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Abstract—Rule-based classifier, that extract a subset of induced 

rules to efficiently learn/mine while preserving the discernibility 

information, plays a crucial role in human-explainable artificial 

intelligence. However, in this era of big data, rule induction on the 

whole datasets is computationally intensive. So far, to the best of 

our knowledge, no known method focusing on accelerating rule 

induction has been reported. This is first study to consider the 

acceleration technique to reduce the scale of computation in rule 

induction. We propose an accelerator for rule induction based on 

fuzzy rough theory; the accelerator can avoid redundant 

computation and accelerate the building of a rule classifier. First, 

a rule induction method based on consistence degree, called 

Consistence-based Value Reduction (CVR), is proposed and used 

as basis to accelerate. Second, we introduce a compacted search 

space termed Key Set, which only contains the key instances 

required to update the induced rule, to conduct value reduction. 

The monotonicity of Key Set ensures the feasibility of our 

accelerator. Third, a rule-induction accelerator is designed based 

on Key Set, and it is theoretically guaranteed to display the same 

results as the unaccelerated version. Specifically, the rank 

preservation property of Key Set ensures consistency between the 

rule induction achieved by the accelerator and the unaccelerated 

method. Finally, extensive experiments demonstrate that the 

proposed accelerator can perform remarkably faster than the 

unaccelerated rule-based classifier methods, especially on datasets 

with numerous instances. 

Index Terms—Accelerator, consistence degree, rule-based 

classifier, rule extraction, rule induction 

I. INTRODUCTION 

uzzy systems, as one of the most significant advances in 

computational intelligence, have performed excellent fuzzy 

modelling capabilities in many data-science scenarios. To date, 

many mathematical-tool-based fuzzy systems have been widely 

used in decision making/multi-objective optimization 

applications. For example, fuzzy programming has been used 

in flexible-responsive manufacturing/supply system [18,30], 

and optimization method based on fuzzy credibility theory has 

been used in applications with fuzzy demand [28]. In addition, 

some mathematical models with different optimization 

algorithms have been designed for solving product portfolio 

problems or fuzzy demand [5,17, 46].  
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In addition to mathematical-tool-based fuzzy systems, fuzzy-

logic-based systems can be adopted to analyze decision 

making/optimization processes for both research and 

applications. Recently, rule induction, as an explainable 

decision making system, has been employed in classification 

and/or prediction by inducing some rules. Here, each rule 

contains a conjunctive feature expression and a class node 

[34,41,42]. An example of rule containing two feature 

expressions for class C is IF (x2='low') AND (x1<'high') THEN 

C.  This kind of fuzzy systems based on rules, that can explain 

how outputs are inferred from inputs, allow us to represent 

knowledge about patterns of interest in an explanatory and 

understandable manner that can be used by experts [11,16].   

Rule-based-classifier, that selects a subset of induced rules to 

reach efficient mining, is one well-interpretable decision-

making system based on rule induction. However, its 

construction usually involves computationally intensive 

learning algorithms that require long runtimes [16]. 

Consequently, the induction of compact and generalized rules 

in dealing with large-scale datasets has always been a 

challenging task. Fuzzy rough set (FRS) [3,4,6], as a powerful 

tool for reducing database dimensionality [10] and building 

rule-based classifier [7], suffers from the same limitations in 

dealing with large-scale datasets. Because FRSs, assuming that 

instances characterized by the same information are 

indiscernible (similar) [6], must discern all the heterogeneous 

pairs in the Universe; they produce taxing computation and 

work less efficiently on large-scale datasets [6,10]. To 

overcome this drawback, researchers have proposed some 

heuristic knowledge reduction algorithms including parallel, 

incremental, and accelerated methods. 

Some parallel methods have been proposed to expedite the 

computation by parallelizing the conventional attribute 

reduction process based on MapReduce mechanism [20,21]. 

However, these parallel methods must still consider all the 

instances in the Universe. Moreover, they cannot avoid 

performing redundant computations. Some other researchers 

have proposed incremental attribute-reduction methods 

[22,24], which mainly focus on handling the dynamic datasets, 

such as streaming the incoming attributes, instances and/or 

attribute values. To date, no parallel or incremental methods of 
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expediting the FRS-based classifier building have been 

reported. 

Besides the parallel and incremental techniques, researchers 

have proposed and developed several versions of the 

accelerator for rough/fuzzy rough attribute reduction [14, 25, 

27]. The acceleration technique is an effective way to reduce 

the scale of knowledge reduction by avoiding redundant 

computation successively. As a pioneering work, from the 

perspective of instances, Qian et al. proposed an accelerator 

called positive approximation for attribute reduction in 

complete and incomplete data [14,27]. From the perspective of 

both instances and attributes, Liang et al. [25] introduced an 

accelerator that could remove insignificant attributes in the 

process of attribute reduction. More interestingly, Wei et al. 

[15] accelerated incremental attribute-reduction by compacting 

a decision table.  During attribute reduction, these accelerators 

remove the redundant instances, that are discerned by the 

current selected attributes. However, these existing accelerators 

focus on accelerating attribute selection. So far, the use of 

accelerators in rough/fuzzy-rough based classifier building has 

not been reported. This motivated us to propose a fuzzy rough 

based accelerator to expedite the building of a precise and 

explainable classifier.  

In the rough set theory, a rule-based classifier extracts some 

induced rules that constitute the minimal-rule-subset retaining 

the whole discernible information in a decision system. The 

process of building a rule-based classifier, as shown in Fig. 1.1, 

has two stages: rule induction from original instances, and rule 

extraction from induced rules. Currently there exist some 

heuristic algorithms of rule extraction [12,13,40], which are 

designed by a certain search strategy, such as forward adding 

[40] and backward deleting [12,13], to expeditiously build a 

compact and complete classifier. However, to the best of our 

knowledge, no study has reported on the acceleration of rule 

induction. Rule induction, as a unit operation in classifier 

building, explores the whole universe to induce a compact 

attribute-value set as the former of the corresponding rule. 

Thus, conducting rule induction on every instance is 

computationally intensive and even more infeasible in the case 

of large-scale data. In this study, we did not reconstruct the 

search strategy of rule extraction, but accelerate the rule 

induction of the existing algorithms by compacting their 

exploration space. 

 
Fig. 1.1: Flow chat of rule-based classifier construction. The process of building 

rule-based classifier has two stages: rule induction from original instances, and 
rule extraction from all induced rules.   
 

The consistence degree, fundamental to rule induction, is 

obtained from the lower approximation by exploring all the 

Universe and is time-consuming. Many heterogeneous instance 

pairs, which were already discerned in the process of attribute-

value reduction, are still used in the subsequent calculation to 

find the new informative attribute values. Successively 

removing those instance pairs, which do not contribute in the 

calculation of the consistence degree, will accelerate rule 

reduction. In this study, we first propose a rule induction 

algorithm based on consistence degree, CVR, and exhibit that 

it is computing intensive. Then we accelerate this rule induction 

algorithm on a compacted search space, Key Set. This key set 

only contains the informative instances key to rule induction 

and then reduce the redundant computation. Third, we propose 

an accelerator for rule induction based on Key Set. Finally, 

accelerated rule-based-classifier framework is designed with 

the accelerated rule induction. 

The main contributions of this study are summarized as 

follows. 

• This is the first study to introduce the acceleration 

techniques into rule induction based on the fuzzy rough 

theory. 

• The search space of rule induction is compacted on Key 

Set, which only contains the instances key to update the 

rule reduction. Thus, our rule induction accelerator based 

on Key Set avoids redundant computation and accelerates 

the building of a rule classifier. 

• The strict mathematical reasoning verifies that our 

proposed accelerator is reliable. The monotonicity of Key 

Set ensures the feasibility of our accelerator. The rank 

preservation property of the key set ensures the rule 

induction achieved by the accelerator is the same as that 

achieved by the unaccelerated one. 

The remainder of this paper is organized as follows. Section 

2 briefly introduce FRSs and a rule-classifier building method, 

GFRC. Section 3 presents an alternative, named CVR, to the 

existing rule-induction algorithm. In Section 4 we present an 

accelerated version of rule induction, A-CVR. Section 5 

describes the classifier building framework based on 

accelerated rule induction. In Section 6, we compare the 

efficiency and performance of the accelerated rule classifier 

against to those of unaccelerated and explainable classifiers on 

the selected UCI/KEEL database. Finally, Section 7 concludes 

this study. 

II. PRELIMINARIES 

In this section, we review some related works on rule induction 

and cost reduction. Moreover, we briefly review FRS [6, 9, 11] 

and a state-of-the-art rule induction method proposed in [7]. 

A. Related works 

1) Methods on Rule Induction 

 Rule induction is one of the important applications of rough 

sets. Greco et al. have pointed out that the rules induced by 

rough sets are more understandable and more applicable for 

final users because the rules follow a general syntax more 

closely [33]. A rough set technique has been introduced for 

solving the problem of mining Pinyin-to-character (PTC) 

conversion rules [35]. Moreover, there are many works about 

rule induction based on rough sets’ extensions. Wang et al. 

investigated some fuzzy rules from fuzzy samples based on the 

rough fuzzy set and fuzzy rough set techniques [7,36]. Huang 

et al. [39] induce simple dominance-based interval-valued 

intuitionistic fuzzy rules by using dominance-based rough set 
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model. In addition, Inuiguchi et al. design rule induction 

algorithms from two decision tables as a basis of rough set 

analysis of more than one decision table [40]. The four types of 

decision rules induced in the context of rough sets have 

provided a generalized description of objects [26]. 

Furthermore, there are many studies proposed to update the 

induced rules incrementally. Shan et al proposed a method to 

update decision rules by updating the decision matrices and 

decision functions while a new object is added [23]. Huang 

proposed a rule induction method when objects vary in FRSs 

[37]. Chen et al. proposed a method of incrementally updating 

rules based on traditional rough sets when attribute values’ 

coarsening and refining [38].  However, there are no reported 

investigations on accelerating rule induction on static 

environment. 

2) Fuzzy Methods on reducing costs 

In past decades, various optimization methods, such as 

mathematical programming [30,43], genetic algorithms [44], 

multi-objective search [29,31,32] and Harmony search [28] 

were employed in problems of arranging instances/allocating 

resources with the goal of reducing cost. In [28], an 

optimization method is designed based on credibility theory and 

a harmony algorithm with random simulation, to solve the 

proposed mathematical model for routing relief vehicles. In 

[30], a fuzzy Mixed Integer Linear Programming along with a 

hybrid genetic algorithm and a Whale optimization algorithm is 

developed to address the cell formation and inter-cellar 

scheduling problem in a Cellar Manufacturing System 

environment. In addition, a hybrid artificial intelligence and 

robust optimization for the product portfolio problem under 

return uncertainty is proposed in [32]. These methods usually 

propose a mathematical model for the real applications and then 

address them by some optimization algorithms with the goal of 

cost reduction. 

However, the optimization suggested in these studies is time-

consuming. Their final goal is to achieve the optimal/ 

suboptimal solutions of resource allocation/instance 

arrangement, which is distinct from our goal of accelerating 

rule induction. Accelerator aims to reduce computational costs 

as well as retaining the learning quality by proper arrangement 

of involved instances [14]. In accelerating methods, instance 

arrangement/ resource allocation is just a tool to accelerate rule 

induction, not the final goal. Thus, the afore-mentioned 

optimization strategies are not suitable for our accelerating 

problems. It is worth noting that the goal of the optimization 

strategies is consistent with that of rule extraction. In another 

paper, we would like to design a novel method of rule extraction 

to achieve qualified and minimal rule set, by using certain 

optimization strategy. 

B. FRSs 

Usually, data are described as one decision table, denoted by 

𝐷𝑇 = (𝑈, 𝐶 ∪ 𝐷) . Let the Universe, denoted by 𝑈 , be a 

nonempty set with a finite number of instances {𝑥1, 𝑥2, . . . , 𝑥𝑛}. 

Each instance 𝑥𝑖 in 𝑈 is described by a nonempty finite set of 

condition attributes, denoted by  𝐶 , and the set of decision 

attributes, denoted by 𝐷. Note that 𝐶 ∩ 𝐷 = ∅. 

If 𝐴 is a mapping:  𝑈 → [0,1], then 𝐴 is called a fuzzy set on 

𝑈 , 𝐴(𝑥) ∈ [0,1]  is the fuzzy membership degree of 𝑥 ∈ 𝑈 

belonging to fuzzy set 𝐴 [8]. If attribute 𝑟 ∈ 𝐶 is such a kind of 

mapping  𝑈 → [0,1] , then it is fuzzy. As each continuous 

attribute can be transferred into a fuzzy one, the decision table 

with continuous attributes is then called a Fuzzy Decision 

Table, denoted by 𝐹𝐷. The FRSs, combining fuzzy sets [8] and 

rough sets [1,2], can effectively work on FD [9]. Some concepts 

and properties of FRSs are briefly reviewed in the following. 

For further details on FRS, refer to [6,9]. 

In a fuzzy decision table, each attribute subset 𝐵 ⊆ 𝐶 

corresponds to a similarity relation �̃�𝐵(∙,∙), which satisfies, for 

every 𝑥, 𝑦, 𝑧 ∈ 𝑈,  (1) Reflexivity (�̃�𝐵(𝑥, 𝑥) = 1); (2) Symmetry 

( �̃�𝐵(𝑥, 𝑦) = �̃�𝐵(𝑦, 𝑥) ); (3) T-transitivity ( �̃�𝐵(𝑥, 𝑦) ≥

𝑇(�̃�𝐵(𝑥, 𝑧), �̃�𝐵(𝑧, 𝑦)) ), where 𝑇  is a triangular norm (see the 

appendix for the definitions of the triangular norm).  ∀𝑥, 𝑦 ∈ 𝑈, 

�̃�𝐵(𝑥, 𝑦) = min𝑎∈𝐵 (�̃�𝑎(𝑥, 𝑦)). 

FRS was first proposed by Dubois and Prade [3,4], which is 

defined as follows. 

Definition 2.1. An FRS is an ordered pair (𝑅𝐵𝐴, 𝑅𝐵𝐴) of fuzzy 

set 𝐴 on 𝑈 such that for every 𝑥 ∈ 𝑈, 

(1)  𝑅𝐵𝐴(𝑥) = inf𝑢∈𝑈max {1 − �̃�𝐵(𝑥, 𝑢), 𝐴(𝑢)}, 

(2)  𝑅𝐵𝐴(𝑥) = sup𝑢∈𝑈min {�̃�𝐵(𝑥, 𝑢), 𝐴(𝑢)}. 

𝑅𝐵𝐴 and 𝑅𝐵𝐴 are called the lower and upper approximation 

operators of 𝐴 on attribute subset 𝐵, respectively. The robust 

generalized fuzzy approximation operators, proposed in [11], 

are defined as follows.  

Definition 2.2. Given 𝛼 ∈ [0,1), let �̃�(∙,∙) be a fuzzy similarity 

relation on 𝑈 ,  a robust generalized FRS is an ordered pair 

(𝑅𝑆
𝛼

𝐴, 𝑅𝜎𝛼
𝐴) of a fuzzy set 𝐴 on 𝑈 such that for every 𝑥 ∈ 𝑈,  

(1) Lower approximation operator:  

𝑅𝑆
𝛼

𝐴(𝑥) = inf𝐴(𝑢)≤𝛼𝑆 (𝑁 (�̃�(𝑥, 𝑢)) , 𝛼) ∧ inf𝐴(𝑢)>𝛼𝑆 (𝑁 (�̃�(𝑥, 𝑢)) , 𝐴(𝑢)); 

(2) Upper approximation operator:  
𝑅𝜎𝛼

𝐴(𝑥) = sup𝐴(𝑢)≥𝑁(𝛼)σ(𝑁 (�̃�(𝑥, 𝑢)) , 𝑁(𝛼)) ∨ sup𝐴(𝑢)<𝑁(𝛼)σ(𝑁 (�̃�(𝑥, 𝑢)) , 𝐴(𝑢)), 

where 𝑆  denotes an upper semi-continuous 𝑇 − conorm,  𝑁  

denotes an involutive negator, and 𝜎 denotes the 𝑇 −residuated 

implication based on 𝑆 . Please refer to appendix for their 

definitions.  

In most of the practical applications, only the decision 

attributes are crisp, whereas the condition attributes are 

continuous. Therefore, hereinafter, we mainly focus on fuzzy 

decision tables with crisp decision attributes. 

C. Discernibility Vector-based Rule Induction 

This subsection reviews a state-of-the-art rule induction 

method based on FRSs [7]. The objective of rule induction is to 

induce an if-then production rule from an original instance by 

attribute-value reduction, wherein the value reduction of each 

original instance as the former, and the decision label as the 

latter of the induced rule. The key idea of attribute-value 

reduction is to preserve discernibility information invariant 

when eliminating the redundant attribute values. Thus, the 

reduction of attribute values allows the fuzzy production rule to 

keep the main information of the original instances invariant.  

In the following, we briefly review some basic concepts of 

value reduction [7].  

Definition 2.3 (Consistence degree). In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷), the 

consistence degree of 𝑥 ∈ 𝑈  is defined as 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) =

𝑅𝑆
𝛼

([𝑥]𝐷)(𝑥), where [𝑥]𝐷 = {𝑦 ∈ 𝑈|�̃�𝐷(𝑥, 𝑦) = 1} consists of the 

instances with the same decision classes of 𝑥 in 𝑈.  
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Consistence degree, leveraging the discernibility information 

of each instance, is crucial to designing value reduction. 

Definition 2.4 (Value reduction). In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷), if 𝐵 ⊆ 𝐶 

satisfies (1) 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥) ; (2)  ∀𝑟 ∈ 𝐵  , 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) ≠

𝐶𝑜𝑛𝐵−{𝑟},𝛼
𝑈 (𝑥) . Then, 𝐵(𝑥) = {𝑟(𝑥): 𝑟 ∈ 𝐵}  is called the value 

reduction of  𝑥 ∈ 𝑈.  

Value reduction is the minimal value subset keeping the 

discernable information of one instance invariant. 

We denote a 𝑛 × 1 vector (𝑐𝑗), called the discernibility vector 

of instance 𝑥 , such that 𝑐𝑗 = {𝑎: σ(𝑁(�̃�(𝑥, 𝑥𝑗)), 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥)) ≤ 𝛼}  for 

�̃�𝐷(𝑥, 𝑥𝑗) = 0 ; otherwise, 𝑐𝑗 = ∅ . Based on the discernibility 

vector, the value reduction algorithm is defined as follows. 
 

Algorithm 2.1. Discernibility-vector-based Value Reduction (DVR) 

Input:  𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷); 𝛼 ∈ [0,1); 

Output: Value reduction of 𝐹𝐷: {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥)|𝑥 ∈ 𝑈}; 

Step   1: For (𝑖 = 1 to |𝑈|) do 

Step   2:         𝑉 ← {𝑐𝑗𝑖}; 

Step   3:         Compute 𝐶𝑜𝑟𝑒𝛼(𝑥𝑖) = {𝑎: 𝑐𝑗𝑖 = {𝑎}}; 

Step   4:          𝐵 ← 𝐶𝑜𝑟𝑒𝛼(𝑥𝑖), 𝑉 ← 𝑉 − {𝑣 ∈ 𝑉|𝑣 ∩ 𝐶𝑜𝑟𝑒𝛼(𝑥𝑖) ≠
∅ 𝑜𝑟 𝑣 = ∅}, 𝑙𝑒𝑓 ← 𝐶 − 𝐶𝑜𝑟𝑒𝛼(𝑥𝑖);  

Step   5:        While (𝑉 ≠ ∅), do 

Step   6:                   𝑎∗ =  arg max
𝑎∈𝑙𝑒𝑓

|{𝑣 ∈ 𝑉|𝑎 ∈ 𝑣}|; 

Step   7:                  𝐵 ← 𝐵 ∪ {𝑎∗};  𝑙𝑒𝑓 ← 𝑙𝑒𝑓 − {𝑎∗}; 

Step   8:                  𝑉 ← 𝑉 − {𝑣 ∈ 𝑉|𝑣 ∩ {𝑎∗} ≠ ∅ 𝑜𝑟 𝑣 = ∅}; 

Step   9:         End while 

Step 10:          Remove the superfluous attribute from 𝐵; 

Step 11:          𝑟𝑒𝑑𝑢𝑐𝑡(𝑥𝑖) ← 𝐵; 

Step 12:   End for 

Step 13:   Return {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥)|𝑥 ∈ 𝑈}. 

From the logical point of view, in a fuzzy decision table, each 

original instance may be seen as a decision rule [26]. As the rule 

corresponding to each original instance is trivial, it is necessary 

to induce a generalized one by exploiting value reduction. This 

induced rule, whose former is composed of value reduction, 

provides a synthetic representation of knowledge contained in 

the given decision table; and then each value reduction 

corresponds to one induced rule.  Without loss of generality, 

value reduction is equivalent to rule induction in FRS. Thus, 

DVR may be seen as a rule induction algorithm. By DVR, a 

typical rule classifier building method, named Generalized 

Fuzzy Rough Classifier (GFRC), is then designed in Algorithm 

A.1 (Please find it in Appendix II) [7]. Their obtained rule set 

works as a classifier to predict unseen instances.  

III. CVR: AN ALTERNATIVE TO VALUE-REDUCTION DVR 

As DVR is space consuming, we designed its alternative, 

consistence degree-based attribute-value reduction (CVR), in 

this section. 

First, we present a few properties of the consistence degree 

that are helpful in designing the CVR. 

Proposition 3.1. The consistence degree of  𝑥 can be simplified 

as  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = 𝑅𝑆

𝛼
([𝑥]𝐷)(𝑥) = min𝑦∈𝑈& �̃�𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼). 

Proof. By Definition 2.2,  𝑅𝑆
𝛼

([𝑥]𝐷)(𝑥) 

= inf𝑦∈𝑈& �̃�𝐷(𝑥,𝑦)=0𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼) ∧ inf𝑦∈𝑈& �̃�𝐷(𝑥,𝑦)=1𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 1) 

   = min𝑦∈𝑈,&𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼) . By Definition 2.3, 

𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = min𝑦∈𝑈,�̃�𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼) holds.    ■ 

When 𝛼  is zero, the consistence degree degenerates to 

𝐶𝑜𝑛𝐶
𝑈(𝑥) = min𝑦∈𝑈,�̃�𝐷(𝑥,𝑦)=0 𝑁(�̃�𝐶(𝑥, 𝑦)) . Where  𝑁(�̃�𝐶(𝑥, 𝑦))  is 

the distance of 𝑥 from its heterogeneous instance 𝑦. This result 

shows that the consistence degree is the lower boundary at 

which 𝑥  is discerned from the heterogeneous instances in 𝑈 

(presented in Fig. 3.1).  

 
Fig. 3.1 Illustration of consistence degree on attribute set C. The dot denotes 

the instance 𝑥, and the triangles denote instances with different label from 𝑥. 

The radius of the dotted circle, i.e., the arrow, is the minimal distance from 

instance 𝑥 to the heterogeneous instances represented by triangles. The length 

of this radius is the consistence degree. 
 

Definition 3.1. In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷) , if 𝑆(𝑁(𝑅𝐶(𝑥, 𝑦)), 𝛼) ≥

 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥)  for  �̃�𝐷(𝑥, 𝑢) = 0 , then 𝑥  and 𝑦  are discernible by 

attribute set 𝐶. 

The monotonicity of consistence degree with gradually 

arriving attribute values, which is key to design an attribute-

value reduction algorithm, is discussed as follows.  

Proposition 3.2 (Monotonicity of consistence degree). Given 

𝛼 ∈ [0,1) , if 𝑃 ⊆ 𝑄 ⊆ 𝐶 , then 𝐶𝑜𝑛𝑃,𝛼
𝑈 (𝑥) ≤ 𝐶𝑜𝑛𝑄,𝛼

𝑈 (𝑥) ≤

𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥). 

Proof. By Proposition 3.1 and �̃�𝑃(𝑥, 𝑦) ≥ �̃�𝑄(𝑥, 𝑦) ≥ �̃�𝐶(𝑥, 𝑦), the 

result is straightforward. ■ 

Proposition 3.2 verifies the feasibility of designing a forward 

attribute-value reduction algorithm using the consistence 

degree.  

Definition 3.2. Given 𝐵 ⊆ 𝐶, ∀𝑎 ∈ 𝐶 − 𝐵, the significance of 𝑎 

in 𝐵 is defined as 𝑆𝑖𝑔1(𝑎, 𝐵, 𝑥, 𝑈) = 𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥). 

When a new attribute value is added, the increment of 

consistence degrees leverages the attribute-value’s significance 

in 𝐵  on 𝑥 . Then, it is feasible to design the attribute-value 

reduction algorithm by using this definition. We detail the 

proposed value reduction method through Algorithm 3.1. 
Algorithm 3.1. Consistence degree-based attribute-value reduction (CVR) 

Input: 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷); 𝛼 ∈ [0,1); 

Output: Value reduction of 𝐹𝐷: {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥)|𝑥 ∈ 𝑈}; 

Step   1: Calculate 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) for every 𝑥 ∈ 𝑈; 

Step   2: For every 𝑥 ∈ 𝑈 do 

Step   3:        𝐵 ← ∅, 𝑙𝑒𝑓 ← 𝐶; 

Step   4:        While (𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) < 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥)), do 

Step   5:                   𝑎∗ =  arg max
𝑎∈𝑙𝑒𝑓

𝑆𝑖𝑔1(𝑎, 𝐵, 𝑥, 𝑈); 

Step   6:                   𝐵 ← 𝐵 ∪ {𝑎∗};  𝑙𝑒𝑓 ← 𝑙𝑒𝑓 − {𝑎∗}; 

Step   7:                   Update 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥); 

Step   8:        End while 

Step   9:        𝑃 ← 𝐵; 

Step 10:        For 𝑖 = 1 to |𝑃| do 

Step 11:                   If 𝑏𝑖 ∈ 𝐵 s.t. 𝐶𝑜𝑛𝐵−{𝑏𝑖},𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥),   

Step 12:                          𝐵 = 𝐵 − {𝑏𝑖}; 

Step 13:                  End if 

Step 14:        End for 

Step 15:          𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) ← 𝐵; 

Step 16: End for 

Step 17:  Return {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥)|𝑥 ∈ 𝑈}. 

CVR exploits the forward-addition strategy to successively 

add the most significant attribute-values to the candidate value 

reduction, until the consistence degree of 𝑥  reaches its 

maximum. It then employs a backward-deletion strategy to 

remove the redundant attribute-values.  

Both CVR and DVR are designed based on the same idea of 

attribute-value reduction, i.e., keeping the discernibility 

information invariant. They use the discernibility vector and the 
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consistence degree as the measure of discernibility information, 

respectively. At the same threshold, CVR and DVR yield 

equivalent value reduction as both of them meet the value 

reductions requirement of keeping the invariance of consistence 

degree invariant. Replacing DVR in Algorithm A.1 by CVR, 

we obtained the consistence degree-based rule classifier (i.e., 

CVRC), which is an alternative to GFRC. 

CVR is time-consuming because of the time complexity of 

𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) is 𝑂(|𝑈|2|𝐶|). This makes it inefficient and impractical 

when working on large-scale data. This calls for a mature, 

accelerated rule-induction algorithm that can significantly 

expedite fuzzy rough based rule classifier building.  

IV. A-CVR: ACCELERATED RULE INDUCTION IN FRSS 

This study aims to accelerate fuzzy rough based rule 

induction considering its space and time computational 

limitations. In this section, we propose an accelerator of 

attribute-value reduction, which is equivalent to accelerating 

rule induction. As already mentioned, CVR takes much longer 

time to reduce the attribute values. Logically, the value 

reduction can be accelerated by compacting its search space. In 

the following we propose a pair of new categories, Key Set and 

Discernible Set, which are composed of key elements for value 

reduction. 

A. Discernible Set and Key Set 

1) Discernible set and Key set 

Consistence degree is a boundary, keeping which invariant, 

the redundant values can be detected and then reduced. 

However, the computation of this degree has to explore the 

entire space. Some interesting properties of the consistence 

degree are discussed and presented as follows. 

Theorem 4.1. In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷), given  𝛼 ∈ [0,1), for 𝐵 ⊆ 𝐶 

and 𝑥, 𝑢 ∈ 𝑈 s.t.  �̃�𝐷(𝑥, 𝑢) = 0, the following statements hold. 

(1) If  𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) , then 𝑥  and 𝑢  are 

discernible by attribute set 𝐵; 

(2) 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = min𝑦∈𝐻(𝑥) 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼),  

where 𝐻(𝑥) = {𝑢 ∈ U|𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) <  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 𝑎𝑛𝑑 �̃�𝐷(𝑥, 𝑢) = 0}. 

Proof. 

(1) 𝐵 ⊆ 𝐶 ⇒ �̃�𝐵(𝑥, 𝑢) ≥ �̃�𝐶(𝑥, 𝑢) ⇒ 𝑁(�̃�𝐵(𝑥, 𝑢)) ≤ 𝑁(�̃�𝐶(𝑥, 𝑢)) 

⇒  𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≤ 𝑆(𝑁(�̃�𝐶(𝑥, 𝑢)), 𝛼)  

⇒ 𝑆(𝑁(�̃�𝐶(𝑥, 𝑢)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) as 𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥). 

Thus, 𝑥 and 𝑢 are discernible by attribute set 𝐵 according to 

Definition 3.1.   

(2) By Proposition 3.1, 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = 

min𝑦∈𝑈,𝑅𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼). Then 

𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = min𝑦∈𝐻(𝑥) 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼)  ∧ min𝑦∈𝐻′(𝑥) 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼), 

where 𝐻′(𝑥) = {𝑢 ∈ U|𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 𝑎𝑛𝑑 �̃�𝐷(𝑥, 𝑢) = 0} 

and 𝐻′(𝑥) ∪ 𝐻(𝑥) = {𝑢 ∈ U|�̃�𝐷(𝑥, 𝑢) = 0}.  

By (1), we have min𝑦∈𝐻′(𝑥) 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥). 

Thus, 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = min𝑦∈𝐻(𝑥) 𝑆(𝑁(�̃�𝐶(𝑥, 𝑦)), 𝛼).  ■ 

Fig.4.1 visualizes the results of Theorem 4.1. From Fig.4.1, 

we observe the following facts.  

• The distance between instances widens as the attributes 

increase. This fact has been verified in the proof of Theorem 

4.1(1).  

• The triangles with black borders always stay outside the 

dotted circle on attribute subset 𝐵 or 𝐶. By Theorem 4.1(1), 

it is concluded that the triangles with black borders are 

discernible from 𝑥 by attribute subset 𝐵.  

• Fig. 4.1 illustrates that the computation of the consistence 

degree is not related to the triangles with the black borders, 

which is the fact revealed by Theorem 4.1 (2).  

 
(a) Attribute set B    (b) Attribute set C 

 Fig. 4.1. Consistence degree on attribute subset 𝑩 ⊆ 𝑪 and 𝑪.  Here, the red 

dot denotes instance 𝑥, and the triangles denote instances with different labels 

from 𝑥. The radius of the dotted circle, i.e., the arrow, is the minimal distance 

from instance 𝑥 to the heterogeneous instances represented by a triangle.  
 

By Theorem 4.1, it is practicable to quickly update the 

consistence degree; avoid recomputing it on the whole universe. 

We form a special set of such instances that were valid for 

updating the consistence degree.  

Definition 4.1(Discernible Set and Key set). In  𝐹𝐷 = (𝑈, 𝐶 ∪

𝐷) , given  𝐵 ⊆ 𝐶  and 𝛼 ∈ [0,1) , Discernible set of 𝑥 ∈ 𝑈  with 

respect to 𝐵  is defined as 𝐷𝑖𝑠𝐵(𝑥) = {𝑢 ∈ 𝑈|𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≥

 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 𝑎𝑛𝑑 �̃�𝐷(𝑥, 𝑢) = 0}; Key set of 𝑥 ∈ 𝑈 with respect to 𝐵 is 

defined as 𝐾𝐸𝑌𝐵(𝑥) = {𝑦 ∈ 𝑈 − 𝐷𝑖𝑠𝐵(𝑥)|�̃�𝐷(𝑥, 𝑦) = 0}. 

Discernible Set of 𝑥 composes of its heterogeneous instances 

that can be discerned from 𝑥 on 𝐵; Key Set of 𝑥 composes of 

the remainder heterogeneous instances, that were undiscerned 

from 𝑥 by 𝐵. Discernible Set and Key Set are illustrated in Fig. 

4.1. In the left-hand side illustration of Fig. 4.1 the encircled 

triangle instances constitute Key Set of 𝑥 on 𝐵, whereas those 

outside the circle constitute Discernible Set of 𝑥 on 𝐵. Some of 

their properties are presented below.  

2) Properties of Discernible set and Key set 

Discernible set and Key set have the following properties. 

Proposition 4.1 (Monotonicity of Discernible Set and Key 

set). In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷) , given  𝐵𝑖 ⊆ 𝐶 , 𝑥 ∈ 𝑈  and 𝛼 ∈ [0,1), let 

𝐵1 ⊆ 𝐵2 ⊆ ⋯ ⊆ 𝐵𝑛, we have  

(1) 𝐷𝑖𝑠𝐵1
(𝑥) ⊆ 𝐷𝑖𝑠𝐵2

(𝑥) ⊆ ⋯ ⊆ 𝐷𝑖𝑠𝐵𝑛
(𝑥); 

(2) |𝐷𝑖𝑠𝐵1
(𝑥)| ≤ |𝐷𝑖𝑠𝐵2

(𝑥)| ≤ ⋯ ≤ |𝐷𝑖𝑠𝐵𝑛
(𝑥)|; 

(3) If 𝑦 ∈ 𝑈 − 𝐷𝑖𝑠𝐵𝑖
(𝑥) and �̃�𝐷(𝑥, 𝑦) = 0, then 𝑆(𝑁(�̃�𝐵𝑖

(𝑥, 𝑢)), 𝛼) <

 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥); 

(4) 𝐷𝑖𝑠𝐵𝑖
(𝑥) ∪ 𝐾𝐸𝑌𝐵𝑖

= {𝑦 ∈ 𝑈|�̃�𝐷(𝑥, 𝑦) = 0}; 

(5) 𝐾𝐸𝑌𝐵1
(𝑥) ⊇ 𝐾𝐸𝑌𝐵2

(𝑥) ⊇ ⋯ ⊇ 𝐾𝐸𝑌𝐵𝑛
(𝑥); 

(6) |𝐾𝐸𝑌𝐵1
(𝑥)| ≥ |𝐾𝐸𝑌𝐵2

(𝑥)| ≥ ⋯ ≥ |𝐾𝐸𝑌𝐵𝑛
(𝑥)|. 

Proof. 
(1) 𝐵𝑖 ⊆ 𝐵𝑗 ⇒ �̃�𝐵𝑖

(𝑥, 𝑢) ≥ �̃�𝐵𝑗
(𝑥, 𝑢) ⇒ 𝑁(�̃�𝐵𝑖

(𝑥, 𝑢)) ≤ 𝑁(�̃�𝐵𝑗
(𝑥, 𝑢)) 

⇒  𝑆(𝑁(�̃�𝐵𝑖
(𝑥, 𝑢)), 𝛼) ≤ 𝑆 (𝑁(�̃�𝐵𝑗

(𝑥, 𝑢)), 𝛼) 

⇒ 𝐷𝑖𝑠𝐵𝑖
(𝑥) ⊆ 𝐷𝑖𝑠𝐵𝑗

(𝑥) by Definition 4.1. 

(2) The result is straightforward by the result in (1).  

(3)  𝑦 ∈ 𝑈 − 𝐷𝑖𝑠𝐵𝑖
(𝑥)  and �̃�𝐷(𝑥, 𝑦) = 0 ⇒  𝑆(𝑁(�̃�𝐵𝑖

(𝑥, 𝑢)), 𝛼) <

 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥). (4)(5) and (6) are straightforward.  ■ 

Proposition 4.1(1) & (2) prove that 𝐵𝑗 has a stronger power 

of discernibility than 𝐵𝑖 as the number of attributes increases. In 

addition, the size of Discernible Set 𝐷𝑖𝑠𝐵𝑖
(𝑥)  increases 

monotonically as 𝐵𝑖 . Furthermore, Proposition 4.1(3) & (4) 

present that Discernible Set and Key Set complement each other 

in the set of heterogeneous instances of 𝑥. Finally, according to 
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Proposition 4.1(5) & (6), Key Set becomes more and more 

compact as the attributes successively increases. Based on the 

result of Proposition 4.1, some of the deeper properties are 

revealed below.   

Proposition 4.2. In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷), given 𝐵 ⊆ 𝑃 ⊆ 𝐶, 𝑥 ∈ 𝑈 and 

𝛼 ∈ [0,1), the following statements hold. 

(1) 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) =

min𝑦∈𝐾𝐸𝑌𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ∧ min𝑦∈𝐷𝑖𝑠𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ; 

(2) min𝑦∈𝐷𝑖𝑠𝐵(𝑥) 𝑆(𝑁(�̃�𝑃(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) ; 

(3) 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) < 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥) ⇔ 𝐾𝐸𝑌𝐵(𝑥) ≠ ∅ ⇔  𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) =

min𝑦∈𝐾𝐸𝑌𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼); 

(4) 𝐾𝐸𝑌𝐵(𝑥) = ∅ ⇔  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥); 

(5) 𝐾𝐸𝑌𝐵(𝑥) = ∅ ⇒ 𝐾𝐸𝑌𝑃(𝑥) = ∅ . 

Proof. 
(1) 𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥) = min𝑦∈𝑈 𝑎𝑛𝑑 𝑅𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) 

⇒ 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = min𝑦∈𝑈−𝐷𝑖𝑠𝐵(𝑥) 𝑎𝑛𝑑 𝑅𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ∧

min𝑦∈𝐷𝑖𝑠𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) 

⇒ 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) =

min𝑦∈𝐾𝐸𝑌𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ∧ min𝑦∈𝐷𝑖𝑠𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼). 

(2) ∀𝑦 ∈ 𝐷𝑖𝑠𝐵(𝑥), 

⇒ 𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) , ∀𝑦 ∈ 𝐷𝑖𝑠𝐵(𝑥) 

⇒  𝑆(𝑁(�̃�𝑃(𝑥, 𝑢)), 𝛼) ≥  𝑆(𝑁(�̃�𝐵(𝑥, 𝑢)), 𝛼) ≥ 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥)  as 𝐵 ⊆ 𝑃 , ∀𝑦 ∈

𝐷𝑖𝑠𝐵(𝑥) 

⇒ min𝑦∈𝐷𝑖𝑠𝐵(𝑥) 𝑆(𝑁(�̃�𝑃(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥). 

(3) 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) < 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥)  

⇔  There exists one instance ∈ 𝑈  , which is heterogeneous 

instance of 𝑥 , i.e., �̃�𝐷(𝑥, 𝑦) = 0 , satisfying 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) =
𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥) <  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 

⇔ 𝐾𝐸𝑌𝐵(𝑥) ≠ ∅  by the definition of 𝐾𝐸𝑌𝐵(𝑥) 

⇔  𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = min𝑦∈𝐾𝐸𝑌𝐵

𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼)  as 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) =

min𝑦∈𝐾𝐸𝑌𝐵
𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ∧ min𝑦∈𝐷𝑖𝑠𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼). 

(4) 𝐾𝐸𝑌𝐵(𝑥) = ∅ 

⇔ ∀𝑦 ∈ 𝑈 s.t. �̃�𝐷(𝑥, 𝑦) = 0, 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 

⇔ 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = min𝑦∈𝐷𝑖𝑠𝐵

𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) = 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥). 

(5) 𝐾𝐸𝑌𝐵(𝑥) = ∅ 

⇒ ∀𝑦 ∈ 𝑈 s.t. �̃�𝐷(𝑥, 𝑦) = 0, 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 

⇒  ∀𝑦 ∈ 𝑈  s.t. �̃�𝐷(𝑥, 𝑦) = 0 , 𝑆(𝑁(�̃�𝑃(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥)  since 

𝑆(𝑁(�̃�𝑃(𝑥, 𝑦)), 𝛼) ≥ 𝑆(𝑁(�̃�𝑃(𝑥, 𝑦)), 𝛼) 

⇒ 𝐾𝐸𝑌𝑃(𝑥) = ∅ . ■ 

Proposition 4.2 describes the properties of the consistence 

degree on Discernible Set and Key Set. Proposition 4.3 

describes the characteristics of the consistence degree in some 

special cases of Key Set. 

Proposition 4.3. In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷), given 𝐵 ⊆ 𝐶, 𝑥 ∈ 𝑈 and 𝛼 ∈ [0, 

1), 𝐷𝑖𝑠𝐵(𝑥) is the discernible set of 𝐵 on 𝑥, we have  

(1) If 𝐾𝐸𝑌𝐵(𝑥) ≠ ∅, then 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐵,𝛼

𝑈−𝐷𝑖𝑠𝐵(𝑥)
(𝑥);  

(2) If 𝐾𝐸𝑌𝐵(𝑥) = ∅, then 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥). 

Proof. 

(1) 𝐾𝐸𝑌𝐵(𝑥) = {𝑦 ∈ 𝑈 − 𝐷𝑖𝑠𝐵(𝑥)|�̃�𝐷(𝑥, 𝑦) = 0} ≠ ∅ 

⇒ 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) < 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥) 

⇒ 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = min𝑦∈𝐾𝐸𝑌𝐵(𝑥) 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼)=𝐶𝑜𝑛𝐵,𝛼

𝑈−𝐷𝑖𝑠𝐵(𝑥)
(𝑥). 

(2) 𝐾𝐸𝑌𝐵(𝑥) = ∅ ⇒  𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥).  ■ 

Based on these properties of Discernible Set and Key Set, the 

significance degree of the attribute value on 𝑥 is designed in a 

new way. 

Definition 4.2. In  𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷) , given 𝐵 ⊆ 𝐶  and 𝛼 ∈

[0,1), for 𝑥 ∈ 𝑈, if 𝐷𝑖𝑠𝐵(𝑥) and 𝐾𝐸𝑌𝐵(𝑥) are Discernible Set and 

Key Set of 𝐵  on 𝑥  (i.e., 𝐷𝑖𝑠𝐵(𝑥) = {𝑈|�̃�𝐷(𝑥, 𝑦) = 0} − 𝐾𝐸𝑌𝐵(𝑥) ), 

respectively, then ∀𝑎 ∈ 𝐶 − 𝐵,  

𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥) )

= {

  𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) − 𝐶𝑜𝑛𝐵,𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) , 𝐾𝐸𝑌𝐵(𝑥) ≠ ∅, 𝑎𝑛𝑑 𝐾𝐸𝑌𝐵∪{𝑎}(𝑥) ≠ ∅

𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼

𝑈−𝐷𝑖𝑠𝐵(𝑥)
(𝑥) , 𝐾𝐸𝑌𝐵(𝑥) ≠ ∅, 𝑏𝑢𝑡 𝐾𝐸𝑌𝐵∪{𝑎}(𝑥) = ∅

0 , 𝐾𝐸𝑌𝐵(𝑥) = ∅

 

is called the relative significance degree of 𝑎 in 𝐵 on 𝑥 with 

respect to 𝐷. 

According to Definition 4.2, the computation of the relative 

significance degree is not based on the whole universe, but on 

Key Set. Then, by using relative significance degree, it is 

feasible to design the value-reduction algorithm without 

recomputing on the whole universe. 

3) Main theorem of Key Set and Discernible Set 

In the design of attribute-value reduction algorithm, we 

found that Key Set and Discernible Set yielded a more 

interesting result, the rank preservation property of the relative 

significance degree. 

Theorem 4.2 (Rank Preservation Property). In 𝐷 = (𝑈, 𝐶 ∪

𝐷) , given  𝐵 ⊆ 𝐶  and 𝛼 ∈ [0,1). ∀𝑎, 𝑏 ∈ 𝐶 − 𝐵 , if 𝑆𝑖𝑔1(𝑎, 𝐵, 𝑥, 𝑈) ≥

𝑆𝑖𝑔1(𝑏, 𝐵, 𝑥, 𝑈), then 𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) ≥ 𝑆𝑖𝑔2(𝑏, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)). 

Proof.  
𝑆𝑖𝑔1(𝑎, 𝐵, 𝑥, 𝑈) ≥ 𝑆𝑖𝑔1(𝑏, 𝐵, 𝑥, 𝑈)  

⇒ 𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼
𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼

𝑈 (𝑥). 

⇒ 𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈 (𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼

𝑈 (𝑥). 

In the case of 𝐾𝐸𝑌𝐵∪{𝑎}(𝑥) ≠ ∅  and  𝐾𝐸𝑌𝐵∪{𝑏}(𝑥) ≠ ∅, 
𝐶𝑜𝑛𝐵∪{𝑎},𝛼

𝑈 (𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼
𝑈 (𝑥) 

⇒ 𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥)  

⇒ 𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) − 𝐶𝑜𝑛𝐵,𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) −

𝐶𝑜𝑛𝐵,𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥)  

⇒ 𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) ≥ 𝑆𝑖𝑔2(𝑏, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) . 

In the case of 𝐾𝐸𝑌𝐵∪{𝑎}(𝑥) ≠ ∅  and 𝐾𝐸𝑌𝐵∪{𝑏}(𝑥) = ∅, 
𝐶𝑜𝑛𝐵∪{𝑎},𝛼

𝑈 (𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼
𝑈 (𝑥) 

⇒ 𝐶𝑜𝑛𝐵∪{𝑎},𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

(𝑥) − 𝐶𝑜𝑛𝐵,𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

≥ 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼

𝑈−𝐷𝑖𝑠𝐵(𝑥)
  

⇒ 𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) ≥ 𝑆𝑖𝑔2(𝑏, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) . 

In the case of 𝐾𝐸𝑌𝐵∪{𝑎}(𝑥) = ∅ and  𝐾𝐸𝑌𝐵∪{𝑏}(𝑥) = ∅, 
𝐶𝑜𝑛𝐵∪{𝑎},𝛼

𝑈 (𝑥) ≥ 𝐶𝑜𝑛𝐵∪{𝑏},𝛼
𝑈 (𝑥) 

⇒ 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼

𝑈−𝐷𝑖𝑠𝐵(𝑥)
= 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥) − 𝐶𝑜𝑛𝐵,𝛼
𝑈−𝐷𝑖𝑠𝐵(𝑥)

  

⇒ 𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) = 𝑆𝑖𝑔2(𝑏, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) . 

In all cases, 𝑆𝑖𝑔1(𝑎, 𝐵, 𝑥, 𝑈) ≥ 𝑆𝑖𝑔1(𝑏, 𝐵, 𝑥, 𝑈)  

⇒ 𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)) ≥ 𝑆𝑖𝑔2(𝑏, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)). ■ 

Theorem 4.2 is an important result of Key Set and 

Discernible set, which verifies that the rank of the significance 

degrees computed on the whole universe is consistent with that 

computed on Key Set. Thus, it is sufficient to find the value 

reduction by only updating the consistence degree on Key Set. 

This mechanism can then be used to improve the computational 

efficiency of a heuristic value-reduction algorithm, while 

producing the same result. 

B. Attribute-value Reduction Accelerator 

In this subsection, we propose an accelerated way to update 

the consistence degree based on Discernible Set and Key Set. 

Theorem 4.3. In 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷), 𝐵 ⊆ 𝐶 and 𝛼 ∈ [0,1), for 𝑥 ∈ 𝑈, 

the following statements hold. 

(1) If 𝐷𝑖𝑠𝐵(𝑥) = {𝑦 ∈ 𝑈|�̃�𝐷(𝑥, 𝑦) = 0} , then 𝐵(𝑥) = {𝑟(𝑥): 𝑟 ∈ 𝐵} 

contains the attribute-value reduction of 𝑥 ∈ 𝑈. 

(2) If 𝐾𝐸𝑌𝐵(𝑥) = ∅ , then 𝐵(𝑥) = {𝑟(𝑥): 𝑟 ∈ 𝐵}  contains the 

attribute-value reduction of 𝑥 ∈ 𝑈. 

Proof. 

(1)  𝐷𝑖𝑠𝐵(𝑥) = {𝑦 ∈ 𝑈|�̃�𝐷(𝑥, 𝑢) = 0}  

⇒  ∀𝑦 ∈ 𝑈 s.t. �̃�𝐷(𝑥, 𝑦) = 0, 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥)  
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⇒ min𝑦∈𝑈,𝑅𝐷(𝑥,𝑦)=0 𝑆(𝑁(�̃�𝐵(𝑥, 𝑦)), 𝛼) ≥  𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥) 

⇒ 𝐶𝑜𝑛𝐵,𝛼
𝑈 (𝑥) ≥  𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥)  

⇒ 𝐵(𝑥) contains the attribute-value reduction of 𝑥 ∈ 𝑈. 

(2) As 𝐷𝑖𝑠𝐵(𝑥) = {𝑦 ∈ 𝑈|�̃�𝐷(𝑥, 𝑢) = 0} is equivalent to 𝐾𝐸𝑌𝐵(𝑥) = ∅, 

it is easy to get the result. ■ 

Theorem 4.3 shows that, when the size of the discernible set 

𝐷𝑖𝑠𝐵(𝑥)  is large enough to contain all the heterogeneous 

instances of 𝑥  or the key set 𝐾𝐸𝑌𝐵(𝑥)  is small enough to be 

empty, then 𝑩(𝑥) contains one attribute-value reduction of 𝑥 ∈
𝑈. By Theorem 4.3, we design an accelerator of CVR as shown 

in Algorithm 4.1. 
Algorithm 4.1. Consistence degree-based attribute-value reduction 

accelerator (A-CVR) 

Input:    𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷); 𝛼 ∈ [0,1); 

Output: Value reduction of 𝐹𝐷: {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥)|𝑥 ∈ 𝑈}; 

Step   1: For each 𝑥 ∈ 𝑈 do 

Step   2:        𝑖 = 1, 𝑈1 = 𝑈; 𝐵 ← ∅, 𝑙𝑒𝑓 ← 𝐶; 

Step   3:       Compute 𝐶𝑜𝑛𝐶,𝛼
𝑈 (𝑥); 𝐷𝑖𝑠𝐵(𝑥); 𝐾𝐸𝑌𝐵(𝑥); 

Step   4:      While (𝐾𝐸𝑌𝐵(𝑥) = ∅), do 

Step   5:              𝑎∗ =  arg max
𝑎∈𝑙𝑒𝑓

𝑆𝑖𝑔2(𝑎, 𝐵, 𝑥, 𝐾𝐸𝑌𝐵(𝑥)); 

Step   6:              𝐵 ← 𝐵 ∪ {𝑎∗}, 𝑙𝑒𝑓 ← 𝑙𝑒𝑓 − {𝑎∗}; 
Step   7:              Update 𝐷𝑖𝑠𝐵(𝑥); 𝐾𝐸𝑌𝐵(𝑥);  𝑈𝑖+1 ←  𝑈𝑖 − 𝐷𝑖𝑠𝐵(𝑥); 𝑖 ← 𝑖 + 1; 

Step   8:       End while 

Step   9:                       𝑃 ← 𝐵; 

Step 10:       For 𝑖 = 1 to |𝑃| do 

Step 11:                If 𝑏𝑖 ∈ 𝐵 s.t. 𝐶𝑜𝑛𝐵−{𝑏𝑖},𝛼
𝑈 (𝑥) = 𝐶𝑜𝑛𝐶,𝛼

𝑈 (𝑥),  

Step 12:                        𝐵 = 𝐵 − {𝑏𝑖}; 
Step 13:                End if 

Step 14:       End for 

Step 15:       𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) ← 𝐵; 

Step 16: End for 

Step 17: Return {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥)|𝑥 ∈ 𝑈}. 

A-CVR is the accelerated version of CVR. Unlike the search 

space that remains fixed in CVR, Key Set becomes smaller with 

successively added attribute values in A-CVR. Thus, the 

redundant computation of value reduction is reduced in A-

CVR. A-CVR and CVR are compared in detail as follows. 

• Theorem 4.2 ensures that Step 5 in A-CVR is equivalent to 

Step 5 in CVR; and they can choose the same significant 

attribute value in each iteration.  

• Theorem 4.3 ensures that Step 4 in A-CVR is equivalent to 

Step 4 in CVR. Accordingly, their stop criteria are 

equivalent.  

• By both Theorems 4.2 and 4.3, A-CVR is equivalent to 

CVR; they are verified to obtain the same attribute-value 

reduction. 

• Except Steps 5 and 7, A-CVR and CVR share the same time 

complexity. In A-CVR, the time complexity of Step 5 is 

𝑂(∑ (|𝐶| + 1 − 𝑖)|𝐾𝐸𝑌(𝐵) |
|𝐶|
𝑖=1 ), while it is 𝑂(∑ (|𝐶| + 1 − 𝑖)|𝑈| |𝐶|

𝑖=1 ) 

in CVR. The time complexity of Step 7 in A-CVR is 𝑂(|𝑈𝑖|), 

while it is 𝑂(|𝑈|) in CVR. As 𝐾𝐸𝑌(𝐵) and 𝑈𝑖 become smaller 

and smaller during the iteration, it is obvious that A-CVRA 

save more time compared to CVR. 

Theorems 4.2 & 4.3 ensure that A-CVR achieves the same 

value-reduction as CVR at a smaller computational cost. As 

value reduction is equivalent to rule induction, we refer to the 

accelerated rule induction as A-CVR hereinafter. 

V. ACCELERATED RULE BASED CLASSIFIERS 

In this section, we present an accelerated classifier-building 

algorithm and its updated version based on accelerated rule 

induction A-CVR. 

A.  Accelerated Rule-Classifier Building 

In this subsection, we first employ A-CVR to accelerate rule-

classifier building. The rule extraction strategy of GFRC, i.e., 

forward adding strategy, is then adopted to find a near-minimal 

rule set. Then, the accelerated version of CVRC, denoted by A-

CVRC, is obtained (presented in Algorithm 5.1).  

Similarly, when rule induction of A-CVR coordinates with 

the rule extraction strategy of LEM2 or VC-DomLE 

(presented in Appendix II), their accelerated counterparts were 

then obtained, denoted by A-LEM2 and A-VC-DomLE, 

respectively. 
Algorithm 5.1. Accelerated CVRC （A-CVRC） 

Input: 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷); 𝛼 ∈ [0,1); 

Output: Near-minimal rule set: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡; 

Step 1: Calculate the induced rule 𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) of every original decision 

rule by Algorithm 4.1, A-CVR; 

Step 2: Add all 𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) into 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠, 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡 ← ∅; 

Step 3: Calculate the cover degree of every rule in 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠; 

Step 4: Extract 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡 from  𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠 by using the rule 

extraction strategy of GFRC; 

Step 5: Return 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡. 

B. Updated Version: Batch Sample-based Rule Classifier  

To handle large-scale datasets, we accelerate rule extraction 

by the Batch Sample scheme. Inspired by the idea of mini-batch 

in deep learning, that accelerates the training process with fewer 

losses, we compute the value-reduction accelerator (i.e., A-

CVR) on a batch of instances rather than on all instances. Based 

on this idea, Algorithm 5.2 is then designed. Notably, when a 

batch is as large as the whole universe, A-BSRC and A-CVRC 

are essentially the same.  
Algorithm 5.2. Batch Sample Rule Classifier (A-BSRC) 

Input: 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷); 𝛼 ∈ [0,1); The percent of batch sample; The cover 

degree threshold: 𝛿 ∈ [0, |𝑈|]; 
Output: Near-minimal rule set: Ω; 
Step   1: Let the pool storing the candidate induced rule be empty, i.e., 

𝑟𝑒𝑑 = ∅; the pool to storing the instances be full, i.e.,  𝑇 = 𝑈; 

Step   2: Repeat 

Step   3:          Sample a batch ∆𝑇 from 𝑇, where |∆𝑇| = ⌈𝛽 × |𝑇|⌉; 
Step   4:          Compute ∆𝑟𝑒𝑑 = {𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) = ∅|𝑥 ∈ ∆𝑇} by A-CVR; 

Step   5:          𝑟𝑒𝑑 = 𝑟𝑒𝑑 ∪ ∆𝑟𝑒𝑑, 𝑇 = 𝑇 − ∆𝑇; 

Step   6:          ∀𝑟 ∈ 𝑟𝑒𝑑, compute the covering degree on 𝑟𝑒𝑑 and 𝑇; 

Step   7:         While 𝑟𝑒𝑑 ≠ ∅ and the maximal covering degree of rule in 𝑟𝑒𝑑 

 exceeds 𝛿, do 

Step   8:                 Add 𝑟∗ ∈ 𝑟𝑒𝑑 with the maximum covering degree into Ω; 

Step   9:                 Delete rules covered by 𝑟∗ from 𝑟𝑒𝑑; 

Step  10:                Delete instances covered by 𝑟∗ from 𝑇; 

Step  11:                Update the covering degree of every rule in 𝑟𝑒𝑑;           

Step  12:        End while  

Step  13: Until 𝑇 = ∅; 

Step  14: Return Ω. 

VI. NUMERICAL EXPERIMENTS 

In this section, we evaluated the accelerator A-CVR in terms of 

time efficiency and classification performance, respectively. To 

demonstrate the efficiency of our proposed methods, we 

compared the computational time of our accelerated framework 

with the unaccelerated one. Furthermore, to demonstrate the 

classification performance of the proposed methods, we 

compared our accelerated classifier with some rough-based 

classifiers and some known explainable classifiers (not related 

to rough sets).  

A. Experimental Setup 

The experiments are set up as follows. 
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Datasets: We conducted numerical experiments on a series 

of UCI and KEEL datasets. Following the rational of data 

selection in [14,24], some datasets, that differ considerably 

regarding number of instances, attributes and classes, were 

selected (as presented in Table 6.1). These datasets helped 

comprehensively analyze the algorithm’s performance in terms 

of size, dimensionality and categories. They served as a good 

test bed for a comprehensive evaluation.  
TABLE 6.1 

THE DESCRIPTION OF THE SELECTED DATASETS
1. 

 Datasets Number of Attributes Number of Instances Number of Classes 

1 Iono 34 351 2 

2 Libras 90 540 15 

3 QSAR 41 1,055 2 

4 Cont 9 1,473 3 

5 Segm 19 2,310 7 

6 Spam 57 4,601 2 

7 Texture 40 5,500 11 

8 Optdigits 64 5,620 10 

9 Park 21 5,875 2 

10 Sat 36 6,435 6 

11 Musk2 166 6,598 2 

12 Thyroid 21 7,200 3 

13 Ring 20 7,400 2 

14 coil2000 85 9,822 2 

15 Crowd 28 10,845 6 

16 Pendigits 16 10,992 10 

17 Nursery 8 13,576 5 

18 Eeg 14 14,980 2 

19 Shuttle 9 58,000 7 

20 Sensorless 48 58,509 11 

Each condition attribute of these datasets was normalized into 

the interval [0, 1] with MinMaxScaler. Following [7], we selected 

𝑆(𝑥, 𝑦) = 𝑚𝑖𝑛{1, 𝑥 + 𝑦}  as the 𝑇 -conorm and 𝑁(𝑥) = 1 − 𝑥  as a 

negator to construct the lower approximation operator. We 

considered the Łukasiewicz 𝑇 -norm, 𝑇L(𝑎, 𝑏) = max {0, 𝑎 + 𝑏 −

1}, 𝑎, 𝑏 ∈ [0,1], as a special case of the triangular norm 𝑇. Then, 

the similarity degree satisfying 𝑇L can be calculated as �̃�𝑎(𝑥, 𝑦) =

1 − (max(𝑎(𝑥), 𝑎(𝑦)) − min (𝑎(𝑥), 𝑎(𝑦))) , where 𝑎(𝑥), 𝑎(𝑦) ∈ [0,1] 

represent the attribute values of instances 𝑥  and y on 𝑎 , 

respectively. For details, the reader is referred to [6,10].  

Parameter setting: For CVRC, A-CVRC, and GFRC, the 

parameter employed was set as 𝛼  = 0, as the inconsistent 

instances (same attribute-value but different class) were removed 

from ‘Cont’ and ‘Spam’ in advance. For A-BSRC, the parameters 

employed were set as 𝛼 = 0, 𝛽 = 0.01, 𝛿 = 0. A five-fold cross-

validation was performed on each dataset, and the average 

prediction accuracies/execution time and standard deviations 

were recorded. In addition, the outcomes of pairwise t-test at a 

significance level of 0.05 for all the experiments were recorded 

to investigate the algorithm—A-CVR or A-BSRC—that was 

significantly superior/inferior (win/loss) to the state-of-the-art 

algorithms. 

Environments: All experiments detailed in this section were 

conducted on a computer with Windows 10 Professional, 

Intel(R) Xeon(R) W-2148 CPU@3.70GHz and 128GB 

memory. The programming language is Python 3.6. 

B. Time Efficiency Analysis: different Rule-induction methods 

In this subsection, we compared the time efficiency of three 

classifier-building algorithms, A-CVRC, CVRC and GFRC. 

These three rule-based classifiers adopted CVR, DVR and A-

CVR, respectively, to induce rules; but they adopted the same 

search strategies of rule extraction. Accordingly, it is 

reasonable and fair to compare the time efficiencies of different 

rule induction methods by exploiting these classifiers.  

In Fig. 6.1, we illustrated the running time of A-CVRC, 

CVRC and GFRC on twelve datasets selected from Table 6.1.  

  

 
(a) Execution time on datasets with small size 

 
(b) Execution time on datasets with medium size 

 
(c) Execution time on datasets with large size 

Fig. 6.1 The efficiency comparison among three rough-based rule classifiers: A-CVRC, CVRC, GFRC. In each sub-figure, the x,y-coordinate pertain to dataset 

size, and the running time(/s), respectively. The yellow dotted pillar indicates that GFRC cannot work on the corresponding dataset.  

 
1 The used datasets and the codes of the proposed methods are released in 

https://github.com/RUC-DWBI-ML/A-CVRC. 
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The following facts are derived from Fig. 6.1. 

• In every subgraph except ‘Shuttle’, the pillar of CVRC is the 

highest one. For example, the running time of CVRC is 

obviously more than 4 times of that of A-CVRC on ‘eeg’, ‘sat’ 

and ‘texture’. Moreover, the running time of CVRC exceeds 

10 times of that of GFRC on most selected datasets. These 

charts show that CVRC is the most time-consuming 

algorithm and it is because the time complexity of CVR is the 

square of the number of instances on the whole search space.  

• In every subgraph except ‘Shuttle’, the pillar of GFRC is the 

lowest one. For example, the running time of GFRC is far 

less than one thirtieth of that of CVRC on ‘Iono’, ‘Libras’ and 

‘QSAR’. This shows that GFRC is the fastest algorithm on 

the small-size datasets. However, it is also observed that 

GFRC fails to work on ‘shuttle’, indicated by the yellow 

dotted pillar. This is because the space complexity of DVR is 

the square of the number of instances; it is highly space 

consuming and then GFRC is impractical on large-size 

datasets.  

• In every subgraph, we observe that the pillars of A-CVRC is 

always remarkably lower than those of CVRC, which shows 

that A-CVRC is always faster than its unaccelerated 

counterpart, CVRC. This empirically demonstrates the 

efficiency of the proposed accelerated algorithm A-CVR. 

• It is noted that on subgraph ‘eeg’ with large size of instances, 

the pillar of GFRC is observably higher than that of A-CVRC. 

Additionally, GFRC fails to work on ‘Shuttle’, indicated by 

the yellow dotted pillar. These show that on large-size 

datasets, A-CVRC is workable and faster than GFRC. 

These observations and facts show that A-CVR is an 

efficient and practical method due to the compacted search 

space, Key Set. 

C. Time Efficiency Analysis: Accelerated and Unaccelerated 

This subsection evaluated the time efficiencies of the 

proposed accelerated methods followed by different rule-

extraction strategies. Specifically, we compared four pairs of 

accelerated and unaccelerated algorithms, i.e., CVRC and A-

CVRC, BSRC and A-BSRC, LEM2 and A-LEM2, and VC-

DomLE and A-VC-DomLE. Each pair of algorithms adopted 

the same rule extraction strategy, but different (accelerated and 

unaccelerated) rule induction methods. Just as stated in 

Theorems 4.2 and 4.3, the proposed accelerator A-CVR can 

achieve the same induced rule as its unaccelerated counterpart, 

CVR. Consequently, each pair of algorithms achieves the same 

induced rule set; it is no need to compare their classification 

accuracy. 

We employed eight datasets selected from Table 6.1 to verify 

the efficiency of the accelerated method. To distinguish the 

computational time, we divided each dataset into ten subgroups 

of equal size by the splitting method proposed in [14]. 

Specifically, eight selected datasets are split into 10 subgroups 

by row. One subgroup is regarded as the original data, the other 

subgroups are added into the original data successively. These 

constructed data in such ways can be used to evaluate the time 

taken by each pair of algorithms.  

Tables 6.2-6.5 display the number of selected rules and 

computational time. Figs. 6.2-6.5 describe the more detailed 

time trendline of each pair of algorithms with respect to dataset 

size.  We derive the following facts from the figures and the 

tables: 

• From Figs.6.2-6.5 we observe that each blue trendline is 

always higher than its corresponding orange one. This 

demonstrates that the running time of accelerated algorithm 

(i.e., A-CVRC, A-BSRC, A-LEM2 or A-VC-DomLE) is 

always notably higher than that of its unaccelerated 

counterpart (i.e., CVRC, BSRC, LEM2 or VC-DomLE). 

This shows the proposed rule induction accelerator save 

time remarkably. 

• Furthermore, it is observed from Figs.6.2-6.3 that the gaps 

between the trendlines of each pair become profoundly 

larger as the instances increases, which demonstrates that 

the proposed accelerator works remarkably efficiently 

compared to its unaccelerated counterpart. 

• It is noted from Fig.6.5 that the gap between the trendlines 

of VC-DomLE and A-VC-DomLE is tiny on some large 

datasets, such as Nursery and Thyroid. This shows that A-

VC-DomLE is poorly accelerated as it spends most time on 

backward-deleting rule extraction, and less time on rule 

induction. Thus, our accelerated rule induction could not 

expedite the computation time of A-VC-DomLE 

substantially. 

• Tables 6.2-6.5 indicate that the accelerated algorithm is 

much faster than their unaccelerated counterparts. 

Furthermore, it is observed that the induced rule set obtained 

by each accelerated algorithm is the same as that produced 

by the unaccelerated one, which benefits from rank 

preservation property. Hence, rule classifiers based on the 

accelerated rule induction and the uncelebrated one have the 

same solutions.  

• Finally, Tables 6.2-6.5 show that among four types of 

rough-based classifiers, the proposed BSRC is the fastest. 

TABLE 6.2 
TIME AND INDUCED RULES OF THE ALGORITHMS CVRC AND A-CVRC 

Dataset No. Objects 

 CVRC  A-CVRC   

Time(s) No. Rules Time(s) No. Rules Reduced time(s) 

QSAR 1,055 542  180 177  180 365  

Segm 2,310 451  146 155  146 296  
Spam 4,601 5,505  384 1,218  384 4,286  

texture 5,500 6,698  179 1,430  179 5,268  

Park 5,875 1,775  38 567  38 1,208  
sat 6,435 11,094  514 2,242  514 8,852  

nursery 13,576 3,640  499 1,084  499 2,556  

thyroid 7,200 1,719  211 535  211 1,184  
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Fig. 6.2: Execution times of CVRC and A-CVRC versus the size of data.  In each sub-figure, the x,y-coordinate pertain to dataset size, and the running time(/s).

 
 

TABLE 6.3 

TIME AND INDUCED RULES OF THE ALGORITHMS BSRC AND A-BSRC 

  

Dataset 

No. 

Objects 

 BSRC  A-BSRC    

Time(s) No. Rule Time(s) No. Rule Reduced time 

QSAR 1,055 126  222 47  223 79  
Segm 2,310 67  183 29  179 38  

Spam 4,601 977  553 249  553 727  

texture 5,500 922  212 251  212 671  
Park 5,875 360  79 142  79 218  

sat 6,435 1,641  684 410  685 1,231  
nursery 13,576 466  528 265  528 201  

thyroid 7,200 345  618 79  618 266  

 

 

 
Fig. 6.3: Execution times of BSRC and A-BSRC versus the size of data. In each sub-figure, the x,y-coordinate pertain to dataset size, and the running time(/s).  

 

TABLE 6.4 

 TIME AND INDUCED RULES OF THE ALGORITHMS LEM2 AND A-LEM2 

  

Dataset No. Objects 

 LEM2  A-LEM2    

Time(s) No. Rule Time(s) No. Rule Reduced time 

QSAR 1,055 517  119 241  119 276  

Segm 2,310 363  104 171  104 193  

Spam 4,601 4,974  235 1,819  235 3,155  
texture 5,500 5,001  76 1,346  76 3,655  

Park 5,875 1,650  14 791  14 858  

Sat 6,435 8,408  266 2,302  266 6,106  
nursery 13,576 2,883  275 2,205  275 677  

thyroid 7,200 2,682  184 1,694  184 988  
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Fig. 6.4: Execution times of LEM2 and A-LEM2 versus the size of data. In each sub-figure, the x,y-coordinate pertain to dataset size, and the running time(/s). 

TABLE 6.5 
TIME AND INDUCED RULES OF THE ALGORITHMS VC-DOMLE AND A-VC-DOMLE 

  

Dataset 

 

No. Objects 

 VC-DomLE  A-VC-DomLE    

Time(s) No. Rule Time(s) No. Rule Reduced time 

QSAR 1,055 876  175 603  175 273  

Cont 2,310 1,025  580 983  580 42  

Segm 4,601 517  151 323  151 194  
Spam 5,500 9,424  381 6,223  381 3,200  

texture 5,875 5,507  199 1,823  199 3,684  

Park 6,435 3,884  89 3,015  89 869  
Sat 13,576 11,849  551 5,753  551 6,096  

nursery 7,200 9,276  498 8,775  498 501  
thyroid 1,055 12,226  193 11,283  193 943  

 

 
Fig. 6.5: Execution times of VC-DomLE and A-VC-DomLE versus the size of data. In each sub-figure, the x,y-coordinate pertain to dataset size, and the running 
time(/s). 

D. Classification Performance Evaluations 

This subsection evaluated the classification performance of 

the proposed algorithms. We compared the proposed 

accelerated rule classifier with the state-of-the-art rough-based 

rule classifier (presented in Table 6.7). Furthermore, we 

compared the proposed rule classifier with some known 

explainable classifiers (presented in Table 6.8). In Tables 

6.7&6.8, the best value of each dataset is in bold font. ‘●’ and 

‘○’ respectively denote that A-BSRC was significantly better or 

worse than the given rule classifier using a t-test with a 

confidence level of 0.05. The ‘A-BSRC: win/tie/loss’ row lists 

the numbers of datasets for which A-BSRC was significantly 

better or tie or worse than the corresponding method using the 

t-test. 

1) Compare with Rough-Based Rule Classifiers 

In this part, A-CVRC and A-BSRC were compared with the 

representative rough-based rule classifiers, GFRC, A-LEM2 

and A-VC-DomLE (presented in Table 6.7). We observe the 

following facts.  

• A-CVRC and A-BSRC outperform other rough-based 

classifiers on 11+7 out of 20 datasets. This shows that the 

cooperation of consistence-degree-based rule induction and 
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forward-adding rule extraction can obtain the classifier 

performing best. Thus, it is necessary to accelerate such 

classifiers with excellent performance so that they can work 

efficiently in real scenarios. 

• A-BSRC outperforms the other rough-based rule 

classifiers, such as GFRC, A-LEM2 and A-VC-DomLE in 

most cases. This indicates that our proposed method A-

BSRC is superior among the rough-based rule classifiers. In 

addition, A-BSRC is the only method that is workable on 

all the twenty datasets. This shows that our proposed 

method is practical in real applications. Hereinafter we 

mainly adopt A-BSRC to compare with other algorithms. 
TABLE 6.7 

Mean and standard deviation results for the accuracy of five rule classifiers. 

Datasets 
A-BSRC A-CVRC GFRC A-VC-DomLE A-LEM2 

mean std mean std mean std mean std mean std 

Iono 0.906 0.017 0.914 0.022 0.886  0.020  0.895 0.035 0.701 ● 0.037 

Libras 0.921 0.022 0.888 0.057 0.886  0.047  0.880 0.062 0.738 ● 0.071 

QSAR 0.812 0.018 0.802 0.016 0.747 ● 0.024  0.808 0.022 0.648 ● 0.048 

Cont 0.518 0.007 0.519 0.007 0.404 ● 0.022  0.527 0.014 0.508 0.020 

Segm 0.928 0.004 0.933 0.011 0.929  0.017  0.926 0.017 0.650 ● 0.045 

Spam 0.909 0.007 0.909 0.013 0.846 ● 0.007  0.913 0.007 0.736 ● 0.034 

texture 0.953 0.005 0.951 0.003 0.920 ● 0.004  0.950 0.004 0.722 ● 0.029 

optdigits 0.953 0.004 0.943 ● 0.006 0.932 ● 0.007  0.942 ● 0.003 0.566 ● 0.023 

Park 0.991 0.002 0.996 ○ 0.002 0.986 ● 0.003  0.990 0.002 0.682 ● 0.015 

sat 0.866 0.012 0.858 0.009 0.846 ● 0.009  0.865 0.006 0.539 ● 0.013 

Musk2 0.968 0.003 0.968 0.006 0.921● 0.003  0.967 0.005 0.813 ● 0.028 

thyroid 0.933 0.004 0.940 0.005 0.906 ● 0.008  0.940 0.006 0.913 ● 0.004 

ring 0.942 0.003 0.940 0.004 0.915 ● 0.007  0.954 ○ 0.005 0.751 ● 0.037 

coil2000 0.931 0.004 0.926 0.006 0.921● 0.005  0.933 0.005 0.891 ● 0.005 

crowd 0.893 0.002 0.891 0.007 0.848● 0.008  0.883 0.009 0.515 ● 0.025 

pendigits 0.971 0.003 0.972 0.004 0.962● 0.005  0.968 0.005 0.678 ● 0.015 

nursery 0.952 0.002 0.950 0.003 0.959  0.004  0.951 0.005 0.801 ● 0.027 

eeg 0.770 0.007 0.764 0.005 0.698● 0.010  >24hs -- 0.603 ● 0.019 

Shuttle 0.999 0.000 0.999 ● 0.000 Out of Memory -- >24hs -- >24hs -- 

Sensorless 0.952 0.002 >24hs  Out of Memory -- >24hs -- >24hs -- 

Count of the best 11 7 1 5 0 

Count of working 20 19 18 17 18 

A-BSRC: win/tie/loss  2\16\1 14\4\0 1\15\1 17\1\0 

TABLE 6.8 
Mean and standard deviation results for the accuracy of A-BSRC and five explainable classifiers.

Datasets  
A-BSRC DT LR GaussianNB LDA SVM 

mean std mean std mean std mean std mean std mean std 

Iono 0.906  0.017  0.895  0.021  0.889  0.010  0.889  0.019  0.872●  0.029  0.937  0.023  

Libras 0.921  0.022  0.870  0.046  0.791●  0.054  0.728●  0.034  0.794●  0.027  0.885  0.022  

QSAR 0.812  0.018  0.815  0.017  0.838  0.016  0.700●  0.023  0.860○  0.020  0.855○  0.010  

Cont 0.518  0.007  0.506  0.028  0.521  0.038  0.484  0.034  0.524  0.048  0.530  0.031  

Segm 0.928  0.004  0.964○  0.008  0.905●  0.015  0.796●  0.007  0.914  0.012  0.936  0.012  

Spam 0.909  0.007  0.910  0.013  0.889●  0.007  0.816●  0.011  0.887●  0.007  0.934○  0.012  

texture 0.953  0.005  0.928●  0.008  0.972○  0.003  0.775●  0.012  0.995○  0.001  0.991○  0.004  

optdigits 0.953  0.004  0.900●  0.004  0.970○  0.002  0.774●  0.018  0.953  0.002  0.988○  0.003  

Park 0.991  0.002  0.986●  0.003  0.755●  0.006  0.686●  0.008  0.812●  0.009  0.953●  0.005  

sat 0.866  0.012  0.855  0.006  0.843●  0.004  0.796●  0.011  0.839●  0.007  0.899○  0.006  

Musk2 0.968  0.003  0.967  0.006  0.936●  0.006  0.839●  0.013  0.944●  0.007  0.964  0.002  

thyroid 0.933  0.004  0.997○  0.001  0.937  0.001  0.118●  0.014  0.938  0.002  0.937  0.001  

ring 0.942  0.003  0.877●  0.008  0.759●  0.008  0.980○  0.003  0.763●  0.009  0.978○  0.003  

coil2000 0.931  0.004  0.911●  0.006  0.952○  0.000  0.113●  0.015  0.945○  0.002  0.952○  0.000  

crowd 0.893  0.002  0.870●  0.004  0.883●  0.005  0.833●  0.006  0.873●  0.006  0.944○  0.004  

pendigits 0.971  0.003  0.960●  0.004  0.936●  0.006  0.856●  0.008  0.876●  0.007  0.994○  0.001  

nursery 0.952  0.002  0.997○  0.001  0.514●  0.004  0.655●  0.006  0.520●  0.005  0.922●  0.007  

eeg 0.770  0.007  0.834○  0.006  0.552●  0.001  0.454●  0.009  0.641●  0.012  0.551●  0.000  

Shuttle 0.999  0.000  1.000○  0.000  0.970●  0.001  0.166●  0.206  0.944●  0.002  0.998●  0.000  

Sensorless 0.952  0.002  0.984○  0.001  0.829●  0.004  0.734●  0.016  0.852●  0.005  0.901●  0.002  

Count of the top 2 11 9 2 1 4 13 

A-BSRC: win/tie/loss   7\7\6 13\4\3 17\2\1 13\4\3 5\6\9 

2) Compare with Explainable Classifiers 

In machine learning (ML) systems, interpretability, also 

called explainability, is defined as the ability to explain or to 

present in understandable terms to a human [45]. Furtherly, [19] 

stated that an explainable classifier can provide qualitative 

understanding between the input variables and the response. 

From the viewpoints of explainablity, the classifiers in ML 

systems are roughly split into explainable and unexplainable. 

Just as mentioned in [19,45], some linear models (such as 

logistic regression, linear discriminant analysis), decision tree, 

K-nearest neighbor, SVM and rule lists are such explainable 

classification models. As an explainable classifier, it is 

unreasonable to compare our proposed rule-based classifier 

with unexplainable ones, such as deep neural networks. Thus, 

in this study, different type of explainable classifiers, such as 

decision tree (DT), linear regression (LR), GaussianNB, linear 

discriminant analysis (LDA) and support vector machine 

(SVM), were compared with A-BSRC. The comparison results 

presented in Table 6.8 reveal the following facts.  

• A-BSRC outperforms LR, GaussianNB, LDA and DT in 

most cases. This shows that A-BSRC works more 

effectively than most of the existing explainable classifiers. 

• As rule-based classifier, A-BSRC is not inferior to another 

rule-based classifier DT on 14 out of 20 datasets. This 

shows that A-BSRC is comparable or even outperforms 

DT.  
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• A-BSRC is not inferior to SVM on 11 out of 20 datasets. 

This shows that the performance of A-BSRC is comparable 

to SVM in some cases. The superiority of A-BSRC over 

SVM is that some human-understanding decision rules are 

obtained. Thus A-BSRC is fit for the applications of 

decision making and so on. 

E. Discussions 

This study aims at developing an efficient accelerating 

approach for solving rule induction on large-scale datasets. 

Large-scale datasets may be with high dimension or large size 

of instances. To better understand the sensitivity and stability 

of model results to the changes in the values of dimensionality 

and instance size, the analysis is performed on two basic 

parameters, namely, the number of features and the number of 

instances in classification system.  

Efficiency for building classifier in a large-scale 

classification system is the critical factor. In this regard, the 

execution time of accelerated and unaccelerated algorithms on 

dataset ‘Musk’ was illustrated in Fig.6.6; they can offer some 

practical implications and useful managerial insights.  

 

       
(a)                                                                           (b)    

Fig. 6.6: Execution time of CVRC (the accelerated) and A-CVRC (the 

unaccelerated) versus the size of features (a) and the size of instances on ‘Musk’. 

 

Fig.6.6 (a) shows that the execution time of accelerated 

algorithm is a slightly increasing function of the number of 

features, whereas the unaccelerated one increases remarkably. 

For example, the running time of the accelerated on the set with 

6598 instances saves more than 30,000s compared to the 

unaccelerated; whereas the running time on the set with 661 

instances saves far less than 2,000s. This result indicates that 

the more the instances are, the more execution time our 

accelerator can save. Also, Fig.6.6 (b) shows the similar trend 

with the incremental features, which indicates that the more the 

features are, the more execution time our accelerator can save. 

Thus, it is supposed that our accelerator is efficient and practical 

to not only the data with large-size instances, but also those with 

high dimension. 

VII. CONCLUSIONS 

To overcome the scalability limitations of the existing fuzzy 

rough-based rule induction scheme, this study developed a 

general accelerated framework based on FRS theory. 

Accordingly, we first proposed an alternative to rule induction, 

CAR, which is computationally intensive but can form the basis 

for designing an accelerator for rule induction. Then, Key Set 

is proposed to reveal those informative instances for updating 

the rule induction, which can work as the compacted search 

space. Finally, rule induction is accelerated on this compacted 

search space. More importantly, the strict mathematical 

foundation, such as the monotonicity of Key Set and 

Discernible Set, and rank preservation property, ensures that the 

induced rules achieved by the accelerator are the same as those 

achieved by the unaccelerated one. Additionally, extensive 

experiments revealed that the proposed accelerator vastly 

decreased the execution time with few or even no classification 

performance loss. 

The most significant advantage of our proposed method is its 

efficiency in dealing with classifier building on large-size 

datasets. Owing to the finding of Key Set and Discernible Set, 

our proposed method can accelerate classifier building based on 

the FRS theory by effectively compacting the search space. 

However, the main limitation of the proposed method is that it 

has been designed for static data and is not suitable for dynamic 

datasets with streaming instances. Interestingly, it is feasible to 

incrementally update Key Set and Discernible Set in dynamic 

decision table. Thus, in future study, we plan to extend our 

acceleration idea into dynamic circumstances by cooperated 

with incremental learning. 

APPENDIX I: TRIANGULAR OPERATORS 

We present and exemplify some notions of fuzzy logical 

operators [4], i.e., triangular norm (or 𝑇 − norm), triangular 

conorm (or 𝑇 − conorm), negator, dual and 𝑇 − residuated 

implication and its dual operation, which will be used to 

construct the set approximation operators in the FRS. 

A triangular norm, or shortly 𝑇 − norm, is a function 

𝑇: [0,1] × [0,1] → [0,1] that satisfies:  Monotonicity (if < 𝛼, 𝑦 <

𝛽 , then 𝑇(𝑥, 𝑦) ≤ 𝑇(𝛼, 𝛽)); Commutativity ( 𝑇(𝑥, 𝑦) = 𝑇(𝑦, 𝑥)); 

Associativity ( 𝑇(𝑇(𝑥, 𝑦), 𝑧) = 𝑇(𝑥, 𝑇(𝑦, 𝑧)) ), Boundary 

condition ( 𝑇(𝑥, 1) = 𝑥). The most typical continuous 𝑇 −norms 

include the standard min operator (the largest 𝑇 − norm) 

𝑇𝑀(𝑥, 𝑦) = 𝑚𝑖𝑛{ 𝑥, 𝑦} ,  algebraic product 𝑇𝑃(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 and the 

bounded intersection (also called the Lukasiewicz 𝑇 −norm) 

𝑇𝐿(𝑥, 𝑦) = 𝑚𝑎𝑥{ 0, 𝑥 + 𝑦 − 1}. 

A triangular conorm, or shortly 𝑇 −conorm, is an increasing, 

commutative and associative function 𝑆: [0,1] × [0,1] → [0,1] 

that satisfies the boundary condition:∀𝑥 ∈ [0,1], 𝑆(𝑥, 0) = 𝑥. 

A negator 𝑁  is a decreasing function 𝑁: [0,1] → [0,1]  that 

satisfies 𝑁(0) = 1 and 𝑁(1) = 0.  

Given a lower semi-continuous triangular norm 𝑇 , the 

residuation implication, also known as the 𝑇 − residuated 

implication, is a function 𝜗: [0,1] × [0,1] → [0,1]  that satisfies 

𝜗(𝑥, 𝑦) = 𝑠𝑢𝑝{ 𝑧|𝑧 ∈ [0,1], 𝑇(𝑥, 𝑧) ≤ 𝑦} for every 𝑥, 𝑦 ∈ [0,1]. The 

Lukasiewicz implication 𝜗𝐿  which is based on 𝑇𝐿 :  𝜗𝑇𝐿
=

𝑚𝑖𝑛{ 1 − 𝑥 + 𝑦, 1}. 

APPENDIX II TWO TYPES OF RULE EXTRACTION STRATEGIES. 

From the viewpoint of search strategies, the rule extraction 

methods are split into forward-adding and backward-deleting.  

The search strategy of [7] comes under the forward-adding 

type. We present it in Steps 4-8 of Algorithm A.1, designed to 

extract a near-minimal rule set. And this strategy is called rule 

extraction in GFRC.  

Algorithm A.1. To extract a near-minimal rule set by GFRC [7] 

Input: 𝐹𝐷 = (𝑈, 𝐶 ∪ 𝐷); 𝛼 ∈ [0,1); 

Output: Near-minimal rule set: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡; 

Step 1: Calculate the induced rule 𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) by Algorithm 2.1, DVR; 

Step 2: Add all 𝑟𝑒𝑑𝑢𝑐𝑡(𝑥) into 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠, 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡 ← ∅; 

Step 3: Calculate the cover degree of every rule in 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠; 

Step 4: While 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠 is not empty, do 

Step 5:         Add the rule 𝑅𝑢𝑙𝑒(𝑥∗) which has the maximum cover degree 

into 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡; 
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Step 6:         Delete rules cover by 𝑅𝑢𝑙𝑒(𝑥∗) from 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠; 

Step 7:         Update the cover degree of every rule in 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠 by deleting 

those instances covered by 𝑅𝑢𝑙𝑒(𝑥∗); 

Step 8: End while 

Step 9: Return 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡. 

Here, “𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠” denotes the collection of the induced rules; “𝑅𝑢𝑙𝑒(𝑥)” denotes 

the induced rule of 𝑥; “𝑐𝑜𝑣𝑒𝑟_𝑑𝑒𝑔𝑟𝑒𝑒(𝑥)” denotes the number of rules covered by 

the “𝑅𝑢𝑙𝑒(𝑥). 

A basic deleting strategy was proposed in LEM2[12], seen as 

Algorithm A.2, in which the key idea is, if one rule is covered 

by a certain rule in the candidate of the minimal rule-set, the 

former rule can be deleted. 
Algorithm A.2. Rule extraction in LEM2 [12] 

Input: 1) 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠: the collection of the induced rules; 2)  𝑅𝑢𝑙𝑒(𝑥): 

one induced rule of 𝑥;  

Output: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡: the extracted the near-minimal rule set; 

Step 1: For every rule 𝒓𝒖𝒍𝒆(𝒙) in 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠 , do 

Step 2:         𝑟𝑒𝑠𝑡__𝑟𝑢𝑙𝑒 ← 𝑎𝑙𝑙__𝑟𝑢𝑙𝑒𝑠 − 𝑟𝑢𝑙𝑒(𝑥) ; 

Step 3:         For every 𝑟𝑢𝑙𝑒(𝑦) in 𝑟𝑒𝑠𝑡__𝑟𝑢𝑙𝑒 , do 

Step 4:                 If the rule 𝑟𝑢𝑙𝑒(𝑥) is covered by the rule 𝑟𝑢𝑙𝑒(𝑦) , 
Step 5:                            𝑎𝑙𝑙__𝑟𝑢𝑙𝑒𝑠 ← 𝑎𝑙𝑙__𝑟𝑢𝑙𝑒𝑠 − 𝑟𝑢𝑙𝑒(𝑥); 

Step 6:                            Break; 
Step 7:         End for 

Step 8: End for 

Step 9:   𝑚𝑖𝑛𝑖𝑚𝑎𝑙__𝑟𝑢𝑙𝑒__𝑠𝑒𝑡 ← 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠 ; 

Step 10: Return 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡. 

Another backward-deleting search strategy is the improved 

version of LEM2. The key idea is that if the covering instance 

set of one rule is covered by the union of other covering sets 

of other rules, then this rule can be deleted [13]. 
Algorithm A.3.  Rule extraction in VC-DomLE [13] 

Input: 1) 𝑎𝑙𝑙_𝑟𝑢𝑙𝑒𝑠: the collection of the induced rules;  
2)  𝑅𝑢𝑙𝑒(𝑥): one induced rule of 𝑥;  

Output: 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡: the extracted the near-minimal rule set; 

Step 1: 𝚪 ← 𝑎𝑙𝑙 𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑟𝑢𝑙𝑒𝑠 ; 
Step 2: For every 𝚻 ∈  𝚪, do (here Τ is an induced rule) 

Step 3:         If [𝚻]  ⊆  ⋃S∈ Γ − Τ[𝐒] ,  
Step 4:                let 𝚪 ← 𝚪 −  𝚻; here [𝚻] is the objects covered by T; 

Step 5:         End if 

Step 6: End for 

Step 7:  𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡 ← 𝚪; 

Step 8: Return 𝑚𝑖𝑛𝑖𝑚𝑎𝑙_𝑟𝑢𝑙𝑒_𝑠𝑒𝑡. 
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