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ABSTRACT
To adapt to the reality of limited computing resources of various terminal devices in indust
plications, a randomized neural network called stochastic configuration network (SCN), wh
conduct effective training without GPU, was proposed. SCN uses a supervisory random mec
to assign its input weights and hidden biases, which makes it more stable than other randomize
rithms but also leads to time-consuming model training. To alleviate this problem, we propose
bidirectional SCN algorithm (BSCN) in this paper, which divides the way of adding hidden no
two modes: forward learning and backward learning. In the forward learning mode, BSCN st
the supervisory mechanism to configure the parameters of the newly added nodes, which is th
as SCN. In the backward learning mode, BSCN calculates the parameters at one time based
residual error feedback of the current model. The two learning modes are performed iterative
the prediction error of the model reaches an acceptable level or the number of hidden nodes rea
maximum value. This semi-random learning mechanism greatly speeds up the training effici
the BSCN model and significantly improves the quality of the hidden nodes. Extensive expe
on ten benchmark regression problems, two real-life air pollution prediction problems, and a c
image processing problem show that BSCN can achieve faster training speed, higher stabil
better generalization ability than SCN.

duction
ized neural networks are a special type of feed-

ural networks and its representative algorithms in-
ndomvector functional link network (RVFL) [17],
network with random weights (NNRW) [22], etc.
otable feature of this type of neural networks is
nput weights (i.e., the weights between the input
e hidden layer) and hidden biases (i.e., the thresh-
den nodes) are assigned randomly according to
es and remain unchanged throughout the training
the model, while the output weights are obtained
. This non-iterative training mechanism enables
in faster than traditional neural networks such as
opagation algorithm (BP) [21] and work better on
orms with limited hardware resources (e.g., vari-
minals [31]), so it has been widely concerned and
many scenarios in recent years [32].
er, most of the existing randomized neural net-
er from two notorious weaknesses, that is, (a) the
he random parameters (i.e., the input weights and
ses) is hard to be guaranteed and (b) the number
odes is difficult to be determined before model-
he former problem, several empirical guidelines
n [10], but they can only work in some specific
There are also some existing solutions targeting
r problem, which can be divided into two cate-
structive strategy and pruning strategy. The basic
rk was supported by National Natural Science Foundation of
141, 61732011, and 61836005) and Guangdong Science and
epartment (2018B010107004).
onding author
aowang@ieee.org (X. Wang)

idea of the constructive strategy is to start the model w
simple network structure and then gradually increase th
den nodes until the performance of the model reach
preset conditions. Incremental RVFL (I-RVFL) is o
the representative algorithms using this strategy [10]
pruning strategy starts the model with a very large ne
structure and then deletes the unimportant hidden nod
cording to certain criteria. For example, in [5], the a
sorted the importance of hidden nodes according to th
put weights and the coefficient of variation of the h
matrix, and then removed the relatively unimportant n
These two strategies have effectively reduced the lab
parameter tuning, but rarely consider the quality of the
parameters, which cannot guarantee the generalization
ity of the corresponding models. Therefore, the abov
problems still hinder the extensive application of ran
ized models in practice.

To alleviate the above problems, Wang DH et al.
proposed a constructive randomized algorithm called s
tic configuration network (SCN) in 2017. Compared
other randomized neural networks, SCN uses a superv
random mechanism to assign the input weights and h
biases of hidden nodes, which enables it to have better s
ity and generalization ability. Moreover, SCN can aut
ically search for the number of hidden nodes that can
the model achieve an expected accuracy, which grea
duces the workload of parameter tuning. These advan
have made SCN quickly attracted extensive attention
various variants have been proposed. Some notable
based on SCN include: In [26], Wang DH et al. theoret
proved that the method of generating random paramete
ing the supervisory mechanism can guarantee the uni
approximation ability of the randomized algorithms,
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retical foundation for SCN. Later, they proposed
ethod by combing SCN with kernel density es-
DE) [28] and applied it to solve the uncertain

ling problems. Moreover, they proposed an en-
rning algorithm based on SCN from the perspec-
rogeneous features fusion, and adopted the nega-
tion learning strategy (NCL) to evaluate its out-
s [25]. The new algorithm effectively improves
ess of the model. To further improve the mod-
rmance of SCN, Wang DH et al. [27] proposed
N with a multi-hidden layer network structure.
esting properties and improved modeling perfor-
be observed from Deep SCN. Li M et al. [11] ex-
original SCN framework with two dimensional
image data informatics, showing good potential
ge processing. In [18], the authors improved the
N to make it have the ability to deal with data
ning problems. On this basis, they used the stack-
to expand it to a deep architecture to handle com-
n-stationary data stream scenarios. In [8], Huang
esigned an adaptive power storage replica man-
stem based on SCN to evaluate and analyze the
of power data networks. In addition, SCN is ap-
datamodeling in process industries [4], workload
in geo-distributed cloud data centers [2], carbon
ediction of crude oil [13], prediction of key vari-
dustrial process [14], component concentrations
in sodium aluminate liquor [29], and the interval
in the industrial process [15].
gh SCN and its variants have played significant
ny applications, they still suffer from a common
that is, they spend too much time searching for
input parameters during the model training pro-
ifically, when adding a new hidden node, they
pare multiple candidates that meet the preset con-
ugh the above-mentioned supervisorymechanism,
lect the one that can reduce the current residual
est as the new node. This training mechanism en-
he error of themodel is monotonically decreasing,
the training process to be very time-consuming,
when the number of candidates is large or the
ror becomes small. Note that if the number of
were set too small, the quality of some hidden
be poor, whichwould reduce the convergence rate
el and could not get a compact architecture with
alization ability.
e the above problem, we have optimized the pro-
ing hidden nodes in SCN and proposed a novel
m constructive algorithm called bidirectional stochas-
ration network (BSCN), which includes two learn-
forward learning for the odd nodes and backward
r the even nodes. Specifically, when a new hid-
s ready to be added, if its order is odd (e.g., the
BSCN uses a supervisory mechanism to find ap-
nput parameters for it (called forward learning),
xactly the same as SCN; otherwise (i.e., the or-
, such as the second hidden node), BSCN calcu-

lates its input parameters at one time according to the c
residual error feedback (called backward learning). D
training, these two learning modes proceed in turn. Th
ward learning naturally inherits the advantages of the
inal SCN, that is, the supervisory method can impro
quality of hidden nodes to a certain extent and guarant
universal approximation ability of the model [26]; an
backward learning can avoid the problem of excessive
consumption caused by finding a large number of candi
and the hidden nodes obtained in each step can min
the residual error at that time. Therefore, this bidirec
learningmechanism enables BSCN to have the followi
vantages:
(1) Naturally inherits the universal approximation a

possessed by the SCN model;
(2) Greatly accelerates the training efficiency of them
(3) The quality of hidden nodes is effectively impr

which in turn makes the trained model better in g
alization ability and more compact in network
ture.

We verified the effectiveness of BSCN on ten b
mark regression problems, two real-life air pollution
diction problems, and a classical problem of age estim
from a single face image. Experimental results show
compared with SCN, BSCN has not only much faster
ing speed but also better generalization ability and sta
Moreover, compared with other typical constructive n
networks such as I-RVFL and constructive BP (C-BP
experimental results show that the generalization abili
stability of the BSCNmodel are significantly better tha

The remainder of this paper is organized as follow
Sec. 2, we briefly review the training mechanism of
I-RVFL, and C-BP. The details of our proposed BSC
gorithm and its pseudocode are given in Sec. 3. In S
we introduce the experimental data, parameter setting
experimental results. In Sec. 5, we conclude this pape

2. Preliminaries
In this section, we briefly review the training mech

of SCN. SCN is a constructive feed-forward neural ne
with a single hidden layer. Take the SCN model for r
sion problems as an example, whose network struct
shown in Fig. 1, wherew refers to the input weights be
the input layer and the hidden layer, b refers to the thres
of hidden nodes (a.k.a., hidden biases), � refers to th
put weights between the hidden layer and the output
d is the dimension of the input data, Lmax is the max
number of hidden nodes.

Given a training data set {X, Y } ∈ R(d+m)×N , whe
the dimension of the input data,N is the number of sam
and m is the class number for classification problem
the constant one for regression problems. The SCN m
with L hidden nodes and an activation function g(⋅) c
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he network structure of the SCN model.

as

) =
L∑
i=1

�ig(wi ⋅X + bi) (1)

[wi1, wi2,⋯ , wid] and �i = [�i1, �i2,⋯ , �im].e that the target function is f ∶ Rd → Rm, the
idual error can be represented as
f − fL = [eL1, eL2,⋯ , eLm] (2)

residual error has not reached to an acceptable
add a new hidden node, and the current SCN

(X) = fL + �L+1g(wL+1 ⋅X + bL+1) (3)
1, bL+1 and �L+1 are the input weights, the hid-nd the output weights of the newly added node,
y.
N, the values of wL+1 and bL+1 are randomly as-
required to meet the following criteria (i.e., the
upervisory random mechanism)

eLj , gL+1
⟩2 ≥ ‖‖gL+1‖‖2 �L+1 (4)

g(wL+1 ⋅X + bL+1),
(1 − r − �L+1) ‖‖eL‖‖2,
+1 =

1−r
L+1 , 0 < r < 1.tput weights of the newly added node are calcu-

ing the following equation:

,j =
⟨
eLj , gL+1

⟩

‖‖gL+1‖‖2
, j = 1, 2,⋯ , m (5)

pdate the current residual error: eL+1 = eL −
1 ⋅X + bL+1). Repeat (2)-(5) until the predictione model reaches the threshold or the number of
es reaches the maximum Lmax.speaking, the above training process belongs to
lgorithm in the SCN family, which is character-

node each time and the output weights of the existing
remain unchanged. To further improve the convergenc
of the SC-I, Wang DH et al. proposed the SC-II an
III algorithms [26]. The difference between them l
the way of solving the output weights of the newly
node. Specifically, SC-II updates the output weights
latest hidden nodes within a given time window each
while SC-III updates the output weights of all existin
den nodes each time. The universal approximation pro
of the SC-I, SC-II, and SC-III models has been theoret
proved in [26]. Generally, the convergence rate of the S
is faster than that of the SC-II and SC-I, and the gener
tion ability and stability of the SC-III model are also
than the other two algorithms. The BSCN algorithm
posed in this paper is designed based on the SC-III. Fo
plicity and without loss of generality, the SCN ment
below refers to SC-III.

I-RVFL [10] is also a constructive randomized n
network. Unlike SCN, I-RVFL uses a completely ra
way to assign the input parameters for the hidden n
Specifically, the input weights and hidden bias of the
added node in I-RVFL are randomly generated from [
according to a uniform distribution, while the correspo
output weights are obtained analytically like SCN. C-B
is a traditional constructive neural network, which us
gradient descent-based method to calculate the param
of the model iteratively. The termination conditions
model training are the same as those of SCN and I-RV

3. Bidirectional stochastic configuration
network (BSCN)
In this section, we introduce the details of the pro

BSCN algorithm and present its pseudo-code.
3.1. Algorithm description

Similar to SCN, BSCN employs a constructive ran
ized neural network, that is, the number of hidden
gradually increases until that the model accuracy reach
expected threshold. To alleviate the low training effic
of SCN that is mentioned in Section 1, BSCN divid
process of adding hidden nodes into two categories: fo
learning and backward learning, depending on the o
of the hidden nodes to be added. Let L represent th
rent number of hidden nodes, that is to say, the newly
node is theL-th one. Specifically, considering a newly
node, if its order is odd, that is, L ∈ {2n + 1, n ∈ Z}
its input parameters are generated by the same superv
mechanism as SCN (referred to as forward learning);
wise (i.e., L ∈ {2n, n ∈ Z}), its input parameters are
lated according to the residual error feedback of the c
model (referred to as backward learning).

Given a training data set {X, Y }∈ R(d+m)×N , th
pected model error ", the maximum number of hidden
Lmax , the maximum times of random configurations
and a BSCN model with L−1 hidden nodes(L−1 <
and the activation function g(⋅). The current residual
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ted as
[eL−1,1(X), eL−1,2(X),⋯ , eL−1,m(X)] ∈ RN×m,e it does not satisfy ‖‖eL−1(X)‖‖ < ". So in this
e need to add the L-th hidden node.
{2n + 1, n ∈ Z}, we perform forward learn-

newly added node. In detail, we randomly gener-
irs of input weights and hidden bias (wi, bi), i =
ax from a symmetric interval [−�, �], � > 0 ac-
the inequality (4) and calculate the corresponding
ghts based on (5). Then, we pick out the pair that
the current residual error greatest as the input pa-
the newly added node. After that, we will update
residual error: eL(X) = eL−1(X)−�Lg(wL ⋅X+
(x)‖‖ < " or L ≥ Lmax, we complete the model
herwise, we continue to add new hidden nodes.
ise (i.e., L ∈ {2n, n ∈ Z}), we perform back-
ing instead. Specifically, we first calculate the in-
s and hidden bias of the newly added node accord-
ollowing equations:
= eL−1 ⋅ (�L−1)−1 (6)

g−1(u(He
L)) ⋅X

−1 (7)

√
mse(g−1(u(He

L)) −wL ⋅X−1) (8)
is the current error feedback function sequence,
esents the reverse function of the activation func-
(⋅) is a normalized function u ∶ R → (0, 1].
e compute the output weights of the new node

ollowing equations:
= u−1(g(wL ⋅X + bL)) (9)

=
⟨
eL−1,j ,HL

⟩

‖‖HL
‖‖2

, j = 1, 2,⋯ , m (10)

⋅) is the reverse function of u(⋅).
, the same as forward learning, we update the resid-
d determine the termination of model training.
ove learning process is shown in Fig. 2.
m 1. Given a constructive randomized neural
th a single hidden layer, and a bounded non-constant
continuous function as its activation function. If
rameters (w, b) of the odd hidden nodes (i.e.,L ∈
Z) are assigned according to (4) and their output

are calculated by (5); while the input parameters
e even hidden nodes (i.e., L ∈ {2n, n ∈ Z}) are
by (6)-(8) and their output weights � are calcu-
)-(10); then for any continuous target function f ,
f − (f +H ⋅ � +H ⋅ � )‖ = 0,

Figure 2: The learning pipeline of BSCN.

whereH2n andH2n+1 are the outputs of the (2n)-th an
(2n + 1)-th hidden nodes, respectively.

Proof: Since e2n+1 = e2n − H2n+1 ⋅ �2n+1, let‖‖e2n‖‖2 − ‖‖e2n+1‖‖2, then we have
Δ = ‖‖e2n‖‖2 − ‖‖e2n −H2n+1 ⋅ �2n+1‖‖2
= 2�2n+1

⟨
e2n,H2n+1

⟩
− ‖‖H2n+1‖‖2 ⋅ �22n+1

= ‖‖H2n+1‖‖2 (
2�2n+1⟨e2n,H2n+1⟩

‖‖H2n+1‖‖2
− �22n+1)

= ‖‖H2n+1‖‖2 (2�2n+1 ⋅ �2n+1 − �22n+1)
= ‖‖H2n+1‖‖2 ⋅ �22n+1 ≥ 0

Thus, we have ‖‖e2n‖‖2 ≥ ‖‖e2n+1‖‖2. According to
rem 6 in [26], Wang DH et al. have proved that

‖‖e2n‖‖2 − (r + �2n) ‖‖e2n−1‖‖2 ≤ 0
where 0 < r < 1 and �2n ≤ 1 − r.

From (12), we can get ‖‖e2n‖‖2 ≤ ‖‖e2n−1‖‖2 . Thu
have ‖‖e2n+1‖‖2 ≤ ‖‖e2n‖‖2 ≤ ‖‖e2n−1‖‖2. So far we have pthat as the number of hidden nodes increases, the re
error of the model will decrease monotonically.

Wang DH et al. [26] have proved that as long as the
parameters (w, b) of hidden nodes are assigned accord
(4) and their output weights � are calculated by (5)
limL→+∞ ‖‖f − fL‖‖ = 0. In BSCN, the input param
and output weights of hidden nodes in the forward
ing mode are assigned in this way, and the above proo
shows that the residual error of themodel is decreasing
tonically, therefore, it is easy to verify that limL→+∞ ‖‖e
0 and limn→+∞ ‖‖f − (f2n−1 +H2n ⋅ �2n +H2n+1 ⋅ �2n
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1 BSCN algorithm
en a training data set {X, Y } ∈ R(d+m)×N , the
arning error ", the maximum number of hidden
x, the maximum times of random configurations
umber of hidden modesL, the activation function
e residual error e.

The model parame-

ization: Set L = 0 and e = Y .
‖e‖ > " & L < Lmax dorease the number of hidden nodes: L = L + 1.
∈ {2n + 1, n ∈ Z} then
Under the premise of satisfying (4), randomly
te Tmax pairs (wi, bi), i = 1, 2,⋯ , Tmax as candi-put weights and hidden biases for the new hidden
elect the pair (w∗, b∗) that can reduce the current
l error the most from the above candidates as the
L) of the new hidden node;
alculate the output weights of the new node ac-
g to (5).
if
∈ {2n, n ∈ Z} then
alculate the (wL, bL) of the new node according
(8);
alculate the output weights of the new node ac-
g to (9)-(10);
if

date the current residual error:
�Lg(wL ⋅X + bL).

hile
n the parameters of the model, including the in-
ights and hidden biases of hidden nodes, and the
ponding output weights.

do-code for BSCN
eudo-code for BSCN is given in algorithm 1.

imental setting and results
section, we evaluate the performance of the pro-
N on ten benchmark regression problems from
achine learning repository 1, two real-world air
rediction problems, and a classical problem of age
from a single face image. We also compare the
ce of BSCN with SCN [26], I-RVFL [10], and C-
hese problems.
details of experimental setting and
hmarks
tails of the ten regression data sets and the division
ing set and testing set are shown in Table 1. Note
ed ten-fold cross validation scheme to select the
del for each algorithm.
pository: http://archive.ics.uci.edu/ml/index.php

Table 1
Details of regression data sets

Data-set No. of
training
samples

No. of
testing
samples

No. o
tribute

GT_turbine 6000 5934 16
Airfoil Self-noise 750 753 5
GT_compressor 6000 5934 16
Housing 250 256 13
parkinsons_motor 3000 2875 16
Concrete
compressive
strength

500 530 8

Yacht 150 158 6
White wine
quality

2000 2898 11

Solar_C 700 689 10
Red wine quality 800 799 11

In our experiments, we chose the most commonly
root mean square error (RMSE), testing standard dev
(SD), and training time in regression problems as indi
to evaluate the performance of different algorithms. A
them, RMSE and SD can be calculated as follows:

RMSE =

√√√√ N∑
i=1

(ti − yi)2

N
,

SD =

√∑S
j=1(ej − e)2

S − 1
,

where
ti is the prediction value of the i-th instance,
yi is the real value of the i-th instance,
N is the number of samples,
S is the number of independent experiments for

case,
ej is the prediction error of the model in the j-th e

ment,
and e is the average prediction error of S experim
Note that RMSE can effectively reflect the pred

ability of the model, the smaller the value, the better th
diction ability of the model; SD can reflect the stabil
the model, the smaller the value, the better the stabil
the model.

For SCN, I-RVFL, and BSCN, the initial number a
maximum number of hidden nodes (i.e., L and Lmax)set to 0 and 30, respectively. For SCN and BSCN, the
imum times of random configurations Tmax was set to
the expected learning error " was set to 0.001, the bou
value � of the symmetric interval was set to [0.5, 1,
30, 50, 100, 150, 200, 250] respectively, and the ran
the regularization parameter r was set to [0.9, 0.99, 0
0.9999, 0.99999, 0.999999] respectively. For I-RVF
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hts and hidden biases of hidden nodes were as-
m [-1, 1] under a uniform distribution. For C-
mber of epochs and the learning rate were set
0.01, respectively. The Sigmoid function (i.e.,
= 1

1+exp−(w⋅X+b) ) was selected as the activation
all algorithms. All experiments were conducted
dows 10 X64 OS with Intel Core i5-5300U CPU
and our simulation software isMATLABwith the
rsion.
rimental results and analysis on the
hmarks
xperiment was independently conducted twenty
the experimental results we show here are the
the results corresponding to these twenty inde-
periments. The training time, RMSE, and SD
RVFL, C-BP, and BSCN on these ten regression
re shown in Table 2. Note that the best results are
e observed from Table 2 that the testing RMSE
Nmodel is smaller than that of the SCN, I-RVFL,
models on all the data sets, which means that the
el has better generalization ability than the SCN,
d C-BP models. Moreover, one can observe that
standard deviation of the BSCN model is always
n that of the SCN, I-RVFL, and C-BP models,
lies that the BSCN model has better stability than
s of training time, one can observe that the train-
f the randomized algorithms (i.e., SCN, I-RVFL,
) are much shorter than that of the C-BP on all the
hich verifies that the non-iterative training mech-
ted by the randomized algorithms has higher train-
cy than that of the gradient descent-based training
adopted by the C-BP algorithm.
er, the training times of the BSCN on some data
GT_turbine andGT_compressor are shorter than
SCN, I-RVFL, and C-BP; but on other data sets
foil self-noise, the I-RVFL is the fastest one. For
menon, here we give an empirical explanation:
eling the GT_turbine and GT_compressor prob-
N and SCN complete the training process before
r of hidden nodes grows to the preset maximum,
en the prediction error of the model is lower than
ed error, L is still smaller than Lmax; but for I-nnot terminate the training process until the num-
en nodes reaches Lmax. As for C-BP, although it
mplete model training before the number of hid-
increases to Lmax, its training speed is slower be-s the iterative trainingmechanism. Therefore, the
es of the I-RVFL and C-BP models on these two
re longer than that of the BSCN and SCNmodels.
ata sets, none of the three constructive algorithms
heir model errors lower than the threshold before
r of hidden nodes reaches Lmax, so they all must
max hidden nodes to terminate their training pro-
n adding hidden nodes, I-RVFL uses a one-time

completely random method to assign input paramete
the new nodes, while SCN and BSCN both generate t
put parameters through a supervisory mechanism, wh
more time-consuming than the former method, so the
ing times of the SCN and BSCN are longer than that of
RVFL. For C-BP, the iterative training mechanism mak
training speed much slower than the randomized algor
using the non-iterative training mechanism.

To compare the training efficiency of BSCN and
more intuitively, we visually represent their model tra
times on the above regression problems in Fig. 3:

It can be observed from Fig. 3 that the training ti
BSCN is much shorter than that of SCN on all prob
which means that the training efficiency of BSCN i
nificantly higher than that of SCN. This experimenta
nomenon implies that using the bidirectional learning m
anism to add hidden nodes is effective and efficient.

In addition, we recorded the learning error changes
SCN, I-RVFL, C-BP, and BSCN models during their
ing process. The experimental results show that the
of the learning errors of these models are consistent o
above regression problems. Therefore, here we take th
foil self-noise data set as an example to analyze the
sponding experimental phenomenon (as shown in Fig

It can be observed from Fig. 4 that as the number o
den nodes increases, the learning errors of the SCN, I-R
C-BP, and BSCN models all become smaller, but the
reduction speed of the BSCN and SCN models is s
cantly faster than that of the I-RVFL and C-BP models
phenomenon implies that the quality of newly added
generated by the BSCN and SCN is much better tha
of the I-RVFL and C-BP. Furthermore, one can observ
the error reduction speed of the BSCN is faster than t
the SCN, which verifies the efficiency of the BSCN ag

Moreover, one can observe that when the first h
node is added, the error gap between the BSCN and
models is not obvious, this is because they use the
method to generate the parameters of the first hidden
After the second hidden node is added, there is a clea
between the errors of the twomodels. Specifically, the
ing error of the BSCN model is significantly lower tha
of the SCN model. This phenomenon implies that the
ity of the second hidden node generated by the BS
higher than that of the SCN. As the number of hidden
increases, the error gap between the BSCN model an
SCN model begins to slow down, which indicates th
two models are gradually close to the learning error b
ary of the problem.

From the experimental phenomenon in Fig. 4, on
infer that BSCN can achieve a faster convergence rat
SCN, I-RVFL, and C-BP. Given the same expected
BSCN can approach the threshold faster than the othe
the network structure of the BSCN model is expected
more compact.
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Table 2
The training time, standard deviation, training RMSE, and testing RMSE of the SCN,
I-RVFL, C-BP, and BSCN on the benchmark data sets

Data-set Algorithm Training
time(s)

Standard
deviation

Training
RMSE

Testing
RMSE

GT_turbine

C-BP 2.6586 0.0003 0.0007 0.0009
SCN 0.2461 0.0003 0.0005 0.0005
I-RVFL 1.0930 0.0733 0.0718 0.0735
BSCN 0.1148 0.0002 0.0003 0.0003

Airfoil self-noise

C-BP 14.3766 0.0597 0.2224 0.2379
SCN 6.2906 0.1102 0.0517 0.1463
I-RVFL 0.8938 0.0305 0.2923 0.2769
BSCN 3.4023 0.0039 0.0458 0.0652

GT_compressor

C-BP 2.5883 0.0003 0.0004 0.0005
SCN 0.2359 0.0002 0.0006 0.0006
I-RVFL 1.0852 0.0511 0.0764 0.0766
BSCN 0.1148 0.0002 0.0003 0.0003

Housing

C-BP 12.3391 0.0930 0.1699 0.1716
SCN 2.6234 0.0020 0.0175 0.0208
I-RVFL 0.8672 0.0423 0.0884 0.0904
BSCN 1.7852 0.0016 0.0159 0.0181

Parkinsons motor

C-BP 17.0148 0.1404 0.4601 0.4616
SCN 8.1742 0.4136 0.2918 0.5050
I-RVFL 0.9203 0.2272 0.4161 0.4287
BSCN 4.1547 0.1127 0.2956 0.3493

Concrete compressive
strength

C-BP 12.4609 0.0797 0.1424 0.1430
SCN 2.6570 0.0034 0.0141 0.0219
I-RVFL 0.8945 0.0396 0.0893 0.0898
BSCN 1.7453 0.0021 0.0149 0.0190

Yacht

C-BP 11.4938 0.0581 0.4471 0.4975
SCN 3.0070 0.0199 0.1051 0.1420
I-RVFL 0.3531 0.0258 0.3910 0.5028
BSCN 1.8125 0.0104 0.0981 0.1281

White wine quality

C-BP 15.5469 0.0247 0.0648 0.0657
SCN 5.3578 0.0739 0.0123 0.0878
I-RVFL 0.9406 0.0443 0.0699 0.0724
BSCN 3.0563 0.0230 0.0124 0.0321

Solar_C

C-BP 13.7445 0.0603 0.4989 0.5276
SCN 1.7078 0.0053 0.3215 0.3574
I-RVFL 0.8008 0.0118 0.3897 0.4388
BSCN 1.2773 0.0049 0.3274 0.3566

Red wine quality

C-BP 13.1758 0.0902 0.2267 0.2322
SCN 2.7242 0.1546 0.0533 0.1504
I-RVFL 0.8563 0.0756 0.1374 0.1461
BSCN 1.7805 0.0721 0.0546 0.0849

lication of BSCN in real-life air pollution
iction
late matter 2.5 (PM 2.5) and particulate matter
consist of airborne particles with aerodynamic
f less than 2.5 �m and 10 �m, respectively. The
ion of PM 2.5 and PM 10 in the air is an impor-
the Air Quality Index (AQI) and is currently the
rtant reference index used by many countries to
eir air pollution status. Accurately predicting the
ion of PM 2.5 and PM 10 in the air is crucial for
ts to issue air pollution warnings in time. In this
evaluate the performance of BSCN on PM 2.5
concentration prediction problems.

We collected the air quality monitoring data pub
by Beijing and Oslo governments: Beijing PM2.5 [12
Oslo PM10 data sets 2. For the Beijing PM2.5 dat
there are 43824 samples with twelve attributes, and e
of which are key factors affecting PM2.5 concentrat
the air, such as temperature, pressure, dew point, an
cumulated hours of rain. The remaining dimension i
number, which has nothing to do with PM2.5 concentr
so we deleted this column in the experiment. Becau
original data set contains some missing values and sym
values, we first preprocessed the data set. Specifical
deleted the samples containing missing values and rep

2
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Figure 3: The training time (s) comparison of BSCN and SCN.

The learning error changes of the SCN, I-RVFL,
BSCN models.

of air pollution data sets

et Training data Testing data Attributes
M 2.5 21757 20000 11
10 250 250 7

lic values with Arabic numerals. For example,
ibute "Combined wind direction", which contains
olic values: CV, NE, NW, and SE, we replaced
1, 2, 3, and 4, respectively. The Oslo PM10 data
ginally collected by the Norwegian Public Roads
tion, which includes 500 samples and each sam-
s seven attribute values, such as the logarithm of
r of cars per hour, wind speed, and temperature.
butes are important factors that affect the concen-
M10 in the air. We also used the above method
a simple preprocessing on this data set.
ata preprocessing, we divided them into training
ting set in the manner shown in Table 3.
vironment of this experiment and the parameter

settings of BSCN, SCN, I-RVFL, and C-BP algorithm
the same as those in the above benchmark experiment
evaluated the performance of these three algorithms o
jing PM2.5 and Oslo PM10 data sets. The details of t
perimental results are shown in Table 4.

From Table 4, one can observe that the testing R
and testing standard deviation of the BSCNmodel are s
than those of the SCN, I-RVFL, and C-BP models,
means that the BSCNmodel can predict the concentrat
PM2.5 and PM10 more accurately and stably. At the
time, it can be seen from Table 4 that the training ti
BSCN is also significantly shorter than that of SCN,
implies that the training efficiency of BSCN is highe
that of SCN.

Moreover, one can observe that I-RVFL can achie
least training time on these two problems. The reason f
phenomenon is the same as the explanation in the bench
experiments. That is, for the above air pollution pred
problems, these three algorithms can only terminate
training process by increasing the number of hidden no
Lmax. In the process of adding hidden nodes, I-RVFLone-time completely random method to assign input p
eters for the new nodes, while SCN and BSCN both g
ate the input parameters through a supervisory mecha
which is more time-consuming than the former meth
the training times of the SCN and BSCN are longer tha
of the I-RVFL. As for C-BP, the iterative trainingmech
causes its training speed to be much slower than thes
domized algorithms. Moreover, since the input param
of new nodes in the backward learning mode of BSC
calculated based on the residual error feedback of the m
the training efficiency of this method is much higher th
supervisory mechanism, so the training time of the B
model is much less than that of the SCN model.
4.4. Application of BSCN in the age estimatio

problem
In this section, we evaluate the performance of BSC

the age estimation from a single face image without th
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Table 4
The training time, standard deviation, training RMSE, and testing RMSE of the SCN,
I-RVFL, C-BP, and BSCN on the air pollution data sets

Data-set Algorithm Training
time(s)

Standard
deviation

Training
RMSE

Testing
RMSE

Beijing PM 2.5

C-BP 54.3820 0.0421 0.1904 0.1916
SCN 37.7930 0.0005 0.0746 0.0761
I-RVFL 1.9711 0.0024 0.0891 0.0893
BSCN 21.0047 0.0003 0.0742 0.0755

Oslo PM 10

C-BP 13.2422 0.1049 0.1613 0.1629
SCN 2.8063 0.0017 0.0081 0.0125
I-RVFL 0.7383 0.0433 0.0999 0.1030
BSCN 1.8055 0.0010 0.0079 0.0114

ndmarks. Different from the existing works such
ich poses the age estimation problem as a clas-
roblem, we regard this problem as a regression
e chose MORPH2 [19] as the experimental data

is one of the most popular data sets in age estima-
s. MORPH2 contains a large number of images
se subjects over many years. Taking Fig. 5 as an
shows a group of facial images of a man at his 45,
years old, respectively. In this study, we expect
del can accurately predict the corresponding age
e input facial image.

xamples of the MORPH2 data set [19].

reprocessing: we first scaled the RGB facial im-
RPH2 to a size of 224 * 224 uniformly, and then
elected 10000, 20000, and 30000 samples from
m the corresponding three data sets. We divided
et into the corresponding training set and testing
ng to 8: 2.
experiment, we used the ResNet-101 model [7]
onMORPH2 as the feature extractor, and SCN, I-
P, and BSCN as learners to mine the mapping re-
between visual features and age labels. The max-
e hidden nodes in these learners was set to 300.
of other parameters is the same as the bench-

riment. The experimental results on the above
sets are shown in Table 5.
e observed from Table 5 that our BSCN model
ther algorithms in terms of prediction accuracy
ty, which means that giving BSCN the same data
other algorithms, it can better mine the intrinsic
p between these features and the corresponding

time of randomized neural networks (i.e., BSCN, SCN
I-RVFL) is significantly shorter than that of traditiona
ral networks (i.e., C-BP).

This experimental phenomenon inspires us that if a
quality pre-trained model can be obtained in advance
feature extractor of the model, it may be a promisin
proach to choose a randomized neural network, espe
BSCN, to replace the traditional fully connected netw
the final decision layers. This method is expected to no
exert the feature extraction ability of the deepmodel, bu
the fast learning ability and good generalization ability
randomized algorithms.

Remark 1. In the backward learning mode of B
it can find the most suitable parameters for the newly
nodes according to the residual errors. Further, the imp
ment of the quality of hidden nodes makes the generali
ability and stability of the BSCNmodel outperform the
and I-RVFL models. Moreover, this method is done i
go, so it can achieve much higher training efficiency th
supervisory random search method used in the existing
algorithms.

Therefore, one can briefly summarize the advanta
BSCN: it possesses the universal approximation abil
theory and is superior to other randomized algorithms
as SCN and I-RVFL in generalization and stability. M
over, the training mechanism of BSCN can achieve
higher learning efficiency than the original SCN bot
oretically and practically. However, one of the disa
tages of BSCN is its relatively shallow network archite
which leads to many difficulties in dealing with larg
sets like ImageNet. In the future, one may consider co
ing traditional deep learning architectures such as Res
design deep BSCN algorithms to alleviate this issue.

Remark 2. Randomized neural networks vs tradi
neural networks. The former assumes that not all pa
ters need to be fine-tuned, so these algorithms random
sign some parameters (e.g., the input weights and hidd
ases) and keep them unchanged throughout the model
ing process, and the remaining parameters are obtaine
alytically (e.g., least square method). This training m
nism has been empirically proved in many cases that
make the model have extremely fast training speed and
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reover, one can observe that the model training generalization ability. However, these successful cases have
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Table 5
The training time, standard deviation, training RMSE, and testing RMSE of the SCN,
I-RVFL, C-BP, and BSCN on the age estimation data sets

Data-set Algorithm Training
time(s)

Standard
deviation

Training
RMSE

Testing
RMSE

MORPH2-10000

C-BP 2646.3323 49.9809 134.3410 134.9013
SCN 141.1305 0.1359 3.1156 4.1095
I-RVFL 56.5266 2.9360 12.3566 12.5773
BSCN 652.8563 0.0680 2.6903 3.6295

MORPH2-20000

C-BP 4915.4995 75.1322 179.4321 179.6134
SCN 263.1422 0.1251 3.2275 3.6646
I-RVFL 102.4727 2.9913 12.8385 12.8940
BSCN 1141.2523 0.0446 3.0008 3.4875

MORPH2-30000

C-BP 6964.9189 105.3616 154.9312 155.0126
SCN 389.3328 0.7392 3.2663 3.6514
I-RVFL 152.0188 3.5044 11.8227 12.1760
BSCN 1805.6484 0.0155 3.0964 3.5287

feature, that is, the complexity of the data fea-
very high. For this phenomenon, our speculative
is that in these cases, the original data can be

parated in a high-dimensional space with a high
after the non-linear random feature mapping, and
analytical methods to calculate the output weights
p for the instability caused by random parameters
tee the generalization ability of themodel. In fact,
rchers have explained the rationality of this phe-
rom the theory of learning with similarity func-
he disadvantage of randomized neural networks
omplexity of the model is relatively low and it is
use them directly to deal with complex problems
al language processing). Moreover, the theoreti-
s of the rationality of random feature mapping is
n problem.
ditional neural networks such as convolution neu-
s [30] and recurrent neural networks [3], all pa-
the network need to be fine-tuned. These neu-
s usually fine-tune their parameters iteratively by
t descent technique according to the residual er-
model until the model converges. This training
ore time-consuming than the non-iterative train-
ism adopted by the randomized neural networks
s many hyper-parameters, whose values are usu-
y to determine. Therefore, when the data features
g problems are relatively simple, the performance
al neural networks is sometimes inferior to that of
d neural networks. However, as the complexity
g problems increases, traditional neural networks
e their model complexity by freely increasing the
hidden layers and nodes, which can better handle
x problems, while randomized neural networks
t to do this. How to better combine the advantages
o types of neural networks is a problem worthy of
k 3. Since the 1990s, the bidirectional training
of neural networks has attracted the attention of
[23, 6], and it has become a hot spot in recent

years. Relevant representative algorithms include dy
Boltzmann machine with bidirectional training scheme
bidirectional feature pyramid network (BFPN) [33],
bidirectional network [24], etc. The common point of
algorithms is to improve the learner’s ability to perceiv
fuse the spatial and temporal information of data featu
constructing information transmission channels betwee
ferent layers (or modules). Different from these algori
the bidirectional learningmechanism used in this study
to the generation of hidden node parameters, which
vided into the forward learning and the backward lea
The details of the forward learning and the backward
ing have been given in section 3 and will not be rep
here.

5. Conclusions
To improve the training efficiency of SCN, this

optimized the constructive process of its hidden node
proposed the bidirectional SCN (BSCN), which use
learning modes (i.e., the forward learning and the bac
learning) to add the hidden nodes. Specifically, the fo
learning uses the same supervisorymechanism as SCN
sign the input weights and hidden biases for the odd n
which can guarantee the universal approximation abi
the model; while the backward learning calculates the
parameters for the even nodes according to the residua
feedback of the current model, which is able to greatly
up the model training.

We have theoretically proved the convergence of B
and experimentally demonstrated that the training effic
generalization ability, and stability of BSCN aremuch h
than SCN on ten benchmark regression problems.
pared with I-RVFL and C-BP, BSCN can also achieve
better generalization ability and stability. Moreover, w
ified the effectiveness of BSCN on two real-world ai
lution prediction problems. The experimental results
that the BSCNmodel can achieve higher accuracy and s
ity than the SCN, I-RVFL and C-BPmodels in predicti
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ao,Zhongwu Xie,Jianqiang Li,Zhiwu Xu,Zhong Ming,Xizhao Wang

is paper, we proposed a novel bidirectional stochastic configuration network (BSCN) for dealing with regre
lems, which naturally inherits the universal approximation ability possessed by the SCN model;
N can greatly accelerate the training efficiency of the SCN model and effectively improve the quality of h
s, which in turn makes the trained model better in generalization ability and more compact in network struc
erified the effectiveness of BSCN on ten benchmark regression problems, two real-life air pollution pred
lems, and a classical age estimation from a single face image problem. Experimental results show that, com
SCN, BSCN has not only much faster training speed but also better generalization ability and stability;
eover, compared with the incremental random vector functional link network (I-RVFL) and theconstructive
agation algorithm (C-BP), the experimental results show that the generalization ability and stability of the B
el are significantly better than them;
N provides a stable and fast modeling solution for platforms with limited computing resources, such as v
erminals, and is expected to be widely deployed in various industrial scenarios.
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