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Abstract—Kinship verification in the wild is an interesting
and challenging problem. The goal of kinship verification is to
determine whether a pair of faces are blood relatives or not.
Most previous methods for kinship verification can be divided as
handcrafted features-based shallow learning methods and con-
volutional neural network (CNN)-based deep-learning methods.
Nevertheless, these methods are still facing the challenging task
of recognizing kinship cues from facial images. The reason is
that the family ID information and the distribution difference of
pairwise kin-faces are rarely considered in kinship verification
tasks. To this end, a family ID-based adversarial convolutional
network (AdvKin) method focused on discriminative Kin features
is proposed for both small-scale and large-scale kinship verifi-
cation in this article. The merits of this article are four-fold:
1) for kin-relation discovery, a simple yet effective self-adversarial
mechanism based on a negative maximum mean discrepancy
(NMMD) loss is formulated as attacks in the first fully connected
layer; 2) a pairwise contrastive loss and family ID-based softmax
loss are jointly formulated in the second and third fully con-
nected layer, respectively, for supervised training; 3) a two-stream
network architecture with residual connections is proposed in
AdvKin; and 4) for more fine-grained deep kin-feature augmen-
tation, an ensemble of patch-wise AdvKin networks is proposed
(E-AdvKin). Extensive experiments on 4 small-scale benchmark
KinFace datasets and 1 large-scale families in the wild (FIW)
dataset from the first Large-Scale Kinship Recognition Data
Challenge, show the superiority of our proposed AdvKin model
over other state-of-the-art approaches.
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I. INTRODUCTION

HUMAN FACES carry abundant individual characteris-
tics, such as identity, age, gender, race, emotion, etc.,

which can be generally distinguished by looking into the facial
images. Face verification that aims to verify whether the two
facial images belong to the same person [1] has been overstud-
ied in the computer vision community. Generally, the purpose
of kinship verification is to recognize whether the two peo-
ple are from the same family or have some blood relation.
However, discovering the facial kinship relations (i.e., kin-
ship verification) of two given faces is more challenging and
understudied. Kinship verification has encountered many chal-
lenging applications, such as the human social relations explo-
ration, social-media analysis, crime scene investigations, and
missing children searches, etc., [2]–[5]. Human face inspired
visual perception is an intuitive approach for kinship similar-
ity computation, because the appearance of members from the
same family shows a more similar visual perception than those
without blood relation. To this end, kinship verification in
unconstrained conditions has received more attention in recent
years. A study on four typical parent–child relations, such as
Father–Daughter (F-D), Father–Son (F-S), Mother–Daughter
(M-D), and Mother–Son (M-S), has achieved great progress.
Four small-scale benchmarks (i.e., 4K in total), including
KinFaceW-I [2], KinFaceW-II [2], Cornell KinFace [6], and
UB KinFace [7] have been developed. Some facial image
pairs with/without kinship are shown in Fig. 1, from which
the difficulty for discovering implicit kin-relation is clearly
shown. Besides, some kinship databases like WVU [8], fam-
ilies in the wild (FIW) [9], and UvA-NEMO [10] were
also proposed, in which FIW is the largest kinship dataset
(over 1 million) of seven kin-relations [11], including four
conventional parent–child relations and three new sibling
relations [i.e., Sister–Brother (SIBS), Brother–Brother (B-B),
and Sister–Sister (S-S)]. Visually, Fig. 2 shows the pair-
wise faces for each kin-relation in FIW. In this article, both
the small-scale and large-scale kinship verification tasks are
explored.

Due to the various factors in unconstrained faces, such
as pose, illumination, expression, background clutters, etc.,
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Fig. 1. Some positive (with kinship relation) and negative pairs (without
kinship relation) from KinFaceW-I, KinFaceW-II, Cornell KinFace, and UB
KinFace, respectively. The odd rows are positive pairs and the even rows are
negative pairs.

Fig. 2. Some positive (with kinship relation) and negative pairs (without
kinship relation) from the FIW dataset. The odd rows are positive pairs and
the even rows are negative pairs.

kinship verification is still a challenging and unsolved topic.
Different from face recognition-based discriminative feature
representation, the kin-relation feature is implicit and hard
to discover. Although there are many algorithms proposed
for kinship verification, most of these works follow a simi-
lar technical routine that large-margin discriminative metrics
are learned based on handcrafted features, for example, local
binary patterns (LBPs), histogram of oriented gradient (HOG),
etc. A representative work can be referred to as [2], in which a
neighborhood repulsed metric learning (NRML) was proposed
and achieved excellent verification performance. However,
these kinship verification algorithms [12]–[14] focus on the
learning of distance metrics, since those off-the-shelf low-level
descriptors cannot well find the implicit kin-relation specific
features. As a result, the implicit and abstract kinship rela-
tion features cannot be adequately represented [15], and the
kinship verification performance is restricted.

Deep learning, proposed by Hinton and Salakhutdinov [16]
and Lecun et al. [17], is the most popular machine learn-
ing algorithm for discovering discriminative middle-level
and high-level representations in a hierarchical manner [18].
Recently, a hierarchical kinship verification was proposed
based on the DBN method [8]. In particular, convolutional neu-
ral networks (CNNs) have recently achieved a great success
in various computer vision tasks, such as face recognition [1],
[19], [20], object recognition [21]–[24], etc. Also, CNN has
been used for kinship verification [15], [25]–[27]. Although
these works greatly promote kinship verification, they adopted
a conventional CNN architecture with a single loss func-
tion, such as softmax loss (SL) or triplet loss, to train the
network from scratch, by adopting face verification-based
similar strategy to solve kinship verification problem. In addi-
tion, for training CNNs, a large number of kinship data
is very necessary. From the viewpoint of data augmenta-
tion, generative adversarial net (GAN) [28] can be used for
generating photo-realistic examples through adversarial learn-
ing. However, due to the data scarcity of labeled Kinship faces,
training an effective GAN is very difficult. Therefore, it is not
very appropriate to introduce GAN into kinship verification
directly.

Motivation: For face recognition/verification task, the gen-
eral idea is to construct the different classes or doublet/triplet
pairs [1], [20], then minimize the variance of intra-
class/positive pairs from the same individual and maximize the
variance of interclass/negative pairs from different individuals,
such that high similarity can be preserved for positive image
pairs. However, different from face recognition/verification,
a significant feature distribution difference between pair-
wise faces across generation exists in kinship verification.
Consequently, the kin-faces cannot be well interpreted by
using a conventional deep model. Undoubtedly, discovering
the implicit kinship specific feature is more challenging than
the identity specific feature. Therefore, learning kin-related
features with deep networks becomes a challenge.

Idea: In this article, inspired by maximum mean discrep-
ancy (MMD) [29] and GAN [28], a novel adversarial loss (AL)
is proposed to interpret the distribution difference between
pairwise faces. Specifically, the proposed AL is imposed in
the first fully connected layer, which tends to minimize the
interclass discrepancy and maximize the intraclass discrepancy
based on the proposed negative MMD (NMMD). On the con-
trary, a contrastive loss (CL) is formulated to maximize the
interclass distance and minimize the intraclass distance in the
second fully connected layer. Naturally, the adversarial pro-
cess between the AL and the CL in the two fully connected
layers is tailored to promoting the discrimination of feature
representation by introducing self-attacks in the network. For
fully exploiting the family ID (class label), an SL can be fur-
ther formulated for improving the recognition performance on
the large-scale kinship verification task. The proposed AdvKin
model with a two-stream shared deep network is described in
Fig. 3, from which we observe that the loss model is imposed
on the shared fully connected layers. It is worth noting that the
residual structure and SL described in dashed lines are used
for large-scale kinship verification. For further augmenting the
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Fig. 3. Pipeline of our proposed two-stream shared AdvKin approach. C denotes convolution layer, P denotes pooling layer, and FC denotes fully connected
layer. Note that the parts (i.e., residual connection versus SL layer) indicated by dashed lines are specifically added for large-scale kinship verification tasks.

kin-related features, two ensembles of the AdvKin network
(E-AdvKin) are proposed.

This article is an extended version of our conference
work [30], [31] in model formulation, optimization algorithms,
experiments, and model analysis, such that the proposed
model is more interpretable, discriminative, and competi-
tive. The contributions of this article are summarized as
follows.

1) In this article, a novel two-stream adversarial convolu-
tional network (AdvKin) model is proposed for both
small-scale and large-scale kinship verification, which
exploits a self-adversarial strategy and CL in the fully
connected layers for feature distribution discrepancy
reduction and discriminative feature representation.

2) The simple yet effective self-adversarial mechanism
is formulated by designing an NMMD-based AL in
the first fully connected layer. It can be used to
impose learning difficulty on the convolutional network
to improve the robustness of kin-relation features by
minimizing the interclass distribution discrepancy and
maximizing the intraclass discrepancy, simultaneously.

3) In order to eventually decrease the intraclass discrepancy
(positive pairs) while increasing the interclass discrep-
ancy (negative pairs), the proposed AL is combined with
the L2-distance-based CL to achieve the adversarial pro-
cess. In addition, for large-scale kinship verification, the
family ID-based SL is formulated with a deeper residual
structure.

4) For better discovering the implicit kin-related fea-
ture representation, an E-AdvKin models is naturally
proposed for deep feature augmentation. Specifically,
we adopt two types of feature augmentation methods.
Specifically, for the small-scale kinship verification task,
in order to increase the data, a patch-wise feature aug-
mentation that concatenates the deep features of multiple
overlapped facial regions (patches) is considered. For
large-scale kinship verification task, because of the rich-
ness of kinship data, the deep feature concatenation from
multiple deep networks is proposed.

II. RELATED WORK

A. Shallow Kinship Verification

In recent years, a number of shallow models and algo-
rithms for kinship verification have been proposed, which
can be divided into two categories: 1) low-level feature-
based approaches [2], [6] and 2) model-based metric-learning
approaches [32], [33]. For the former, existing feature descrip-
tors include HOG [6], [33], [34], scale-invariant feature
transform (SIFT) [2], and LBP [2]. A discriminative compact
binary face descriptor (D-CBFD) from a set of weakly labeled
samples for kinship verification was proposed in [35]. These
methods tend to use low-level facial features or their com-
bination for kinship verification. For the latter, a simple yet
discriminative metric is required for distinguishing whether
two face images are with kinship relation or not. The rep-
resentative work can be referred to as NRML proposed by
Lu et al. [2]; prototype-based discriminative feature learn-
ing (PDFL) proposed by Yan et al. [32]; transfer subspace
learning (TSL) [7], [36]; support vector machine (SVM) [32],
discriminative multimetric learning [12], [37]; large-margin
multimetric learning (LM3L) [14]; ensemble similarity learn-
ing (ESL) [33]; deep kinship verification (DKV) that integrates
excellent deep-learning architecture into metric learning [25];
and multiple kernel similarity metric learning [13]. Although
these previous works have achieved a great progress on the
challenging kinship verification, the problem is that the low-
level features are general representation of faces without better
exploiting the structural kinship characteristic.

B. Deep Kinship Verification

CNN [16], as an end-to-end supervised deep-learning meth-
ods from image pixels to high-level semantics, has shown a
huge success in face recognition [1], [19], [20], [38], [39].
The features from the bottom layer to the top layer in the
network can be identified as hierarchical image representa-
tion from low level and high level. There are several popular
CNN models. VGG-Face [40] was pretrained on large-scale
faces with the VGG network and shows state-of-the-art face
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verification performance. ResNet [21] adopts the short con-
nection to improve the performance of object recognition.
Multitask CNN (MTCNN) [41] used the candidate CNNs to
detect facial landmarks. FaceNet [1] constructed a triplet-loss
model to improve face verification accuracy. The center-loss
model proposed in [19] aims to learn within-class separable
features. Angular softmax (A-Softmax) loss was proposed in
SphereFace [20] to learn angularly discriminative features for
face recognition.

Recently, CNN has also emerged in kinship verification. For
example, SMCNN proposed by Li et al. [15] achieved the kin-
relation verification through two identical CNNs supervised
by similarity metric-based loss function. The CNN-points
method proposed by Zhang et al. [26] employed ten facial
regions to learn a group of CNNs for kinship verification.
Also, a Siamese-like coupled convolutional encoder–decoder
network was proposed for kinship verification [42]. Since
the faces from the same photograph are more likely to be
from the same family, so in [27] a CNN classifier was
trained to determine whether the two faces are from the same
photograph or not. Weighted graph embedding-based metric-
learning (WGEML) [43] framework jointly learns multiple
metrics from multiple handcrafted features and CNN features
by constructing an intrinsic graph and two penalty graphs
to characterize the intraclass compactness and interclass sep-
arability for each feature representation, respectively. Then,
both the consistency and complementarity among multiple
features can be fully exploited. Although these approaches
have achieved surprisingly good performance, the progress is
still insufficient and the deep convolutional network is also
understudied due to the data scarcity.

C. Generative Adversarial Network

GAN [28] has been widely used in computer vision issues,
such as image generation [44], image super resolution [45],
and text to image synthesis [46]. Several popular modifica-
tions of GAN are proposed in different scenarios, such as
semisupervised GAN (SSGAN) [47], deep convolutional GAN
(DCGAN) [48], CycleGAN [49] for style transfer learning,
and disentangled representation learning GAN (DRGAN) [50]
for pose-invariant face recognition. Essentially, the success
of GAN lies in this adversarial learning mechanism with
min–max loss-based adversarial optimization.

However, the effective training of GAN mainly depends
on abundant annotated examples and tricks, which does not
hold in the small-scale kinship verification task. In this arti-
cle, motivated by the adversarial learning mechanism in GAN,
for improving the discrimination of kinship feature represen-
tation, a simple yet effective self-adversarial idea is proposed.
Notably, this article is essentially different from GAN that
our objective is not for generating images, but for general
discriminative feature learning and kinship verification.

D. Differences From the SMCNN and CNN-Points

The proposed AdvKin model is closely related but essen-
tially different from SMCNN [15] and CNN-points [26],
which are the two representative works in kinship verification

using the CNN model. In SMCNN, a similarity metric loss
was proposed for general network training. In CNN-points,
a one-stream ensemble network of ten patches was trained
supervised by a binary SL function.

Specifically, the differences and advantages between the
proposed AdvKin model and both SMCNN and CNN-points
are fourfold.

1) A simple yet effective AL is proposed as attacks of the
first fully connected layer, which improves the learn-
ing capability of the proposed CL in the second fully
connected layer by the adversarial learning mechanism.

2) The proposed AdvKin is a two-stream and flexible con-
volutional network by introducing a residual structure
and a family ID-based SL.

3) From the viewpoint of data augmentation and model
augmentation, two kinds of ensemble strategies have
been proposed by considering patch level fusion and
network level fusion.

4) We have experimented on both small-scale and large-
scale kinship verification tasks on almost all the avail-
able kinship datasets for the comprehensive evaluation
of the proposed model.

III. PROPOSED ADVKIN MODEL

The proposed AdvKin method is established with a two-
stream network architecture. The basic idea of the proposed
AdvKin model is shown in Fig. 4. It is clear that we tend
to learn discriminative kin-relation features by self-adversarial
learning between the adversarial and the contrastive layer.

A. Mathematical Notations

Let x1
n and x2

n denote the feature vector of the nth kin-
ship image pair (I1

n , I2
n), respectively. N denotes the batch size.

d = ||x1
n − x2

n||2 is the L2-distance between x1
n and x2

n. δ(·)
is an indicator function and δ(condition) = 1 if the condi-
tion is satisfied, otherwise δ(condition) = 0. y1

n and y2
n are the

family IDs of the input kinship pairs x1
n and x2

n, respectively.
Let � be the reproducing kernel Hilbert space (RKHS). Given
two distributions s and t, and mapped to a RKHS by using
an implicit function φ(·). Exs∼s[φ(·)] denotes the expectation
with respect to the distribution s, and ||φ||� ≤ 1 defines a set
of functions in the unit ball of RKHS �.

B. Family ID-Based Contrastive Loss

FIW is by far the largest and the most comprehensive
kinship dataset available in computer vision and multimedia
communities. Different from the previous four small-scale
kinship datasets, that has only pairwise kinship mode (e.g.,
KinFaceW-I), FIW also provides the family tree to reflect the
real data distribution of a family and their members. In order
to improve the performance of our method, the family ID is
also used in our model to obtain more discriminative deep
features, such that the kin-relation can be better interpreted.
Nevertheless, it is worth noting that the existing small-scale
kinship datasets have no family information. Therefore, we
select the positive pairs of parent–child images and manually
mark each positive pair as different family ID (label) starting
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Fig. 4. Basic idea of our AdvKin. It describes the adversarial process between AL and CL. The square and round denote a pair of faces. In CL, the pairwise
data points of the same color in the solid circles represent positive pairs (P), therefore, these points are attracted each other. Also, the pairwise data points of
different colors in the dashed circles represent negative pairs (N), so they are repulsed each other. In the AL, the positive pairs are formulated to repulse each
other, while the negative pairs are attracted each other. After adversarial learning, discrimination is desired.

from 0. That is, for each positive parent-child pair, they are
marked as the same family ID. Note that only the faces with
blood relation can share the same family ID and be constructed
as positives.

In the two-stream network, the CL acts as a supervisory
signal. For kinship verification tasks, the family IDs have been
provided, which means that the pair of kin-relation samples
must have the same family ID. In order to verify the kinship
relation by integrating the family ID information, the CL is
presented as follows:

min LC = 1

2N

N∑

n=1

(
δ
(

y1
n = y2

n

)
d2

+ δ
(

y1
n �= y2

n

)
max(margin − d, 0)2

)
(1)

where margin is an adjustable parameter used to control the
maximum distance of negative pair.

Generally, the CL is formulated by pulling the positive pairs
as close as possible, while repulsing the negative pairs as far
as possible, simultaneously. However, the distribution discrep-
ancy of pairwise kinship faces from different sources is rarely
considered. To this end, an AL layer is formulated as well as
the CL, such that a more generalized network can be trained
by imposing attacks before the CL layer.

C. Family ID-Based Adversarial Loss

MMD is a straight-forward test statistic to quantize the
distribution difference between domain feature embedding,
which is usually employed to reduce the domain bias and shift
in transfer learning community [29], [51]–[54]. The MMD
between s and t is then defined as [55]

MMD2(s, t) = sup
||φ||�≤1

∥∥Exs∼s
[
φ
(
xs)] − Ext∼t

[
φ
(
xt)]∥∥2

�
. (2)

The most important property is that we have MMD(s, t) = 0
if and only if s = t. Inspired by MMD, the distribution differ-
ence can be reduced by minimizing the discrepancy between
pairwise kin-faces. Therefore, an MMD-based pairwise loss
is formulated with a general idea that it should minimize
the intraclass variations (kin face pair) while keeping the
interclass features separable (nonkin face pair). Specifically,

the MMD-based pairwise loss is formulated as

min LMMD = 1

2N

N∑

n=1

(
δ
(

y1
n = y2

n

)∥∥∥φ
(

x1
n

)
− φ

(
x2

n

)∥∥∥
2

�

− δ
(

y1
n �= y2

n

)∥∥∥φ
(

x1
n

)
− φ

(
x2

n

)∥∥∥
2

�

)
.

(3)

It can be seen that the MMD-based pairwise loss is a
straightforward method to decrease the distribution differ-
ence across different kinship domains. Besides, some indi-
rect approaches can be used to strengthen the network.
For example, CNN training can be improved by introduc-
ing additive noise. Also, as GAN [28] does, the generative
model tends to generate the data that cannot be distin-
guished from the real data, while the discriminative model
contributes to distinguish the generated data from real data
as much as possible. Although the objectives of the genera-
tive model and discriminative model are exactly reverse, the
generation performance is promoted due to the adversarial
learning mechanism. Inspired by the adversarial characteris-
tic of GAN, in order to further improve the discrimination of
deep kin-relation features, a self-adversarial learning mech-
anism is formulated by proposing a NMMD-based AL as
follows:

min LA = − 1

2N

N∑

n=1

(
δ
(

y1
n = y2

n

)∥∥∥φ
(

x1
n

)
− φ

(
x2

n

)∥∥∥
2

�

− δ
(

y1
n �= y2

n

)∥∥∥φ
(

x1
n

)
− φ

(
x2

n

)∥∥∥
2

�

)
.

(4)

By comparing (4) with (3), the only difference is the
minus sign. It means that the NMMD-based AL plays an
opposite role as the MMD-based pairwise loss does. For
the network deployment, the AL is added on the first fully
connected layer, so that the adversarial process can be for-
mulated with the CL in the second fully connected layer.
Therefore, the AdvKin model can be trained by combining the
AL together with the CL, such that more discriminative fea-
tures can be learned. Specifically, the objective function of our
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AdvKin is

L = LC + λLA

= 1

2N

N∑

n=1

(
δ
(

y1
n = y2

n

)
d2 + δ

(
y1

n �= y2
n

)

× max(margin − d, 0)2
)

− λ

(
1

2N

N∑

n=1

(
δ
(

y1
n = y2

n

)
− δ

(
y1

n �= y2
n

))

×
∥∥∥φ

(
x1

n

)
− φ

(
x2

n

)∥∥∥
2

�

)
(5)

where λ is a scalar coefficient used for tradeoff between the
two losses. The CL can be considered as a special case of this
joint supervision, when λ is set to 0. The AL works as an attack
on the convolutional network by minimizing the interclass
distribution discrepancy and maximizing the intraclass discrep-
ancy in first fully connected layer, simultaneously. But the CL
is formulated to maximize the interclass distance and simul-
taneously minimize the intraclass distance in the second fully
connected layer for feature discrimination and convergence.
Through the game between the AL and the CL, the discrim-
ination of the deep feature layer can be further improved, as
the basic idea of AdvKin describes in Fig. 4.

As shown in Fig. 4, the proposed AdvKin benefits from
the self-adversarial mechanism between the NMMD-based AL
and the CL. The AL is imposed in the first fully connected
layer to minimize the interclass discrepancy and maximize
the intraclass discrepancy in RKHS. Essentially, the model is
improved by increasing the difficulty of training. That is, by
automatically generating “hard features” in the AL layer, that
is, the similar pairs are repulsed and the dissimilar pairs are
attracted in feature space, then the CL layer can be learned
more carefully for aligning these hard features. With back-
propagation optimization between the AL layer and CL layer,
the performance of AdvKin can be progressively boosted.

In (5), φ(·) denotes the implicit feature map function, which
can be induced by using the kernel function k(x1

n, x2
n) =

〈φ(x1
n), φ(x2

n)〉. Thus, the (4) can be rewritten as

LA = 1

2N

N∑

n=1

(
δ
(

y1
n �= y2

n

)
− δ

(
y1

n = y2
n

))

×
(

k
(

x1
n, x1

n

)
+ k

(
x2

n, x2
n

)
− 2k

(
x1

n, x2
n

))
(6)

where k denotes the Gaussian kernel function with bandwidth
(kernel parameter) σ 2. Then, (6) can be rewritten as

LA = 1

N

N∑

n=1

(
δ
(

y1
n �= y2

n

)
− δ

(
y1

n = y2
n

))

×
(

1 − exp

(
−

∥∥x1
n − x2

n

∥∥2
2

2σ 2

))
. (7)

In the training stage of CNNs, the back-propagation algo-
rithm is deployed to update the parameters of AdvKin
network. Mini-batch stochastic gradient descent (SGD) is one
of the most commonly used back-propagation algorithms. For

optimization, the gradients (derivatives) of the AL function LA

with respect to x1
n and x2

n can be computed as

∂LA

∂x1
n

= 1

Nσ 2

(
δ
(

y1
n �= y2

n

)
− δ

(
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n = y2
n
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× exp
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n − x2

n
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2

2σ 2

)(
x1

n − x2
n

)
(8)

∂LA

∂x2
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= 1
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(
δ
(

y1
n �= y2

n

)
− δ

(
y1

n = y2
n

))

× exp

(
−

∥∥x1
n − x2

n

∥∥2
2

2σ 2

)(
x2

n − x1
n

)
. (9)

D. Family ID-Based Joint Loss With Softmax

Different from the small-scale kinship verification, in terms
of the training protocol of the large-scale kinship dataset, the
family ID for each kin-face is provided in large-scale FIW
data which contains 300 families. Therefore, it is reasonable
to exploit the general supervisory signal (i.e., family ID) by
integrating a two-stream SL into the AdvKin model.

Different from the CL and the AL, the SL aims to improve
the family class separability of deep features. With this motiva-
tion, SL is also integrated into our AdvKin to further discover
the implicit kin-relation of deep features. Considering the pair-
wise structure of the two-stream network architecture, two SL
functions can be formulated for each branch. Specifically, the
joint loss is formulated as

L = LC + λLA + LS1 + LS2 (10)

where LS1 and LS2 denote the SL (cross entropy) for x1
n and x2

n,
respectively. LC and LA have been presented in (1) and (4),
respectively.

In the network, a new output layer (i.e., softmax layer) with
300 neurons (i.e., 300 families) is added after the CL layer,
as shown in Fig. 3 indicated by dashed lines.

IV. PROPOSED ENSEMBLE OF ADVKIN

Consider that the performance of the model can be improved
by feature augmentation and fusion [26], [56], two slightly
different E-AdvKin are proposed.

A. E-AdvKin for Small-Scale Kinship Verification

The similarity between the two kin-related facial images
is presented in some local facial areas, such as eyes,
nose, etc., [26]. To this end, the facial patches are exploited
to discover the local kin-related feature. The key-points-based
patches benefit to kinship analysis, therefore we detect five key
points, including the centers of eyes, the corners of mouth, and
the tip of nose. Then, each facial image is cropped and aligned
as 64 × 64 around the five key points. The five facial regions
(patches) extraction from a raw image is shown in Fig. 5. Since
each facial region shows valuable kin-related information, it
is reasonable to fuse the knowledge of all patches together
for discriminative kin-specific features. To this end, we pro-
pose a patch-wise E-AdvKin approach, which is shown in
Fig. 6(a) from the viewpoint of data augmentation. As shown
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TABLE I
TWO-STREAM ADVKIN NETWORK ARCHITECTURE FOR SMALL-SCALE KINSHIP VERIFICATION TASK

TABLE II
FACE INDEX OF THE FIVE FOLDS CROSS-VALIDATION ON SMALL-SCALE KINSHIP DATASETS. THE NUMBER DENOTES THE INDEX

Fig. 5. Five key point facial regions (patches) partition process from the raw
image in our E-AdvKin network.

in Fig. 6(a), the new structure contains six AdvKin networks
and each of which produces 80-D kin-related deep features.
Finally, after concatenation, the total feature dimension is 480
(80 × 6) for kinship verification.

B. E-AdvKin for Large-Scale Kinship Verification

For large-scale kin-data, the patch-wise feature augmenta-
tion has a large computational burden and becomes unsuitable.
Because the features are hierarchically distributed through-
out the CNN network [57], different features imply different
levels of kinship relation. Therefore, networks with differ-
ent depth are concatenated in the feature level. Furthermore,
the extracted deep features from AdvKin networks with
different supervisory signals are complementary to some
extent. Therefore, from the viewpoint of model augmenta-
tion, four networks, including one VGG-Face network [40]
and three AdvKin nets with different loss and depth are
concatenated, which is described in Fig. 6(b).

V. EXPERIMENTS FOR SMALL-SCALE TASK

A. Description of Network Architecture and Datasets

In the two-stream network (Fig. 3), the parameters of all
layers are shared. For small-scale kinship verification tasks,
the AdvKin employs a shallow CNN model. Besides, we pre-
fer using smaller convolutional kernel (3 × 3) instead of a
bigger one (5 × 5), so that the network can be deeper with-
out increasing the number of network parameters. Specifically,
the network architecture for a small-scale task is described in
Table I and the inputs are pairwise kinship facial images of
64 × 64.

In experiments, four small-scale kinship benchmarks, such
as KinFaceW-I, KinFaceW-II [2], Cornell KinFace [6], and
UB KinFace [7], are considered.

1) Both KinFaceW-I and KinFaceW-II include four differ-
ent types of kin relationships: F-S, F-D, M-S, and M-D.
The former consists of 156, 134, 116, and 127 pairs.
The latter consists of 250 pairs for each relationship.

2) Cornell KinFace contains totally 150 parent–child pairs.
3) UB KinFace contains 200 triplets and each triplet is

structured by a child, young parent, and old parent.

B. Experimental Setup

For the small-scale kinship verification task, the fivefold
cross-validation strategy is employed. Therefore, the kin faces
of fourfolds include 3162 images of 1500 classes are used
for model training. For each kinship database, except the UB
KinFace data, two images per class (i.e., family ID) are con-
sidered. UB KinFace is different from the other three kinship
datasets in that it is constructed in triplet: 1) children; 2) young
parents; and 3) old parents. That is, the young parent and
the old parent in each triplet are with the same identity but
different ages. Therefore, for UB KinFace, three images per
family ID are used. The positive and negative kin pairs are with
the same and different family ID, respectively. Obviously, the
number of negative pairs is much larger than that of the pos-
itive pairs. In order to balance the sample, the same number
of positives and negatives are selected for training. In evalua-
tion, with fourfolds for training and the remaining onefold for
testing, the average accuracy of fivefold is reported. Note that
cosine distance is used for kinship verification with a thresh-
old determined via the Validation set. Specifically, the image
index set of the four datasets for each fold is shown in Table II.

We compare with ten state-of-the-art methods, includ-
ing four shallow learning methods, such as MNRML [2],
MPDFL [32], ESL [33], and D-CBFD [35], and six deep-
learning methods, such as SMCNN [15], DKV [25], CNN-
points [26], DDMML [56], FSP [27], and WGEML [43]. In
addition, the comparison with human score [32] is also ana-
lyzed. Notably, for all algorithms, fivefold cross-validation is
used.

In optimization, the mini-batch SGD is used, with an initial
learning rate of 10−2. The margin of CL is set as 1. For the
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Fig. 6. Structures of the proposed E-AdvKin models for small-scale (a) and large-scale (b) kinship verification tasks, respectively. Note that the AdvKin(2L)
model represents AL + CL and the AdvKin(3L) model represents AL + CL + SL.

TABLE III
ACCURACY OF DIFFERENT METHODS ON SMALL-SCALE KINSHIP VERIFICATION

small-scale task, the batch size is set as 151 and trained on
one NVIDIA 1080Ti GPU for about 13 s.

C. Comparison With Previous Methods

The verification results of the proposed AdvKin and
E-AdvKin methods on four benchmark kinship datasets are
shown in Table III, from which we observe that as follows.

1) The proposed AdvKin methods consistently outper-
form state-of-the-art shallow methods deployed with
handcrafted feature ensemble and metric learning. The
effectiveness of our AdvKin is shown.

2) The proposed AdvKin methods also outperform the
deep learning-based face verification methods, such
as SMCNN [15], DKV [25], CNN-points [26],
DDMML [56], FSP [27], and WGEML [43]. Different
from them, our methods focus on an adversarial learn-
ing, so that the kin-related feature can be well captured
adequately. Note that DDMML as a multilayer percep-
tion outperforms ours and other CNN-based methods in
KinFaceW-I but worse than others in KinFaceW-II. The
reason may be that the number of faces in KinFaceW-I
is smaller than KinFaceW-II, and generally, CNN-based
deep methods cannot work well on a smaller dataset.

3) The depth of these deep methods, such as SMCNN,
CNN-Points, FSP, and WGEML is 5, 5, 11, and 16,

respectively. Our method has nine layers that need to
be trained. With the architecture of similar depth, the
performance of our method is better than others in
totally.

4) By comparing our method with human knowledge on the
KinFaceW-I and KinFaceW-II, the results show that our
AdvKin methods also outperform human’s evaluation.

5) By comparing AdvKin with E-AdvKin, we obtain that
E-AdvKin shows superiority to AdvKin. Thus, more
fine-grained kin-related features can be learned with the
patch-wise ensemble, such that the information of the
augmented features is more complete and discriminative.

6) Since the UB dataset is deployed with triplet sam-
ples, in order to obtain more discriminative features, we
employ a coarse-to-fine transfer method [58]. Different
from [58], in fine-tune step, we remove the original fully
connected layers, and add two new fully connected lay-
ers, which have 128 and 80 neurons as shown in Table I.
The parameters of convolutional layers are frozen, and
the fully connected layers are trained on the UB data.
By transfer learning from face recognition to kinship
verification task, the performance is improved.

To better visualize the performance of different methods,
the receiving operating characteristic (ROC) curves of different
methods are shown in Fig. 7, in which Fig. 7(a)–(h) describe
the ROC curves of the results on KinFaceW-I and KinFaceW-II
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. ROC curves of different methods on KinFaceW-I (upper row) and KinFaceW-II (lower row) datasets. (a) F-S. (b) F-D. (c) M-S. (d) M-D. (e) F-S.
(f) F-D. (g) M-S. (h) M-D.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Cosine distances of kinship pairs on KinFaceW-I (upper row) and KinFaceW-II (lower row) datasets. The red and blue points denote the kinship pairs
(positive) and nonkinship pairs (negative), respectively. The black line denotes the threshold. (a) F-S. (b) F-D. (c) M-S. (d) M-D. (e) F-S. (f) F-D. (g) M-S.
(h) M-D.

dataset, respectively. We can observe from the results that the
proposed AdvKin method can yield competitive performance
than others in terms of the ROC curves. Noteworthily, for
KinFaceW-I data, the superiority of the proposed AdvKin
models is not significant because of the smaller data size.
Especially, the ESL (HOG) method is much better than ours
in the F-S kinship task as shown in Fig. 7(a). This fully shows
that CNN-based methods are more suitable for larger datasets.
In addition, the cosine distances between pairwise samples are
visualized in Fig. 8. We see that the kin pairs and nonkin pairs
are easy to be distinguished.

D. Ablation Analysis of Loss Functions in AdvKin

In order to demonstrate the effectiveness of the AL, the
ablation analysis of AdvKin is presented in Table IV. By

comparing the MMD-based loss (i.e., ML) with the CL,
the proposed methods outperform the CL method with 2%
improvement on average. Furthermore, the AL-based AdvKin
is superior to ML-based AdvKin with 3% improvement.
Thus, the proposed AL can improve the discrimination and
robustness of features.

E. Comparison With Previous Feature Fusion Methods

As shown in Table V, by comparing with the previous
feature fusion methods, AdvKin still outperforms other meth-
ods, except DDMML on KinFaceW-I. It is demonstrated
that, the E-AdvKin can further improve the discrimination
of deep kin-related feature representation. To be specific, the
proposed E-AdvKin shows the best performance (89.9%),
which outperforms the AdvKin with 1.9% in average accuracy.
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TABLE IV
ACCURACY OF DIFFERENT METHODS WITH DIFFERENT LOSSES IN SMALL-SCALE KINSHIP VERIFICATION TASK

TABLE V
ACCURACY OF DIFFERENT METHODS WITH DEEP AND AUGMENTED (FUSED) FEATURES IN SMALL-SCALE KINSHIP VERIFICATION TASK

Fig. 9. Accuracy on KinFaceW-I and KinFaceW-II with different bandwidth
σ 2 (left) and loss weight λ (right).

F. Hyperparameter Sensitivity Analysis of Model

There are two model parameters, that is, kernel parame-
ter σ 2 and tradeoff parameter λ. Fig. 9 (left) shows the accu-
racy of KinFaceW-I and KinFaceW-II datasets with respect
to different bandwidth σ 2. We see that the proposed AdvKin
obtains the best performance when σ 2 is set as 1.0, which is
then used throughout all experiments. After fixing σ 2, Fig. 9
(right) shows the accuracy on KinFaceW-I and KinFaceW-II
datasets with respect to different loss weight λ. We see that
the AdvKin method obtains the best performance when λ is
set as 0.2.

VI. EXPERIMENTS FOR LARGE-SCALE TASK

A. Description of Network Architecture and Datasets

Consider the different size of the kinship dataset, the CNN
architecture of AdvKin in the large-scale task is slightly dif-
ferent from that of small-scale in network depth. Specifically,
a deeper AdvKin network is employed. Because of the excel-
lent performance of ResNet [21] in image classification, the
proposed AdvKin method follows a two-stream residual archi-
tecture with different depths. The input size of the deeper
AdvKin network is 224 × 224. The details of the two-
stream AdvKin networks for large-scale task are described in
Table VI.

The large-scale kinship data, FIW [9], is used for large-
scale kinship verification task. To the best of our knowledge,
FIW is the largest and most comprehensive kinship face
database for automatic kinship recognition, which contains
over 12 000 family photos of 1001 families. The dataset comes
from the first Large-Scale Kinship Recognition Data Challenge
in ACM MM 2017.

B. Experimental Setup

In the challenge, we focus on the evaluation protocol of
Kinship Verification (Track 1)-based on FIW that includes a
total of 6 44 000 pairs, from which 5 38 518 pairs (i.e., over
1 million of face images) of seven different kin-relations are
used. These datasets are partitioned into three disjoint sets
referred to as Train, Validation, and Test sets. The ground
truth for Train and Validation sets are provided, but the Test
set is “blind” by the developers. Therefore, the Validation set
is used for evaluation. Notably, due to the “blindness” of the
Test set, the result of AdvKin is reported with the help of
developers, and comparisons to others are unavailable for this
dataset.

In the competition, seven different types of kinship:
1) Father–Daughter (F-D); 2) Father–Son (F-S); 3) Mother–
Daughter (M-D); 4) Mother–Son (M-S); 5) Sister–Brother
(SIBS); 6) Brother–Brother (B-B); and 7) Sister–Sister (S-S)
are explored. Specifically, the sample distribution of each type
of kinship relation in Train, Validation, and Test is shown as
follows.

1) In the Train set, 2 82 186 kinship pairs are included,
consisting of 42 458, 53 974, 34 828, 38 312, 40 846,
52 482, and 19 286 pairs for seven different types in
order, respectively.

2) In the Validation set, 76 664 kinship pairs are included,
consisting of 11 460, 13 696, 10 698, 9816, 7434, 17 342,
and 6218 pairs for seven different types in order,
respectively.
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TABLE VI
TWO-STREAM ADVKIN NETWORK ARCHITECTURE FOR LARGE-SCALE KINSHIP VERIFICATION TASK. THE STACKED CONVOLUTION BLOCKS ARE

SHOWN IN BRACKETS. DOWN-SAMPLING IS PERFORMED FROM CONV1_X TO CONV5_X LAYERS WITH A STRIDE OF 2

TABLE VII
ACCURACY OF ADVKIN WITH DIFFERENT METHODS IN LARGE-SCALE KINSHIP VERIFICATION TASK

TABLE VIII
ACCURACY OF DIFFERENT MODEL, LOSS AND FEATURE AUGMENTATION IN LARGE-SCALE KINSHIP VERIFICATION TASK. NOTE THAT CL MEANS

CONTRASTIVE LOSS, 2L MEANS CL PLUS AL, 3L MEANS THE JOINT LOSS OF CL, AL, AND SL

3) In the blind Test set, 1 79 668 kinship pairs are included,
consisting of 23 506, 45 988, 20 674, 47 954, 15 076,
19 946, and 6524 pairs for seven different types in order,
respectively.

In experiments, the proposed AdvKin with different loss is
trained from scratch on the Train set, and finally, Euclidean
distance is used for kinship verification on the Validation
set. In model optimization, the mini-batch SGD-based back-
propagation algorithm is used for training, with an initial
learning rate of 10−2, and the margin of CL is set as 1. The
batch size is set as 22 for large-scale kinship verification task.
The deeper AdvKin model for larger-scale kinship verification
task is trained on three pieces of NVIDIA 1080Ti GPUs for
about 20 h.

C. Comparison With Deep Kinship Verification Models

The verification results of the state-of-the-art deep methods
(e.g., VGG-Face, ResNet) on large-scale kinship verification
task (i.e., FIW challenge) are shown in Table VII. VGG-
Face [40] is deployed with VGG-16, which is pretrained
on 2.6 million of face images from 2622 different celebri-
ties. ResNet-29 [19] is a 29-layered residual CNN trained
on CASIA-WebFace [59]. Both of them are state-of-the-art
methods for face verification. In addition, the results of fine-
tuned ResNet-22 on FIW kinship faces are also presented
in Table VII, that is, ResNet-22(finetune). It is demonstrated
that the proposed method outperforms state-of-the-art deep
learning-based methods on large-scale kinship verification

task. Therefore, it can be concluded that the kin-related charac-
teristic information can be exploited more effectively through
the proposed adversarial learning mechanism in this article.

D. Ablation Analysis of Different Losses in AdvKin

In order to present the ablation analysis of loss functions,
the joint loss function formulated in (5) with AL and CL is
simplified as 2L in short for convenience. The joint loss for-
mulated in (10) with the 2L loss and the SL is simplified
as 3L in short. The loss weight is set as 1. As can be seen
from Table VIII, the results of 2L outperform the CL, which
denotes that the AL can improve the discrimination of the kin-
relation features. In addition, the results of 3L outperform the
2L by feeding the family ID supervised SL into our network,
which demonstrates that the SL can effectively improve the
separability of kinship features. The results fully confirm that
the superior performance of the proposed AdvKin model is
reasonable.

Depth is a very important factor of the CNN model for
classification performance [60]. In order to demonstrate the
impact of depth in AdvKin, under different depth, the results
of AdvKin and AdvKin(deeper) are listed in Table VIII. It can
be seen that the deeper AdvKin has a slight improvement of
1.5% in average accuracy, which shows the impact of depth.

E. Comparison Between AdvKin and E-AdvKin

The performance comparison of the single AdvKin model
and multimodel E-AdvKin are shown in Table VIII, in which
the features from index 0, 1, 2, 3, and 4 represent the single
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Fig. 10. ROC curves of different models on seven types of kin-relation. (a) M-D. (b) M-S. (c) S-S. (d) B-B. (e) F-D. (f) SIBS. (g) F-S.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 11. L2-distances of kinship pairs on seven types of kin-relation. The points in red and blue represent the distance between the kinship pairs and between
the nonkinship pairs, respectively. The black line denotes the searched threshold for verification. (a) M-D. (b) M-S. (c) S-S. (d) B-B. (e) F-D. (f) SIBS.
(g) F-S.

feature (without augmentation) and the last three rows denote
the performance after feature augmentation by network fusion,
that is, E-AdvKin, which concatenates the features from each
model together. The dimension of the augmented feature (e.g.,
1+2+3) is 1536 (512×3). In addition, consider the excellent
performance of the VGG-Face model, it is used as the feature
extractor of FIW faces in this article, and the dimension of
features extracted from the VGG-Face model is 4096. After
the ensemble of the four networks (e.g., 1 + 2 + 3 + 4), we
can observe significant performance improvement of 5% in
average accuracy. Notably, the L2-normalization is used twice
before and after feature augmentation. It is noteworthy that,
although the performance of the VGG-Face model is slightly

better than AdvKin, the number of training data of AdvKin
(i.e., 0.01 million of faces) is 200 times less than the VGG-
Face model (i.e., 2.6 millions of faces). Therefore, a direct
comparison between AdvKin and VGG-Face is unfair.

To better visualize the performance of different methods,
the ROC curves of different methods are shown in Fig. 10, in
which Fig. 10(a)–(g) describe the ROC curves for seven types
of kinship relation. We can observe that the proposed ensemble
model (E-AdvKin) can yield the best verification performance
for all the tasks.

In addition, for better insight of the augmented features, the
Euclidean distances of kinship pairs based on the augmented
features are visualized in Fig. 11. We observe that most of
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Fig. 12. Comparison of convergence and training time on (a) small-scale
and (b) large-scale kinship verification tasks.

the kin pairs and nonkin pairs can be easily distinguished via
an appropriate threshold, which is indicated by a black line.
However, there are still many incorrectly recognized pairs with
L2-distance. In the future, metric-learning models can be fur-
ther exploited on the deep representational features for jointly
learning more effective distance similarity metrics instead of
the Euclidean distance metric.

F. Competition Results on the Blind Test Set

For competition on the blind test set (the label of the test
set is unavailable), the proposed E-AdvKin and VGG-Face
model are finally used. With the help of the developers of this
competition, the final verification accuracies on the test set
are 70.66%, 65.22%, 72.10%, 63.59%, 66.51%, 63.38%, and
64.60% for M-D, M-S, S-S, B-B, SIBS, F-S, and F-D, respec-
tively. The average accuracy of the seven kinship verification
tasks is 66.58% and ranks the third position. Notably, since the
labels of the test set are blind and unavailable, comparisons
with other methods are not presented in this article.

G. Convergence and Training Time

The convergence and training time of the proposed AdvKin
and other methods are presented. For the small-scale dataset,
the convergence and training time (second) are shown in
Fig. 12(a). For the large-scale dataset, the convergence and
training time (hour) are shown in Fig. 12(b). We observe that
the convergence speed and training time of our model are
comparable to others, even with an adversarial mechanism in
AdvKin.

VII. CONCLUSION

In this article, we proposed a two-stream family ID-based
AdvKin network model for small-scale and large-scale kin-
ship verification tasks, which is motivated by a self-adversarial
learning idea. The self-adversarial learning mechanism is
achieved by proposing an AL that works jointly with the
family ID-based CL and SL. In order to further promote
the performance of our AdvKin method, an E-AdvKin is
then proposed with two types of feature augmentation (i.e.,
patch level fusion and network level fusion). Extensive kin-
ship verification experiments on the small-scale benchmarks
and the large-scale benchmark show the superiority of our
proposed methods over many state-of-the-art algorithms. In

our future work, we will consider more self-adversarial layers
in convolution modules instead of fully connected layer with
the triplet network architecture, so that the discrimination of
kin-relation features can be better improved through multiple
self-adversarial training strategy. In addition, more challenging
backbones can be exploited in self-adversarial learning.
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