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a b s t r a c t

Link prediction is an elemental issue for network-structured data mining, which has already found a
wide range of applications. The organization of real-world networks usually embodies both regularities
and irregularities, and the precision of link prediction algorithms coincides with the portion of a
network being categorized as regular. Quantifying and controlling how well an unobserved link
can be predicted is a fundamental problem in link prediction. This paper proposes a structural
regularity-exploring architecture, called NetSRE, for measuring and regulating link predictability of
networks. The proposed NetSRE assumes that there are consistent interaction patterns across the
local subgraphs of networks and one of them can be represented by a linear summation of the
others, and thus, link predictability can be characterized by the self-representation degree of network
structures. Specifically, NetSRE includes (1) a low Frobenius norm pursuit-based self-representation
network model for predicting the ‘‘true" underlying networks, (2) a ‘‘structural regularity" index for
measuring the link predictability of networks, i.e., the inherent difficulty of link prediction independent
of specific algorithms, and (3) an importance measuring method for structural role exploration of
network links and a link-based structure perturbation algorithm for link predictability regulation.
Experimental results on real-world networks validate the performance of our method. It is found that
real-world networks have various structural regularities and link predictability can be estimated based
on structure mining directly. We show that network heterogeneity provides a way to intrinsically
segregate network links into qualitatively distinct groups, which have different influences on the link
predictability of networks.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Networks have been proved to be an effective abstraction
for representing real-world complex systems [1]. With network
models, the various complex systems, ranging from the Internet
and the World Wide Web to biological and social networks,
are all considered as a collection of discrete units that interact
through a set of connections. Driven by the increasing availability
of network data [2,3], network science has seen a surge of interest
in the last twenty years, and the research focus has been trans-
ferred from statistical analysis-based empirical studies [4–6] to
practical structure mining. Most recently, many structure mining
works have been developed, including community detection [7–
9], influential node ranking [10–12], graph classification [13,14],
and graph summarization [15].
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(S. Qiao).

In network science, link prediction [16–18] is a fundamen-
tal notion, which attempts to uncover missing links or detect
spurious links using features intrinsic to the network topology
itself. In the last decade, the link prediction problem has re-
ceived increased attention and a growing number of methods
have been proposed for link prediction. These methods can be
roughly divided into three classes [19,20]: similarity-based meth-
ods, maximum likelihood methods, and matrix decomposition-
based methods. Link prediction can benefit a wide range of
real-world applications. For instance, in biological networks, our
knowledge of biological interactions is highly limited; using the
predicted results for guiding the design of experiments, rather
than blindly checking all possible interactions, can sharply re-
duce the experimental costs [21]. In online social networks,
the potential commercial interests have led to the creation and
proliferation of fake accounts, and link prediction can help to
find the fake accounts by detecting abnormal social relations [22].
In e-commerce websites, link prediction can be used for recom-
mending products to target users [23]. In the security domain,
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with the availability of network data related to terrorist activities,
link prediction can be used to reveal some hidden relationships
to discover the potential terrorists [24].

Just as a popular saying goes, ‘‘every coin has two sides’’.
Recently, link prediction has raised privacy concerns in the case
where the predicted link is between users who would like to
keep the relationship private. Specifically, in the real world, many
types of information, such as sexual contacts, purchase records,
and financial relationships, are considered highly sensitive and
anonymized for privacy preserving. However, based on link pre-
diction, many privacy inference attack methods have been pro-
posed. For example, Zheleva and Getoor [25] conducted a prelim-
inary study on sensitive relationship inference from anonymized
graphs. Ying and Wu [26] investigated how well a graph ran-
domization approach can protect sensitive links and showed that
similarity measures can be exploited by attackers to significantly
improve their confidence and accuracy of the predicted sensi-
tive links. Yang et al. [27] identified a fundamental weakness of
link-based graph anonymization mechanisms and exploited it to
recover most of the original graph structure. Michael et al. [28]
presented a ‘‘link reconstruction attack method, which can in-
fer connections that a user wants to hide to preserve his pri-
vacy. Moreover, link prediction-based de-anonymization meth-
ods are defined to match the accounts across networks for user
identification [29–31].

Motivation. As discussed above, link prediction can be applied
to predict the potential relationship between two individuals.
To reveal the structure of various networks accurately, more
robust and sophisticated link prediction methods are required.
From another perspective, link prediction may increase the risk of
information leakage. Even if the data publishers remove sensitive
information before network datasets are released, it may still
be inferred by link prediction, thereby encroaching user privacy.
Naturally, considering the interests of all parties, the problem
of link predictability measuring and regulating (LPMR), which
characterizes the inherent difficulty of link prediction and ex-
plores the potential influence of network links on the accuracy
of link prediction methods.

Based on considerable literature on link prediction, researchers
have started realizing the significance of structural features of
networks. Besides relying on specific algorithms, the accuracy of
link prediction methods depends on the network structure itself.
Especially, no algorithm can achieve satisfactory performance in
random networks, while high level of prediction accuracy can be
achieved readily in regular networks. In fact, real-world networks
usually embody both regular components and irregular compo-
nents, where only the former can be modeled and explained.
Consequently, the accuracy of link prediction depends on the
regularity level of networks, i.e., the proportion of the regular
components. Therefore, the intrinsic regularity of networks is the
fundamental factor influencing the accuracy of link prediction.

Link predictability denotes the inherent difficulty of link pre-
diction in networks independent of specific algorithms, which can
be calculated by estimating their regularity level. By measuring
the predictability of a network, we can determine whether the
deficient performance of link prediction is caused by an inappro-
priate algorithm or is due to the irregularity of the network itself,
and then estimate how a large space remains for performance
improvement. Furthermore, by regulating the link predictability
of networks, the risks arising from link prediction, such as privacy
disclosure, can be reduced directly. However, despite its practical
importance, so far, the problem of LPMR has not been fully
investigated.

Contributions. This paper proposes a network structural reg-
ularity exploring architecture, called NetSRE. NetSRE measures
the link predictability of networks by exploring their organization

principles, which indicate the upper bound of link prediction ac-
curacy and provide guidance for algorithm optimization. NetSRE
assumes that links play different roles in network organization,
where some of them have disproportionate influence on network
regularity, and then, link predictability can be regulated based on
a limited number of links. By analyzing the organizational rela-
tionships in network self-representation, the potential links can
be predicted based on the learned structure patterns of networks.
Along this line, the distribution of the representative subgraphs
in network self-representation indicates the link predictability of
networks, and the links with various substitutabilities in network
self-representation have different influences on link predictability
regulating. The main contributions of this paper are summarized
as follows:

• First, we model a network structure from the perspective
of self-representation and formalize the question as an op-
timization problem. Using the self-representation model,
the network structure can be decomposed into a set of
representative subgraphs and the combination relationships
between them. By applying the model on link prediction,
i.e., Low Frobenius norm-based Link Prediction (LFLP), the
expressive power of the self-representation model is proved.

• Second, based on the assumption that real-world networks
have a certain degree of regularity and the data matrices
are approximately low rank, we define a low-rank pursuit-
based self-representation model to uncover the common
representative subgraphs. According to the learned repre-
sentation matrix, we define a Structural Regularity Index
(SRI) to measure the link predictability of networks.

• Third, according to the usage of links in the network self-
representation model, we define a novel importance metric
for network links to indicate their regularity level. Based on
the link selection mechanism, the structure perturbation-
based Link Predictability Regulation (LPR) algorithm is pro-
posed to control the networks’ potentiality for link predic-
tion.

The remainder of this paper is organized as follows. Section 2
surveys the background and related work. Section 3 introduces
the problem definition and evaluation mechanism. Section 4 in-
troduces our proposed method. Section 5 shows the experiments
conducted, and Section 6 concludes the paper.

2. Background and related work

2.1. Link prediction and network modeling

The most generic framework used for link prediction is
similarity-based methods [32], including local indices Common
Neighbors (CN), Adamic–Adar (AA) [33], Resource Allocation (RA)
[34], etc., global indices Katz [35], SimRank [36], etc., and quasi-
local indices Local Path Index (LP) [34], Local Random Walk
(LRW) [37], etc. Recently, some novel similarity-based methods,
including dynamical response-based method [38], neighborhood-
based method [39], etc., have also been developed. The methods
always assume that two nodes are more likely to be linked if they
have a higher heuristic node similarity. However, an important
limitation of these methods is that they lack universal applica-
bility to different types of networks and do not achieve good
consistency across all networks [40]. To solve the link prediction
problem sophisticatedly, many network modeling based methods
have been proposed. Specifically, maximum likelihood methods,
including stochastic block model (SBM) [41], hierarchical struc-
ture model (HSM) [42], LOOP model [43], etc., presuppose the
organizing principles of networks and learn the model parame-
ters by maximizing the likelihood of the observed structure and
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then calculate the likelihood of any non-observed link according
to the rules and parameters. However, the methods are highly
time consuming and can always only handle networks with a few
thousands of nodes, while real social networks scale frommillions
to more than a billion nodes. Matrix-based approaches, including
LO [19], NMF [44,45], RPCA [46], fusion models [47], kernel
framework based on NMF [48] etc., model network structure with
matrix theory, such as matrix factorization theory and low rank
and sparse theory, and they predict missing links via solving
the formulated optimization problem. Compared with the maxi-
mum likelihood methods, matrix-based approaches have better
computational efficiency and are applicable to large-scale net-
works. However, the performance of them depends on a number
of conditions, including information about node attributes [44],
multiple networks ensemble [45], and dense network topol-
ogy [46], which highly limits their applications. Motivated by the
recent success of deep learning, some deep learning methods
for link prediction have been proposed, including Graph Neu-
ral Networks (GNN) for link prediction [49], dual convolutional
neural network for link prediction [50], deep dynamic network
embedding for link prediction [51], etc., which extract structure
feature from networks automatically and improve prediction
performance significantly.

Different from these works, this paper aims to explore the
organization principle of real-world networks at sufficient depth.
We try to reveal the relationships between the substructures
of networks and analyze their roles in network organization.
Then we measure and regulate the link predictability of networks
under linear summation assumption. To the best of our knowl-
edge, this is one of the first several linear coding based network
modeling methods.

2.2. Structural regularity exploration and link perturbation

To explore the structural regularity of networks, based on
graphlets [52] and motifs [53], Rossi et al. [54,55] proposed
graphlet counting methods according to the finding that graphlet
frequencies often carry significant information about the local
network structure. Benson et al. [56] considered network motifs
as fundamental building blocks for complex networks and found
different higher-order organizational patterns at the level of net-
work motifs. Koutra et al. [57] summarized real-world networks
to provide the most succinct description in terms of local graph
structures, including stars, bipartite cores, cliques, and chains.
Shen et al. [58] proposed a general stochastic block model for de-
tecting multiple structure types, including community structure
and multipartite structure. Rather than finding specific structural
features or patterns of networks, Zhou et al. [59] focused on
the structural consistency of networks and developed an eigen-
value perturbation method to estimate the consistency level of
networks.

To promote information diffusion, Cheng et al. [60] proposed a
users activity frequency-based similarity measure to optimize the
connections of online social networks. To improve the robustness
of large-scale infrastructure networks, Ash et al. [61] developed
an evolutionary algorithm to generate evolved networks that
are resilient to cascading failure. To prevent the propagation of
viruses, Wang et al. [62] proposed an immunization strategy
to influence the effective structure of networks. Liu et al. [63]
defined a measure of link diffusion importance to identify redun-
dant links, thereby enhancing the performance of node ranking.
However, although a few structure perturbation-based methods
have been proposed, the link predictability regulation problem
has attracted little attention and is still challenging.

2.3. Low-rank learning method

For processing big data in complex networks, a fundamental
task is to find a low-dimensional representation of the high-
dimensional data. To handle the problem, principal component
analysis (PCA) [64] was proposed to be one of the most com-
mon approaches in recovering the best low-rank representation.
However, the PCA method works well for data with Gaussian
noise, and its performance degrades for data with gross errors.
Then, a more robust method, robust principal component analysis
(RPCA) [65], was proposed, which can be formulated as follows.

min
A,E

rank(A) + ∥E∥1, s.t.,X = A + E (1)

The PCA and RPCA methods assume that the data are dis-
tributed in a single space. Real-world data, however, often orig-
inate from a set of multiple subspaces. To correctly partition
the data into different subspaces, the sparse subspace clustering
(SSC) [66] and low rank representation (LRR) [67] approaches
were proposed. Formally, the SSC algorithm solves the following
problem:

min
Z,E

∥Z∥1 + λ∥E∥1 s.t.X = XZ + E and diag(Z) = 0. (2)

LRR is similar to SSC, except that it aims to find a low rank
representation instead of a sparse representation. The objective
function of LRR can be formulated as follows:

min
Z,E

∥Z∥∗ + λ∥E∥2,1 s.t.X = XZ + E. (3)

Note that SSC determines the sparse representation of each
data vector individually, and may not capture the global structure
of X. In contrast, LRR finds the lowest rank representation of the
entire data jointly.

3. Problem definition and evaluation mechanism

3.1. Link prediction

To clearly illustrate the LPMR problem, a working flowchart of
network data analysis with structure perturbation is illustrated in
Fig. 1. The working flowchart contains the following parts: first,
the datasets about real-world complex systems are collected;
then, on the basis of the datasets, networks are constructed to
characterize the interactive relationships of the objects in com-
plex systems; next, because networks always contain sensitive
links or noisy links that can be identified by link prediction,
link predictability measuring and regulating methods are con-
ducted to protect sensitive information or improve data quality;
finally, according to the goal of link predictability regulating, the
anti-inference networks for privacy-preserving and the enhanced
networks for data mining can be obtained, and downstream net-
work analysis tasks utilize the resulted networks to get insights
about the complex systems.

Given an undirected network G = (V , E), where V is a set of
|V | nodes and E ⊆ V × V is a set of links, link prediction aims
to generate a predicted network based on the observed network
GT

= (V , ET ) to approximate the ‘‘true’’ underlying network G. For
performance evaluation, the observed network GT is constructed
through adding and deleting links. All links of GT are denoted as
training set ET , and the difference between the observed network
GT and the underlying network G is defined as testing set EP .

To evaluate the influence of link predictability regulation on
the performance of link prediction algorithms, we adopt two
standard metrics, area under the receiver operating characteristic
curve (AUC) and precision, to estimate link prediction accuracy.
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Fig. 1. Working flowchart of network data analysis with structure perturbation.

Fig. 2. Illustration of structure perturbation-based link predictability regulation.

• AUC. Among n times of independent comparisons, if there
are n′ times in which the score of the missing (spurious) link
is higher (or less) than that of the non-existent (existent)
link and n′′ times in which the two have the same score,
then AUC can be calculated as

AUC = (n′
+ 0.5n′′)/n (4)

If all scores are generated from an independent and identical
distribution, AUC will be approximated to 0.5. Therefore, the
extent to which AUC exceeds 0.5 indicates how much better
the algorithm performs than the pure chance.

• Precision. Precision is defined as the ratio of the relevant
links to the number of selected links. If Lp links among the
top-L links are accurately predicted, then

Precision = Lp/L (5)

3.2. Network data preparation

To evaluate the performance of link prediction methods, based
on a ‘‘true’’ underlying network, various observed networks are

generated by structure modification. Here, we consider the typ-
ical modification techniques that have been widely used in the
area of network data analysis [43,68–70]. Specifically, the selected
techniques are introduced as follows:

• Adding. This method generates the observed network GT
=

(V , ET ) by only adding k|E| links randomly, where k is the
modification coefficient.

• Deleting. This method generates the observed network GT
=

(V , ET ) by randomly eliminating k|E| links.

3.3. Link predictability regulation

Definition 1 (Link Predictability). Link predictability characterizes
the inherent difficulty of link prediction independent of specific
algorithms. It can be quantified by the portion of regular com-
ponents, i.e., the subgraphs that obey the organization principle
of networks. Networks have less predictability if they tend to be
random and more predictability if their structures are of high
regularity.
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Table 1
Notations used in the paper.
Notations Descriptions

G The ‘‘true’’ underlying network
GT The observed network corresponding to G
ET The link set of GT used as training set
EP The difference between G and GT

X The adjacency matrix of network
Z The representation matrix corresponding to X
E The sparse matrix denoting the noise in X
λ The trade-off parameter to balance different terms
SM The existence likelihoods matrix of network links
σr Structural regularity index
RD(k) Regularity of the subgraph centered node k
Ui,j The importance of link (i, j)

Definition 2 (Link Importance). Link importance measures the
change in the portion of the regular components caused by the
deletion or addition of a specified link. For an existing link, the
more the subgraph containing the link is used for network rep-
resentation, the higher is substitutability of the link in network
organization and the lesser the impact on regular components.

Definition 3 (Link Predictability Regulation). Given a network G,
we learn the important link set ER based on network modeling,
and then, perturb as few network links as possible, guided by
their importance to change the network’s regularity level. By
link perturbation, the resulting network GR has different link
predictability from that of network G.

Note that, as the major goal of publishing network data is to
pursue useful and worthy research, one needs to limit the level of
link perturbation to maintain data utility. An illustrative example
of link perturbation-based predictability regulation is given in
Fig. 2. According to the figure, the upmost plot is the paradigm
of traditional link prediction, where the missing links can be
predicted based on the network representation model. By com-
paring the predicted links with the test links (denoted as red solid
lines), we can find that all missing links in the training network
are identified correctly. As the regularity level of networks has a
direct impact on the accuracy of link prediction, the predictability
of networks can be regulated by important link-based structure
perturbation. Consequently, in the downmost plot of Fig. 2, in
the perturbed network, the accuracy of the link prediction task
is reduced.

The notations used in this paper are described in Table 1.

4. Our method

4.1. Network representation modeling

Empirical studies on complex networks have indicated that
most real-world networks possess some common topological
characteristics, such as small-world, scale-free, and
core–periphery features, which can be modeled effectively based
on the presupposed organization principles [1,42]. Moreover,
from the perspective of network summarization, Koutra et al. [15]
found that network structures are composed of an enriched set
of representative subgraphs, including cliques, stars, chains, and
bipartite cores. Inspired by these studies, in this study, networks
are viewed as a linear summation of a set of elemental sub-
graphs with specific interaction patterns. That is, networks can
be represented using the elemental subgraphs as structural bases.
Specifically, let X ∈ Rn×n denote the adjacency matrix of network
G. Each column of matrix X is viewed as a local structure X:,i;
thus, X contains n local structures, i.e., [X:,1,X:,2, . . . ,X:,n]. Given
a complete basis matrix D = [D:,1,D:,2, . . . ,D:,n] ∈ Rn×n, i.e., a

collection of structural bases, each local structure X:,i can be
represented by a linear combination of bases, which is given as
follows:

X:,i = [D1,:Z:,i,D2,:Z:,i, . . . ,Dn,:Z:,i]
T

=

n∑
k=1

D:,kZk,i (6)

where Zk,i corresponds to the weight of the base D:,k. That is, X:,i
is actually a linear combination of matrix D’s columns weighted
by the elements of Z:,i. Thus, the adjacency matrix X ∈ Rn×n of
network G can be represented by X = DZ, where Z ∈ Rn×n is a
representation matrix capturing the organization principle of the
network. Thus, the network modeling can be simply transferred
to an optimization problem:

min
D,Z

∥X−DZ∥ + ∥Z∥ (7)

where ∥ · ∥ denotes a certain matrix norm.
According to [71], the learned atoms of the basis matrix D

almost never coincide with the original data, and hence, cannot
be considered as good representatives of the data. To recognize
the organization principle of networks and find representative
subgraphs from the actual subgraphs, the best candidate for the
basis matrix D is the adjacency matrix X. Thus, the optimization
problem can be reformulated as

min
Z

∥X−XZ∥ + ∥Z∥ (8)

where each local structure X:,i can be represented as a combina-
tion of the others.

4.2. Self-representation model-based link prediction

Link prediction is a widely accepted means of assessing the
validity of network models. Here we apply the self-representation
model on link prediction to prove its expressive power firstly.
Although the adjacency matrix X is adopted as the basis matrix
for network representation, the network structures are still not
guaranteed to be fully represented by the product of the basis
matrix X and the representation matrix Z. Therefore, in this paper,
we define matrix E to denote the difference matrix between the
adjacency matrix X and the graph representation XZ, i.e., X =

XZ + E. Because individuals may have different interaction pat-
terns in reality, the modeling of real-world networks should
be node-oriented. Thus, because each column of the adjacency
matrix X represents the interactions between a node and the
remaining nodes, to characterize the node-specific corruptions
in networks, ℓ2,1 norm, i.e., ∥ · ∥2,1, is adopted in our model to
constrain the matrix E in terms of a graph node. The goal of link
prediction is to infer the ‘‘true’’ underlying network by finding
the structural patterns of the observed network. By applying the
proposed self-representation network model defined in Eq. (8) to
the observed network GT , the learned representation matrix Z∗

reveals the organization principle of the network; thus, the un-
known structure can be inferred based on it. To avoid overfitting,
we adopt here the Frobenius norm to constrain the magnitude of
the representation matrix Z.

Based on the above discussion, the objective function for net-
work link prediction can be formulated as

min
Z,E

∥Z∥
2
F + λ∥E∥2,1, s.t.,X = XZ + E (9)

where ∥Z∥
2
F =

∑n
i=1

∑n
j=1 zij

2, and ∥E∥21 =
∑n

j=1

√∑n
i=1 eij2, λ

is the trade-off parameter to balance different terms.
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Lemma 1. For the matrix X, Z and E, the augmented item
tr[YT

1(X − XZ − E)] and error item ∥X − XZ − E∥
2
F can be merged,

i.e., we have the following equation:

argmin
E

tr[YT
1(X − XZ − E)]+

µ

2
∥X − XZ − E∥

2
F

= argmin
E

µ

2
∥X − XZ − E +

Y1

µ
∥
2
F

(10)

Proof. According to the definition of the interior product and the
Frobenius norm of the matrix, we have

argmin
E

tr[YT
1(X − XZ − E)]+

µ

2
∥X − XZ − E∥

2
F

= argmin
E

µ

2
(⟨

2
µ
Y1,X − XZ − E⟩ + ∥X − XZ − E∥

2
F )

= argmin
E

µ

2
(⟨
Y1

µ
,
Y1

µ
⟩ + 2⟨

Y1

µ
,X − XZ − E⟩+

⟨X − XZ − E,X − XZ − E⟩ − ⟨
Y1

µ
,
Y1

µ
⟩)

= argmin
E

µ

2
(∥X − XZ − E +

Y1

µ
∥
2
F − ∥

Y1

µ
∥
2
F )

(11)

By removing the terms irrelevant to E, it is converted to

argmin
E

µ

2
∥X − XZ − E +

Y1

µ
∥
2
F (12)

Consequently, the equality holds.

Optimization Solution. To solve (9), we employ an efficient
optimization technique, the augmented Lagrange multiplier (ALM)
algorithm [72]. First, we introduce an auxiliary variable J to make
the objective function separable:

min
Z,E

∥J∥2
F + λ∥E∥2,1, s.t.,X = XZ + E, Z = J (13)

This problem can be solved by the inexact ALM method, which
minimizes the following augmented Lagrange function:

L(J, Z, E) = ∥J∥2
F + λ∥E∥2,1 + tr[YT

1(X − XZ − E)]

+tr[YT
2(Z − J)] +

µ

2 (∥X − XZ − E∥
2
F + ∥Z − J∥2

F )
(14)

where Y1 and Y2 are the Lagrange multipliers and µ > 0 is
the penalty parameter. Each variable in optimization (14) can be
addressed iteratively by updating J, Z, and E one-by-one. To solve
this problem, we update each variable while fixing the others.

Update J. To update variable J, by ignoring the irrelevant terms
w.r.t. J in (14), we have the following objective:

arg min
J

∥J∥2
F + tr[YT

2(Z − J)]+
µ

2
∥Z − J∥2

F (15)

According to Lemma 1, we can combine tr[YT
2(Z − J)] and

µ

2 ∥Z − J∥2
F , and (15) can be converted into

arg min
J

∥J∥2
F +

µ

2
∥Z−J +

Y2

µ
∥
2
F

= arg min
J

JTJ +
µ

2
⟨J−(Z +

Y2

µ
), J−(Z +

Y2

µ
)⟩

(16)

By specifying the derivative w.r.t. J to zero, we obtain

J =
µ

µ + 2
(Z +

Y2

µ
) (17)

Update Z. To update variable Z, by ignoring the irrelevant
terms w.r.t. Z in (14), we have the following objective:

arg min
Z

tr[YT
1(X − XZ − E)] + tr[YT

2(Z − J)]

+
µ

2
(∥X − XZ − E∥

2
F + ∥Z − J∥2

F )
(18)

By setting the partial derivative of (18) w.r.t. Z equal to zero,
we obtain

Z = (XTX + I)−1(XT(X − E) + J + (XTY1 − Y2)/µ) (19)

Update E. To update variable E, by ignoring the irrelevant
terms w.r.t. E in (14), we have the following objective:

arg min
E

λ∥E∥2,1 + tr[YT
1(X − XZ − E)] +

µ

2
(∥X − XZ − E∥

2
F )

= arg min
E

λ

µ
∥E∥2,1 +

1
2
∥E − (X − XZ +

Y1

µ
)∥2

F

(20)

The solution to the problem is presented in [67]. Specifically,
let us assume Ψ = X − XZ +

Y1
µ
, where the kth column of E is

given as

E(:, k) =

{
∥Ψk∥−

λ
µ

∥Ψk∥
Ψk, if λ

µ
< ∥Ψk∥ ,

0, otherwise.
(21)

Algorithm 1 Solving problem (14) by using the inexact ALM
method.
Input: adjacency matrix of observed network X, trade-off

parameter λ.
Output: representation matrix Z, error matrix E.
1: Initial Z = J = E = 0, Y1 = Y2 = 0, µ = 10−6, maxµ = 106, ρ

= 1.1, ε = 10−8;
2: while not converged do
3: Fix the others and update J by (17);
4: Fix the others and update Z by (19);
5: Fix the others and update E by (20);
6: // Update the multipliers as follows

Y1 = Y1 + µ(X − XZ−E);
Y2 = Y2 + µ(Z − J);

7: Update the parameter µ by µ = min(ρµ,maxµ);
8: // Check the convergence conditions

||X − XZ − E||∞ < ε and |Z − J)||∞ < ε;
9: end while

Algorithm 2 Link prediction algorithm LFLP.

Input: adjacency matrix X of observed network.
Output: detected missing link set M+ and detected spurious link

set M−.
1: Obtain the optimal representation matrix Z∗ via Algorithm 1;
2: Construct the adjacency matrix SM using (22);
3: Separate SM into the positive component SM+ and the

negative component SM− according to the entries’ sign;
4: Remove the existing entries of X in SM+, and the remaining

entries with the higher scores are more likely to be the
missing links, which are saved in M+;

5: Sort the existing entries of SM− by comparing it with X, and
the ones with the lower scores are more likely to be the
spurious links, which are saved in M−.

The process of solving (14) is summarized in Algorithm 1.
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Link Prediction. By learning the optimal representation ma-
trix Z∗ of the observed networks, the existence likelihoods of
network links can be inferred by matrices Z∗ and X, i.e.,

SM = XZ∗
+ (XZ∗)T. (22)

Actually, the feasibility of the proposed link prediction method
is based on the consistent patterns across subgraphs, where the
corrupted local structure can be rectified based on the feature
of the similar ones. All non-observed links are ranked according
to their likelihoods, where the links with greater scores have
a higher possibility to be missing links. Similarly, all observed
links are ranked and the links with lower scores are more likely
to be spurious links. The entire LFLP algorithm is presented in
Algorithm 2.

4.3. Link predictability measuring and regulating

Because real-world networks always have certain regularity
and their local structures, i.e., subgraphs, may have similar inter-
action patterns, we assume that the networks can be represented
based on a subset of the subgraphs. That is, we assume that there
is a subset of subgraphs, called representative subgraphs, such
that each subgraph in the network can be described as a linear
combination of the representative subgraphs. To explain the idea,
Fig. 3 shows an example. To the network G, the node 1-centered
subgraph can be represented by node 5- and node 9-centered
subgraphs. That is, the column of matrix X corresponding to
node 1 is a linear combination of the columns of X weighted
by the entries of the first column of the representation matrix
Z, where only the entries corresponding to node 5 and node
9 are nonzero, as shown in the middle of Fig. 3. Similarly, the
node 2-centered subgraph can be represented by node 4-, 6-,
and 8-centered subgraphs. Based on the above assumption, the
structural role of each subgraph for network representation can
be captured by the rows of the learned representation matrix Z∗,
as shown in the top right corner of Fig. 3. Specifically, the entries
of the nonzero rows of Z∗ provide information about the relative
importance of the subgraphs for network representation. A sub-
graph that is more representative takes part in the representation
of many subgraphs in the network, and hence, its corresponding
row in the optimal representation matrix Z∗ has many nonzero
elements. Meanwhile, a subgraph that is less representative takes
part in the representation of fewer subgraphs in the network.

In real-world networks, individuals may have similar per-
sonal hobbies or political preferences, thereby generating mul-
tiple nodes with the same substructures. Because the substruc-
tures have the same structural roles for network representation,
the potential representative subgraph can be any one of them.
Thus, the more regular the networks are, the more redundant
subgraphs are included, as shown by the zero rows in Fig. 4.
Therefore, to represent a network structure with as few rep-
resentative subgraphs as possible, the representation matrix Z
must be low-rank. Similarly, the more regular the substructures
are, the fewer representative subgraphs are needed to represent
them, which corresponds to the number of nonzero entries of the
representation matrix. Thus, to represent each substructure with
as few representative subgraphs as possible, the representation
matrix Z must be sparse.

Based on the aforementioned discussion, networks can be
modeled via a low-rank and sparse representation as follows:

min
Z,E

rank(Z) + α∥Z∥0 + β∥E∥2,1 s.t.X = XZ + E. (23)

As this problem is NP-hard, as suggested by [65,73], we can
solve the following relaxed convex program instead

min
Z,E

∥Z∥∗ + α∥Z∥1 + β∥E∥2,1 s.t.X = XZ + E. (24)

where α and β are the trade-off parameters.
Optimization Solution. To solve the optimization problem,

we introduce auxiliary variables J and Q to make the objective
function separable. This problem can be converted as

min
Z,E

∥J∥∗ +α∥Q∥1 +β∥E∥2,1, s.t.,X = XZ+E, Z = J, Z = Q (25)

which can be handled by solving the following ALM problem:

L(J, Z, E) = ∥J∥∗ + α∥Q∥1 + β∥E∥2,1 + tr[YT
1(X − XZ − E)]

+tr[YT
2(Z − J)] + tr[YT

3(Z − Q)] +
µ

2
(∥X − XZ − E∥

2
F

+∥Z − J∥2
F + ∥Z − Q∥

2
F )

(26)

where Y1, Y2, and Y3 are Lagrange multipliers and µ > 0 is a
penalty parameter. This problem can be solved by minimizing J,
Q, Z, and E. By considering the efficiency, we choose the inexact
ALM method.

Update J. To update variable J, by ignoring the irrelevant terms
w.r.t. J in (26), we have the following objective:

arg min
J

∥J∥∗ + tr[YT
2(Z − J)] +

µ

2
∥Z − J∥2

F

= arg min
J

∥J∥∗ +
µ

2
∥J − (Z +

Y2

µ
)∥2

F

(27)

This problem can be effectively solved by using the singular
value thresholding (SVT) operator [74].

Update Q. To update variable Q, by ignoring the irrelevant
terms w.r.t. Q in (26), we have the following objective:

arg min
Q

α∥Q∥1 + tr[YT
3(Z − Q)] +

µ

2
∥Z − Q∥

2
F

= arg min
Q

α∥Q∥1 +
µ

2
∥Q − (Z +

Y3

µ
)∥2

F

(28)

This problem can be effectively solved by using the shrinkage
operator [72].

Update Z. To update variable Z, by ignoring the irrelevant
terms w.r.t. Z in (26), we have the following objective:

arg min
Z

tr[YT
1(X − XZ − E)] + tr[YT

2(Z − J)] + tr[YT
3(Z − Q)]

+
µ

2
(∥X − XZ − E∥

2
F + ∥Z − J∥2

F + ∥Z − Q∥
2
F )

(29)

By setting the partial derivative of (29) with respect to Z equal
to zero,

Z = (XTX + 2I)−1(XT(X − E) + J + Q + (XTY1

−Y2 − Y3)/µ)
(30)

Update E. Similar to the update operation in Algorithm 1, the
objective about variable E is expressed as follows:

arg min
E

β∥E∥2,1 + tr[YT
1(X − XZ − E)] +

µ

2
(∥X − XZ − E∥

2
F )

= arg min
E

β∥E∥2,1 +
µ

2
∥E − (X − XZ +

Y1

µ
)∥2

F

(31)
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Fig. 3. Illustration of the self-representation network model.

Fig. 4. Illustration of low-rank pursuit of the representation matrix.

The complete algorithm for solving problem (26) is outlined
in Algorithm 3.

Link predictability measurement. Link predictability aims to
quantify the extent to which a network can be modeled and
predicted, which depends on the regularity level of networks.
Based on the proposed self-representation model, the subgraphs
of regular networks tend to be fully represented by some of
the representative subgraphs. That is, the learned representa-
tion matrix Z∗ captures the regularity of networks. First, the
more the number of identical subgraphs included in the network,
i.e., the higher the proportion of the regular components, the
lower is the rank of the representation matrix Z∗. Second, accord-
ing to the self-representation network model, the more regular
the networks, the fewer representative subgraphs are needed to
represent them. For the representation matrix Z∗, we can rank
k subgraphs X:,i1 , X:,i2 , . . . , X:,ik as X:,i1 ≥ X:,i2 ≥, . . . ,≥ X:,ik ,
i.e., the subgraph X:,i1 is the most representative and X:,ik is the
least representative, whenever for the corresponding rows of Z∗,
we have

∥Zi1,:∥1 ≥ ∥Zi2,:∥1 ≥, . . . ,≥ ∥Zik,:∥1 (32)

where ∥ · ∥1 indicates the ℓ1 norm of vectors. Thus, the nonzero
rows of matrix Z∗ indicate the number of possible representative
subgraphs. Third, the more regular the subgraphs, the fewer other
subgraphs are needed to represent them, which can be charac-
terized by the number of non-zero entries in Z∗. Based on the
aforementioned discussion, we define the structural regularity
index σr for link predictability measurement as follows:

σr =
1

√
(n − r)/n

√
τ/(n · r)

(33)

where r is the rank of Z∗, τ is the number of zero entries in Z∗,
(n − r)/n denotes the proportion of identical subgraphs in the
network, and τ/(n · r) characterizes the density of zero entries of
the reduced echelon form of matrix Z∗.

Link predictability regulation. According to the learned rep-
resentation matrix Z∗, we can find that there are some links
that frequently participate in the network self-representation
and others that are rarely used. That is, the links play different
structural roles in the network organization and have various
influences on network regularity. Thus, the link predictability can
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Algorithm 3 Solving Formula (26) by using the inexact ALM
method.
Input: adjacency matrix of observed network X, trade-off

parameter λ.
Output: representation matrix Z, error matrix E.
1: Initial Z = J = E = 0,Y1 = Y2 = 0,µ = 10−6,maxµ = 106, ρ =

1.1, ε = 10−8;
2: while not converged do
3: Fix the others and update J by (27);
4: Fix the others and update Q by (28);
5: Fix the others and update Z by (30);
6: Fix the others and update E by (31);
7: // Update the multipliers as follows

Y1 = Y1 + µ(X − XZ−E);
Y2 = Y2 + µ(Z − J);
Y3 = Y3 + µ(Z − Q);

8: Update the parameter µ by µ = min(ρµ,maxµ);
9: // Check the convergence conditions

||X−XZ− E||∞ < ε and ||Z− J||∞ < ε and ||Z−Q||∞ < ε;
10: end while

be regulated based on important link-based structural perturba-
tion. Thus, how to identify the roles of network links and measure
their importance in terms of network regularity becomes a key
problem.

For a representative subgraph, more subgraphs in regular net-
works can be represented by them than that in irregular net-
works. That is, there is a large degree of commonality between
the subgraphs in regular networks. Thus, based on the learned
representation matrix Z∗, we can define the regularity degree of
the subgraph-centered node k as follows:

RD(k) =

n∑
i=1

Zi,k

∥Z:,k∥1
(34)

Thus, the importance of links for network self-representation can
be estimated by the related subgraphs, i.e.,

Uij = RD(i) × RD(j) (35)

Algorithm 4 LPR algorithm.

Input: network G = (V , E) and its adjacency matrix X, the
number of perturbed links w.

Output: the regulated network GR.
1: Learn the representation matrix Z∗ using Algorithm 3;
2: for each network node k∈V do
3: Calculate the regularity level RD(k) of the subgraph-

centered node k using (34);
4: end for
5: for each network link (i, j)∈E do
6: Calculate the importance Uij of link (i, j) using (35);
7: end for
8: Sort the importance scores {Uij} and obtain the ranked list U;

9: i = 0;
10: while i < w do
11: Remove the regular network link U[i];
12: i = i + 1;
13: end while

The metric quantifies the potential influence of link (i, j) in
both directions. The links with a smaller value of Uij are more
likely to be regular links. Otherwise, they are more likely to be
irregular links. By employing the importance of network links,

link predictability can be regulated by important link-based struc-
ture perturbation. The whole structure perturbation-based LPR
algorithm is given in Algorithm 4.

4.4. Theoretical analysis and convergence analysis

The proposed self-representation-based link prediction algo-
rithm involves the following: (1) solving the representation ma-
trix Z∗ with the inexact ALM method in Algorithm 1 and (2)
predicting the network links with matrix multiplication in Al-
gorithm 2. Specifically, Algorithm 1 performs matrix addition
when solving J. Moreover, Algorithm 1 performs matrix inversion,
addition, and multiplication in solving Z∗ and E. We can observe
that the most time-consuming components of Algorithm 1 are the
matrix multiplications and inverse in Steps 4 and 5. Each matrix
multiplication costs close to O(n3) and the matrix inverse takes
O(n3) for n × n matrixes. Therefore, Algorithm 1 costs nearly
(k+ 1)O(n3) in total, when there are k multiplication operations.
In Algorithm 2, the time cost mainly comes from constructing
the adjacency matrix in step 2 and identifying the missing and
spurious links in steps 4 and 5. We can find that the most time-
consuming component of Algorithm 2 is the matrix multiplication
in step 2. Because the numbers of missing and spurious links
are very limited, the complexity of the link identification can be
ignored. Thus, the complexity of Algorithm 2 is O(n3).

For LPMR, on the basis of Algorithm 3, the structure per-
turbation algorithm is proposed in Algorithm 4. Specifically, the
time-consuming components concentrate on the following steps:

• The trace norm computation in step 3 of Algorithm 3.
• The matrix inversion and multiplication in steps 5 and 6 of

Algorithm 3.
• The sorting operation about the link importance scores in

step 6 of Algorithm 4.

The conventional SVD of an n× n matrix has time complexity
O(n3). It will be time-consuming if n is large, i.e., the number of
data samples is large. Fortunately, the SVD of an n × n matrix
can be accelerated to O(rn2), where r is the rank of the matrix,
by using the recent fast low-rank method [75]. In addition, the
computation complexity of matrix inversion and multiplication
computation costs nearly (k + 1)O(n3) in total, where k is the
number of matrix multiplication operations. Finally, the time
complexity of the sorting operation is O(mlogm), where m is the
number of network links.

To experimentally show the convergence behavior of Algo-
rithms 1 and 3, for simplicity, we provide an intuitive curve
illustration of the convergence with respect to the iteration num-
ber on 10 datasets, as shown in Fig. 5. The results show that
Algorithms 1 and 3 converge in around 220 and 310 steps, respec-
tively, indicating that our optimization methods exhibit a good
convergence property.

5. Experiments

We conduct an experimental study of the proposed algorithm
based on real-world networks. Three sets of experiments are
conducted to evaluate the performance of the proposed meth-
ods, including the link prediction algorithm, link predictability
measure, and link predictability regulation algorithm.

5.1. Experimental setup

We consider the following 10 real-world networks drawn
from disparate fields: (i) Jazz [76], a collaboration network of
jazz musicians; (ii) Worldtrade [77], a network of miscellaneous



10 X. Xian, T. Wu, S. Qiao et al. / Knowledge-Based Systems 196 (2020) 105800

Fig. 5. Convergence curve of the proposed algorithms. For Algorithm 1, the value of the termination criterion is ∥X−XZ−E∥∞ < ε and ∥(Z− J)∥∞ < ε. For Algorithm
3, the value of the termination criterion is ∥X − XZ − E∥∞ < ε and ∥Z − J∥∞ < ε and ∥Z − Q∥∞ < ε.

Table 2
Statistical features of networks. The features include
network size N , link number M , average node de-
gree ⟨k⟩, maximum node degree kmax , clustering
coefficient C , assortative coefficient r , and degree
heterogeneity H , H =

⟨k2⟩

⟨k⟩2
. For the sampled sub-

network, N of the original network is shown in the
bracket.

manufactures of metal among 80 countries in 1994; (iii) Con-
tact [78], a contact network between people measured by the
carried wireless devices; (iv) Metabolic [79], a metabolic net-
work of C.elegans; (v) Mangwet [80], the food web in Mangrove
Estuary during the wet season; (vi) Macaque [81], the cortical
networks of the macaque monkey; (vii) USAir [82], the US Air
transportation network; (viii) Facebook [83], a directed network
of a small subset of posts to other user’s wall on Facebook.
Here, we treat it as a simple graph by ignoring the directions
and weights; (ix) Router [84], a symmetrized snapshot of the
structure of the Internet at the level of autonomous systems;
(x) Yeast [85], a protein–protein interaction network in budding
yeast. The statistical features of the networks are summarized in
Table 2.

5.2. Link prediction evaluation

To evaluate the performance of the proposed link prediction
algorithm, we introduce five link prediction methods for com-
parison. The simplest is the common neighbor (CN) [16], where
two nodes have a higher connecting probability if they have more
common neighbors. An improved method based on CN is resource
allocation (RA) [34], which assigns more weight to less-connected
neighbors. In addition, we compare the proposed prediction algo-
rithm LFLP with three global link prediction methods, including
SPM [59], NMF [45], RPCA [46], and LO [19]. Their details are
described as follows:

(1) Common Neighbor (CN): The CN metric is one of the most
widespread measurements used in the link prediction problem.
For two nodes, x and y, CN is defined as the number of nodes that
both x and y have a direct interaction with. A greater number of
the common neighbors makes it easier to create a link between
x and y. This measure is defined as

CN(x, y) = |Γ (x) ∩ Γ (y)| (36)

(2) Resource Allocation (RA): This metric is proposed by Zhou
et al. [34], and is motivated by the physical processes of re-
source allocation. The RA metric suppresses the contribution of
the high-degree common neighbors, and is defined as

RA(x, y) =

∑
z∈|Γ (x)∩Γ (y)

1
|Γ (z)|

(37)

(3) Non-negative Matrix Factorization (NMF) [45]: a method
that learns the latent features from graphs for structure predic-
tion.

A∗
=

1
R

∑
r=R
r=1W

(r)H (r) (38)

where A∗ is the reconstruction matrix of the original graph based
on the basis matrix W r and coefficient matrix Hr .

(4) Structural Perturbation Method (SPM) [59]: a global algo-
rithm based on eigen decomposition.

sSPM =

∑
N
k=1(λk + ∆λk)xkxTk (39)

where λk, xk, and ∆λk are the eigenvalue, eigenvector, and dis-
turbing quantity of the eigenvalue, respectively.

(5) Robust Principal Component Analysis (RPCA) [46]: an RPCA-
based structure prediction method.

argmin
X∗,E

rank(X∗) + γ ∥E∥0 s.t. X∗
= A − E (40)

where rank(X∗) denotes the rank of matrix X∗, and the operator
∥ · ∥0 is the ℓ0 norm.

(6) Linear Optimization (LO) [19]: assumes that the likelihood
of the existence of an unobserved link between node i to node
j, denoted by fij, can be unfolded by a linear summation of
contributions from i’s neighbors, namely

fij =

∑
k

aikzkj (41)

where zkj is the contribution from node k to node j.
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Table 3
AUC (top half) and Precision (bottom half) of the link prediction algorithms for missing link prediction. Each value is
averaged over 20 independent runs with 10% random links as a probe set. The parameters of the methods are tuned
to their optimal values. The best results are emphasized in bold, and the values in bracket are the standard deviation.

Table 4
AUC (top half) and Precision (bottom half) of the link prediction algorithms for spurious link identification. Each value
is averaged over 20 independent runs. The parameters of the methods are tuned to their optimal values. The best
results are emphasized in bold. The values in bracket are the standard deviation.

To test the validity of the link prediction algorithms, we first
select 10% of the network links as the missing link set EM (the
probe set) and use the remaining 90% as the training set ET .
The results of the missing link prediction measured by AUC and
the Precision are shown in Table 3. All data points are obtained
by averaging over 20 implementations with an independently
random division of the training set and missing link set, and
the values in bracket are the standard deviation. For each net-
work, the bold number in the corresponding column emphasizes
the highest accuracy. The results in Table 3 indicate that the
proposed LFLP method generally performs the best among the
state-of-the-art algorithms. To evaluate the effectiveness of net-
work reconstruction algorithms for spurious link identification,
10% spurious links (the probe set) are added randomly to each
real network to construct the observed network. The results for
spurious link identification measured by AUC and Precision are
shown in Table 4. For all networks, our method LFLP performs the
best among the state-of-the-art algorithms, usually remarkably
better than the second best. A possible reason is that the low
Frobenius norm-constrained model adopted by our work has a
greater expressive capability than the other methods. For the
network Metabolic and Facebook, LFLP does not perform very
well in the experiments. The possible reason behind the results
is that the self-representation level of the networks is poor.
According to Table 2, we can find that the average node degree
of Metabolic and Facebook and their maximum node degree are
quite different, which indicates that the networks have strong
structural heterogeneity and one of the local substructures of the
networks cannot be represented effectively by the others.

5.3. Link predictability measuring evaluation

According to the results in Tables 3 and 4, a specified link
prediction algorithm performs differently across the networks.
The reason behind the different prediction accuracy on the net-
works is that the networks possess diversified link predictability.
Thus, link predictability becomes a critical property for network

analysis. To evaluate the effectiveness of the defined structural
regularity index for link predictability measurement, we compare
the values of the structural regularity index with the precisions
of the four representative link prediction algorithms. Moreover,
for comparison, the structural consistency [59] is introduced:

σc=
|EL

∩ ∆E|

|∆E|
(42)

That is, structural consistency σc is defined as the fraction of
common links between ∆E and EL. ∆E is the perturbation link
set, and EL is the set of top-L-ranked links.

First, we perturb the Jazz network by removing different per-
centages of links randomly, from 1% to 12%, to generate multiple
regulated networks with different levels of structural regularity.
For each regulated network, we estimate its regularity level and
calculate the precision of the four representative link prediction
algorithms. The scatter plot between the structural regularity
values and the prediction precision of the Jazz network is shown
in Fig. 6(a). We can find that the higher the link prediction
precision, the smaller is the regularity value (a higher level of
structural regularity). The structural consistency of the Jazz net-
work under different degrees of perturbation is also presented
in Fig. 6(b). We can observe a positive correlation between the
structural consistency and precision of link prediction. Therefore,
both network regularity and structural consistency can be used
to indicate the link predictability of networks. However, there
is actually a phase of link prediction in the calculation of the
structural consistency index, while the structural regularity index
is calculated by mining the network structure directly.

To evaluate the proposed structural regularity index ade-
quately, we apply it to all real-world networks. The experimental
results are shown in Fig. 7, where each value is the average over
the results generated from NMF, SPM, RPCA, and LFLP. In general,
the value of structural regularity is correlated with the average
precision of link prediction in the networks, indicating that a
higher regularity level will result in greater link predictability
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Fig. 6. Scatter plot between link predictability and prediction precision of Jazz network. For (a), the y-axis indicates the structural regularity of the network, for (b),
the y-axis indicates the network consistency and the x-axis indicates the precision of link prediction methods in networks perturbed with varied percent. The solid
lines indicate the linear fittings of the results. The smaller the values of structural regularity, the more regular are the networks.

Fig. 7. Scatter plot between the defined structural regularity index and the link prediction precision in real-world networks. Each precision value is the average over
the algorithms NMF, SPM, RPCA, and LFLP. The solid lines are the linear fittings of the results. The smaller the values of structural regularity, the more regular are
the networks.

of networks. Thus, the results on the networks verify the effec-
tiveness of the proposed structural regularity index σr for link
predictability measurement.

5.4. Link predictability regulation evaluation

To explore the influence of network links on link predictabil-
ity, we first identify the regular and irregular links based on
the proposed link importance metric. Generally, the regular links
have high substitutability in network self-representation, while
the irregular links have few equivalent links in network self-
representation. Moreover, we adopt here a random mechanism
for link selection to regulate the networks’ link predictability.

To understand the structural roles of network links deeply, we
apply the three link selection mechanisms to the Jazz network

and analyze their influence in detail. Fig. 8(a) presents the iden-
tified irregular network links (in green color) for percentages 1,
6, and 12. The black links shown in Fig. 8(a) have a higher level
of regularity compared to the irregular links in green. Fig. 8(b)
shows the links selected randomly (in blue color) for percentages
1, 6, and 12. Compared to the links selected randomly in Fig. 8(b),
the identified irregular links in Fig. 8(a) are more likely to be
the weak links between the periphery nodes of the network and
are difficult to be modeled with link prediction methods. One
explanation for the preference is that the excessive sparsity of
the subgraphs of the periphery nodes makes the related links
unable to form regular structural patterns. Moreover, the links
with high regularity level gather at the network core and are
more likely to generate regular structures. Fig. 8(c) shows the
link prediction precision of NMF, SPM, RPCA, and LFLP on the
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Fig. 8. Link predictability regulation in network Jazz. The links with green color in (a) are the irregular links selected based on the proposed link importance index,
and those in black have a higher regularity level. The blue links in (b) are the randomly selected ones. The result in (c) shows the precision of link prediction
algorithms under various percentages of the removed network links.

regulated networks with varied perturbation ratio. Fig. 8(c) shows
that, for link predictability regulation, neither the irregular links
nor the regular links work as effectively as the links selected
randomly. More interestingly, there is a range in which the link
prediction precision can be improved via removal of irregular
links.

To probe into the problem of link predictability regulation, all
real-world networks are regulated with varied perturbation ratios
and various links. In each regulated network, NMF, SPM, RPCA,

and LFLP are adopted for link prediction, and the average predic-
tion precision of the algorithms is shown in Fig. 9. As shown in
the figure, the prediction precision can be improved by removing
irregular links. This improvement implies that the structural reg-
ularity of networks can be strengthened by irregular link-based
structure perturbation. As the number of removed links continues
to increase, the network sparsity would increase and lead to the
reduction of the prediction precision. By applying the regular
link-based structure perturbation mechanism, the precision of
link prediction degrades continuously with an increase in the
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Fig. 9. Link predictability regulation with network link-based structure perturbation. The results show the average precision of the link prediction algorithms NMF,
SPM, RPCA, and LFLP under various percentages of links removed from 1% to 9%. The error bars represent the standard deviations of the prediction precision.

percentage of the removed regular links. Similarly, as the random
link-based structure perturbation continues, the link prediction
precisions on the networks decrease gradually. By comparing
the results corresponding to the three types of network links,
we can find that the regular link-based structure perturbation
has less adverse influence on the prediction precision than the
random link-based perturbation. This is because the regular links
generally have more equivalent links than the random links and
their removal has less impact on the regularity level of networks.

According to the above discussion, network links can be cat-
egorized into multiple types with different influences on the
link predictability of networks. Compared to regular links, the
random link-based structure perturbation can reduce networks’
link predictability more effectively, which is consistent with the
random anonymization strategy in privacy preserving [86]. For
the link predictability-regulating task, the regular link-based per-
turbation may not have a significant effect. Moreover, real-world
networks often have different levels of regularity, and their link
predictability can be improved based on the irregular link-based
structure perturbation. In addition, the results of Fig. 9 show
that, in networks with high prediction precision, there is not
much room for irregular link perturbation-based predictability
improvement.

6. Conclusions and discussion

This paper introduces the LPMR problem. Theoretically, ex-
ploring and controlling the link predictability of networks is of
significance in network analysis and graph mining. Link pre-
dictability can be used to indicate the expected link prediction
accuracy of networks. Moreover, exploring link predictability can
help us uncover the organization principle of networks and un-
derstand the structural roles of network links. From the practical
viewpoint, via irregular link identification, the abnormal social
relations in online social networks can be detected and help in
identifying zombie accounts. In data mining applications, detect-
ing outliers via link role learning is critical for data preprocessing.
In social networks, the anonymized sensitive social relationships
may be disclosed with link prediction, and regulating networks’

predictability with critical link-based perturbation can enhance
the guarantee level of privacy preserving.

To explore the LPMR problem, we present a self-representation
model for network structure description, where the networks are
represented as a linear combination of the local subgraphs. The
model allows us to explore the organization principle of networks
by analyzing the intercommunity of subgraphs in global network
organization. By applying the self-representation model in link
prediction, the LFLP algorithm is proposed. The experimental
results show that LFLP is quite effective compared to the state-
of-the-art algorithms. Based on the self-representation model, we
define a structural regularity index to measure the intrinsic link
predictability of networks. Moreover, we define a link impor-
tance metric from the perspective of network self-representation,
thereby classifying network links into different types. Finally, the
influence of the links on network predictability is explored. Over-
all, we believe that our study provides a fundamental framework
for link predictability research.

However, as we need to solve the self-representation model
for LPMR, the proposed methods on a larger-scale network are
quite difficult because of the time complexity limitation. There-
fore, improving the proposed methods or introducing new the-
ories for reducing computation time are good topics for future
studies.
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