainly includes three functional
modules: generator, discriminator, and regressor. In our experiments, for the
generator and the discriminator, we used the multilayer perceptron (MLP) with
a single hidden layer, in which the number of nodes in the hidden layer is 4096
and the activation function is LeakyReLU [18]. The output layer of the generator
contains 2048 nodes and uses ReLU as its activation function; while the output
layer of the discriminator has one output node but does not use any activation
function. For the regressor, we used the neural network with a single hidden
layer as the basic expert module (three expert modules in total), the activation
function of the hidden layer is LeakyReLU, and the activation function of the
output layer is ReLU. For AWA1, AWA2, and CUB, the number of hidden nodes
corresponding to these three expert modules are 2048, 3072, and 4096, respec-
tively; for SUN, they are 7168, 8189, and 9216, respectively; for FLO, they are
3072, 4096, and 5120, respectively. In this study, Adam [15] was chosen as the
optimization algorithm and the learning rate was set to 1e − 4. In addition, the
level of the class hierarchy tree was set to 3.

In Eq. (1), the last term can be expanded as follows:

βiE[t|R(G(z, a)) = βseen ‖pred0 − as‖2 + βunseen

2∑

i=0

‖predi − Tij‖2 , (5)

where βseen is a constant, βunseen is a vector, and Tij refers to the ancestor
of aj when i> 0 and refers to the aj itself when i = 0. The first term is used
for constraining the generated seen classes features to reconstruct to their cor-
responding semantic vectors, while the last term is used for constraining the
generated unseen classes features to reconstruct to their ancestors and their cor-
responding semantic vectors. The values of these parameters in our experiments
are shown in Table 2.

Moreover, the value of the λ̂ in Eq. (4) was set to 2 in SUN, and was set to
1.5 in other data sets.

Table 2. The parameter settings of the regressor.

Dataset AWA1 AWA2 CUB FLO SUN

Node number in HT [50, 20, 5] [50, 20, 5] [200, 20, 5] [102, 50, 10] [717, 300, 50]

βseen 1, 1, 1, 1, 10,

βunseen [0.1, 1, 1] [0.1, 1, 1] [0.1, 1, 1] [1,1,1] [0.1, 5, 5]

Note: HT means the class hierarchy tree. βunseen = [β0, β1, β2] correspond to the
weight of loss evaluation from bottom to top of the class hierarchy tree.

360 X. Wang et al.

4.3 Experimental Results

In this study, we used the harmonic mean H to evaluate the performance of the
proposed algorithm, which can be obtained as follows:

H =
2 × As × Au

As + Au
(6)

where As and Au are the top-1 accuracy of the model on the seen classes and
the unseen classes, respectively. Note that the larger the value of H, the better
the generalization ability of the model.

We compared our method with the other seven popular ZSL algorithms (i.e.,
SJE [2], ESZSL [27], ALE [1], DEVISE [9], GAZSL [33], f-CLSWGAN [31], and
AFC-GAN [17]), and the corresponding results are shown in Table 3.

Table 3. Experimental results of our method and other ZSL algorithms on benchmarks

Method
AWA1 AWA2 CUB FLO SUN

As Au H As Au H As Au H As Au H As Au H
SJE [2] 74.6 11.3 19.6 73.9 8.0 14.4 59.2 23.5 33.6 47.6 13.9 21.5 47.6 13.9 21.5

ESZSL [27] 75.6 6.6 12.1 77.8 5.9 11.0 68.3 12.6 21.0 56.8 11.4 19.0 11.0 27.9 15.8

ALE [1] 16.8 76.1 27.5 81.8 14.0 23.9 62.8 23.7 34.4 61.6 13.3 21.6 33.1 21.8 26.3

DEVISE [9] 68.7 13.4 22.4 74.7 17.1 27.8 53.0 23.8 32.8 44.2 9.9 16.2 27.4 16.9 20.9

GAZSL [33] 84.2 29.6 43.8 86.9 35.4 50.3 61.3 31.7 41.8 77.4 28.1 41.2 39.3 22.1 28.3

f-CLSWGAN [31] 61.4 57.9 59.6 68.9 52.1 59.4 57.7 43.7 49.7 73.8 59.0 65.6 42.6 36.6 39.4

AFC-GAN [17] 66.8 58.2 62.2 - - - 59.7 53.5 56.4 80.0 60.2 68.7 36.1 49.1 41.6

ours 72.4 61.5 66.5 77.3 60.9 68.1 59.0 54.7 56.8 78.6 65.0 71.2 38.0 47.9 42.4

From Table 3, one can observe that our model can achieve the highest H on
all the benchmark data sets, which implies that our method has better general-
ization ability than others. Moreover, our model has higher prediction accuracy
for the unseen classes (i.e., Au) than other algorithms on most of the data sets
(4/5, i.e., AWA1, AWA2, CUB, and FLO), which indirectly reflects that our
strategy does improve the quality of the generated unseen classes features.

4.4 Parameter Sensitivity Analysis

To explore the impact of the three hyper-parameters (η, λ̂, and βunseen) in our
method on model performance, here we use the one-variable-at-a-time method
to analyze the sensitivity of the model to them. As mentioned in Section III,
η is used to weigh the loss generated by the classifier, and its impact on the
performance of the model on AWA2 and SUN is shown in Fig. 4(a). It can be
observed from Fig. 4(a) that the value of η should not be set too large. Generally,
as long as its value is fixed at 0.01, the model can achieve good performance.
λ̂ is used to weigh the prediction results of the two classifiers in Eq. (4), and

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 361

Fig. 4. Parameter sensitivity

its impact on model performance is shown in Fig. 4(b). It can be observed from
Fig. 4(b) that setting the value of λ̂ to 1.5 is a good choice.

βunseen is an important parameter in building the class hierarchy tree, and its
influence on the generalization ability of the final model is shown in Fig. 5(a)–
Fig. 5(b). The elements in βunseen represent the weights of the reconstruction
loss in building the tree from the leaf nodes to the root node, and the length
of βunseen is the height of the tree. From Fig. 5(a)–Fig. 5(b), one can observe
that when the height of the tree is 2 or 3, the performance of the model can be
significantly improved, which again verifies the effectiveness of our method.

Fig. 5. The recognition results of the model with different βunseen on AWA1 and SUN

5 Conclusions

To improve the generalization ability of the generative ZSL algorithms, we
designed a hierarchical-tree-based method to enhance the quality of the gen-
erated features in this paper. Specifically, our method can evaluate the quality
of the generated visual features from multiple levels and tune the generator
through the corresponding loss feedback. Moreover, to enhance the mapping

362 X. Wang et al.

ability of the model from the visual space to the semantic space, we added the
multi-expert module to the traditional single mapping channel to realize the
multi-level extraction and transformation of visual features, which is conducive
to the model for mining the relationship between the visual features and the
semantic features. We evaluated the effectiveness of the proposed algorithm on
five benchmark data sets and the experimental results show that our model can
achieve higher prediction accuracy than the other seven popular ZSL algorithms.
In the future, we will consider incorporating non-iterative algorithms [4,5] to our
method to improve the training efficiency of its classifier.

References

1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-
based classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 819–826 (2013)

2. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embed-
dings for fine-grained image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2927–2936 (2015)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial net-
works. In: Proceedings of the 34th International Conference on Machine Learning,
Proceedings of Machine Learning Research, vol. 70, pp. 214–223 (2017)

4. Cao, W., Gao, J., Ming, Z., Cai, S., Shan, Z.: Fuzziness-based online sequential
extreme learning machine for classification problems. Soft Comput. 22(11), 3487–
3494 (2018). https://doi.org/10.1007/s00500-018-3021-4

5. Cao, W., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random
weights. Neurocomputing 275, 278–287 (2018)

6. Ebenezer, J.P., Das, B., Mukhopadhyay, S.: Single image haze removal using condi-
tional wasserstein generative adversarial networks. In: 2019 27th European Signal
Processing Conference, pp. 1–5. IEEE (2019)

7. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their
attributes. In: 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1778–1785. IEEE (2009)

8. Felix, R., Kumar, V.B., Reid, I., Carneiro, G.: Multi-modal cycle-consistent gener-
alized zero-shot learning. In: Proceedings of the European Conference on Computer
Vision, pp. 21–37 (2018)

9. Frome, A., et al.: DeViSe: a deep visual-semantic embedding model. In: Advances
in Neural Information Processing Systems, pp. 2121–2129 (2013)

10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5767–5777 (2017)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

https://doi.org/10.1007/s00500-018-3021-4

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 363

13. Jiang, H., Wang, R., Shan, S., Chen, X.: Transferable contrastive network for gen-
eralized zero-shot learning. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 9765–9774 (2019)

14. Karessli, N., Akata, Z., Schiele, B., Bulling, A.: Gaze embeddings for zero-shot
image classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4525–4534 (2017)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object
classes by between-class attribute transfer. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 951–958. IEEE (2009)

17. Li, J., Jing, M., Lu, K., Zhu, L., Yang, Y., Huang, Z.: Alleviating feature confusion
for generative zero-shot learning. In: Proceedings of the 27th ACM International
Conference on Multimedia, pp. 1587–1595 (2019)

18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)

19. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

20. Mishra, A., Krishna Reddy, S., Mittal, A., Murthy, H.A.: A generative model for
zero shot learning using conditional variational autoencoders. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 2188–2196 (2018)

21. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics and
Image Processing, pp. 722–729. IEEE (2008)

22. Palatucci, M., Pomerleau, D., Hinton, G.E., Mitchell, T.M.: Zero-shot learning with
semantic output codes. In: Advances in Neural Information Processing Systems,
pp. 1410–1418 (2009)

23. Patterson, G., Xu, C., Su, H., Hays, J.: The sun attribute database: beyond cate-
gories for deeper scene understanding. Int. J. Comput. Vis. 108(1–2), 59–81 (2014)

24. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: popular nearest
neighbors in high-dimensional data. J. Mach. Learn. Res. 11(Sep), 2487–2531
(2010)

25. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative
adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

26. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what
and where to draw. In: Advances in Neural Information Processing Systems, pp.
217–225 (2016)

27. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot
learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)

28. Socher, R., Ganjoo, M., Manning, C.D., Ng, A.: Zero-shot learning through cross-
modal transfer. In: Advances in Neural Information Processing Systems, pp. 935–
943 (2013)

29. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

30. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning—a compre-
hensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal.
Mach. Intell. 41(9), 2251–2265 (2018)

31. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-
shot learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5542–5551 (2018)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1605.05396

364 X. Wang et al.

32. Zheng, M., et al.: Conditional wasserstein generative adversarial network-gradient
penalty-based approach to alleviating imbalanced data classification. Inf. Sci. 512,
1009–1023 (2020)

33. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial
approach for zero-shot learning from noisy texts. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1004–1013 (2018)

	A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning
	1 Introduction
	2 Preliminaries
	2.1 Generative Adversarial Networks (GAN)
	2.2 Generative Methods for Zero-Shot Learning
	2.3 Constraints are Necessary

	3 The Details of Our Method
	3.1 Notations
	3.2 The Basic Idea of Our Method
	3.3 Details of Our Method

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Experimental Results
	4.4 Parameter Sensitivity Analysis

	5 Conclusions
	References

