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Abstract
Random feature mapping (RFM) is the core operation in the random weight neural network (RWNN). Its quality has a

significant impact on the performance of a RWNN model. However, there has been no good way to evaluate the quality of

RFM. In this paper, we introduce a new concept called dispersion degree of matrix information distribution (DDMID),

which can be used to measure the quality of RFM. We used DDMID in our experiments to explain the relationship between

the rank of input data and the performance of the RWNN model and got some interesting results. We found that: (1) when

the rank of input data reaches a certain threshold, the model’s performance increases with the increase in the rank; (2) the

impact of the rank on the model performance is insensitive to the type of activation functions and the number of hidden

nodes; (3) if the DDMID of an RFM matrix is very small, it implies that the first k singular values in the singular value

matrix of the RFM matrix contain too much information, which usually has a negative impact on the final closed-form

solution of the RWNN model. Besides, we verified the improvement effect of intrinsic plasticity (IP) algorithm on RFM by

using DDMID. The experimental results showed that DDMID allows researchers evaluate the mapping quality of data

features before model training, so as to predict the effect of data preprocessing or network initialization without model

training. We believe that our findings could provide useful guidance when constructing and analyzing a RWNN model.

Keywords Random weight neural network � Random vector functional link network � Extreme learning machine

1 Introduction

Since Turing A. conceived and discussed the concept of

intelligent machinery in the 1950s [31, 32], the random-

ness in intelligent machines has received widespread

attention. One of the most important components of the

intelligent machinery is ‘‘unorganized machines.’’ Turing

A. divided the unorganized machines into two categories:

A-type and B-type. Although the architectures and

parameters of the unorganized machines contain some

random factors, Turing believed that they can be trained as

universal machines to do complex tasks under certain

conditional constraints and with sufficient empirical data.

Later, Webster [37] gave a more comprehensive and clear

analysis of the relationship between Turing’s unorganized

machines and artificial neural networks and proposed an

alternative solution for the B-type unorganized machines.

In 1958, Rosenblatt [25] proposed the basic unit of modern

neural networks: perceptron. Perceptron contains four

components in its network structure: input area, projection

area, association area, and response area. They are still the

most commonly used components in current neural net-

works. Besides, Rosenblatt F. discussed the information

storage and organization method in artificial neural net-

works. He also mentioned that the initialization of neural
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networks should be largely random, which is consistent

with Turing’s vision of unorganized machines.

Based on the above works, the prototype of the modern

random weight neural network (RWNN) was proposed in

the 1990s [24, 28]. RWNN is a special type of feedforward

neural network. The training mechanism of RWNN is quite

different from the traditional iterative-based neural net-

works such as the backpropagation (BP) algo-

rithm [12, 19]. For example, in BP algorithm, one needs to

use a gradient descent-like approach to iteratively fine-tune

all the parameters until it reaches acceptable accuracy. This

iterative training process is often very time-consuming,

especially when there are more than one hidden layers.

Different from traditional neural networks, in RWNN, the

input weights (i.e., the weights between the input layer and

hidden layer) and the biases of hidden nodes (i.e., the

thresholds of hidden nodes) are generated randomly from a

given range and remain same during the training process,

while the output weights (i.e., the weights between the

hidden layer and output layer) are obtained by solving a

system of linear matrix equations. It is a non-iterative

learning process, so RWNN can train very fast with

acceptable accuracy in some cases.

At present, there are two main research directions in

RWNN: random vector functional link network

(RVFL) [24] and extreme learning machine (ELM) [15]. It

is noted that the training mechanisms of RVFL and ELM

are the same, but there are some differences in the

details [3]. For example, RVFL and ELM have different

network structures. In RVFL, there is a direct connection

between the input layer and output layer, which cannot be

found in ELM. These differences greatly impact their

performances on some issues [42].

In recent years, RWNN has attracted wide attention and

researchers have used it to get many interesting results

[5, 6, 8, 14, 33, 35, 38–41]. Some notable works include:

Huang et al. [14] proved that ELM has the universal

approximation ability; in [8], Dai et al. used RVFL to

analysis the Alzheimer’s disease data and achieved the

state-of-the-art accuracy at the time; Chen et al. [5] pro-

posed a motor-cognitive analytic framework based on

ELM and used it to infer the cognitive wellness from motor

patterns; Yang et al. [38] developed a super-node-based

ELM model, that is, each hidden node is a sub-network

structure, and they later extended it to a model with mul-

tiple hidden layers and unified the representation learning

framework with unsupervised and supervised learn-

ing [39]; Uzair et al. [33] proposed an ELM-based blind

domain adaptation algorithm, which can train the model

without target domain samples.

Although the research based on RWNN has made great

progress, one of the key problems has not been completely

solved, that is, the quality assurance of random feature

mapping (RFM). RFM is a core operation of RWNN,

which transforms input data from the original feature space

into another feature space. Its name comes from the fact

that the randomly generated weights are used in the pro-

cess. The quality of RFM has a significant impact on the

model’s performance.

Some related research works have emerged in recent

years [2, 10, 16, 20, 29, 36, 42, 44] and can be classified

into two categories: internal optimization and external

optimization. Internal optimization methods improve the

quality of RFM by optimizing the quality of the random

input weights and hidden biases. For example, Zhang

et al. [42] and Li et al. [20] studied the relationship

between the internal parameters of RVFL and the model’s

performance, respectively, and many useful suggestions for

RVFL model construction were given in their works; in [2]

and [29], the authors studied the impact of the probability

distribution on RWNN model initialization and provided

some interesting observations; Wang et al. [36] stated that

adding orthogonal constraints to the input weights of ELM

allows the model to have a better ability to preserve the

sample’s structure. In [4, 21, 22], the authors used a bio-

logically inspired adaptation rule called intrinsic plasticity

(IP) to enhance the quality of RFM. Specifically, they used

the IP algorithm to learn a set of slopes and biases for

hidden nodes to make the output of the hidden layer to

approximate a specific distribution with high entropy. The

authors claimed that this method can maximize the infor-

mation transmission from the input layer to the hidden

layer, thereby improving the quality of RFM.

External optimization methods improves the quality of

RFM by optimizing the data preprocessing process. For

example, Fu et al. [10] studied how the performance of the

ELM model changes with respect to the rank of the RFM

matrix, which gave a clue to analyze the relationship

between the rank of the input matrix and the performance

of the model. Previously, we studied the relationship

between the rank of input data and the performance of the

ELM model and made some interesting observations [44].

For example, we found that when the input data change

from non-full rank to full rank, the performance of the

ELM model would gradually improve. However, there is

no theoretical explanation for this observation. Huang

et al. [16] studied the relationship between the rank of

RFM matrix and the continuity of generalized inverse.

They found that the minimum eigenvalue of the RFM

matrix would be very small if the input data were non-full

rank. In fact, according to our experimental results, we

found that the minimum eigenvalues of the RFM matrixes

obtained from two input matrixes with different non-full

ranks are often too small to be compared. Therefore, we

still cannot explain our observations discussed in [44].
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In this paper, we still focus on studying the relationship

between the rank of input data and the performance of the

RWNN model. However, different from the previous

works, our work covers the two main variations of RWNN,

i.e., RVFL and ELM, and explains the relationship from a

new perspective. Specifically, we aim to explain:

(1) The relationship between the rank of input data and

the RVFL model performance;

(2) The sensitivity of the relationship between the rank

of input data and the RWNN model performance to

different activation functions;

(3) Our observations from a new theoretical perspective.

To our best knowledge, there is no previous study on the

relationship between the rank of input data and the perfor-

mance of the RVFL model. Although ELM and RVFL have

the same learning mechanism, their RFM matrixes are quite

different because of the different network structures. For

example, the RFM matrix of RVFL is the concatenation of

the input matrix and the output matrix of the hidden layer,

while the RFMmatrix of ELM is purely the output matrix of

the hidden layer. Therefore, it is necessary to study the

relationship for the RVFL network. In addition, the sensi-

tivity of the activation function and the number of hidden

nodes have not been considered in the previous works.

In our experiments, eight benchmark functions [23, 44]

are used to generate the eligible datasets. Specifically, each

benchmark function is used to generate 100 sub-datasets

whose ranks increase from non-full rank to full rank with a

fixed step size. These datasets are used to explain (1) and

(2). In addition, we study (2) by changing the activation

function of the RWNN model and the number of hidden

layer nodes. For (3), in order to explain what we find out in

(1) and (2), we propose a new concept called DDMID

(dispersion degree of matrix information distribution).

To summarize, the main contributions of this paper are

as follows:

• The relationship between the rank of input data and the

performance of the RVFL model is studied for the first

time, and some useful guidelines are given to optimize

the process of data preprocessing;

• The sensitivities of the relationship between the rank of

input data and the performance of the RWNN model

with respect to the activation function and the number

of hidden nodes are studied for the first time;

• A new theoretical perspective is proposed to explain the

relationship between the rank of input data and the

performance of the RWNN model, which is also a new

indicator for evaluating the quality of RFM.

The rest of this paper is organized as follows: Section 2

first gives a brief review to RWNN and singular value

decomposition (SVD). Then, we introduce the concept of

DDMID in Sect. 3. The details of experimental settings are

given in Sect. 4, followed by Sect. 5 that presents the

experimental results and analysis. Finally, conclusions and

our future works are discussed in Sect. 6.

2 Related works

In this section, we briefly review random weight neural

networks (RWNN) with a focus on the random vector

functional link network (RVFL) as well as singular value

decomposition (SVD).

2.1 Random weight neural networks (RWNN)

As mentioned in Sect. 1, the learning mechanism of

RWNN is different from traditional BP-based neural net-

works. Here, we use RVFL as an example to explain the

learning mechanism of RWNN. RVFL is a typical RWNN

and was proposed by Pao’s group in the 1990s [24]. Since

then, researchers have proposed many advanced algorithms

based on it and applied them widely [7, 27, 34, 40, 43]. A

typical structure of RVFL with a single hidden layer is

shown in Fig. 1.

In Fig. 1, the input weights x and hidden biases b are

generated randomly and fixed throughout the learning

process, while the output weights b are obtained

analytically.

Suppose that there is a dataset D ¼ xi; tið Þjxi 2f
Rd; ti 2 Rg; i ¼ 1; 2; . . .;N, the learning process of RVFL

composes of three steps:

Step

1

the linear operation phase. The input data are

linearly represented by x and b, i.e., x � xþ b;

Step

2

the nonlinear mapping phase. The output in Step 1

is nonlinearly mapped into a new feature space by

the activation function gð�Þ of the hidden layer, i.e.,
gðx � xþ bÞ;

Step

3

the least squares solution phase. The output

weights b are calculated by solving a system of

linear equations.

Fig. 1 The structure of RVFL with a single hidden layer
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The process of RFM in RVFL consists of both Step 1

and Step 2, which can be represented as

H ¼

g x1 � x1 þ b1ð Þ � � � g xL � x1 þ bLð Þx1
..
. . .

. ..
.

g x1 � xN þ b1ð Þ � � � g xL � xN þ bLð ÞxN

2
664

3
775
N�ðLþdÞ

ð1Þ

According to this analysis, we can see that the operations in

Step 1 would not change the rank of input data. In Step 2,

after the nonlinear mapping using the activation function of

the hidden layer, the rank of the input data may be changed

and can be full rank under certain conditions [10].

In RVFL, the RFM matrix H is the concatenation of the

hidden layer output matrix and input matrix. Therefore, if

the input matrix is non-full rank, H will also be a non-full-

rank matrix with probability 1. This is different from ELM,

in which the RFM matrix is full rank under certain

conditions.

Once we have the RFM matrix H, Step 3 can be sim-

plified as

Hb ¼ T ð2Þ

where b ¼
b1
..
.

bLþd

2
64

3
75
ðLþdÞ�1

, T ¼
t1

..

.

tN

2
64

3
75
N�1

And the output weights b are computed by

b ¼ HþT ð3Þ

where Hþ is the Moore–Penrose generalized inverse of H.

Now, the RVFL model can be represented as

XL
i¼1

big xixþ bið Þ þ
XLþd

j¼Lþ1

bjx ¼ y ð4Þ

Huang et al. [14] have proved that the solution obtained

from (3) satisfies the following criterion

min
kbk

min
XN
i¼1

ti � yik k2
 !

ð5Þ

According to Bartlett’s theory [1], this solution can mini-

mize the structural error of the model, which implies that

the model has a better generalization ability than those

generated by other solutions.

2.2 Singular value decomposition (SVD)

Singular value decomposition (SVD) is an important

matrix decomposition technique in linear algebra, which

can be seen as the generalization of eigenvalue decompo-

sition on arbitrary matrixes [18].

The process of SVD decomposes a linear transformation

into three basic linear transformations, that is, rotation,

scaling, and rotation again. Mathematically, given a matrix

A with size m� n, the SVD of A means that A can be

represented by three special matrixes as shown below.

A ¼ URVT ð6Þ

where U is a unitary matrix (i.e., UTU ¼ I) with size

m� m, R is the singular value matrix of A, and the size of

R is m� n. In R, except for the diagonal elements, the

values of other elements are zero. The values of the diag-

onal elements are nonnegative real numbers, and they are

also known as the singular values of A. V is also a unitary

matrix (i.e., VTV ¼ I) with size n� n. The columns of

U and V are different orthogonal bases.

Further, the matrix A can be rewritten as

A ¼ r1l1v
T
1 þ r2l2v

T
2 þ . . .þ rnlnv

T
n ¼

Xn
i¼1

riliv
T
i ¼

Xn
i¼1

Mi

ð7Þ

where r is the values of the diagonal elements in R and l
and v are the orthogonal bases in U and V, respectively.

As we know, ri is sorted in descending order in R,
which implies the contribution of the corresponding item

Mi to some extent. In other words, the larger ri, the greater
the importance of corresponding Mi in the decomposition

of A.

3 Dispersion degree of matrix information
distribution (DDMID)

As mentioned in Sect. 1, the performance of the RWNN

model largely depends on the quality of RFM. Since RFM

matrix is transformed from the input data, to explain the

relationship between the rank of input data and the model

performance, intuitively one needs to study the influence of

different ranks of input data on the RFM matrix. To

achieve this goal, we introduce a new concept called dis-

persion degree of matrix information distribution

(DDMID) in this section, which describes the characteris-

tics of information distribution in a matrix. To better

explain the concept of DDMID, we first introduce a pre-

conception called the singularity of a matrix.

Definition 1 The singularity of a matrix. Suppose there are

two matrixes, denoted as A and B, respectively. After

performing SVD decomposition on A and B, respectively,

if the information weight of the first k values in the singular

value matrix R of A is larger than that of B, the singularity

of A is considered larger than B.
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For example, given two matrixes A and B with the same

size 3 * 3 and the same rank 2:

A ¼
1 1 1

3 3 3

9 9 10

0
B@

1
CA;B ¼

1 1 1

3 3 3

1 5 9

0
B@

1
CA ð8Þ

The corresponding singular value matrixes of A and B after

SVD decomposition are as follows:

RA ¼
17:09 0 0

0 0:26 0

0 0 0

0
B@

1
CA;

RB ¼
11:38 0 0

0 2:72 0

0 0 0

0
B@

1
CA

ð9Þ

For the singular value matrix RA of A, the weight of

information stored in its first value is

17:09=ð17:09þ 0:26Þ � 100% ¼ 98:50% ð10Þ

For the singular value matrix RB of B, the weight of

information stored in its first value is

11:38=ð11:38þ 2:72Þ � 100% ¼ 80:71% ð11Þ

Obviously, the first value in RA has a larger information

weight than that of the first value in RB. In other words, the

information of RA is more concentrated on the first posi-

tion. In this case, we consider the singularity of A is large

than B.

The larger the singularity of a matrix, the more the

matrix information in a fewer number of singular values,

and the smaller the information entropy of the matrix. In

other words, the more singular a matrix is, the more lin-

early its rows (or columns) are related to each other, and

the less information carried by the matrix.

As mentioned in Sec. 2, in Step 3 of modeling RWNN,

that is, the least squares solution phase, the output weights

are obtained analytically. SVD has been widely used to

solve the pseudo-inverse of a matrix. Assume that a matrix

A is decomposed by SVD to be:

A ¼ URVT ð12Þ

Then, the pseudo-inverse of A is:

Aþ ¼ VRþUT ð13Þ

where Rþ is the pseudo-inverse of R.
This process can also be used to solve the least squares

problem [11]. Because of this, we infer that the singularity

of the RFM matrix may be intrinsically related to the

generalization ability of the RWNN model.

We further infer that analyzing the characteristics of

information distribution in the singular value matrix of the

RFM matrix may give us some clues that can explain what

we have observed in the experiments. To help us find these

clues, we propose a new concept called dispersion degree

of matrix information distribution (DDMID), which is used

to describe the characteristics of information distribution in

a matrix.

Definition 2 Dispersion degree of matrix information

distribution (DDMID). Given a matrix H, perform SVD

decomposition on H and obtain the corresponding singular

value matrix R. Suppose the sum of the diagonal elements

in R is S and the sum of the first k diagonal elements in R is

Sk. Given a weight threshold p, if the proportion of Sk to S

is greater than p, that is, Sk=S� p, the proportion of k to the

number of the diagonal elements is called DDMID.

Taking the two matrixes in (8) as examples: Given

p ¼ 90%, from (10) and (11), we know that the DDMIDs

of the matrix A and B are as follows:

DDMIDA ¼ 1=3;

DDMIDB ¼ 2=3

¼ [DDMIDA\DDMIDB

ð14Þ

We can see that the dispersion degree of matrix informa-

tion distribution of A is smaller than that of B, which

means that the distribution of information in B is more

uniform than A.

Next, we use DDMID as an indicator and take into

account the relationship between the rank of input data and

the performance of the RWNN model to study the influ-

ence of the rank of input data on the RFM matrix of

RWNN.

4 Experimental settings

In this section, we explain the experimental settings in

detail.

4.1 Datasets description

In our experiments, eight benchmark functions [23, 44] are

chosen for generating eight types of datasets (denoted as

D1, D2, ..., D8). The details of these eight benchmark

functions are shown in Table 1. There are 2000 samples in

total, and each sample has 100 attributes. The labels are

generated by substituting the corresponding attributes’

values in a specific benchmark function. For each type of

datasets, there are 100 sub-datasets with ranks increasing

gradually from non-full rank to full rank, i.e., from 1 to

100.
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Here, we use the Sphere function as an example to show

the process of generating datasets. The main steps of

generating a dataset with the rank 80 are as follows.

Step

1

randomly generate a matrix with size 2000 * 80

using a Uniform distribution with the parameter

(�1; 1) and denote it as D1-step1. The rank of D1-

step1 is 80, the number of samples in D1-step1 is

2000, and each sample has 80 attributes.

Step

2

for each sample, the values of 20 remaining

attributes are obtained by linearly combining the

values of existing 80 attributes with 20 different

random coefficients. In this way, a new matrix

with size 2000 * 100 is obtained, which is denoted

as D1-step2. After that, D1-step2 is normalized to

meet the variables range requirements of the

Sphere function.

Step

3

for each sample, substitute the attributes’ values in

the Sphere function and obtain the corresponding

label. Then, the label vector is concatenated to D1-

step2 to obtain the final experimental dataset,

which is denoted as D1-80. The size of D1-80 is

2000 * 101.

Following these steps, each benchmark function in

Table 1 can be used to generate 100 sub-datasets with

ranks increasing gradually from non-full rank to full rank.

We then use these datasets to study the relationship

between the rank of input data and the performance of the

RVFL model.

4.2 Parameters setting for RWNN

For RWNN, the parameters involved include the input

weights, hidden biases, the number of hidden nodes, and

the activation function. Our settings are as follows.

(1) Input weights and hidden biases. In our experiments,

the input weights and hidden biases are randomly

generated by the Uniform distribution on the inter-

vals ð�1; 1Þ and (0, 1), respectively;

(2) The number of hidden nodes. To study the role of the

number of hidden nodes in the relationship between

the rank of input data and the performance of the

model, we gradually increase the number of hidden

nodes from 10 to 150 with the step size 10 and

observe the changes in the relationship;

(3) The activation functions. Almost any nonlinear

piecewise continuous functions can be used as the

activation function in RWNN [14]. To study the

sensitivity of the relationship between the rank of

input data and the performance of the RWNN model

to different activation functions, three commonly

used activation functions in RWNN, that is, Sigmoid

function, RBF (radial basis function), and Sine

function, are used in our experiments. The mathe-

matical expressions of these three activation func-

tions are as follows:

Sigmoid:

Gðx; x; bÞ ¼ 1=ð1þ expð�ðx � xþ bÞÞÞ;
RBF: Gðx; x; bÞ ¼ exp �bkx� xk2

� �
;

Sine: Gðx; x; bÞ ¼ sinðx � xþ bÞ.

4.3 Evaluation indicators

In our experiments, we use training and testing RMSEs

(root mean square error), training and testing SDs (standard

deviation) to evaluate the performance of the model.

Training and testing RMSEs reflect the fitting ability of the

model: the smaller the value, the better the model; training

and testing SDs reflect the stability of the model: the

Table 1 Eight benchmark

functions for constructing

datasets

Name Function Initial range

Sphere f ¼
PD

i¼1 x
2
i ½�100; 100�D

Step f ¼
PD

i¼1 xi þ 0:5b cð Þ2 ½�100; 100�D

Schwefel f ¼ 418:9829D�
PD

i¼1 xi � sin
ffiffiffiffiffiffi
xij j

p
½�500; 500�D

Rastrigin f ¼
PD

i¼1 x2i � 10 cos 2pxið Þ þ 10
� �

½�5:12; 5:12�D

Ackley
f ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

PD
i¼1 x

2
i

q� �
� exp 1

D

PD
i¼1 cos 2pxi

	 

þ 20þ e

½�32; 32�D

Rosenbrock f ¼
PD�1

i¼1 100 xiþ1 � xið Þ2þ xi � 1ð Þ2
h i

½�30; 30�D

Schafferf
f ¼

PD�1
i¼1 x2i þ x2iþ1

	 
0:25
sin 50 x2i þ x2iþ1

	 
0:1� �2
þ1

� �� �
½�100; 100�D

Quartic f ¼
PD

i¼1 ix
4
i þ random½0; 1Þ ½�1:28; 1:28�D
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smaller the value, the better the model. The mathematical

expressions of RMSE and SD are as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðyðiÞ � tðiÞÞ2

N

vuut ð15Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 ej � e
	 
2
K � 1

s
ð16Þ

where K is the number of independent experiments for each

case, e is the error of the model for each experiment, and e

is the mean value of the errors.

All the experiments in this paper are conducted using

MATLAB R2016b on Windows 7, Intel(R) Core(TM) i7-

6700 3.4 GHz CPU, and 32 GB RAM. The experimental

result for each case is the average output of 50 trials.

5 Experimental results and analysis

In our experiments, we aim to answer the following

questions:

1. With the same network parameters (i.e., the same

number of hidden nodes and the same activation

function), how does the RVFL model performance

change with the increase in the rank of input data?

2. Does the activation function of RWNN (both RVFL

and ELM) have an effect on the relationship between

the rank of input data and the performance of the

model?

3. When the number of hidden nodes changes, how does

the relationship between the rank of input data and the

performance of the RWNN model change?

5.1 Experimental results and analysis

For Question 1 and 2, experimental results are obtained and

shown in Figs. 2 and 3. These two figures show the

following:

(1) When the rank of input data reaches a certain value,

the training and testing RMSEs and SDs of the

RVFL model all decrease with the increase in the

rank, which implies that the performance of the

RVFL model improves with the increase in the rank

and the performance reaches the best when the input

data are full rank.

(2) This relationship between the rank of input data and

the performance of the RVFL model is independent

of the activation function.

(3) Compared with RVFL models using RBF or Sine

functions as the activation function, models using

Sigmoid function always achieve better performance.

To answer Question 3, we studied the effect of the number

of hidden nodes in RVFL on the relationship between the

rank of input data and the performance of the model. The

experimental results are shown in Fig. 4. The figure shows

the following:

(4) Although the prediction accuracies of RVFL models

with the different number of hidden nodes are

slightly different, the relationship between the rank

of input data and the performance of the model is

almost the same, which implies that the relationship

is insensitive to the number of hidden nodes.

It is noted that we made the same observations described in

(1)–(4) when using D2-D8 datasets. Therefore, taking into

account our earlier work using ELM as the base classifier

to study the relationship between the rank of input data and

the performance of the model [44], we come up with the

following conclusion:

(5) When the rank of input data reaches a certain value,

the performance of the RWNN model (both ELM

and RVFL) improves with the increase in the rank.

This relationship is insensitive to the number of

hidden nodes and the type of activation functions.

This conclusion provides a valuable guidance for

researchers to do better data preprocessing for the RWNN

model.

5.2 Explanations for the experimental results

In our experiments, the DDMID value corresponding to

each RFM matrix is calculated for the purpose of analysis.

The weight threshold is set to 90% in our experiments.

Specifically, each RFM matrix is first decomposed using

the SVD technique, and then, the corresponding DDMID

value of each RFM matrix can be calculated. Since the

RFM matrix is transformed from the input data, a con-

nection should exist between the rank of input data and the

DDMID value of RFM matrix. Considering the relation-

ship between the rank of input data and the performance of

the RWNN model, we can also find out the relationship

between the DDMID value and the performance of the

RWNN model. Here, we use a simple example to illustrate

the process of calculating the DDMID value of a RFM

matrix.

Given a RFM matrix H with size m� n, after per-

forming SVD decomposition on H, we can get its corre-

sponding singular value matrix RH . Suppose that the

diagonal elements in RH are denoted as k1; k2; � � � ; knf g
and their sum is S. Given a weight threshold p (i.e., 90%).

Starting from the first diagonal element in RH , accumulate

the diagonal elements one by one in order. Assume Sk is

the sum of the first k diagonal elements. Once Sk=S� p, the
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accumulation process ends and the current k is recorded.

The DDMID value of H is calculated by k/n.

In this way, we calculated the DDMID values of all

RFM matrixes and found that the rank of input data has a

significant impact on the DDMID of the corresponding

RFM matrix. The experimental results from the dataset D1

are shown in Fig. 5.

From Fig. 5, we see that as the rank of input data

increases, the DDMID of the RFM matrix gradually

increases, and this trend is independent of the number of

hidden nodes. Considering this together with the experi-

mental results shown in Figs. 2 and 3, we know that the

testing RMSE and SD of the RVFL model gradually

decrease as the rank of input data increases, which means

that with the increase in DDMID, the generalization ability

of the RVFL model increases. The experimental results

from the datasets D2-D8 also show similar trend. From

these observations, we conclude:
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(6) The DDMID can reflect the quality of the RFM

matrix to some extent. Specifically, if the DDMID is

small, it means that the first k singular values in the

singular value matrix of the RFM matrix have too

much weight, which implies that the quality of the

RFM is not good and the final model may not

achieve a good performance, and vice versa. Another

explanation is that since the RFM in RWNN is

followed by the least squares solution, the larger the

DDMID, the more uniform the information distribu-

tion of the RFM matrix, and the better the solution.

Theoretical explanation of the above experimental phe-

nomena is as follows: It can be known from (13) that the

generalized inverse of the RFM matrix can be calculated by

Hþ ¼ VRþUT . Actually, Rþ is obtained by calculating the

inverses of nonzero singular values in R and the singular

values in R with values of zero remain unchanged. It can be

inferred that if the nonzero singular values in R are too

concentrated on the head position and occupy a large

proportion of information, then the values on the head

position of Rþ will be very small because the inverses of

these head elements are very small. Because the singular

values in R with values of zero are still zero in Rþ, there
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will be a large number of zeros or values close to zero in

Rþ. In this case, the continuity of Hþ cannot be guaran-

teed [13], and then, it is difficult to obtain the optimal

output weight by using b ¼ HþT.
DDMID reflects the dispersion degree of information

distribution in the RFM matrix. If the value of DDMID of

the RFM matrix is very small, it implies that only a few

elements on the head position of the corresponding R
occupy a large proportion of information. Furthermore, it

can be inferred that the generalized inverse Hþ corre-

sponding to the RFM matrix is highly discontinuous with a

large probability, which is not good for solving

b ¼ HþT [9]. Conversely, if the value of DDMID corre-

sponding to the RFM matrix is very large, it implies that

the generalized inverse Hþ of the RFM matrix is contin-

uous with a large probability, which is beneficial to the

model to obtain a more stable solution.

Besides, we studied how the DDMID of the RFM matrix

in ELM changes with the rank of input data and had a

similar observation, that is, from a certain point, with the

increase in the rank of input data, the DDMID of the RFM

matrix gradually increases and the generalization ability of

the model improves. To avoid repetition, the experimental

details are not described here.

To further demonstrate the potential power of DDMID

in real-life applications, we used DDMID to verify the

improvement effect of intrinsic plasticity optimization

method (IP) [4, 21, 22] on the quality of RFM. Specifically,

we implemented IP algorithm and compared the perfor-

mance of ELM with IP and ELM without IP on the dataset

D1 and the DDMID values of the corresponding RFMs.

The experimental results are shown in Table 2.

The experimental results in Table 2 show that using IP

algorithm to add a specific constraint (i.e., a set of slopes

and biases) to the input weights of ELM can improve the

prediction performance of the model, which implies that

IP algorithm improves the quality of the model’s RFM.

At the same time, we can also observe that the DDMID

value of the RFM optimized by IP algorithm is higher

than that without IP algorithm. This again shows that

DDMID is an effective indicator to measure the quality of

RFM.

Researchers can use the advantages of DDMID to

evaluate the mapping quality of data features before model

training, so as to predict the effect of data preprocessing or

network initialization without model training.

Remark

(1) The difference between DDMID and the condition

number of the matrix The condition number of the

matrix can be used to measure the stability of a

matrix. For example, for a linear system Hb ¼ T, if

the condition number of H is very large (far greater

than 1), a small change in T can cause a dramatic

change in b, and the stability of the output result will

be very poor. Conversely, if the condition number of

H is very small (close to 1), the stability of the output

result is relatively good. However, if the matrix H is

not a full-rank matrix, the corresponding condition

number will be infinite. For the RFM matrix in

RVFL studied in this paper, it is a non-full-rank

matrix in most cases (when the input matrix is not

full rank). In this case, the stability of two non-full-

rank RFM matrix cannot be compared by using the

condition number of the matrix, and thus, it cannot

be used to explain the phenomena in our study.

However, the DDMID proposed in this paper can

clearly reflect the influence of the rank of the input

matrix on the quality of RFM (as shown in Fig. 5).

Therefore, for this study, DDMID is more suit-

able than the conditional number of the matrix to

explain the experimental phenomena.

(2) The difference between our study and other works

using SVD to analyze the hidden layer output matrix

of neural networks, such as the work in [30]

and [26]. In [30], the authors noted that the singular

values of the hidden layer output matrix could

provide a quantification of the level of linear

independency of the training patterns in hidden layer

space. They found that small singular values might

imply that the corresponding hidden layer nodes can

be deleted, which does not seriously affect the

performance of the model. Inspired by this observa-

tion, they proposed to use the singular values and the

associate sensitivities from performing SVD on the

hidden layer output matrix as indicators to select

important neurons in the hidden layer. Similarly,

in [26], the authors used principal component anal-

ysis (PCA) and SVD to decompose the matrixes of

backpropagated errors and local gradient values

associated with the hidden neurons in the training

process of multi-layer perceptrons (MLP) and then

pruned the hidden neurons corresponding to those

Table 2 Performance

comparison of ELM with IP and

ELM without IP on D1 (full-

rank case)

Algorithm DDMID Training RMSE Testing RMSE Learning time(s)

ELM with IP 0.79 3.12 3.23 0.22

ELM without IP 0.75 3.38 3.55 0.06
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relatively small singular values or eigenvalues. In

this way, one can make the network structure of the

model more compact without degrading the perfor-

mance of the model too much.

The methods proposed in these two articles are

mainly applied to pruning traditional neural networks

(i.e., BP-based) to obtain a more compact network

structure. In this study, we use SVD to analyze the

information distribution of RWNN’s RFM matrix

and propose a new concept named DDMID to

measure the quality of RFM. The aforementioned

works and our work have significant differences in

method design and application scenarios.

(3) DDMID can also be used indirectly to assist in the

design of new deep learning algorithms Specifically,

although the experiments in our paper are performed on

RWNN with a single hidden layer, the conclusions of

our study are also valid for deep RWNN. For example,

for multi-layer ELM (ML-ELM) [17] (a typical deep

learning framework in RWNN), all of its hidden layer

parameters are obtained by pre-trainingusing theELM-

based auto-encoder (ELM-AE). ELM-AE is an unsu-

pervised feature extractor with only one hidden layer in

its network structure. In this case, the effect of feature

extraction of ELM-AE can be monitored by DDMID,

and it is expected to obtain better features more

efficiently, which will eventually help improve the

prediction performance of the deep model.

6 Conclusions

In this paper, we studied the relationship between the rank

of input data and the performance of the RWNN model,

including both RVFL and ELM. We made the following

interesting observations:

1. When the rank of input data reaches a certain

threshold, the generalization ability of the RVFL

model increases as the rank of input data increases

and its performance reaches the best when the input

matrix is full rank.

2. The observation in (1) is independent of the type of

activation functions and the number of hidden nodes. In

other words, different activation functions or the differ-

ent number of hidden nodes may change the prediction

accuracy of the model, but the relationship between its

performance and the rank of input data is the same.

In addition, we introduced a new concept called dispersion

degree of matrix information distribution (DDMID) and

used it to explain what we have observed. Experimental

results show that:

3. DDMID can reflect the quality of RFM (random

feature mapping) of RWNN to some extent. Specifi-

cally, if the DDMID of an RFM matrix is very small, it

means that the first k singular values in the singular

value matrix of the RFM matrix contain too much

information, which usually has a negative impact on

the final solution of the RWNN model, and vice versa.

4. Furthermore, we used DDMID to verify the quality

improvement of RFM by using the IP algorithm. The

experimental results show that DDMID enables

researchers to evaluate the mapping quality of data

features accurately before model training and predict

the effect of data preprocessing or network initializa-

tion without model training, which will greatly

improve the efficiency of modeling.

These observations and analysis can be used as a guidance

when constructing and analyzing RWNN models. How-

ever, there are still some unsolved issues in our work that

we will be addressed in the future:

a. As mentioned above, we found that only when the rank

of input data reaches a certain threshold, the relation-

ship between the rank of input data and the perfor-

mance of the RWNN model follows the trend as we

observed. However, the threshold is not the same for

different datasets and the relationship remains unclear

when the rank of input data is below the threshold;

b. The weight threshold p in the DDMID was determined

experimentally in the study. It is necessary to develop a

simpler way to determine the value of p;

c. Adding specific noise to a non-full-rank input matrix

can make it a full-rank matrix. In this case, how to

evaluate the quality of the RFM remains to be studied.

Acknowledgements This work was supported in part by the National

Natural Science Foundation of China (Grant 61672358 and Grant

61836005) and the Guangdong Science and Technology Department

(Grant 2018B010107004)

Compliance with Ethical Standards

Conflict of interest The authors declared no potential conflict of

interest with respect to the research, authorship, and/or publication of

this article.

References

1. Bartlett PL (1998) The sample complexity of pattern classifica-

tion with neural networks: the size of the weights is more

important than the size of the network. IEEE Trans Inf Theory

44(2):525–536

2. Cao W, Gao J, Ming Z, Cai S, Zheng H (2017) Impact of

probability distribution selection on RVFL performance. In:

International conference on smart computing and communica-

tion. Springer, pp 114–124

Neural Computing and Applications (2020) 32:12685–12696 12695

123



3. Cao W, Wang X, Ming Z, Gao J (2018) A review on neural

networks with random weights. Neurocomputing 275:278–287

4. Chen C, Jin X, Jiang B, Li L (2019) Optimizing extreme learning

machine via generalized hebbian learning and intrinsic plasticity

learning. Neural Process Lett 49(3):1593–1609

5. Chen Y, Hu C, Hu B, Hu L, Yu H, Miao C (2018) Inferring

cognitive wellness from motor patterns. IEEE Trans Knowl Data

Eng 30:2340

6. Chen Y, Song S, Li S, Yang L, Wu C (2018) Domain space

transfer extreme learning machine for domain adaptation. IEEE

Trans Cybern 49:1909

7. Cui W, Zhang L, Li B, Guo J, Meng W, Wang H, Xie L (2018)

Received signal strength based indoor positioning using a random

vector functional link network. IEEE Trans Ind Inform

14(5):1846–1855

8. Dai P, Gwadry-Sridhar F, Bauer M, Borrie M, Teng X (2017)

Healthy cognitive aging: a hybrid random vector functional-link

model for the analysis of alzheimer’s disease. In: AAAI,

pp 4567–4573

9. Fu A (2015) Study on the residence error, stability, and gener-

alization capability of extreme learning machine. Ph.D. thesis,

China Agricultural University

10. Fu AM, Wang XZ, He YL, Wang LS (2014) A study on residence

error of training an extreme learning machine and its application

to evolutionary algorithms. Neurocomputing 146:75–82

11. Golub GH, Reinsch C (1970) Singular value decomposition and

least squares solutions. Numer Math 14(5):403–420

12. Hecht-Nielsen R (1992) Theory of the backpropagation neural

network. In: Wechsler H (ed) Neural networks for perception.

Elsevier, Amsterdam, pp 65–93

13. Horn RA, Johnson CR (2012) Matrix analysis. Cambridge

University Press, Cambridge

14. Huang GB, Chen L, Siew CK et al (2006) Universal approxi-

mation using incremental constructive feedforward networks with

random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

15. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine:

a new learning scheme of feedforward neural networks. In: 2004

IEEE international joint conference on neural networks, 2004.

Proceedings, vol 2. IEEE, pp 985–990

16. Huang Z, Wang X (2018) Sensitivity of data matrix rank in non-

iterative training. Neurocomputing 313:386–391

17. Kasun LLC, Zhou H, Huang GB, Vong CM (2013) Representa-

tional learning with extreme learning machine for big data. IEEE

Intell Syst 28(6):31–34

18. Laub AJ (1980) The singular value decomposition: its compu-

tation and some applications. IEEE Trans Autom Control

25(2):164–176

19. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436

20. Li M, Wang D (2017) Insights into randomized algorithms for

neural networks: practical issues and common pitfalls. Inf Sci

382:170–178

21. Neumann K, Emmerich C, Steil JJ (2012) Regularization by

intrinsic plasticity and its synergies with recurrence for random

projection methods. J Intell Learn Syst Appl 4(3):12

22. Neumann K, Steil JJ (2011) Batch intrinsic plasticity for extreme

learning machines. In: International conference on artificial

neural networks. Springer, pp 339–346

23. Ouyang H, Gao L, Li S, Kong X (2017) Improved global-best-

guided particle swarm optimization with learning operation for

global optimization problems. Appl Soft Comput 52:987–1008

24. Pao YH, Takefuji Y (1992) Functional-link net computing: the-

ory, system architecture, and functionalities. Computer

25(5):76–79

25. Rosenblatt F (1958) The perceptron: a probabilistic model for

information storage and organization in the brain. Psychol Rev

65(6):386

26. Santos JDA, Barreto GA, Medeiros CM (2010) Estimating the

number of hidden neurons of the MLP using singular value

decomposition and principal components analysis: a novel

approach. In: 2010 Eleventh Brazilian symposium on neural

networks. IEEE, pp 19–24

27. Scardapane S, Wang D, Uncini A (2018) Bayesian random vector

functional-link networks for robust data modeling. IEEE Trans

Cybern 48(7):2049–2059

28. Schmidt WF, Kraaijveld MA, Duin RP (1992) Feedforward

neural networks with random weights. In: 11th IAPR interna-

tional conference on pattern recognition, 1992. Vol. II. Confer-

ence B: pattern recognition methodology and systems,

proceedings. IEEE, pp 1–4

29. Tao X, Zhou X, He YL, Ashfaq RAR (2016) Impact of variances

of random weights and biases on extreme learning machine. JSW

11(5):440–454

30. Teoh EJ, Tan KC, Xiang C (2006) Estimating the number of

hidden neurons in a feedforward network using the singular value

decomposition. IEEE Trans Neural Netw 17(6):1623–1629

31. Cooper SB, Leeuwen JV (2013) Intelligent machinery. In: Alan

turing his work and impact, pp 499–549

32. Turing AM (1996) Intelligent machinery, a heretical theory.

Philos Math 4(3):256–260

33. Uzair M, Mian A (2017) Blind domain adaptation with aug-

mented extreme learning machine features. IEEE Trans Cybern

47(3):651–660

34. Wang D, Li M (2017) Stochastic configuration networks: fun-

damentals and algorithms. IEEE Trans Cybern 47(10):3466–3479

35. Wang S, Deng C, Lin W, Huang GB, Zhao B (2017) Nmf-based

image quality assessment using extreme learning machine. IEEE

Trans Cybern 47(1):232–243

36. Wang W, Liu X (2017) The selection of input weights of extreme

learning machine: a sample structure preserving point of view.

Neurocomputing 261:28–36

37. Webster CS (2012) Alan turing’s unorganized machines and

artificial neural networks: his remarkable early work and future

possibilities. Evol Intell 5(1):35–43

38. Yang Y, Wu QJ (2016) Extreme learning machine with subnet-

work hidden nodes for regression and classification. IEEE Trans

Cybern 46(12):2885–2898

39. Yang YM, Wu QJ (2016) Multilayer extreme learning machine

with subnetwork nodes for representation learning. IEEE Trans

Cybern 46(11):2570–2583

40. Ye H, Cao F, Wang D, Li H (2018) Building feedforward neural

networks with random weights for large scale datasets. Expert

Syst Appl 106:233–243

41. Zhang L, Deng P (2017) Abnormal odor detection in electronic

nose via self-expression inspired extreme learning machine. IEEE

Trans Syst Man Cybern Syst 99:1–11

42. Zhang L, Suganthan PN (2016) A comprehensive evaluation of

random vector functional link networks. Inf Sci 367:1094–1105

43. Zhang L, Suganthan PN (2017) Visual tracking with convolu-

tional random vector functional link network. IEEE Trans Cybern

47(10):3243–3253

44. Zhao X, Cao W, Zhu H, Ming Z, Ashfaq RAR (2018) An initial

study on the rank of input matrix for extreme learning machine.

Int J Mach Learn Cybern 9(5):867–879

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

12696 Neural Computing and Applications (2020) 32:12685–12696

123


	A study on the relationship between the rank of input data and the performance of random weight neural network
	Abstract
	Introduction
	Related works
	Random weight neural networks (RWNN)
	Singular value decomposition (SVD)

	Dispersion degree of matrix information distribution (DDMID)
	Experimental settings
	Datasets description
	Parameters setting for RWNN
	Evaluation indicators

	Experimental results and analysis
	Experimental results and analysis
	Explanations for the experimental results

	Conclusions
	Acknowledgements
	References




