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Jointly Sparse Locality Regression for Image
Feature Extraction
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Abstract—This paper proposes a novel method called Jointly
Sparse Locality Regression (JSLR) for feature extraction and
selection. JSLR utilizes joint L2,1-norm minimization on
regularization term, and also introduces the locality to characterize
the local geometric structure of the data. There are three main
contributions in JSLR for face recognition. Firstly, it eliminates
the drawback in ridge regression and Linear Discriminant Analysis
(LDA) that when the number of the classes is too small, not enough
projections can be obtained for feature extraction. Secondly, by
using the local geometric structure as the regularization term,
JSLR is able to preserve local information and find an embedding
subspace which can detect the most essential data manifold
structure. Moreover, since the L2,1-norm based loss function
is robust to outliers in data points, JSLR provides the joint
sparsity for robust feature selection. The theoretical connections
of the proposed method and the previous regression methods are
explored and the convergence of the proposed algorithm is also
proved. Experimental evaluation on several well-known data sets
shows the merits of the proposed method on feature selection and
classification.

Index Terms—Regression, face recognition, feature extraction,
local structure, joint sparsity.

I. INTRODUCTION

S INCE the data used in computer vision or pattern recogni-
tion is very high dimensional, it is of great importance to

select the key features from large quantities of variables. Besides,
the redundancy of the data would affect the performance of some
algorithms in practical applications [1], and thus most of the al-
gorithms cannot obtain a good performance in high-dimensional
case [2]. Therefore, feature extraction and selection are of great
importance in processing the high-dimensional data set [3].
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Up to now, one of the classical methods is Principle Compo-
nent Analysis (PCA) [4], which is a simple and effective unsu-
pervised method as it solves the eigen decomposition problem
to obtain the optimal vectors for dimensionality reduction. Lin-
ear Discriminant Analysis (LDA) [5] is a representative super-
vised method in feature extraction and dimensionality reduction,
which uses the label information to improve the performance
in classification. By maximizing the ratio of the between-class
scatter to the within-class scatter of the training dataset, LDA
can obtain an optimal set of discriminative vectors [6]. How-
ever, a drawback of LDA is that it is unsuitable for small sam-
ple size problem in face recognition. An effective model called
PCA+LDA [7], which joints the two major techniques to obtain
the discriminant vectors [8], has been proposed to deal with the
problem. The other two methods called Particle Swarm Opti-
mization (PSO) [9] and Backtracking Search Algorithm (BSA)
[10] can also significantly reduce the number of features so as
to reduce the computational complexity and at the same time
guarantee the same level of performance.

However, PCA and LDA cannot provide the sparse projec-
tions for feature extraction since the learned projections are the
linear combination of the data [11]. Recently, sparse regression
showed the outstanding performance in feature selection and
extraction [12]–[15]. By adding sparsity penalty for feature se-
lection, the accuracy and robustness of these methods might be
improved. Thus many studies focused on the sparse learning for
variable selection. Zou et al. proposed an effective model called
Sparse Principle Component Analysis (SPCA) [4] to generate
modified principle components with sparse loadings by using
the lasso or elastic net constraint [16], [17]. Some other sparse
PCA algorithms, such as the SCoTLASS algorithm [18], the
DSPCA algorithm [19] were proposed. All of these methods
focused on sparse learning without using the class label infor-
mation. Besides, Feng et al. proposed the unsupervised learning
method based on maximum information and minimum redun-
dancy (MIMR) [20] for hyperspectral image analysis, and Li
et al. proposed another unsupervised feature selection method
by nonnegative spectral analysis and redundancy control [21].

Some other researchers developed the supervised methods
using the label information to perform sparse learning for fea-
ture extraction and selection. One of the effective methods is
Sparse Discriminant Analysis (SDA) [22], which extends linear
discriminant analysis to sparse case by imposing the sparsity
constraint. Moreover, to overcome the data piling problem of
LDA in the high dimensional and low sample size (HDLSS)
case, Qiao et al. proposed sparse LDA to obtain sparse linear
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discriminant vectors by taking the relationship between Fish-
ers LDA and a generalized eigenvalue problem into consider-
ation [23]. Besides, some semi-supervised methods were also
proposed. A semi-supervised method, which used partially la-
beled data samples, was designed to achieve batch feature se-
lection [24]. Another method called Hessian sparse feature se-
lection based on L2,1/2-matrix norm (HFSL) was proposed for
semi-supervised sparse feature selection [25]. For the multi-
modal case, Ding et al. proposed a method using multimodal in-
formation to jointly learn face representation [26]. Furthermore,
sparse regularization learning were also used in classification
designation for different pattern recognition tasks [27]–[29].

It is a well-known fact that not all data are distributed on a
linear subspace. They may lie on the nonlinear low-dimensional
manifold embedding on the high-dimensional ambient space.
Therefore, many manifold learning algorithms were proposed.
The representative methods include Neighborhood Preserving
Embedding (NPE) [30], Isometric Projection (IsoP) [31] and
Locality Preserving Projection(LPP) [32], [33], etc. These al-
gorithms aimed to preserve the local geometric structure of the
data manifold. By introducing the locality for sparse subspace
learning, Cai et al. also proposed a new method called Unified
Sparse Subspace Learning (USSL) [34]. USSL utilized the elas-
tic net for regression to simultaneously select the most impor-
tant variables and take the local geometric structure into con-
sideration. Besides, by combining the global pairwise sample
similarity with local geometric structure, a new method called
GLSPFS [35] was proposed by Liu et al. for feature selection.

In recent years, a great deal of attention has been paid to the
regression methods with different norms for image recognition,
feature extraction and variable selection [36]. For example, nu-
clear norm regression methods were proposed in [37], [38] for
face recognition. The L1-norm based sparse regularized learn-
ing methods [39]–[41] have been used for face reconstruction
and recognition [42]. A feature selection algorithm framework
called Feature-weighting as Regularized Energy-based Learn-
ing (FREL) was proposed by Li et al. [43]. Based on least
square regularization, Yang et al. [44] proposed the discrimi-
native projection method. And the traditional RDA was further
developed as Parameterless Reconstructive Discriminant Anal-
ysis (PRDA) [45] for feature extraction. In [46], the L1-norm
minimization was employed to design a specific loss function,
by which the abundant user tagged Web images are treated as
noisy samples and will not be emphasized so as to perform ro-
bust semantic video indexing. Other methods, such as [47]–[53]
were also proposed to deal with different feature selection prob-
lems. The methods in terms of jointly sparse subspace learning
attracted great attention in the field of feature selection. Since
the L2,1-norm based regression loss function is robust to out-
lier in data set, it can improve the robustness in learning steps.
Therefore, some algorithms with joint L2,1-norm regularization
were proposed to guarantee the joint sparsity for feature extrac-
tion. The model called Robust Feature Selection (RFS) [54] via
joint L2,1-norms minimization showed the good performance
for feature selection with joint sparsity. Yang et al. proposed
another model called Unsupervised Discriminative Feature Se-
lection (UDFS) [55] for sparse subspace learning. Experimental

results showed that UDFS outperforms the existing unsuper-
vised feature extraction methods and its main advantage is that
UDFS not only uses discriminative information but also uses
local structure of datas distribution for feature selection [56].
The L2,1-norm regularization is also used in [57] to discover
the common features shared across all the clustering tasks so
as to obtain a discriminative low dimensional space for cluster-
ing. Except for the jointly sparse feature selection, theL2,1-norm
was also widely used to deal with the joint-sparse recovery prob-
lems [58], [59] in computer vision.

Although a lot of methods have been developed to improve the
performance of regression methods, there still exist some prob-
lems to be solved. For example, when the number of the class is
too small, not enough projections can be obtained by the classi-
cal regression methods and/or their extensions to achieve higher
classification accuracy. Also, most existing regression method
do not simultaneously consider the geometric structure of the
data as well as the sparsity of the projection matrix. In this pa-
per, we propose a novel model called Jointly Sparse Locality Re-
gression (JSLR) for feature extraction and selection. JSLR can
not only avoid the limitation in the existing regression methods
but also guarantee the sparsity by using L2,1-norm regulariza-
tion on the projection matrix. What is more, JSLR incorporates
the local structure of the data in regression form, by which the
optimization problem can be easily optimized so as to obtain
better performance of feature extraction with less computational
time.

The main contributions of this paper are described as below:
1) The number of the projections in LDA-based methods or

regression-based methods is limited by the rank of the
so-called between-class scatter matrix or the number of
the classes. The proposed method can break out the limi-
tation to obtain more projections for feature extraction by
designing a novel regression model.

2) Theoretical connections between the proposed method
and the previous regression methods are discovered.
Moreover, the convergence of the proposed algorithm is
also proved.

3) The experimental results of the proposed model with
or without L2,1-norm regularization indicate that adding
L2,1-norm penalty on the projection matrix can obtain
joint sparsity for feature extraction so as to achieve high
recognition rate.

The rest of this paper is organized as follows: In Section II, we
discuss the related works and the extension based on ridge re-
gression will be shown in Section III. In Section IV, we propose
our objective function and the local optimal solution. Section V
focuses on theoretical analysis (the convergence and the com-
putational complexity). The proposed model will be evaluated
by several well-known databases in Section VI. In Section VII,
we draw a conclusion for this paper.

II. RELATED WORKS

In this section, the notations used in this paper will be briefly
described and the related works will be reviewed.
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A. Notations

Scalars are denoted as lowercase or uppercase italic letters,
i.e. i, j, d, p, n, c, α1, α2 etc. while vectors are represented as
bold lowercase italic letters, i.e. x,y, etc. Matrices are defined
as bold uppercase italic letters, i.e. A,B,X,Y ,W etc.

Let X = [x1,x2, . . . ,xn] ∈ Rd×n then X denotes a d× n
matrix as the original data set, where n is the number of total
training samples and d denotes the features dimension for each
sample. Let Y = [y1,y2, . . . ,yc] ∈ Rn×c to be a n× c matrix
as the label matrix falling into c classes.

B. Regressions

Ridge Regression [60] is a regularized least square method
for multivariate learning. It aims to solve the multicollinearity
problem of covariates in samples.

The optimization problem of the simplest regression is

P 0 = argmin
P

||Y −XTP ||2F (1)

where X denotes the training set of n training data. The ma-
trix P ∈ Rd×c aims to lead the linear dependency between the
training data and the corresponding labels. By setting the deriva-
tives of (1) with respect to P equaling to 0, we have the optimal
solution

P 0 =
(
XXT

)−1
XY (2)

However this optimal solution is only suitable for the case when
XXT is a full-rank matrix. Because of the small-sample size
problem, the matrix XXT may be not a full-rank one. There-
fore, to solve the singular problem in computing the inverse of
XXT the L2-norm regularized term was added to (1), and then
we have the classical ridge regression optimization problem:

P ∗ = argmin
P

||Y −XTP ||2F + α||P ||2F (3)

By setting the derivatives of (3) with respect to P equaling to 0,
we have the optimal solution for (3) as

P ∗ =
(
XXT + αI

)−1
XY (4)

For further analysis in the following sections, we need to rep-
resent the optimal solution of (3). Based on the SVD of X =
UDV T , the optimal solution can be represented as

P ∗ = U
D

D2 + αI
V TY (5)

From (2) and (5), we can know that the optimal projection matrix
P 0 and P ∗ have the size, i.e. d× c. That is, we can obtain only
c projective vectors for feature extraction.

C. The Review of LPP

LPP [32], [33] computes the best linear approximations to
the eigenfunctions of the manifold’s Laplace Beltrami opera-
tor. It aims to preserve local information and to find an embed-
ding subspace which detects the most essential data manifold

structure [61], [62]. The objective function of LPP is to mini-
mize

1

2

∑
ij

(yi − yj)
2wij =

1

2

∑
ij

∥∥BTxi −BTxj

∥∥2wij

= tr
(
BTX

(
D −W

)
XTB

)
= tr

(
BTXLXTB

)
(6)

where matrix B denotes the transformation matrix, yi and yj

denote the low-dimensional vectors of xi and xj in subspace
B, respectively. W̄ is supposed to be the similarity matrix of
all pairwise data points, L = D −W is Laplacian matrix. D̄
is a diagonal matrix and its element dii is column or row sum
of matrix W̄ (because W̄ is symmetric), i.e. dii =

∑
i wij .

The similarity matrix wij is defined as:

w̄ij =

⎧⎨
⎩
exp

(−‖xi − xj‖2/t
)
, if ‖xi − xj‖2 < ε,

0, otherwise.
(7)

where parameter t ∈ R, ε denotes the radius of the local neigh-
borhood and it can be a sufficiently small positive value (ε > 0).
In Eq. (7), the similarity matrix wij might be sensitive to the
value of the parameter t. To solve this problem, recently a
parameter-free method was proposed in [63].

By considering the similarity matrix W̄ , the relationship be-
tween each data pairxi andxj in original space can be preserved
by reconstructing the relationship between yi and yj in the low
dimensional space B with ∑

ij (yi−yj)
2wij where yi = BTxi

and yj = BTxj . The optimal projections can be obtained by
solving the following generalized eigen-function:

XLXT b = λXD̄XT . (8)

Suppose λi(i = 1, 2, . . . , d) are eigenvalues of problem 8,
we can sort the eigenvalues in ascending order, then matrix
B = [b1, b2, . . . , bk] combined ofk eigenvectors corresponding
to the first k smallest eigenvalues is the final projection matrix
of LPP.

III. THE EXTENSION BASED ON RIDGE REGRESSION

In this section, we firstly review the definition of L2,1-norm
and its property. Then we analyze the advantages and disadvan-
tages of ridge regression. Meanwhile, we also propose a simple
extension based on ridge regression.

A. The Definition of L2,1-Norm and Its Property

Some well-known models such as PCA, multilinear PCA
(MPCA) [64], etc. use L2-norm as the measurement to com-
pute the optimal projections in computer vision and face recog-
nition. However, a large amount of experimental results have
shown that in sparse feature selection, L1-norm outperforms
L2-norm because of its generalization and the robustness for
classification [16], [17], [61]. By combining the advantages of
both L1-norm and part property of L2-norm, researchers obtain
joint L2,1-norm minimization on both loss functions and regu-
larization term for robust sparse learning for feature extraction
[53]. Therefore, we use the L2,1-norm instead of L2-norm as a
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new measurement for model design to overcome the problem of
L2-norm being sensitive to outliers in a certain sense [54].

The L2,1-norm of a matrix is defined as

‖M ‖2,1 =
n∑

i=1

√∑m

j=1
m2

ij =
n∑

i=1

∥∥mi ‖2 (9)

where the i-th row and the j-th column of a matrix M = (mij)
are denoted as mi and mj .

The common advantage of L2,1-norm and L1-norm based
loss function is that they are more robust to outliers. However,
the major difference between L2,1-norm and L1-norm is that
L2,1-norm regularization is suitable for selecting meaningful or
more powerful discriminant features from the data points with
joint sparsity. The L2,1-norm based regularized methods can
eliminate those useless interferences via making the elements
in some rows of the projection matrix become zero such that
the important features of the data points are emphasized and the
insignificant features are ignored (filtered out) when conducting
feature selection or extraction. Another advantage of L2,1-norm
is that the L2,1-norm based methods are fast convergent and
thus the computational cost is lower (this can be verified from
computational cost of the L2,1-norm based methods compared
with the L1-norm based methods in Table XI in Experiment
section) [54], [56].

In all, employing the L2,1-norm instead of L1-norm as the
regularization can obtain the joint sparsity to improve the per-
formance and at the same time reduce the computational cost for
efficient feature extraction and selection on image recognition
tasks [54].

B. A Key Drawback in Traditional Regression

In (1) and (3), there exists a problem that when the number
of the classes is too small, the traditional models cannot obtain
enough projections for achieving good performance in pattern
recognition. Thus, it is possible that learning more projection
may improve the performance in feature extraction and classi-
fication [4]. In order to obtain more projections in the regres-
sion model, a tractable approach is to modify the representation
||Y −XTP ||2F to be ||Y −XTBAT ||2F , which means that the
matrix (BAT ) ∈ Rd×c takes the place of the matrix P ∈ Rd×c

in the model. Thus we have the following optimization problem:

(A∗,B∗) = argmin
A,B

||Y −XTBAT ||2F , s.t. ATA = I,

(10)
where A is a c× k matrix and the size of matrix B is d× k
where the notation k is any positive integer and c denotes the
number of classes. In other words, the optimal solution B with
size d× k is able to break out the limitation of class number of
the training data since the size of B is not related to the class
number and the variable k inB is not related to the class number
and the variable k in B can be set as value that is larger than
c, while P with size d× c indicates that it can obtain at most c
projections for feature selection.

From (10), we have

||Y −XTBAT ||2F
= Tr(Y TY )− Tr(2BTXY A−BTXXTB). (11)

By setting the derivatives of (11) with respect to B equaling to
0, the problem (11) is minimized at

B∗ =
(
XXT

)−1
XY A, (12)

where B∗ represents the optimal solution of (10).
Denote the SVD of X = UDV T , where ATA = I ,

V TV = I and UTU = I , we have

B∗ = U
1

D
V TY A. (13)

For (1) and 10), we have following propositions:
Proposition 1: Suppose XXT is the full-rank matrix. Let

P 0 be the optimal solution to (1) and B∗ be the optimal solution
to 10), if k = c (i.e. the number of projection is equal to the
number of class), then span(B∗) = span(P 0).

If k > c, the optimal solution B∗ with size d× k in (10) can
obtain k projections instead of c projections as obtained byP 0 in
(1), which breaks out the small-class problem. In Proposition 1,
the reason why the small-class problem is addressed by (10) is
that the P 0 in (1) has c projections while the optimal solution
B∗ for (10) can learn k projections to perform feature extraction
and classification, where k can be set as any integer. In other
words, the number of the learned projections from (10) is not
limited by the number of class and thus the small-class problem
is addressed.

Similarly, for (3) and 10), we have following proposition:
Proposition 2: Let P ∗ be the optimal solution to (3) and B∗

be the optimal solution to 10), ifk = c, (i.e. the number of projec-
tion is equal to the number of class), then span(B∗)= span(P ∗).
Furthermore if α → 0, the metric matrices derived by B∗ and
P ∗ for classification are equivalent to each other.

If k > c, the optimal solution B∗ with size d× k in (10) can
obtain k projections instead of c projections as obtained by P ∗

in (3), which breaks out the small-class problem.
Proposition 2 indicates that when α → 0 (or using α = ε,

whereε is a very small number), the performance using B∗ and
P ∗ for feature extraction and classification will achieve the same
results. If k > c, (10) can obtain more than c projections to per-
form feature selection or extraction, which provides the theoret-
ical guarantee for the performance of (10). From Propositions 1
and 2, we can draw the following conclusion:

Corollary 1: If α → 0 and the matrix XXT is nonsingular,
(1) and (3) have the same solution space.

C. Other Drawbacks of Ridge Regression

Adding L2-norm term for regression is of great importance to
deal with the singular problem in (1). Moreover, it shows that no
matter the matrix XXT is singular or nonsingular, the classical
ridge regression in (3) is able to obtain the optimal solution and
(1) is only a special case of (3) with the regularization parameter
α = 0. However, there are still some obvious disadvantages in
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(3) since the optimal solution P ∗ is not sparse, and thus it loses
the feature selection function. Furthermore, the optimal solution
P ∗ in classical ridge regression model only contains the global
information of the dataset and it ignores the local geometric
structure. Thus, it is necessary to develop a new algorithm to deal
with the above problems so as to enhance the effectiveness in
feature extraction and pattern recognition. In the next section, we
will propose a new model by jointing L2,1-norm regularization
and locality regression to deal with the above problems.

IV. JOINTLY SPARSE LOCALITY REGRESSION ANALYSIS

In this section, the motivations and discussion are firstly
present and then the proposed objective optimization problem
as well as the local optimal solution will be presented.

A. The Motivations and Discussion

Based on the discussion in Section III-C and III-D, we can
conclude the drawbacks of most existing regression methods
into three aspects. First, due to the limitation of small-class prob-
lem, most regression methods cannot obtain enough projections
to discover an effective projection matrix for discriminant fea-
ture extraction and classification. Second, the local structure of
the data plays an important role in reconstructing the relation-
ship between different data pairs in the low dimensional space.
However, most existing regression methods do not take the local
structure into consideration when performing feature selection
or extraction. Third, there is no specific regression methods that
are designed as regression form incorporating the local struc-
tures of the data as well as the sparsity of projections for feature
selection and extraction.

Currently, deep learning technique is a research hotspot and it
has been applied to the tasks of face recognition and object classi-
fication [65]. In spite of the high recognition rate of deep learning
methods, behind is large-scale computing and long-term train-
ing. What is more, when the amount of data is not large enough,
using deep learning methods for classification tends to obtain
low performance because of the overfitting. In addition, most
feature extraction methods based on deep learning [66], [67] do
not consider the local structures of the data when doing convo-
lutional operations. Even though they can obtain more abstract
interpretation of the data, the relationship among different im-
ages is still missing. Therefore, developing efficient traditional
feature extraction methods is still necessary for face recognition.

In conclusion, it is desirable to design a method that can solve
the drawbacks of the existing regression methods and improve
the performance of feature extraction to obtain high recognition
rate with less computing time compared to the time-consuming
and complicated deep learning methods.

B. The Objective Function of JSLR

To deal with the problems presented in Section III-C, Jointly
Sparse Locality Regression Analysis (JSLR) is proposed to ob-
tain a subset of jointly sparse projections for feature extrac-
tion and selection from the original data set. We also introduce
the locality preserving regularized term to the model so as to
characterize the local geometric structure of the data. Thus,

we present the objective function with joint L2,1-norm penalty
and locality regularization. Let A = [a1,a2, . . .,ak] and
B = [b1, b2, . . ., bk] be the variables of the following regres-
sion problem:

Ā, B̄ = argmin
A,B

(
n∑

i=1

||yi − xi
TBAT ||22 + α1||B||2,1

+ α2

n∑
i=1

n∑
j=1

||BTxi −BTxj ||22w̄ij

⎞
⎠

ATA = I, (14)

or in the matrix form

(
Ā, B̄

)
= argmin

A,B

(
||Y −XTBAT ||2F + α1||B||2,1

+ α2

n∑
i=1

n∑
j=1

||BT x̄i −BT x̄j ||22w̄ij

⎞
⎠ ,

ATA = I, (15)

where α1 and α2 are the regularization parameters. Since (14)
and (15) have two variables and two kinds of norms in the model,
they are not easy to be solved directly. Therefore, an alternatively
iterative approach will be developed to solve the optimization
problem in next section.

C. The Solutions of JSLR

From the definition of the L2,1-norm on the projection matrix
B, we have the diagonal matrix DB denoted as [54]

(DB)ii =
1

2||bi||2 , (16)

where bi represents the i-th row of matrix B.
Then from [56], we have the following equation:

||B||2,1 = Tr(BTDBB). (17)

With the above preparation, we have

||Y −XTBAT ||2F + α1||B||2,1

+ α2

n∑
i=1

n∑
j=1

||BTxi −BTxj ||22w̄ij

= Tr
(
Y TY − 2BTXY A+BTXXTB

+ α1

(
BTDBB

)
+ α2B

TX
(
D −W

)
XTB

)
. (18)

Since the optimization problem has two variables, we need to fix
one to compute the other. For fixed A, by setting the derivatives
of (18) with respect to B equaling to 0, (18) is minimized by

B̄ =
(
XXT + α1DB + α2X

(
D −W

)
XT

)−1
XY A

(19)
Hence, when A is fixed, the objective function of 14 or
15 is minimized at the local optimal solution B. When fix-
ing B, Tr(Y TY +BTXXTB + α1(B

TDBB) + α2B
T

X(D −W )XTB) becomes a constant and thus it can be
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ignored. In such case, the following maximization problem gives
the optimal solution to (18):

max
A

Tr
(
BTXY A

)
s.t. ATA = I. (20)

Let Ā be the optimization of (20). From the Theorem 4 in [4],
we have

Ā = UV T , (21)

where U , V is the SVD decomposition value of Y TXTB.
In addition, we can also have the following conclusion from

above formulation:
Theorem 1: Let B̄ be the local optimal solution of the opti-

mization problem (14) or (15). Ifα1 → 0 andα2 → 0, the linear
subspace spanned by the optimal solution of (14) or (15) approx-
imates to the linear subspace spanned by P 0 and P ∗, namely,
span(B̄) = span(P 0) and span(B̄) = span(P ∗).

Proof: The proof is in the Appendix.
For (19), when α1 = 0 and α2 = 0, then B = (XXT )−1

XY A = B∗ = P 0A, where P 0 and B∗ is the optimal so-
lution corresponding to (1) and (10). As Proposition 1 and
Proposition 2 have presented the relationship between (10)
and (1), (10) and (3) respectively, it is easy for us to have the
following conclusions: �

Corollary 2: With the same assumptions and notations as in
Theorem 1, when α2 = 0, α1 → 0, P 0 and B̄ have the same
linear subspace, namely, span(P 0) = span(B̄).

Corollary 3: With the same assumptions and notations as in
Theorem 1, when α1 = 0, α2 → 0, P 0 and B̄ have the same
linear subspace, namely, span(P 0) = span(B̄).

In summary, from Theorem 1, Corollary 2 and Corollary 3,
we can know that either (14) or (15) provides a basic theoret-
ical guarantee for the effectiveness of the proposed regression
model. Namely, when the parameters of the proposed model are
set suitably, the optimal solution space of the ridge regression
can be derived from (15). This means that the optimal projection
of JSLR can approximate to the subspace spanned by the tra-
ditional regression models. Besides, by utilizing the advantages
ofL2,1-norm regularization and locality preserving property, the
proposed model is able to compute the jointly sparse projections
and preserve the local geometric structure of the data for feature
extraction. The detail of the iterative algorithm was illustrated
in Algorithm 1.

D. Comparison and Discussion

In this section, we compare our algorithm JSLR with other
methods, such as PCA, SPCA, LDA, LPP and so on. Both PCA
and SPCA are outstanding in data processing and dimensionality
reduction. PCA projects the original d-dimensional data onto
k (<< d)-dimensional linear subspace with the combination of
all the original variables. SPCA aims to produce modified sparse
principal components by lasso (or elastic net) technique. But it
just focuses on the global structure of the original data and ignore
the local structure. Different from SPCA, JSLR can efficiently
preserve the local geometric structure of the data set.

Some other subspace learning algorithms, LPP, NPE, etc. are
able to preserve local structure of the original data. However,
they cannot provide the jointly sparse property for the learned

Algorithm 1: JSLR Algorithm

Input: The training data X ∈ Rd×n,
the training data label Y ∈ Rn×c,
matrices D̄ ∈ Rn×n, W̄ ∈ Rn×n,
the objective dimension k (k = 1, 2, . . . , n),
maximum number of the iteration: maxStep.

Step 1: Compute matrices D̄, W̄ , and initialize matrix DB ,
step = 0, converged = false.

Step 2: While !converged and step <= maxStep
- Compute B using
B = (XXT + α1DB + α2X(D −W )XT )−1XY A
- Compute DB using (DB)ii =

1
2||bi||2

- Compute A using A = UV T

- Update converged = true when B is approximately
changeless.

Step 3: Standardize the matrix B to a final normalized
matrix

and return it for feature selection.
Output: Low-dimensional discriminative subspace

B ∈ Rd×k, k = 1, 2, . . . , n.

subspace. Compared with them, JSLR achieves this goal by
adding L2,1-norm regularization to make the elements in some
rows of the projection to be 0 for efficient feature extraction and
selection.

Ridge regression is frequently used in face recognition. How-
ever, when the class number of training sample is too small, ridge
regression cannot obtain more projections than the number of
the classes for feature extraction. The same problem exists in
LDA. In contrast, the number of the projections of JSLR is not
limited by the number of the classes in training data. In spite
of given a small number of classes in training sample set, JSLR
can obtain any number of projections for feature selection and
the number of the projections is freely set by the users.

In summary, the advantages of JSLR against PCA, SPCA,
LDA, ridge regression and LPP are that JSLR can obtain joint
sparsity and preserve the local structure for pattern recogni-
tion. Another major difference between JSLR and other clas-
sical methods is that the number of the training sample classes
in JSLR is allowed to be very small but it still can learn more
projections than the number of classes. These advantages make
JSLR achieve high recognition rate.

V. THEORETICAL ANALYSIS

In this section, we present the theoretical analysis including
convergence analysis and computational complexity analysis.

A. The Convergence

To verify the convergences of the proposed iterative algo-
rithm, we begin with the following Lemmas:

Lemma 1: [54] For any two non-zero constants a and b, we
have the following inequality:

√
a− a

2
√
b
≤

√
b− b

2
√
b
. (22)
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Lemma 2: [54] Denoted V as any nonzero matrix, V ∈ R,
the following inequality holds:

∑
i

||vi
t||2 −

∑
i

||vi
t||22

2||vi
t−1||2

≤
∑
i

||vi
t−1||2 −

∑
i

||vi
t−1||22

2||vi
t−1||2

,

(23)
where vi

t, v
i
t−1 denote the i-th row of matrix V t and V t−1.

Proof: Let ||vi
t||22 and ||vi

t−1||22 be the substitute of a and b
in (22), the following inequality is valid for any i.

||vi
t||2 −

||vi
t||22

2||vi
t−1||2

≤ ||vi
t−1||2 −

||vi
t−1||22

2||vi
t−1||2

, (24)

Thus, (23) as the sum form of (24) also holds (22). With
the above Lemma 1 and Lemma 2, we have the following
theorem: �

Theorem 2: Given all the parameters in the objective func-
tion except A and B, the iterative approach shown in Algorithm
1 will monotonically decrease the objective function value of
(14) or (15) in each iteration and provides a local optimal solu-
tion of the problem.

Proof: For simplicity, we denote the objective function of
(18) as F (B,A) = F (B,A,DB). Suppose for the (t− 1)-th
iteration, both At−1 and Bt−1 can be obtained. Then we have
the following inequality from (19):

F (Bt,At−1, (DB)t−1) ≤ F (Bt−1,At−1, (DB)t−1). (25)

For At, as its optimal value comes from SVD and this will
further decrease the value of the objective function, it goes

F (Bt,At, (DB)t−1) ≤ F (Bt−1,At−1, (DB)t−1). (26)

In (18), since Y TY is a constant, it can be ignored and we need
to minimize

Tr
(−2BTXY A+BT (XXT + α1DB

+ α2X
(
D̄ −W

)
XT )B

)
As we have obtained the optimal Bt and At, then the following
inequality holds:

Tr
(−2Bt

TXY At +Bt
T
(
XXT + α1(DB)t−1

+ α2X
(
D −W

)
XT

)
Bt

)
≤ Tr

(−2Bt−1
TXY At−1 +Bt−1

T
(
XXT + α1(DB)t−1

+ α2X
(
D −W

)
XT

)
Bt−1

)
(27)

That is

Tr
(−2Bt

TXY At +Bt
TXXTBt

+ α2Bt
TX

(
D −W

)
XTBt

)
+ α1

∑
i

||bit||22
2||bit−1||2

≤ Tr
(−2Bt−1

TXYAt−1 +Bt−1
TXXTBt−1

+ α2Bt−1
TX

(
D −W

)
XTBt−1

)
+ α1

∑
i

||bit−1||22
2||bit−1||2

(28)

TABLE I
THE COMPUTATIONAL COMPLEXITIES

Then the above inequality indicates

Tr
(−2Bt

TXY At +Bt
TXXTBt

+ α2Bt
TX

(
D −W

)
XTBt

)
+ α1

∑
i

||bit||2 − α1

(∑
i

||bit||2 −
∑
i

||bit||22
2||bit−1||2

)

≤ Tr
(−2Bt−1

TXY At−1 +Bt−1
TXXTBt−1

+ α2Bt−1
TX

(
D −W

)
XTBt−1

)
+ α1

∑
i

||bit−1||2 − α1

(∑
i

||bit−1||2 −
∑
i

||bit−1||22
2||bit−1||2

)

(29)

According to Lemma 2, we further have

Tr
(−2Bt

TXY At +Bt
TXXTBt

+ α2Bt
TX

(
D −W

)
XTBt

)
+ α1

∑
i

||bit||2

≤ Tr
(−2Bt−1

TXY At−1 +Bt−1
TXXTBt−1

+ α2Bt−1
TX

(
D −W

)
XTBt−1

)
+ α1

∑
i

||bit−1||2.

(30)

That is

F (Bt,At) = F (Bt,At, (DB)t)

≤ F (Bt−1,At−1) = F (Bt−1,At−1, (DB)t−1). (31)

From (31), we can conclude that the objective function value
of (14) or (15) is monotonically decreased via the updating rule
presented in Algorithm 1. Therefore, the proposed iterative al-
gorithm finally converges to the local optimal solution. �

B. Computational Complexity Analysis

For simplicity, we assume the dimension of training samples
is d. Our proposed algorithm aims to compute the matrix A and
B. Computing B in in (19) needs O(d3) while computing DB

in (16) needs O(d2). Since SVD of Y TXTB also needs O(d3),
then the computational complexity of A is also O(d3). It is easy
to know that the main complexity of the algorithm is O(Td3),
where T denotes the number of iterations for convergence. Ta-
ble I lists the computational complexities of each variable.
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Fig. 1. Examples from FERET, Yale, USPS, AR, and CMU PIE data sets. (a) FERET. (b) Yale. (c) USPS. (d) AR. (e) CMU PIE.

VI. EXPERIMENTS

In this section, to evaluate the proposed JSLR algorithm for
feature selection, we conducted a set of experiments from three
aspects: experiments on small-scale face databases, experiments
on large-scale databases and experiments based on deep learn-
ing. In experiments, several classical as well as state-of-the-art
methods are used as compared methods. They are the classical
principle component analysis method PCA, the classical Ridge
Regression (RR) [60], the Linear Discriminant Analysis (LDA)
[5], the traditional sparse learning method SLDA based on
L1-norm [23], the local structure learning method Locality Pre-
serving Projection (LPP) [32], the regression analysis of locality
preserving projections via sparse penalty (SpLPP) [61] which
applies sparsity penalty and minimization based on L1-norm
to locality preserving projections, the dictionary learning meth-
ods (i.e. label consistent K-SVD (LC-KSVD2) [68] and the Lo-
cality Constrained and Label Embedding Dictionary Learning
(LCLE-DL) [69]), the most related L2,1-norm regularization
methods for feature selection and subspace learning (i.e. Un-
supervised Discriminative Feature Selection (UDFS) [56] and
Robust Feature Selection (RFS) [54]). In addition, the proposed
method withoutL2,1-norm regularization named JSLR(α1 = 0)
(i.e. the second term in the proposed objective function in Eq.
(14) is removed) was added as a compared method to all experi-
ments to evaluate the effectiveness of the jointly sparse regular-
ization.

In all experiments we make comparison in the avenue of deep
learning (the method is called Deep-NN in this paper). Deep-NN
is completed by the following two steps. Firstly, we use the deep
convolutional neural network (CNN) as the feature extractor to
obtain the deep features of all samples. This process is similar
to [70]. Secondly, we use the nearest neighbor classifier (NN)
for classification. For the proposed JSLR, we also use the deep
features instead of the traditional image features as input and this
method is called Deep-JSLR for easy understanding. Note that
the deep features of character database are obtained according
to the tutorial of MNIST network on official Caffe site (http:
//caffe.berkeleyvision.org/gathered/examples/mnist.html.)

A. Experiments on Small-Scale Database

In this section, experiments on four databases, including
FERET, AR, CMU PIE and Yale database, were conducted to

evaluate the performance of the proposed method versus the
compared methods under different variations of facial expres-
sion and lighting condition.

1) Experiments on FERET Face Database: The FERET face
database [71] includes 1,400 images of 200 individuals (each in-
dividual has seven images). In the experiment, the facial portion
of each original image was automatically cropped based on the
location of the eyes, and the cropped images were resized to
40× 40 pixels. The sample images of one person are shown in
Fig. 1(a).

Experimental Setting: For all the databases, the image set is
partitioned into two parts, i.e. the gallery and probe sets. In each
database, l (l is no more than the number of class) images of
each class are randomly selected to form the gallery set and
the remaining images are used as the probe set. PCA was used
as pre-processing to reduce the dimension of data. Then the
proposed method and the compared methods were used to per-
form feature extraction, independently. Finally, nearest neighbor
classifier was used for classification. The experiments were in-
dependently performed 10 times. The average recognition rates
and the corresponding dimensions as well as the standard devi-
ations of each method were listed on the Table II. Besides, the
comparison results were also shown in the Fig. 2(c)–(f) when
5 images of each individual were randomly selected for train-
ing and the remaining images were used for testing. The di-
mensions of the projection matrices were set as empirical value
and marked on the horizontal axis. The variables except pa-
rameter α1 and α2 in JSLR were randomly initialized in our
experiments.

Exploration of the Performance of the Parameters: In order
to explore the optimal parameters for JSLR on different data
sets, we analyzed the values of the parameters α1 (Alpha1) and
α2 (Alpha2). For the other compared methods, since in most of
cases the best performance lie on the area of [10−3, 103], as in-
troduced in the corresponding papers, we fixed their parameters
on the area of [10−3, 103] and report the best results.

In this experiment, we analyze the impacts of various parame-
ter values on the performance of JSLR and the average recogni-
tion rates of different dimensions from 5 to 200. Table II shows
the best average recognition rates based on 10 times running
and the corresponding dimensions as well as the standard devia-
tions of each method with l (l = 4, 5) images of each individual
for training while the remaining images were used for testing.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on December 29,2020 at 01:14:17 UTC from IEEE Xplore.  Restrictions apply. 

http://caffe.berkeleyvision.org/gathered/examples/mnist.html.


MO et al.: JOINTLY SPARSE LOCALITY REGRESSION FOR IMAGE FEATURE EXTRACTION 2881

TABLE II
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF DIFFERENT METHODS ON FERET FACE DATABASE

Fig. 2. The recognition rate versus the parameters α1 and α1 on the (a) FERET and (b) AR face database, respectively. The recognition rates (%) versus the
dimensions of different methods on the (c) FERET, (d) AR, (e) CMU PIE, (f) Yale face databases, respectively.

Fig. 2(a) shows the recognition rates when the two parameters
α1 and α2 change from 10−3 to 103. Fig. 2(c) shows the av-
erage recognition rates versus various dimensions of different
methods.

It is easy to know that the optimal value of the parameter α1

lies on the area of [10−3, 102] while the optimal value of the
parameter α2 lies on the area of [10−2, 103]. In other words,
JSLR is efficient and robust among these areas. By contrast,
when the values of the two parameters lie on other areas, it will
cause the larger decline of the recognition rates.

As it can be seen from Fig. 2(c), the recognition rates of JSLR
as well as JSLR(α1 = 0) are the highest. The results shown in
Table II and Fig. 2(c) indicate that JSLR and JSLR(α1 = 0)
outperform PCA, SLDA, UDFS, RFS, LPP and SpLPP, RR,
LDA, LCLE-DL, LC-KSVD2 in feature extraction. Besides,
from Table II, we can easily know that Deep-JSLR outperforms
Deep-NN.

2) Experiments on AR Face Database: The AR face database
[72] contains the pictures of 120 individuals (each individual
has 20 images). The face portion of each image was manu-
ally cropped (because of missing eye coordinates) and then
normalized to 50 × 40 pixels. The sample images of one person
are shown in Fig. 1(d).

In this experiment, we randomly selected l (l = 4, 5, 6) im-
ages of each individual for training, and the rest of the images
in the data set were used for testing. From Fig. 2(b), we can
know that the optimal values of parameter α1 and α2 were both
[10−3, 102]. Thus, we used this area for JSLR to obtain the
comparison results. Table III listed the performance of differ-
ent methods. Fig. 2(d) showed the average testing recognition
rates. It is obvious that JSLR or Deep-JSLR outperforms the
other methods.

3) Experiments on CMU PIE Database: The CMU PIE face
database [73] contains 68 individuals with 41,368 face images
as a whole. We selected a subset (C29) containing 1632 images
from 68 individuals (each providing 24 images). All of these face
images were automatically aligned based one-eye coordinates
and cropped to 32× 32 pixels. Fig. 1(e) shows the sample images
from this database.

In this experiment, l (l = 4, 5, 6) images of each individual
were randomly selected for training, and the rest of the images
in the data set were used for testing. The optimal areas of α1

and α2 were the same with the areas on AR database. Table IV
presents the performance of different methods. Fig. 2(e) shows
the average testing recognition rates and indicates that JSLR
outperforms the other methods again.
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TABLE III
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON AR FACE DATABASE

TABLE IV
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON CMU PIE FACE DATABASE

TABLE V
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON YALE FACE DATABASE

4) Experiments on Yale Database: The Yale face database
[43] contains 165 grayscale images of 15 individuals. Each
image was manually cropped (because of no eye coordinates
provided) and resized to 50 × 40 pixels. Fig. 1(b) shows the
sample images from this database.

In this experiment, l (l = 4, 5) images of each individual were
randomly selected for training, and the rest of the images in the
data set were used for testing. The values ofα1 andα2 were both
from 10−3 to 102. The performances of the different methods
are shown in Table V. Fig. 2(f) shows the average recognition
rates. It clearly indicates that JSLR and Deep-JSLR can obtain
the best performance when the traditional image features and
deep features are used as input.

B. Experiments on Large-Scale Database

In this section, two different databases are used to evaluate
the performance of the proposed method based on large-scale
data learning.

1) Experiments on USPS Database: The United States
Postal Service(USPS) database [55] consists of 1,100 of each
handwritten digit (0-9). The images in this database are resized
to 16 × 16 pixels. The performance of JSLR on large-sample
data set was evaluated on this database. Fig. 1(c) shows the sam-
ple images from this database.

In this experiment, l (l = 400, 500, 600, 5, 10) images of each
class were randomly selected for training, and the rest of the im-
ages in the data set were used for testing. The parameter α1 and
α2 were both from 10−3 to 103. Table VI shows the performance
of the different methods. From the result, we can know that JSLR
or Deep-JSLR can achieve better performance than other com-
pared methods on this database. Particularly, when only 5/1100
images of each class are used for training, the proposed method
can obtain higher recognition rate than not only the compared
methods but also the Deep-NN.

2) Experiments on PIE67 × 170 Database: The PIE67×
170 database is a subset of the CMU PIE face database [73].
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TABLE VI
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON USPS FACE DATABASE

Fig. 3. (a) Sample images on the LFW database. The recognition rates (%) versus the dimensions of different methods on the (b) PIE67× 170, (c) LFW databases,
respectively. (d) An example of the convergence curve of JSLR on Yale database.

TABLE VII
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON PIE67 × 170 FACE DATABASE

There are total 11,390 images from 67 individuals and each
individual has 170 images on this database. The experiment on
this database is conducted to evaluate the performance of JSLR
as well as the compared methods on the occasion when there are
various facial expression, lighting condition and angle on the
face images.

In this experiments, l (l = 10, 20, 30) images of each indi-
vidual are randomly selected for training and the remaining are
used for testing. The recognition rates of all methods are shown

in Fig. 3(b) and Table VII. From Fig. 3(b), JSLR as well as
JSLR(α1 = 0) obtain higher recognition rate than other meth-
ods, which indicates that the proposed method is superior to
other methods even without the L2,1-norm regularization term
(this can also be verified by Fig. 2(c) and Table II).

C. Experiments Based on Deep Learning

In this section, experiments on three database (AR, the stan-
dard subsets of the FERET and the LFW databases [74]) were
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TABLE VIII
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON AR FACE DATABASE BASED ON DEEP LEARNING

TABLE IX
THE MAXIMAL RECOGNITION RATE OF ALL METHODS ON THE Fb, Fc, Dup1, Dup2 FACE DATABASE BASED ON DEEP LEARNING

*Since there is only one sample in each class on the training set of Fa, the dictionary learning methods are not suitable to use in this case and the
performance is too poor to be presented.

conducted based on deep learning. In the experiments, the Caffe
deep learning framework [75] was used as the pre-processing to
learn the deep features from the sample images. After the deep
features were obtained, we further used the subspace learning
methods (i.e. PCA, UDFS, SLDA, LPP, RFS, SpLpp, RR,
LDA and the proposed JSLR) and dictionary learning methods
(i.e. LCLE-DL and LC-KSVD2) to perform further feature
extraction and then the nearest neighbor classifier was used for
classification.

For AR and the standard subsets of the FERET databases, the
dimension of extracted features based on the deep convolutional
neural network (CNN) is 512 while that of the LFW database is
1024. For the standard FERET dataset, the Fa subset was used
as the gallery set while the Fb, Fc, Dup1 and Dup2 were used as
the probe sets. The LFW database contains images from 5,749
subjects in the uncontrolled environment, which makes it as a
challenging recognition task. 158 subjects with total 4,324 im-
ages are selected from LFW-a subset and used in our experiment
as the LFW-a subset is the aligned version of LFW database. The
sample images on this database are shown in Fig. 3(a).

The experimental results on AR databases is listed in
Table VIII. For the standard subsets of the FERET database,
the best recognition rates corresponding different methods are

shown in Table IX, in which the accuracy on both the origi-
nal dimensions (i.e. 512) and 216 dimensions (i.e. half of 512)
are listed. The results in Table VIII and IX clearly show that
the performance of the proposed JSLR is better than that of
Deep-NN. This indicates that JSLR is able to extract discrimi-
native information from deep features and further achieve higher
recognition rate. The experimental results on LFW database are
shown in Fig. 3(c) and Table X. In Fig. 3(c), the reason why
no curves of LCLE-DL and LC-KSVD2 present is that no PCA
is used as pre-processing to reduce the dimension of the input
data to a specific value, the dictionary learning methods (i.e.
LCLE-DL and LC-KSVD2) can only obtain recognition rate
corresponding to the original dimension (i.e. 1024). Therefore,
we cannot obtain the recognition rate curve versus the dimen-
sion variations for the two methods. From Fig. 3(c) and Table X,
we can know that JSLR outperforms other compared methods
again.

The convergence curves of the proposed JSLR on all databases
are shown in Fig. 3(d) and Fig. 4. In these figures, the objective
function value corresponding to each iteration is denoted as ey

where y is the values marked on the vertical coordinate. The
convergence curves on all databases indicate that the proposed
method can converge after several iterations.
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TABLE X
THE PERFORMANCE (RECOGNITION RATE, STANDARD DEVIATION AND DIMENSION) OF ALL METHODS ON THE LFW FACE DATABASE BASED ON DEEP LEARNING

Fig. 4. Examples of the convergence curves of JSLR on (a) FERET, (b) AR, (c) CMU PIE, (d) USPS, (e) PIE67 × 170 and (f) LFW database, respectively.

D. Experimental Results and Discussions

The comparison among the proposed JSLR, classical PCA,
RR, LDA, SLDA, LPP, SpLPP, L2,1-norm based methods
(UDFS, RFS) and dictionary learning methods (LCLE-DL, LC-
KSVD2) has been presented using recognition rates on these
databases: FERET, AR, CMU PIE, Yale and USPS. From the
results, we reveal the following interesting points:

1) In all experiments, including the face databases (FERET,
AR, CMU PIE, Yale) and non-facial database (USPS),
JSLR consistently achieves higher recognition rates than
other methods. These results are in line with the theoretical
analysis of JSLR that it obtains discriminative information
with joint sparsity and takes local geometric structure of
dataset into consideration to perform feature selection and
extraction.

2) JSLR is able to encode more discriminating informa-
tion in the low-dimensional face subspace since the local

geometric structure is considered to be more effective than
the global structure for feature extraction and feature se-
lection in some cases. The reason why JSLR outperforms
the local structure learning method such as LPP and SpLpp
is that JSLR utilizes -norm regularization for feature se-
lection and feature extraction to obtain the discriminative
information for face recognition.

3) As it can be seen from the Fig. 2(d), (e) and (f), the tra-
ditional regression methods and/or their extensions can
obtain only c projections for feature extraction and classi-
fication, which is not enough to achieve high recognition
rates. Note that the number of classes in CMU PIE and
Yale is 68 and 15, respectively. Therefore the numbers of
projections obtained by LDA are 67 and 14, and the num-
bers of projections obtained by RR are 68 and 15 on CMU
PIE and Yale databases, respectively. Fig. 2(e) and (f) show
that the recognition rates of RR and LDA achieve their top
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TABLE XI
THE COMPUTATIONAL COST (UNIT: S) OF DIFFERENT METHODS

recognition rates using all the projections (we copy the fi-
nal recognition rate to full fill all the dimensions listed on
the horizontal axis). Thus the recognition rates no more
increase after the number of dimension reaches 67 and 14
for LDA and 68 and 15 for RR on CMU PIE and Yale
face databases, respectively. These figures show that the
lack of enough projection of LDA and RR limits their per-
formances. However, JSLR can break through this limi-
tation and obtain more projections. This is the potential
reason for JSLR to achieve higher recognition rates. In
addition, the experimental result on USPS database with
more than 4000 samples (as shown in Table VI) indicates
the robustness and effectiveness of JSLR in dealing with
large-sample size problem.

4) The L2,1-norm based methods such as JSLR, RFS and
UDFS are robust to outliers in dataset and they guarantee
the joint sparsity. However, JSLR obtains the best recogni-
tion rates when there are variations on lighting condition
and face expressions. This indicates that JSLR is more
robust than RFS and UDFS in feature extraction and se-
lection when there exists variations on lighting condition
and face expressions. In addition, the experimental results
based on deep learning techniques presented in Table VIII
and Table IX indicate the good performance of the pro-
posed JSLR.

5) Experimental results indicate that the proposed JSLR per-
forms better than the dictionary learning methods (LCLE-
DL and LC-KSVD2). The reason is that JSLR guaran-
tees the joint sparsity for discriminant feature selection
or extraction in different cases. The Comparison between
Deep-NN and Deep-JSLR shows that JSLR can further
enhance the discriminative power of the deeply learned
features based on CNNs in face recognition and character
recognition tasks.

6) Table XI presents the computational time (unit: second)
of each method on different data sets. From Table XI, we
can know that the proposed JSLR based on L2,1-norm
minimization is fast convergent and the computational
cost is much less than the L1-norm based methods (i.e.

SLDA, SpLPP). The essential reason is that both SLDA
and SpLPP use the least-angle regression method to com-
pute the sparse solution and the iteration times are more
than the proposed method. Moreover, the projections of
SLDA and SpLPP are computed one by one while JSLR
can simultaneously compute a set of jointly sparse projec-
tions. Thus, the proposed JSLR is efficient and effective
for computer vision and pattern recognition.

7) From Tables III and IV, we can see that when more train-
ing samples are used, the recognition rates of all meth-
ods are higher than that when less training samples are
used. However, it does not mean that more traning sam-
ples can definitely help to obtain higher recognition rate.
As shown in Table IV, when 20/24 training samples are
used, the recognition rates of all methods become lower
compared to the case when 19/24 training samples are
used. The potential reason for this phenomenon is that too
many training samples may lead to overfitting and thus all
methods obtain poorer performance in the testing stage.

VII. CONCLUSION

Motivated by previous works that L2,1-norm regularization
is able to obtain joint sparsity, and the local geometric informa-
tion can enhance feature selection capability, in this paper, we
propose a novel method called JSLR for feature extraction and
selection. WithL2,1-norm regularization and locality preserving
property, JSLR can obtain any number of discriminative projec-
tions for feature selection, which addresses the drawback in LDA
and ridge regression. Theoretical analyses show the close rela-
tionship of JSLR and ridge regression, which also guarantees
the effectiveness of JSLR in feature extraction and selection. In
order to obtain the optimal solution of JSLR, we propose an it-
erative algorithm which is proved to be convergent. In addition,
the computational complexity of the algorithm is also presented.
The performance of JSLR on several well-known face databases
shows that it outperforms the classical principle component anal-
ysis methods, traditional sparse learning methods and recently
proposed L2,1-norm regularization methods.
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APPENDIX

PROOF OF THEOREM 1

From Eq. (10), we have∥∥Y −XTBAT
∥∥2
F

= Tr
(
Y TY − 2BTXY A+BTXXTB

)
.

By setting the derivatives of the above problem with respect
to B equaling to 0, we have

B = (XXT )−1XY A.

Let B∗ represents the optimal solution of Eq. (10), then

B∗ = (XXT )−1XYA.

Since P 0 = (XXT )−1XY , we have B∗ = P 0A. As ma-
trix A is a rotation matrix, then the subspace spanned by B∗ in
Eq. (10) is the same as that spanned by P 0 in Eq. (1), namely,
span(B∗) = span(P 0).

Suppose ATA = I , V TV = I and UTU = I , by the SVD
of X = UDV T , we have B∗ = U 1

DV TY A. Since the opti-
mal solution of Eq. (3) is P ∗ = U D

D2+αI
V TY , then we can

find that the subspaces spanned by B∗ and P 0 have the same
base matrix U and the only difference is that there is a weighted
rotation matrix, which does not affect the spanned subspace.
Thus, we can say span(B∗) = span(P ∗).

If α → 0, we have

P ∗A = U
D

D2 + αI
V TY A → U

1

D
V TY A = B∗.

Thus, for any two pattern vectorsxi andxj , sinceATA = I ,
the distance of the two points obtained by using the two sub-
spaces (i.e. B∗ and P ∗) for feature extraction is invariant. That
is,∥∥∥(xi − xj)

TB∗
∥∥∥
2
=
∥∥∥(xi − xj)

TP ∗A
∥∥∥
2
=
∥∥∥(xi − xj)

TP ∗
∥∥∥
2
,

which indicates that the performance of using the two metric
matrices derived by B∗ and P ∗ for classification will be the
same.

For Eq. (19), if α1 → 0 and α2 → 0, we have

B̄ =
(
XXT + α1DB + α2X

(
D −W

)
XT

)−1
XY A

→ (XXT )−1XY A = B∗,

namely, span(B∗) → span(B̄).
Since span(B∗)= span(P 0), span(B∗)= span(P ∗), then span

(B̄) → span(P 0), span(B̄) → span(P ∗).
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