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The classification in imbalanced datasets is one of the main problems for machine learning
techniques. Support vector machine (SVM) is biased to the majority class samples, and the
minority class samples may incorrectly be considered as noise. Therefore, SVM has poor
predictive accuracy for imbalanced datasets and generates inaccurate classification mod-
els. Existing class imbalance learning (CIL) techniques can make SVM less sensitive to class
imbalance, but these methods suffer from issues related to noise and outliers. Moreover,
despite the solid theoretical basis and good classification performance, SVM is not appro-
priate for the classification of large-scale datasets because the training complexity of SVM
is closely related to the dataset size. Class imbalance learning (CIL) using Fuzzy adaptive
resonance theory (ART) and intuitionistic fuzzy twin SVM (CIL-FART-IFTSVM), which can
be applied to address the class imbalance issue in the presence of noise and outliers and
large scale datasets, is proposed to overcome these substantial difficulties. In this method,
we modify the distribution of the datasets using fuzzy adaptive resonance theory (Fuzzy
ART) as a clustering method to overcome the imbalance problem. Then, after data reduc-
tion, IFTSVM is utilized to find excellent non-parallel hyperplanes in the generated data
points. Finally, a coordinate descent system with shrinking by an active set is applied to
reduce the computational complexity. Forty-five imbalanced datasets are considered to
validate the performance of the proposed CIL-FART-IFTSVM method. The Friedman test
and the bootstrap technique with 95% confidence intervals are applied to quantify the
results statistically. The experimental results indicate that the method proposed in this
paper has a better performance compared with other methods, and the training time is sig-
nificantly better than that of other classifiers for large-scale datasets.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Support vector machines (SVM), introduced by Vapnik [1], is a popular machine learning technique that has been success-
fully applied to data classification and function estimation problems in various areas.

In addition to SVMwith two parallel hyperplanes, various classifiers with nonparallel hyperplanes such as the generalized
eigenvalue proximal SVM (GEPSVM) [2] and twin SVM (TSVM) [3–5] have been developed. As represented in [3], TSVM is 4
times faster than SVM. SVM cannot locate an optimal hyperplane if the support vectors are polluted by noise, which gener-
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ates poor results. Similar to the typical SVM, TSVM is also limited by noise deterioration. Therefore, a fuzzy support vector
machine (FSVM), which uses a degree of membership function for every training sample to represent their importance, was
introduced in [6–8]. Due to this effective strategy, FSVM can partially solve the aforementioned problem but is still sensitive
to the datasets that are polluted by noises and outliers, similar to traditional TSVM and SVM.

The intuitionistic fuzzy set (IFS) [9] is a more accurate extension of the fuzzy set. Fuzzy sets are specified by only the
membership function, but an IFS is specified by a membership function and a nonmembership function. Values and ambi-
guities of the membership and nonmembership functions for an IFS are used in [10,11] to determine the value index and the
ambiguity index. Rezvani and Wang [12] introduced IFTSVM, which combines the idea of the IFS with TSVM to alleviate the
noise related to the polluted inputs.

Although SVM works efficiently with balanced datasets, for imbalanced datasets, SVM can generate inaccurate results
[13–15]; that is, the SVM technique generates a model based on the majority class that has poor performance on the minor-
ity class. When these algorithms are applied to imbalanced datasets, they cannot achieve sufficient accuracy on both classes
of the data. To minimize these issues, methods have been proposed to promote advisable performing classifiers for imbal-
anced datasets. These types of learning methods are commonly called class imbalance learning (CIL) techniques. Some appli-
cations suffer from CIL problem, including face recognition [16], fault diagnosis [17], anomaly detection [18], and e-mail
foldering [19].

[20] proposed an FTSVM based on information entropy for CIL in which the idea of entropy-based FSVM for the imbal-
anced dataset motivated from [21,22] and the new fuzzy membership evaluation inspired from [23]. In [24], the authors
indicated ensemble diversity has a positive impact on the classification of imbalanced data sets. They had two aims. First,
the reason for diversity measured by Q-statistic can bring improved overall accuracy is described. Then, pattern analysis
of single-class performance measures is extended. A new support vector machine was introduced in [25], which is called
GSVM. This method created for bi-classification issues that balanced the accuracy between classes is the objective. The bias
for GSVM is calculated by moving the original bias in the SVM to improve the geometric mean between the true positive rate
and the true negative rate.

A variant of ELM for handling binary class imbalance problem suggested in [26], which is named class-specific extreme
learning machine. This work differs from weighted ELM as it doesn’t need to assign weights to the training instances. A
weighted under-sampling (WU) scheme for SVM based on space geometry distance is proposed in [27] to enhance the clas-
sification performance to deal with the data imbalance problems. In WU-SVM, the majority samples are grouped into some
sub-regions (SRs) and assigned different weights according to their Euclidean distance to the hyperplane. In [28] a solution
that can effectively find an advisable hyperplane by automatically tuning the error cost for between-class samples is offered.
This method has two main features: (1) it can evaluate how efficient an error cost is in terms of classification accuracy; and
(2) it changes the error cost in the right direction if it is not efficient. A novel self-adaptive cost weights-based support vector
machine cost-sensitive ensemble for imbalanced data classification is suggested in [29]. To guarantee the consistency of
optimization objectives between weak learners and boosting scheme, this method not only utilizes cost-sensitive SVMs
as basic weak learners but also simultaneously modifies the standard boosting scheme to cost-sensitive ones. In [30], the
authors offered two efficient sampling techniques that improve data distributions. One re-balanced technique and the other
technique is Gaussian Over-sampling. The first method enhances the SMOTE technique by adaptively selecting groups of
Inner and Danger data from the minority class. The others combine dimension reduction with the Gaussian distribution,
which makes the tail of the Gaussian distribution thinner.

Moreover, SVM is not appropriate for the classification of large datasets because SVM requires solving a quadratic pro-
gramming (QP) problem to find a separation hyperplane, which leads to extreme computational complexity. Some scholars
have attempted to find appropriate methods to use SVM to classify large-scale datasets. The available methods can generally
be categorized into to approaches: reducing the training dataset [31,32] and modifying the SVM classifier [33,34]. The large
QP problem is changed via sequential minimal optimization (SMO) [35] into a series of small QP problems. The projected
conjugate gradient (PCG) scales somewhere between linear and cubic in the training set [36]. Clustering, for instance, hier-
archical clustering [33] and parallel clustering [37], is one way to reduce the size of a dataset. Another technique to decrease
the training data is to apply the geometric characteristics of SVM [38]. Identifying the maximum-margin hyperplane is
equivalent to locating the nearest neighbors (NN) in the convex hulls of each class [39]. The NN problem (NPP) can then
be reformulated to complete SVM classification [40].

To address problems such as CIL, noise/outliers, and large-scale datasets, we propose a new imbalance learning method as
CIL-FART-IFTSVM. The contributions of this proposed method are as follows:

1) The proposed framework is designed to modify the distribution of a dataset. This framework not only finds samples
that possibly support vectors but also perfectly reduces the imbalance ratio to overcome the problem of imbalanced datasets.
Moreover, the proposed framework has specific advantages on large-scale datasets, for which the training time is signifi-
cantly better than that of other techniques.

2) The proposed method significantly reduces the negative impact of noise and outliers because Fuzzy ART can select an
appropriate subset of the original majority samples, therefore all the majority samples are easily recognized and trained with
our model.

3) The proposed method performs statistically better on imbalanced datasets than do similar techniques.
660
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This paper is organized as follows: Section II presents the details of IFS, SVM, FSVM, TSVM, and IFTSVM. Section III char-
acterizes the structure of the proposed CIL-FART-IFTSVM model. Section IV discusses experimental results. Conclusions and
suggestions for future research are presented in Section V.

2. Related work

In this Section, we first present the intuitionistic fuzzy set (IFS) and then define SVM, FSVM, TSVM, and IFTSVM. Finally,
we discuss the structure of the fuzzy adaptive resonance theory (ART).

2.1. IFS

A fuzzy set A in a universe X (nonempty set) can be defined as [9,10]
A ¼ x;lA xð Þ� �jx 2 X
� � ð1Þ
where lA xð Þ is the degree of membership of x 2 X and lA : X ! 0;1½ �. An IFS is defined as
~A ¼ x;l~A xð Þ; m~A xð Þ� �jx 2 X
� � ð2Þ
where l~A xð Þ is the degree of membership function and m~A xð Þ is the degree of nonmembership function of x 2 X.

2.2. SVM

Normal SVM can be applied to binary classification. SVM searches for the optimal hyperplane wTxþ b ¼ 0, where b 2 R is
the bias term and w 2 Rn is the weight. This hyperplane can be applied to describe the label, positive or negative, of input
sample xi as follows [1]:
w:xi þ bð ÞP 0; if yi is positive;
w:xi þ bð Þ 6 0; if yi is negative:

�
ð3Þ
In SVM for linear cases, after solving the following primal quadratic programming problem (QPP), an optimal hyperplane
can be obtained:
min 1
2w

Twþ C
Xl

i¼1
ni;

s:t:yi w
Txi þ b

� �
P 1� ni; ni P 0; i ¼ 1;2; . . . ; l:

8><
>: ð4Þ
where ni i ¼ 1;2; . . . ; lð Þ are slack variables, C is a penalty parameter, and l is the number of training samples.

2.3. FSVM

Let x1; y1; s1ð Þ; x2; y2; s2ð Þ; ::; xi; yi; sið Þf g be a training set consisting of i samples with their related fuzzy membership func-
tions (si), where r 6 si � 1 and r > 0 is sufficiently small. Let z ¼ / xð Þ be a mapping / : RN ! Z to a feature space. The opti-
mal hyperplane can be obtained by solving following equation [6]:
min
1
2
wT :wþ C

Xl

i¼1
sini

s:t:yi w:zi þ bð ÞP 1� ni; ni P 0; i ¼ 1; . . . ; l ð5Þ

where sini is the measured error with different weightings.

The Lagrangian can be defined as follows:
maximizeW að Þ ¼
Xl

i¼1
ai � 1

2

Xl

i¼1

Xl

j¼1
aiajyiyjK xi; xj

� �

s:t:
Xl

i¼1
yiai ¼ 0; 0 6 ai 6 siC; i ¼ 1; . . . ; l ð6Þ
and the Karush–Kuhn–Tucker (K.K.T.) conditions [41] are defined as:
�ai yi �w:zi þ �b
� �� 1þ �ni

� � ¼ 0; i ¼ 1; . . . ; l ð7Þ
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siC � �aið Þni ¼ 0; i ¼ 1; . . . ; l ð8Þ

The point xi with the corresponding �ai > 0 is recognized as a support vector (SV). FSVM can have two types of SV. The first,

with 0 < �ai < siC, lies on the margin of the hyperplane, and the second, with �ai ¼ siC, is misclassified.

2.4. TSVM

In contrast to standard SVM, which uses just one hyperplane to separate the positive samples from the negative samples,
TSVM [3] produces two nonparallel hyperplanes
w 1ð Þ:xi þ b 1ð Þ ¼ 0; w 2ð Þxi þ b 2ð Þ ¼ 0 ð9Þ

where w ið Þ is the weight and b ið Þ is a bias term of the i-th hyperplane. The two hyperplanes are obtained by solving the fol-
lowing QPPs:
min
w 1ð Þ ;b 1ð Þ ;n2

1
2

Aw 1ð Þ þ e1b 1ð Þ
� �T Aw 1ð Þ þ e1b 1ð Þ

� �þ p1e
T
2n2

s:t: � Bw 1ð Þ þ e2b 1ð Þ
� �þ n2 P e2; n2 P 0 ð10Þ
and
min
w 1ð Þ ;b 1ð Þ ;n1

1
2

Bw 2ð Þ þ e2b 2ð Þ
� �T Bw 2ð Þ þ e2b 2ð Þ

� �þ p2e
T
2n1

s:t: Aw 2ð Þ þ e1b 2ð Þ
� �þ n1 P e1; n1 P 0 ð11Þ
where A is class þ1 and B is class �1; e1 and e2 are vectors of all ones, n1 and n2 are slack functions, and p1 and p2 are penalty
parameters. The optimal parameters, i.e., w�1; b

�
1

� �
and w�2; b

�
2

� �
, are obtained, and a input sample x can be achieved as follows:
f xð Þ ¼ arg mini21;2
j w�i
� �Txþ b�i j
kw�i k

: ð12Þ
2.5. IFTSVM

Rezvani and Wang [12] recently proposed IFTSVM to improve the influence and generalizability of FTSVM, which uses an
intuitionistic fuzzy number to create a pair of membership and nonmembership functions for every training samples.

IFTSVM for a linear kernel can be defined as follows:
min
w1 ;b1 ;n2

1
2
kAw1 þ e1b1k2 þ 1

2
C1kw1k2 þ C2sT2n2

subject to � Bw1 þ e2b1ð Þ þ n2 P e2; n2 P 0 ð13Þ

and
min
w2 ;b2 ;n1

1
2
kBw2 þ e2b2k2 þ 1

2
C3kw2k2 þ C4sT1n1

subject to Aw2 þ e1b2ð Þ þ n1 P e1; n1 P 0 ð14Þ

where C1; C2;C3 and C4 are positive penalty parameters, n1 and n2 are slack variables, e1 and e2 are vectors of all ones, s1 2 Rlþ

is the scores of the positive class, and s2 2 Rl� is the scores of the negative class.
Using K.K.T. conditions and Eq. (13), the Wolfe dual can be obtained as:
max
a

eT2a�
1
2
aTG2 HT

1H1 þ C1I
� ��1

GT
2a

subject to 0 6 a 6 C2s2 ð15Þ

Furthermore, for Eq. (14), the Wolfe dual can be obtained as:
max
b

eT1b�
1
2
bTG1 GT

2G2 þ C3I
� ��1

HT
1b

subject to 0 6 b 6 C4s1 ð16Þ
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A new pattern of x can be classified as a member of the positive class or negative class as follows:
x 2Wk; k ¼ arg min
i¼1;2

jwT
1xþ b1j
kw1k ;

jwT
2xþ b2j
kw2k

� 	
ð17Þ
where j:jis the absolute value.
The kernel function for the nonlinear case is defined as follows:
k x;XT
� �

w1 þ b1 ¼ 0; k x;XT
� �

w2 þ b2 ¼ 0; ð18Þ
where k x1; x2ð Þ ¼ / x1ð Þ;/ x2ð Þð Þ is a kernel function. The primal issue of nonlinear IFTSVM is defined as:
min
w1 ;b1 ;n2

1
2
kk A;XT

� �
w1 þ e1b1k2 þ 1

2
C1kw1k2 þ C2sT2n2

subject to � k B;XT
� �

w1 þ e2b1

� �
þ n2 P e2; n2 P 0 ð19Þ
and
min
w2 ;b2 ;n1

1
2
kk B;XT

� �
w2 þ e2b2k2 þ 1

2
C3kw2k2 þ C4sT1n1

subject to k A;XT
� �

w2 þ e1b2

� �
þ n1 P e1; n1 P 0 ð20Þ
With the Lagrangian method and the K.K.T. conditions, the corresponding Wolfe dual can be obtained as:
max
a

eT2a�
1
2
aTG�2 HT�

1 H�1 þ C1I
� ��1

GT�
2 a

subject to 0 6 a 6 C2s2 ð21Þ

and
max
b

eT1b�
1
2
bTG�1 GT�

2 G�2 þ C3I
� ��1

HT�
1 b

subject to 0 6 b 6 C4s1 ð22Þ

A new pattern of x can be classified as a member of the positive class or negative class as follows:
k ¼ arg min
i¼1;2

jwT
1k x;XT
� �

þ b1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

1k A;XT
� �

w1

r ;
jwT

2k x;XT
� �

þ b2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

2k B;XT
� �

w2

r
8>><
>>:

9>>=
>>;: ð23Þ
2.6. Fuzzy Adaptive Resonance Theory (Fuzzy ART)

ART is a neural theory of cognitive information processing that states that fast learning is a resonant phenomenon in neu-
ral circuits [42]. Fuzzy ART inherits the benefits of ART, including fast and stable learning and incremental clustering. The
Fuzzy ART method is typically applied in the incremental learning model of a self-organizing neural network (SONN)
[43]. The Fuzzy ART architecture consists of two-layer nodes or neurons, the feature representation field F1, and the category
representation field F2, as shown in Fig. 1. The two layers are connected via adaptive weights wj, emanating from node j in
layer F2. In other words, those nodes are connected by the bottom-up-weight vector wij and top-down-weight vector wji.

The ability to automatically obtain the number of clusters is a benefit of Fuzzy ART clustering. Generally, Fuzzy ART is
accurate for well-separated data. In Fuzzy ART, as shown in Fig. 2, a low vigilance level, which is a value used to scale the
cluster size, results in small specific categories, including patterns from different data distributions or classes (Fig. 2(a)),
while a high vigilance level results in more categories (Fig. 2(b)).

In fact, Fuzzy ART is a combination of fuzzy logic and ART network that applies the fuzzy operators min ^ð Þ and max _ð Þ.
yj ¼
jI ^wjj
aþ jwjj
� � ð24Þ
where I is an input vector, wj is a weight vector, and a > 0 is the parameter to be selected. Each input I is an m-dimensional
vector I ¼ i1; i2; . . . ; imð Þ, where each component ii i ¼ 1;2; . . . ;mð Þ is in the interval 0;1½ �. I (the input to the network) is nor-
malized by adding A, which is the actual input, to its complement 1� A [44]. An original vector A ¼ a1; . . . ; akð Þ is coded into
663



Fig. 1. Basic ART structure.
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an input pattern I by adding the complements of its elements to the original vector. This doubles the dimension of all input
patterns and prototypes
I ¼ A;A0
� � ¼ a1; . . . ; ak;1� a1; . . . ;1� akð Þ ai 2 0;1½ � 8 i
The L1-norm2 of complement encoded vectors of the same dimension is constant, independent of the values of their
elements
jIj ¼
X2k
i¼1

ii ¼
Xk

i¼1
ai þ

Xk

i¼1
1� ai ¼

Xk

i¼1
ai þ k�

Xk

i¼1
ai ¼ k ¼ m=2
Fig. 2. Geometric explanation of Fuzzy ART for low vigilance level data (a) and high vigilance level data (b).
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Each category j in the weight vector corresponds to a vectorwj ¼ wj1;wj2; . . . ;wjm
� �

j ¼ 1;2; . . . ;nð Þ of adaptive weight. The
number of potential categories n is arbitrary. Initially
wj1 ¼ wj1 ¼ . . . ¼ wjm ¼ 1
The Fuzzy ARTs dynamics is identified by selection parameter a > 0 to break the tie when more than one prototype vector
is a fuzzy subset of the input pattern,
yj ¼ max
j

yj
� �
The normalized input pattern I is used to compute y in Eq. (24).
The winner, which is denoted by yj with J as the winning node index, and an expectation is reflected in layer F1, as shown

in Eq. (24), has to pass the vigilance test. q, a value between 0 and 1, is a vigilance parameter set by the user, and the number
of existing prototypes is k.
q 6 jI ^wJ j
k

ð25Þ
If the test is passed, resonance occurs. Input I joins cluster J, and wJ (the winning prototype vector) is updated via the
following equation,
wnew
J ¼ b I ^wold

J

� �
þ 1� bð Þwold

J ð26Þ
where b is a Fuzzy ART parameter, called learning rate, which may assume values in the interval 0;1ð �. If b ¼ 1 the learning is
called fast learning.

On the other hand, if the vigilance criterion is not met, a reset signal is sent back to layer F2 to shut off the current winning
neuron, which will remain disabled for the entire duration of the presentation of this input pattern, and a new competition is
performed among the rest of the neurons. This new expectation is then projected into layer F1, and this process repeats until
the vigilance criterion is met. In the case that an uncommitted neuron is selected for coding, a new uncommitted neuron is
created to represent a potential new cluster.

3. Proposed method

In this section, we modify the distribution of a dataset using the Fuzzy ART as a clustering method to overcome the class
imbalance problem. Then, the IFTSVM [12] technique is utilized to find an excellent non-parallel hyperplane in the generated
data points. Finally, a coordinate descent system with shrinking by an active set is applied to address the computational
complexity. The proposed method, CIL-FART-IFTSVM, can be applied to solve the class imbalance problem in the presence
of noise and outliers and for large-scale datasets.

3.1. Class Imbalance Learning Using Fuzzy ART and Intuitionistic Fuzzy Twin Support Vector Machines (CIL-FART-IFTSVM)

Let T be the training set for IFTSVM:
T ¼ x1; y1;l1; m1
� �

; x2; y2;l2; m2
� �

; . . . ; xl; yl;ll; ml
� �

:

where li and mi are the degrees of the membership and nonmembership functions of xi, respectively. For IFTSVM, the score
function can be defined as:
si ¼
li mi ¼ 0;
0 li 6 mi;
1�mi

2�li�mi others:

8><
>: ð27Þ
The role of IFTSVM classification is to detect the optimal hyperplane that maximizes the margin among the classes. As
shown in Fig. 3, CIL-FART-IFTSVM can be organized into three steps:

(1) Data selection with Fuzzy ART,
(2) Declustering to modify the distribution of datasets,
(3) IFTSVM classification with Coordinate descent to reduce the computational complexity.
The description of each step is given as follows.
665



Fig. 3. CIL-FART-IFTSVM flowchart.

Fig. 4. An example of (1) Data selection with Fuzzy ART, (2) Declustering to modify the distribution of datasets, (3) IFTSVM classification.
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3.1.1. Data selection with Fuzzy ART
To implement CIL-FART-IFTSVM, we must first select data from imbalanced datasets as the input of CIL-FART-IFTSVM.

Suppose, as shown in Fig. 4, that the majority class is negative samples (the blue squares) and the minority class is positive
samples (the red circles). We apply Fuzzy ART clustering as the data selection method. The goal of Fuzzy ART clustering is to
find N clusters or partitions, i.e., Fi i ¼ 1;2; . . . ;Nð Þ from T, where N < l; Fi – /, and [Ni¼1Fi ¼ T . The obtained clusters are as
follows:

ið Þ clusters with only positive samples, defined by Fþ, i.e., Fþ ¼ [Fijy ¼ þ1f g,
iið Þ clusters with only negative samples, defined by F�, i.e., F� ¼ [Fijy ¼ �1f g,
iiið Þ clusters with both types of samples (+/-) or mix-labeled, defined by F�, i.e., F� ¼ [Fijy ¼ �1f g.
Fig. 4(a) shows the clusters after Fuzzy ART, where the clusters with only red circles are positive samples (i.e., Fþ), the

clusters with only blue squares are negative samples (i.e.. F�), and clusters such as A consist of both samples (i.e.. F�). We
illustrate the set of the centers of the clusters in Fþ and F� are Cþ and C�, respectively, i.e.,
Cþ ¼ [Cijy ¼ þ1f g positive samples center ð28Þ
C� ¼ [Cijy ¼ �1f g negative samples center ð29Þ

The class center [12] of each class can be measured by
C� ¼ 1
l�

X
yi¼�1

xi
where lþ is the total number of positive and l� is the total number of negative samples.
3.1.2. Declustering to modify the distribution of datasets
We suggest restoring data to the training dataset by including the data in the clusters, we call this procedure declustering.

To address imbalanced datasets, we focus on only the majority samples (the blue squares). Thus, more data close to the
hyperplane can be found via declustering, and the dataset used in this step is the union of C�; Fþ and F�, i.e., C� [ Fþ [ F�.
The declustering outcomes of the support vectors are presented in Fig. 4 (b). In fact, we delete only those clusters consisting
of all the negative samples (majority) and maintain only the centers of those samples. Additionally, we keep all the data of
the positive samples (minority) and mix-labeled clusters (F�) as the training data in this step. The declustering process not
only finds samples that possibly support vectors but also modifies the distribution of the datasets to overcome the imbal-
ance, which improves the accuracy.
3.1.3. IFTSVM classification with coordinate descent method to reduce computational complexity
In this step, the recovered dataset (reduced dataset from the second step) is taken as a new training set. We use IFTSVM

classification to obtain the decision hyperplanes to find excellent nonparallelism in the generated data points.
Our Wolfe dual IFTSVM equations require a pair strictly convex QPPs (Eqs. 15 and 16 or 21 and 22), but they can be solved

similarly. For instance, by defining W ¼ HT
1H1 þ C1I

� ��1
GT

2 and W ¼ G2W , Eq. (15) can be simplified as a quadratic

explanation:
min
a

g að Þ ¼ 1
2
aTWa� eT2a
subject to 0 6 a 6 C2s2 ð30Þ

To solve the above equation, a coordinate descent strategy with active set shrinking is approved to address the compu-

tational complexity. The pseudocode is presented in Algorithm 1. Readers can find more theoretical details in [45,46]. In our

algorithm, rproj
i g að Þ is a projected gradient defined as
rproj
i g að Þ ¼

min 0;rproj
i g að Þ

� �
ai ¼ 0;

rproj
i g að Þ 0 < ai < C2s2;

max 0;rproj
i g að Þ

� �
ai ¼ C2s2:

8>>><
>>>:

ð31Þ
where rig denotes the i� th component of gradient rg.
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Algorithm1 CIL-FART-IFTSVM with active set shrinking

1: Compute W ¼ HT
1H1 þ C1I

� ��1
GT
2 and Wii ¼ G2iWi

2: Set A 1; . . . ; l2f g
3: Given � and initialized a 0;u1  0
4: Initialized N  1 and n �1
5: while do
6: Initialize N  �1 and n 1
7: for all i 2 A (randomly and exclusively selected) do
8: Compute rig að Þ ¼ �G2iu1 � 1

9: Assign temporally rproj
i g að Þ  0

10: if ai ¼ 0 then

11: if rproj
i g að Þ > N, then A ¼ A n if g end if

12: if rproj
i g að Þ < 0, then rproj

i g að Þ  rig að Þ
end if

13: else if ai ¼ C2si2 then

14: if rproj
i g að Þ < n, then A ¼ A n if g end if

15: if rproj
i g að Þ > 0, then rproj

i g að Þ  rig að Þ
end if

16: else

17: rproj
i g að Þ  rig að Þ

18: end if

19: N  max N;rproj
i g að Þ

� �
20: n min n;rproj

i g að Þ
� �

21: if rproj
i g að Þ– 0 then

22: ai  ai

23: ai  min max ai �rig að Þ=Wii;0
� �

;C2si2
� �

24: u1i  u1i �Wi ai � aið Þ
25: end if
26: end for
27: if N � n < � then
28: if A ¼ 1; . . . ; l2f g, break
29: else
30: A 1; . . . ; l2f g, N  1;n �1
31: if N � 0, then N  1. else N  N end if
32: if N P 0, then n �1. else n n end if
33: end if
34: end while
4. Complexity analysis of the CIL-FART-IFTSVM

In this section, the big-O notation [47] is used for the analysis of on-time complexity of the CIL-FART-IFTSVM. The analysis
is divided into two parts: Fuzzy ART and IFTSVM. Let M and N denote the number of input features and number of prototype
nodes, respectively. As reported in [48], Fuzzy ART records the worst-case time complexity of N2 þMN, which is asymptot-

ically equivalent to O N2
� �

, when N !1 and M !1.

In IFTSVM, let n be the total number of training samples andm ¼ n=2 be the number of samples in each class. The IFTSVM
measures the degrees of membership and nonmembership functions to compute the score value of each sample. Therefore,

the time complexity of the IFTSVM [12] is O 2� n=2ð Þ3
� �

.

Therefore, the worst-case time complexity of CIL-FART-IFTSVM can be determined by combining the time complexity of

Fuzzy ART O N2
� �

and IFTSVM O 2� n=2ð Þ3
� �

, which is O N2
� �

þ O 2� n=2ð Þ3
� �

when all variables extend to infinity.
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5. Experiment and results

To validate the efficacy and generalizability of CIL-FART-IFTSVM, we conducted experiments on 44 imbalanced datasets
with an imbalance ratio (IR) from 1 to 129.44 from the KEEL imbalanced datasets [49] and UCI machine learning repository
[50] for binary classification. Additionally, one real dataset [51] is used to detect credit card fraud. Table 1 provides details of
the imbalanced datasets. For all datasets, 5-fold cross-validation is used. The bootstrap technique [52] with 95% confidence
intervals is utilized to statistically quantify the results. A significant advantage of bootstrap is its simplicity. It is a straight-
forward way to derive estimates of standard errors and confidence intervals for complex estimators of the distribution, such
as percentile points, proportions, odds ratio, and correlation coefficients. Bootstrap is also an appropriate way to control and
check the stability of the results. Although for most problems, it is impossible to know the true confidence interval, bootstrap
is asymptotically more accurate than the standard intervals obtained using sample variance and assumptions of normality.
Bootstrapping is also a convenient method that avoids the cost of repeating the experiment to get other groups of sample
data. In this technique, Bootstrap is set to repeat 5000 times our results to find the mean and standard deviations.

The CIL-FART-IFTSVM parameters are fixed as follows: ci i ¼ 1;2;3;4ð Þ are properly investigated in the grids

2iji ¼ �10;�9; . . . ;9;10
n o

by setting C1 ¼ C3;C2 ¼ C4. Moreover, a Gaussian kernel function is used in the nonlinear cases,

i.e., K x1; x2ð Þ ¼ exp �kx1 � x2k2=r2
� �

and r 2 2rmin :rmax
� �

with rmin ¼ �10;rmax ¼ 10. All the experiments are implemented

in a MATLAB 2018a environment on a PC with an Intel(R) Core i5 processor (3.30 GHz) and 12 GB RAM.
The geometric mean of sensitivity and specificity (G-Mean) [23] is used to validate the classification performance of the

algorithms on imbalanced datasets. A larger G-Mean indicates better performance. We performed the Friedman test [53] to
statistically compare 14 algorithms on 40 datasets. The experiments were performed on imbalanced datasets with SVM [1],
least squares SVM (LSSVM) [54], FSVM [6], TSVM [3], FTSVM [55], coordinate descent FTSVM (CDFTSVM) [8], entropy-based
FSVM (EFSVM) [21], entropy-based FTSVM for CIL (EFTWSVM-CIL) [20], SVM with synthetic minority oversampling tech-
nique (SVM-SMOTE) [56], tree-based AdaBoost Algorithm (AdaBoost) [57], SVM with one-sided selection (SVM-OSS) [58],
EasyEnsemble [59], SVM with random undersampling (SVM-RUS) [60], and the NN classifier (1-NN) [61].
5.1. Statistical comparison results

The Friedman test [53] was performed to compare the performance of the proposed CIL-FART-IFTSVM method and other
existing CIL methods. In the Friedman test, we rank the algorithms applied to each dataset individually: the algorithm with
Table 1
Details of the Imbalanced Datasets.

Dataset Positive Negative Instance Dimension Im.
Ratio

Dataset Positive Negative Instance Dimension Im.
Ratio

Ripley 650 650 1,250 3 1 Ecoli 0-1-vs-2-3-5 24 220 244 8 9.17
Cleveland 160 137 297 14 1.17 Yeast 0-5-6-7-9-vs-

4
51 477 528 9 9.35

EEG Eye
State

6723 8257 14,980 15 1.23 Connect-4 6449 61,108 67,557 43 9.48

Australian 383 307 690 14 1.25 Vowel 90 898 988 11 9.98
CMC 629 844 1,473 10 1.34 Ecoli 0-6-7-vs-5 20 200 220 7 10
Ionosphere 126 225 351 34 1.79 Led7digit 0-2-4-5-6-

7-8-9-vs-1
37 406 443 8 10.97

Wisconsin 239 444 683 10 1.86 Ecoli 0-1-vs-5 20 220 240 7 11
Pima 268 500 768 9 1.87 Ecoli 0-1-4-7-vs-5-6 25 307 332 7 12.28
Yeast 1 429 1,055 1,484 9 2.64 Ecoli 0-1-4-6-vs-5 20 260 280 7 13
Vehicle 2 218 628 864 19 2.88 Shuttle c0-vs-c4 123 1,706 1,829 10 13.87
Vehicle 1 217 629 864 19 2.90 Glass 4 201 13 214 10 15.46
Adult 34,014 11,208 45,222 15 3.03 Ecoli 4 20 316 336 8 15.80
Transfusion 178 570 748 5 3.20 Yeast 1-4-5-8-Vs-7 30 663 693 8 22.10
Wpbc 47 151 198 34 3.22 Glass 5 9 205 214 10 22.78
Segment 329 1979 2,308 19 6.02 Yeast 2-Vs-8 20 462 482 9 23.10
Yeast 3 163 1,321 1,484 9 8.10 Covertype 20,510 560,502 581,012 55 27.33
Page blocks 560 4,913 5,473 11 8.78 Yeast 4 51 1,433 1,484 9 28.10
Yeast 2-vs-4 463 51 514 9 9.08 Yeast 1-2-8-9-Vs-7 30 917 947 9 30.57
Ecoli 0-2-3-

4-vs-5
20 182 202 8 9.10 Yeast 5 44 1,440 1,484 8 32.73

Yeast 0-3-5-
9-vs-7-8

50 456 506 9 9.12 Ecoli 0-1-3-7-vs-2-6 7 274 281 8 39.14

Yeast 0-2-5-
6-vs-3-7-
8-9

99 905 1,004 9 9.14 Yeast 6 35 1,449 1,484 9 41.40

Ecoli 0-4-6-
vs-5

20 183 203 8 9.15 Abalone 19 32 4,142 4,174 8 129.44
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the best performance is ranked first, next best is ranked 2, etc. Suppose that n is the number of imbalanced datasets, k is the

number of algorithms, and rji is the rank of the jth algorithm on the ith dataset. This test evaluates the average rank of algo-

rithms Rj ¼ 1
n

Pn
i¼1r

j
i. Under the null hypothesis, the ranks (Rj) are equal, i.e., all the algorithms are equivalent. The Friedman

test
v2
F ¼

12n
k kþ 1ð Þ

Xk

j¼1
R2
j �

k kþ 1ð Þ2
4

" #
ð32Þ
is based on a v2
F distribution with k� 1ð Þ and k� 1ð Þ n� 1ð Þ degrees of freedom when n and k are sufficiently large. In [62],

the authors showed that the Friedman v2
F produced a better statistic with pessimistic behavior
FF ¼ n� 1ð Þv2
F

n k� 1ð Þ � v2
F

ð33Þ
5.2. Imbalanced datasets

Our experiments with imbalanced datasets are organized as follows:

5.2.1. Parameter effect
The influence of various r (kernel parameter) and C (trade-off) is studied using the Vowel dataset. The purpose is to iden-

tify the optimal parameters, i.e., C for linear kernel functions and C and r for nonlinear kernel functions, that produce the
best accuracy. First, C, which varies in �10;10½ �, is optimized for the linear kernel function. Clearly, for C > 0 (Fig. 5), CIL-
FART-IFTSVM generates better results, especially when C ¼ 1. Next, for nonlinear kernel functions, C and r are optimized.
C and r can vary in �10;10½ �. CIL-FART-IFTSVM with C ¼ 1 and r ¼ �1 performs best (Fig. 6).

In this paper, we empirically set the vigilance value (q) more than 0.7 for small datasets and less than 0.3 for large data-
sets. For large data sets (small data sets, respectively), the values of 0:1;0:2;0:25; 0:3f g ( 0:7;0:8;0:85;0:9f g, respectively) are
chosen. Then, we randomly repeat the data sets ten times for each vigilance value individually to discover which one has the
best performance. Finally, the best value is chosen for cross-validation. Twenty small and four large data sets are considered
to validate the best vigilance value. Fig. 7 and 8 show the best vigilance values for the small and large data sets, respectively.

5.2.2. In the second experiment, we focus on the classification performance of CIL-FART-IFTSVM, TSVM, FTSVM, EFSVM, and
EFTWSVM-CIL to study the robustness of CIL-FART-IFTSVM to noise and outliers.

Table 2 shows the G-Mean for a linear kernel function along with the standard deviation (SD). The proposed method has
the best performance on all datasets except for Yeast 0-5-6-7-9-vs-4, Led7digit 0-2-4-5-6-7-8-9-vs-1, Ecoli 0-1-4-6-vs-5, and
Fig. 5. G-Mean (%) of CIL-FART-IFTSVM with linear kernel for Vowel dataset.

670



Fig. 6. G-Mean (%) of CIL-FART-IFTSVM with nonlinear kernel for Vowel dataset.
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Yeast 5. However, the EFTWSVM-CIL technique achieves the highest G-Mean rate for Yeast 0-5-6-7-9-vs-4 and Yeast 5.
FTWSVM technique achieves the highest G-Mean rate for Ecoli 0-1-4-6-vs-5.

In some datasets like Pima or Transfusion, we have an improvement of the G-Mean outcomes presented by five tech-
niques: i) From 66.74% to 76.05% applying the CIL-FART-IFTSVM in Pima which is 1% better than the second best method
(EFTWSVM-CIL), and ii) From 56.90% to 76.14% using the CIL-FART-IFTSVM in Transfusion which is 25% better than the sec-
ond best method (EFTWSVM-CIL).

From Table 2, the Friedman test statistic is calculated for a linear kernel function under the null hypothesis when n ¼ 18
and k ¼ 5:
v2
F ¼

12� 18
5� 5þ 1ð Þ 1:472 þ 2:532 þ 4:252 þ 3:112 þ 3:642

� �
� 5� 5þ 1ð Þ2

4

" #
¼ 32:73
and
FF ¼ 18� 1ð Þ � 32:73
18� 5� 1ð Þ � 32:73

¼ 606:05
36:35

¼ 14:17
FF is obtained from the F-distribution with k� 1ð Þ ¼ 5� 1ð Þ ¼ 4 and k� 1ð Þ n� 1ð Þ ¼ 5� 1ð Þ 18� 1ð Þ ¼ 68 degrees of free-
dom. The critical value of F 4;68ð Þ at a ¼ 0:05 is 2:51; thus, we reject the null hypothesis and state that the compared algo-
rithms are not equivalent at a ¼ 0:05, i.e., FF ¼ 14:17 > 2:51. Table 2 shows differences in average ranks of the compared
algorithms and the average rank of the CIL-FART-IFTSVM for the 18 imbalanced datasets with respect to the G-Mean. At this
time, we applied the Bonferroni-Dunn test [63] to compare CIL-FART-IFTSVMwith the other imbalanced learning algorithms.
We computed the critical difference (CD), which is defined in Eq. (15):
CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k kþ 1ð Þ

6n

r
: ð34Þ
where qa (critical values) are taken from [64]. We can calculate the critical difference, CD ¼ 2:498
ffiffiffiffiffiffiffiffiffiffiffi
5 5þ1ð Þ
6�18

q
¼ 1:32. The differ-

ence between the average ranks of CIL-FART-IFTSVM and EFSVM (FTWSVM and TWSVM, respectively) is 4:25� 1:47 ¼ 2:78
(3:11� 1:47 ¼ 1:64 and 3:64� 1:472 ¼ 2:17, respectively). The differences are greater than 1.32; therefore, there is a signif-
icant difference between CIL-FART-IFTSVM and EFSVM (FTWSVM and TWSVM, respectively). However, the difference
between the average ranks of CIL-FART-IFTSVM and EFTWSVM-CIL is less than 1.32, i.e., 2:53� 1:47 ¼ 1:06 < 1:32. Thus,
we cannot conclude that CIL-FART-IFTSVM is significantly different from EFTWSVM-CIL. However, for almost all the datasets,
CIL-FART-IFTSVM performed better than EFTWSVM-CIL (see the results and ranks in Table 2).

Table 3 shows the G-Mean for a non-linear kernel function along with the standard deviation (SD). One can observe that
the proposed technique almost achieves the highest G-Mean rate. However, the EFTWSVM-CIL technique achieves the high-
est G-Mean rate for Yeast 2-vs-4 and Ecoli 4 datasets. Therefore, it is obvious to conclude that CIL-FART-IFTSVM has better
generalization capability than other learning techniques.
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Fig. 7. Best vigilance values for selected small data sets.
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In some datasets like Yeast 2-vs-4 or Yeast 5, we have an improvement of the G-Mean outcomes presented by five tech-
niques: i) From 86.51% to 88.97% applying the EFTWSVM-CIL in Yeast 2-vs-4 which is 1% better than the second best
method (CIL-FART-IFTSVM), and ii) From 72.82% to 94.36% using the CIL-FART-IFTSVM in Yeast 5 which is 5% better than
the second best method (EFTWSVM-CIL).

From Table 3, the Friedman statistic test is calculated for nonlinear kernel function under the null hypothesis when
n ¼ 22 and k ¼ 5:
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Fig. 8. Best vigilance values for selected large data sets.

Table 2
G-Mean (%) and ranks for imbalanced datasets with a linear kernel function with standard deviation (SD).

dataset Im. Ratio TWSVM FTWSVM EFSVM EFTWSVM-CIL CIL-FART-IFTSVM

Ripley 1 85.68 85.87 80.99 86.08 88.48�1.31
Wisconsin 1.86 93.31 94.20 95.06 93.79 98.32�0.87
Pima 1.87 73.02 72.85 66.74 75.25 76.05�2.97
Vehicle 2 2.88 89.69 87.60 86.29 89.92 93.70�2.05
Vehicle 1 2.90 65.99 67.75 55.16 67.37 74.14�3.05
Transfusion 3.20 56.90 56.95 56.95 60.82 76.14�3.62
Wpbc 3.22 62.45 61.77 66.98 64.39 69.71�1.42
Yeast 2-vs-4 9.08 84.59 86.49 78.45 84.59 88.21�3.38
Ecoli 0-2-3-4-vs-5 9.10 94.68 96.19 91.61 96.32 97.07�4.48
Ecoli 0-1-vs-2-3-5 9.17 91.98 91.95 72.85 91.95 94.59�7.45
Yeast 0-5-6-7-9-vs-4 9.35 75.84 78.45 71.66 79.29 78.32�3.03
Vowel 9.98 87.41 86.41 79.56 87.41 91.08�6.68
Led7digit 0-2-4-5-6-7-8-9-vs-1 10.97 89.29 87.92 91.89 89.50 89.66�7.57
Ecoli 0-1-vs-5 11 94.31 94.31 86.84 94.31 94.31�6.67
Ecoli 0-1-4-6-vs-5 13 92.80 92.96 83.22 92.85 92.20�6.42
Shuttle c0-vs-c4 13.87 99.96 99.98 99.32 99.98 100�00
Yeast 5 32.73 73.09 73.94 86.37 96.94 94.69�5.42
Ecoli 0-1-3-7-vs-2-6 39.14 98.09 98.16 89.05 98.01 98.53�0.90
Ave. Rank – 3.64 3.11 4.25 2.53 1.47

Differences – 2.17 1.64 2.78 1.06 N/A

Table 3
G-Mean (%) and ranks for imbalanced datasets with a nonlinear kernel function with standard deviation (SD).

dataset Im. Ratio TWSVM FTWSVM EFSVM EFTWSVM-CIL CIL-FART-IFTSVM

Cleveland 1.17 82.19 81.93 83.85 83.67 84.42�7.88
Australian 1.25 83.86 85.64 83.32 85.91 86.87�3.14
CMC 1.34 64.17 63.73 62.86 64.01 66.80�2.41
Ionosphere 1.79 89.67 90.03 82.07 89.68 95.26�3.12
Pima 1.87 70.80 71.48 73.91 73.55 74.73�1.89
Vehicle 2 2.88 93.51 93.29 93.12 92.96 95.24�1.40
Transfusion 3.20 63.09 64.76 62.69 64.87 75.31�4.63
Wpbc 3.22 62.00 62.01 59.89 63.84 69.07�3.87
Yeast 2-vs-4 9.08 86.88 86.51 86.92 88.97 88.30�3.46
Ecoli 0-2-3-4-vs-5 9.10 92.71 92.10 93.06 92.71 98.77�1.18
Yeast 0-3-5-9-vs-7-8 9.12 69.13 68.12 70.67 71.43 77.33�7.01
Yeast 0-2-5-6-vs-3-7-8-9 9.14 71.59 75.53 73.17 75.53 84.76�10.61
Ecoli 0-4-6-vs-5 9.15 89.01 89.07 87.79 89.07 96.75�4.38
Ecoli 0-1-vs-2-3-5 9.17 93.53 92.68 91.45 92.73 96.79�4.36
Yeast 0-5-6-7-9-vs-4 9.35 72.16 70.99 75.41 74.51 80.66�4.04
Ecoli 0-6-7-vs-5 10 88.20 88.23 88.42 88.22 90.67�6.65
Ecoli 0-1-vs-5 11 90.02 90.00 84.93 90.02 92.67�7.46
Ecoli 0-1-4-7-vs-5-6 12.28 93.01 93.27 93.27 93.27 94.21�5.17
Shuttle c0-vs-c4 13.87 99.38 99.58 99.43 99.62 100�0.00
Glass 4 15.46 86.02 86.61 85.79 87.57 90.84�8.93
Ecoli 4 15.80 95.42 95.51 93.89 95.68 94.43�6.61
Yeast 5 32.73 80.83 89.16 72.82 89.33 94.36�3.69
Ave. Rank – 3.82 3.50 3.91 2.59 1.18

Differences – 2.64 2.32 2.73 1.41 N/A
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v2
F ¼

12� 22
5� 5þ 1ð Þ 1:182 þ 2:592 þ 3:912 þ 3:502 þ 3:822

� �
� 5� 5þ 1ð Þ2

4

" #
¼ 46:03
and
FF ¼ 22� 1ð Þ � 46:03
22� 5� 1ð Þ � 46:03

¼ 1034:04
38:76

¼ 23:03
FF is obtained from the F-distribution with k� 1ð Þ ¼ 5� 1ð Þ ¼ 4 and k� 1ð Þ n� 1ð Þ ¼ 5� 1ð Þ 22� 1ð Þ ¼ 84 degrees of free-
dom. The critical value of F 4;84ð Þ at a ¼ 0:05 is 2:48. We can reject the null hypothesis because the compared algorithms are
not equivalent at a ¼ 0:05, i.e., FF ¼ 23:03 > 2:48. Table 3 shows the differences between the average ranks of the compared
algorithms and the average rank of CIL-FART-IFTSVM for the 22 imbalanced datasets with respect to the G-Mean. At this
time, we applied the Bonferroni-Dunn test to compare the CIL-FART-IFTSVM with the other imbalanced learning algorithms

in this experiment. We can calculate the critical difference, CD ¼ 2:498
ffiffiffiffiffiffiffiffiffiffiffi
5 5þ1ð Þ
6�22

q
¼ 1:19. The difference between the average

ranks of CIL-FART-IFTSVM and EFTWSVM-CIL (EFSVM, FTWSVM, and TWSVM, respectively) is 2:59� 1:18 ¼ 1:41
(3:91� 1:18 ¼ 2:73;3:50� 1:18 ¼ 2:32, and 3:82� 1:18 ¼ 2:64, respectively). The differences are greater than 1.19; thus,
CIL-FART-IFTSVM is significantly better than all the other methods in this experiment.

5.2.3. In the third experiment, we evaluate the performance of the proposed CIL-FART-IFTSVM on low and medium imbalance
datasets by comparing with CIL-FART-IFTSVM, EasyEnsemble, SVM-RUS, FSVM, SVM-SMOTE, SVM-OSS, SVM, 1-NN, and AdaBoost.

Table 4 shows the G-Mean rate for linear and non-linear kernel functions along with the standard deviation (SD) on 8 low
imbalance datasets. The CIL-FART-IFTSVM technique is better in most linear and nonlinear cases. The linear case of CIL-FART-
IFTSVM technique is better for Wisconsin, Pima, and Yeast 3 datasets, while the nonlinear CIL-FART-IFTSVM technique
achieves the highest G-Mean rate for Wisconsin, Pima, Vehicle 2, Vehicle 1, Segment, and Yeast 3 datasets. However, the
EasyEnsemble technique achieves the highest G-Mean rate for Yeast 1 and Page blocks datasets.

In some datasets like Yeast 1, Wisconsin, or Yeast 3, we have an enhancement of the G-Mean outcomes presented by nine
techniques: i) From 64.39% to 73.40% applying the EasyEnsemble in Yeast 1 which is 1% better than the second best method
(CIL-FART-IFTSVMnon�Linear), ii) From 92.30% to 98.32% using the CIL-FART-IFTSVMnon�Linear in Wisconsin which is 2% better
than the second best method (FSVM), and iii) From 78.29% to 93.26% applying the CIL-FART-IFTSVMnon�Linear in Yeast 3
which is 3% better than the second best method (EasyEnsemble).

From Table 4 (Ave. Rank), the Friedman statistic is calculated on low imbalance datasets for the nonlinear kernel under
the null hypothesis when n ¼ 8 and k ¼ 9:
v2
F ¼

12� 8
9� 9þ 1ð Þ 1:252 þ 7:122 þ 5:252 þ 2:252 þ 6:122 þ 5:502 þ 7:122 þ 4:752 þ 5:622

� �h

� 9� 9þ 1ð Þ2
4

�

and
FF ¼ 8� 1ð Þ � 34:70
8� 9� 1ð Þ � 34:70

¼ 242:9
29:3

¼ 8:29
FF is obtained from the F-distribution with k� 1ð Þ ¼ 9� 1ð Þ ¼ 8 and k� 1ð Þ n� 1ð Þ ¼ 9� 1ð Þ 8� 1ð Þ ¼ 56 degrees of free-
dom. The critical value of F 8;56ð Þ at a ¼ 0:05 is 2:11. Thus, we can reject the null hypothesis that the compared algorithms
are equivalent at a ¼ 0:05, i.e., FF ¼ 8:29 > 2:11. Table 4 shows the differences between the average ranks of the compared
algorithms and the average rank of CIL-FART-IFTSVM for the 8 imbalanced datasets with respect to the G-Mean. We then
applied the Bonferroni-Dunn test to compare CIL-FART-IFTSVM with the other imbalanced learning algorithms. The critical

difference CD ¼ 2:72
ffiffiffiffiffiffiffiffiffiffiffi
9 9þ1ð Þ
6�8

q
¼ 3:72. The difference between the average ranks of CIL-FART-IFTSVM and FSVM (SVM-OSS,

SVM-RUS, SVM, AdaBoost, and 1-NN, respectively) is 5:62� 1:25 ¼ 4:37 (7:12� 1:25 ¼ 5:87;5:50� 1:25 ¼
4:25;6:12� 1:25 ¼ 4:87;5:25� 1:25 ¼ 4, and 7:12� 1:25 ¼ 5:87, respectively). The differences are greater than 3.72; there-
fore, there is a significant difference between CIL-FART-IFTSVM and FSVM (SVM-OSS, SVM-RUS, SVM, AdaBoost, and 1-NN,
respectively). However, the difference between the average ranks of CIL-FART-IFTSVM and SVM-SMOTE (EasyEnsemble,
respectively) is 4:75� 1:25 ¼ 3:5 (2:25� 1:25 ¼ 1, respectively), which is less than 3.72. Thus, there is no significant differ-
ence between CIL-FART-IFTSVM and SVM-SMOTE (EasyEnsemble, respectively). Still, for almost all the datasets, CIL-FART-
IFTSVM performed better than SVM-SMOTE and EasyEnsemble (see the results in Table 4).

Table 5 shows the G-Mean rate for linear and non-linear kernel functions along with the standard deviation (SD) on 25
medium imbalance datasets. The proposed technique is better in most linear and nonlinear cases. The linear CIL-FART-
IFTSVM is better for Yeast 0-3-5-9-vs-7-8, Yeast 0-2-5-6-vs-3-7-8-9, Ecoli 0-4-6-vs-5, Ecoli 0-1-vs-2-3-5, Ecoli 0-6-7-vs-5,
Led7digit 0-2-4-5-6-7-8-9-vs-1, Ecoli 0-1-vs-5, Shuttle c0-vs-c4, Ecoli 4, Glass 5, Yeast 5, and Ecoli 0-1-3-7-vs-2-6, while
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Table 4
Ranks (only for nonlinear kernel) and G-MEAN (%) of the compared algorithms on low imbalanced datasets (Im. Ratio 6 9:0).

dataset Im.Ratio FSVM SVM-SMOTE SVM-OSS SVM-RUS SVM EasyEnsemble AdaBoost 1-NN CIL-FART-IFTSVM
Linear Non-linear

Wisconsin 1.86 96.28�3.86 94.59�2.30 94.56�1.55 94.31�3.54 94.76�1.45 94.53�2.17 92.53�5.39 92.30�3.00 98.32�0.87 98.21�1.17
Pima 1.87 71.23�3.33 72.44�5.51 70.66�6.28 72.59�1.61 71.00�5.30 74.36�2.65 72.22�3.99 65.59�3.46 76.05�2.97 74.73�1.89
Yeast 1 2.64 69.51�3.44 70.15�2.90 68.52�2.61 69.65�3.93 71.80�3.00 73.40�4.80 67.36�4.15 64.39�2.89 70.56�1.43 72.69�1.73
Vehicle 2 2.88 87.42�1.74 89.18�1.53 82.77�1.93 83.86�1.95 91.38�2.25 95.20�0.48 94.82�0.33 92.23�0.84 93.70�2.05 95.24�1.40
Vehicle 1 2.90 67.58�3.82 71.52�6.37 72.06�6.78 73.21�5.40 69.35�5.16 75.32�5.58 72.19�4.82 63.46�2.29 74.14�3.05 75.37�3.80
Segment 6.02 94.59�0.81 95.17�0.74 87.96�1.01 93.11�0.93 90.47�0.86 99.11�0.09 99.08�0.22 99.01�0.42 98.47�0.28 99.18�0.08
Yeast 3 8.10 87.51�3.14 89.83�1.69 87.09�2.26 87.55�2.13 86.74�5.67 90.38�3.45 84.98�2.39 78.29�2.44 91.11�1.46 93.26�1.25
Page blocks 8.78 79.98�3.95 78.24�7.17 73.28�3.00 78.15�2.82 73.18�6.44 93.54�0.67 90.37�0.57 89.84�1.58 90.42�1.66 91.55�1.55
Ave. Rank – 5.62 4.75 7.12 5.50 6.12 2.25 5.25 7.12 1.25

Difference – 4.37 3.50 5.87 4.25 4.87 1 4 5.87 N/A
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Table 5
Ranks (only for nonlinear kernel) and G-Mean (%) of the compared algorithms on medium imbalanced datasets.

dataset Im. Ratio FSVM SVM-SMOTE SVM-OSS SVM-RUS SVM EasyEnsemble AdaBoost 1-NN CIL-FART-IFTSVM
Linear Non-linear

Yeast 2-vs-4 9.08 85.73�8.19 87.37�2.43 88.18�7.38 87.20�7.08 84.37�7.87 91.46�4.29 82.96�8.55 84.55�11.54 88.21�3.38 88.30�3.46
Ecoli 0-2-3-4-vs-5 9.10 95.36�4.51 95.53�4.04 96.24�4.16 97.93�2.12 96.29�5.26 95.64�4.26 95.42�5.03 91.21�5.02 97.07�4.48 98.77�1.18
Yeast 0-3-5-9-vs-7-8 9.12 68.01�1.42 72.80�0.91 65.62�1.25 71.49�0.88 67.57�1.16 74.71�1.03 65.47�0.94 67.57�1.13 75.54�8.82 77.33�7.01
Yeast 0-2-5-6-vs-3-7-8-9 9.14 76.48�8.80 79.70�6.21 79.49�5.16 77.74�5.65 75.45�5.58 78.75�5.89 70.85�4.04 75.47�3.55 85.76�10.38 84.76�10.61
Ecoli 0-4-6-vs-5 9.15 89.32�8.57 88.13�7.97 87.41�9.02 86.75�7.00 89.12�5.99 85.63�5.13 83.83�11.18 83.80�10.98 96.60�0.48 96.75�4.38
Ecoli 0-1-vs-2-3-5 9.17 91.90�8.88 92.74�11.16 91.85�12.25 91.93�10.19 92.06�12.33 91.41�9.40 83.42�9.54 83.75�10.12 94.59�7.45 96.79�4.36
Yeast 0-5-6-7-9-vs-4 9.35 78.39�8.09 79.61�5.53 79.44�7.31 80.13�5.31 77.06�7.63 78.12�6.55 66.87�7.28 69.49�7.70 78.32�3.03 80.66�4.04
Vowel 9.98 86.28�6.02 90.23�6.70 87.75�10.12 89.20�6.70 91.29�4.33 95.55�4.39 93.51�9.44 99.83�0.20 91.08�6.68 94.02�1.37
Ecoli 0-6-7-vs-5 10 88.13�6.40 88.00�5.50 87.89�6.44 86.70�5.31 86.55�4.86 84.22�5.64 76.07�4.30 83.14�4.73 90.29�6.60 90.67�6.65
Led7digit 0-2-4-5-6-7-8-9-vs-1 10.97 87.58�8.62 87.71�11.95 85.12�12.95 86.23�10.42 86.56�6.12 84.38�13.21 83.58�11.02 60.22�13.67 89.66�7.57 89.03�7.46
Ecoli 0-1-vs-5 11 90.48�3.95 92.27�3.87 90.41�4.58 90.65�2.81 89.71�3.85 86.00�6.97 83.47�8.65 86.71�7.79 94.31�6.67 93.67�7.46
Ecoli 0-1-4-7-vs-5-6 12.28 92.84�2.03 95.30�2.54 93.48�3.70 93.19�2.16 92.11�5.37 93.79�1.54 91.75�6.40 91.82�5.06 94.17�5.54 94.21�5.17
Ecoli 0-1-4-6-vs-5 13 91.90�1.48 92.04�1.53 93.08�0.69 91.00�1.51 91.09�1.53 90.15�1.02 79.35�2.18 87.86�1.59 92.20�6.42 91.74�5.52
Shuttle c0-vs-c4 13.87 99.86�0.11 99.89�0.05 99.86�0.7 99.87�0.05 99.81�0.07 99.93�0.04 81.09�0.41 99.79�0.65 100�0.00 100�0.00
Glass 4 15.46 85.58�9.96 88.60�9.42 86.39�11.18 89.53�3.34 90.84�2.22 83.84�10.99 84.96�9.69 90.19�8.49 85.65�11.83 90.84�8.93
Ecoli 4 15.80 93.05�5.11 94.30�4.70 93.44�5.96 94.23�3.97 94.43�1.93 90.17�4.83 84.03�13.16 88.40�4.22 95.64�2.35 94.43�6.61
Yeast 1-4-5-8-Vs-7 22.10 61.30�6.81 70.82�12.57 66.57�8.11 69.03�12.86 64.74�15.66 68.89�9.22 54.76�0.29 60.06�10.36 65.86�6.37 72.23�4.70
Glass 5 22.78 73.43�10.28 76.55�10.93 67.28�14.50 73.98�3.72 65.56�16.70 72.39�12.68 66.58�13.19 70.95�13.09 81.22�8.07 81.44�6.03
Yeast 2-Vs-8 23.10 71.94�6.61 72.96�6.41 70.73�4.49 73.63�5.09 74.96�7.93 75.54�6.13 70.06�4.89 69.99�4.78 72.40�14.44 75.84�10.00
Yeast 4 28.10 80.80�5.76 85.25�1.11 82.65�3.64 84.70�3.09 81.88�5.58 82.73�3.58 59.49�5.52 67.69�7.57 82.78�5.15 81.89�4.25
Yeast 1-2-8-9-Vs-7 30.57 66.22�4.54 74.11�4.54 66.84�6.07 74.61�3.71 63.89�11.44 72.36�9.58 60.73�6.83 56.82�3.66 72.86�4.85 74.61�3.71
Yeast 5 32.73 90.42�2.21 91.14�1.18 90.38�2.14 90.91�2.33 90.61�1.79 90.56�2.46 81.60�11.63 79.82�5.27 94.69�5.42 94.36�3.69
Ecoli 0-1-3-7-vs-2-6 39.14 98.24�3.42 98.29�3.44 94.15�3.07 93.73�3.18 95.97�1.66 84.98�2.89 72.21�3.40 93.94�3.06 98.53�0.90 99.24�0.33
Yeast 6 41.40 89.57�4.20 92.50�2.66 88.30�3.17 90.61�2.94 90.47�3.64 86.36�2.60 74.59�5.59 79.83�4.87 88.90�2.69 92.72�4.27
Abalone 19 129.44 54.74�2.54 65.25�1.85 53.64�2.04 66.45�1.56 49.77�4.87 70.49�3.28 49.83�0.24 51.48�0.80 65.87�4.25 66.28�2.38
Ave. Rank – 5.26 2.96 5.18 3.98 5.34 4.92 8.40 7.38 1.58

Difference – 3.68 1.38 3.60 2.40 3.76 3.34 6.82 5.80 N/A
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the nonlinear CIL-FART-IFTSVM technique achieves the highest G-Mean rate for Ecoli 0-2-3-4-vs-5, Yeast 0-3-5-9-vs-7-8,
Yeast 0-2-5-6-vs-3-7-8-9, Ecoli 0-4-6-vs-5, Ecoli 0-1-vs-2-3-5, Yeast 0-5-6-7-9-vs-4, Ecoli 0-6-7-vs-5, Led7digit 0-2-4-5-
6-7-8-9-vs-1, Ecoli 0-1-vs-5, Shuttle c0-vs-c4, Glass 4, Yeast 1-4-5-8-Vs-7, Glass 5, Yeast 2-Vs-8, Yeast 1-2-8-9-Vs-7, Yeast
5, Ecoli 0-1-3-7-vs-2-6, and Yeast 6. However, EasyEnsemble (1-NN, SVM-SMOTE, SVM-OSS, and SVM, respectively) tech-
nique achieves the highest G-Mean rate for Yeast 2-vs-4 (Vowel, Ecoli 0-1-4-7-vs-5-6, Ecoli 0-1-4-6-vs-5, and Glass 4,
respectively).

In some datasets like Yeast 0-2-5-6-vs-3-7-8-9, Ecoli 0-1-4-7-vs-5-6, or Led7digit 0-2-4-5-6-7-8-9-vs-1, we have an
improvement of the G-Mean outcomes presented by nine techniques: i) From 70.85% to 85.76% applying the CIL-FART-
IFTSVMnon�Linear in Yeast 0-2-5-6-vs-3-7-8-9 which is 7% better than the second best method (SVM-SMOTE), ii) From
91.75% to 95.30% using the SVM-SMOTE in Ecoli 0-1-4-7-vs-5-6 which is 1% better than the second best method (CIL-
FART-IFTSVMnon�Linear), and iii) From 60.22% to 89.66% applying the CIL-FART-IFTSVMnon�Linear in Led7digit 0-2-4-5-6-7-
8-9-vs-1 which is 2% better than the second best method (SVM-SMOTE).

From Table 5 (Ave. Rank), the Friedman statistic is calculated on medium imbalance datasets for the nonlinear kernel
under the null hypothesis when n ¼ 25 and k ¼ 9:
Table 6
G-Mean

data

Wisc
Pima
Yeas
Vehi
Vehi
Segm
Yeas
Yeas
Yeas
Glas
Ecoli
Yeas
Yeas
Yeas
Yeas
Yeas
Ecoli
Yeas
v2
F ¼

12� 25
9� 9þ 1ð Þ 1:582 þ 7:382 þ 8:402 þ 4:922 þ 5:342 þ 3:982 þ 5:182 þ 2:962 þ 5:262

� �h
� 9� 9þ 1ð Þ2
4

�

and
FF ¼ 25� 1ð Þ � 114:37
25� 9� 1ð Þ � 114:37

¼ 2744:88
85:63

¼ 32:05
FF is obtained from the F-distribution with k� 1ð Þ ¼ 9� 1ð Þ ¼ 8 and k� 1ð Þ 25� 1ð Þ ¼ 9� 1ð Þ 25� 1ð Þ ¼ 192 degrees of
freedom. The critical value of F 8;192ð Þ at a ¼ 0:05 is 1:987; thus, we can reject the null hypothesis that the compared algo-
rithms are equivalent at a ¼ 0:05, i.e., FF ¼ 32:05� 1:987. Table 5 shows the differences between the average ranks of the
compared algorithms and the average rank of the CIL-FART-IFTSVM for the 16 imbalanced datasets with respect to the G-
Mean. At this time, we applied the Bonferroni-Dunn test to compare CIL-FART-IFTSVM with the other imbalanced learning

algorithms. The critical difference CD ¼ 2:72
ffiffiffiffiffiffiffiffiffiffiffi
9 9þ1ð Þ
6�25

q
¼ 2:11. The difference between the average ranks of CIL-FART-IFTSVM

and FSVM (SVM-OSS, SVM-RUS, SVM, EasyEnsemble, AdaBoost, and 1-NN, respectively) is 5:26� 1:58 ¼ 3:66
(5:18� 1:58 ¼ 3:60;3:98� 1:58 ¼ 2:40;5:34� 1:58 ¼ 3:76;4:92� 1:58 ¼ 3:34;8:40� 1:55 ¼ 6:82, and 7:38� 1:58 ¼ 5:80,
respectively), which are greater than 2.11; therefore, there is a significant difference between CIL-FART-IFTSVM and FSVM
(SVM-OSS, SVM-RUS, SVM, EasyEnsemble, AdaBoost, and 1-NN, respectively). However, the difference between the average
rank of CIL-FART-IFTSVM and SVM-SMOTE is 2:96� 1:58 ¼ 1:38, which is less than 2.63; therefore, there is no significant
difference between CIL-FART-IFTSVM and SVM-SMOTE. Still, for almost all the datasets, CIL-FART-IFTSVM performed better
than SVM-SMOTE (see the results in Table 5).
(%) of the compared algorithms.

set Im. Ratio UnderBagging RUSBoost SMOTEBagging CBU Best CIL-FART-IFTSVM

onsin 1.86 94.97 95.69 95.74 99.23 98.32
1.87 75.12 72.07 74.57 75.26 76.05

t 1 2.64 71.08 71.37 72.89 74.10 72.69
cle 2 2.88 95.11 96.64 95.90 98.42 95.24
cle 1 2.90 75.22 74.19 76.11 82.15 75.37
ent 6.02 97.66 98.42 98.57 98.79 99.18
t 3 8.10 93.10 91.32 93.22 95.44 93.26
t 2-vs-4 9.08 91.48 90.71 87.23 93.41 88.30
t 0-5-6-7-9-vs-4 9.35 76.88 78.92 80.40 85.33 80.66
s 4 15.46 84.64 90.83 86.77 84.72 90.84
4 15.80 88.41 93.54 92.63 94.36 95.64
t 1-4-5-8-Vs-7 22.10 55.94 56.30 61.84 62.28 72.23
t 2-Vs-8 23.10 74.77 77.51 77.01 85.23 75.84
t 4 28.10 83.92 78.99 75.22 85.01 82.78
t 1-2-8-9-Vs-7 30.57 67.30 71.87 65.62 69.03 74.61
t 5 32.73 94.70 94.18 94.50 96.93 94.69
0-1-3-7-vs-2-6 39.14 72.84 79.68 83.08 80.64 91.53
t 6 41.40 86.60 82.57 83.82 91.15 92.72
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Table 7
Details of the large-scale imbalanced datasets.

Dataset Positive Negative Dimension Im. Ratio Instance

EEG Eye State 6,723 8,257 15 1.23 14,980
Adult 34,014 11,208 15 3.03 45,222
Connect-4 6,449 61,108 43 9.48 67,557
Credit Card Dataset 2,653 97,347 16 36.7 100,000
Covertype 20,510 560,502 55 27.33 581,012

Table 8
G-Mean (%) with standard deviation (SD) and computational time (s) for imbalanced large-scale datasets

Dataset SVM LSSVM TSVM FSVM CDFTSVM CIL-FART-IFTSVM
G-Mean Time(s) G-Mean Time(s) G-Mean Time(s) G-Mean Time(s) G-Mean Time(s) G-Mean Time(s)

EEG Eye State 49.61�0.00 8.27 59.88�1.34 39.16 56.84�1.11 4.42 58.34�1.43 10.26 58.49�1.32 0.31 60.15�1.20 0.34
Adult 71.54�1.99 25.73 70.11�0.43 2389.07 77.88�0.49 13.17 79.54�0.46 27.28 79.86�0.41 0.71 81.41�0.67 0.68
Connect-4 59.82�0.00 28.87 58.46�0.69 816.47 67.25�0.67 8.67 69.08�0.42 34.20 68.79�0.65 2.38 69.23�0.82 1.33
Covertype 56.95�9.34 1170.69 Out of memory 85.92�0.89 540.32 87.43�0.42 1404.82 95.34�0.11 67.78 95.88�0.11 65.31

Table 9
The experimental outcomes on Census-Income Database

Method Minority Class F-Measure Majority Class F-Measure

SBC 62.15 79.06
RT 46.47 38.58
AT 51.09 43.08
NearMiss-2 58.98 78.60
SBCNM-1 45.28 33.41
SBCNM-2 45.64 35.21
SBCNM-3 44.61 30.35
SBCMD 44.94 31.99
SBCMF 59.04 73.34

CIL-FART-IFTSVMnon�Linear 62.61 81.41
CIL-FART-IFTSVMnonlinear 64.87 83.54
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5.2.4. In the fourth experiment, we evaluate the performance of the proposed CIL-FART-IFTSVM with UnderBagging [57], RUSBoost
[65], SMOTEBagging [66], and clustering-based undersampling (CBU) [67].

Table 6 shows the outcomes (G-Mean rate) of four existing under-sampling imbalance learning techniques on 18 imbal-
anced datasets. From these results, we can see that the proposed technique performed well on all datasets. The performance
of the best CIL-FART-IFTSVM outperforms than UnderBagging, RUSBoost, and SMOTEBagging techniques, while it is compa-
rable to the clustering-based undersampling (CBU) technique. As we can see, for eight out of eighteen datasets that were
considered in this experiment, the results given by the best CIL-FART-IFTSVM technique are better than the results given
by the CBU method, while CBU is better for the other ten out of eighteen datasets.

In some datasets like Wisconsin, Yeast 1-4-5-8-Vs-7, or Yeast 6, we have an improvement of the G-Mean outcomes pre-
sented by five techniques: i) From 94.97% to 99.23% applying the CBU in Wisconsin which is 0.92% better than the second
best method (best CIL-FART-IFTSVM), ii) From 55.94% to 72.23% using the best CIL-FART-IFTSVM in Yeast 1-4-5-8-Vs-7
which is 13.77% better than the second best method (CBU), and iii) From 82.57% to 92.72% applying the CIL-FART-
IFTSVM in Yeast 6 which is 1.69% better than the second best method (CBU).

The experimental results on imbalanced datasets demonstrate that the best CIL-FART-IFTSVM is of significant advantage
compared with other algorithms in dealing with imbalanced datasets.
5.3. Large-scale datasets

SVM is not appropriate for classification of large-scale datasets because the training process is related to the size of the
dataset. CIL-FART-IFTSVM, which can be applied to address the class imbalance issue in the presence of large-scale datasets,
is proposed to overcome this problem. Based on the chart in Fig. 2, we delete the clusters that consist of all negative samples
(majority) and select the centers of those samples. We maintain all the data of the mix-labeled clusters and positive samples
clusters (minority) as training data in this step. Therefore, the reduced dataset (second step of Fig. 2) is taken as the new
training set. To assess the performance of CIL-FART-IFTSVM, we considered 4 large-scale datasets and one real-world dataset.
Table 7 shows the details of the large-scale datasets. Moreover, a coordinate descent systemwith shrinking by an active set is
applied to reduce the computational complexity.
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Table 10
Fraud detection rate (%) for real-world dataset

Group Algorithm FDR(%)

Rules DTNB-X1 36.96
Decision Table 1e 29.16
One R 26.71

Bayes Bayes Net 35.41
Naive Bayes 26.03
A2DE 35.34

Function SGD 19.06
Neura1 Network 21.03
MLP Classifier 21.48

Lazy IBk 42.27
IB1 42.57
KStar 48.30
LWL 26.71

Meta AdaBoost M1 26.71
Attribute Selected Classifier 26.71
Bagging 38.73
Dagging 26.71
Decorate 30.78
END 30.67
Filtered Classifier 28.37
Logit Boost 26.22
Multi Boost AB 26.71
Multi Class Classifier 17.78
Ordinal Class Classifier 30.67
Random SubSpace 33.72
Rotation Forest 49.17
Random Committee 47.36
Threshold Selector 25.14
Randomizable Filtered 43.70
Classification Via Regression 33.64
MultiClass Classifier Updateable 19.06
Iterative Classifier Optimizer 26.46

Tree LMT 31.42
LAD Tree 27.76
J48 30.67
REP Tree 40.73
Random Tree 47.28
Hoeffding Tree 27.58

CIL-FART-IFTSVM Linear Kernel Function 55.31
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5.3.1. Large scale UCI datasets
In the first experiment, we evaluate the efficacy of the proposed CIL-FART-IFTSVM on large-scale imbalanced datasets by

comparing with SVM, LSSVM, TSVM, FSVM, and CDFTSVM. Four large-scale imbalanced datasets with sample sizes from
14,980 to 581,012 are employed. For the Connect-4 and Covertype datasets, we used the following description to transform
the datasets into binary imbalanced datasets.

For the imbalanced version of the Connect-4 dataset, we considered class 2 as positive examples and classes 1 and 3 as
negative examples.

For the imbalanced version of the Covertype dataset, we considered class 7 as positive examples and classes 1, 2, 3, 4, 5,
and 6 as negative examples.

Table 8 shows that CIL-FART-IFTSVM performs superior to other methods on all datasets while maintaining the shortest
training time. The time performance for the EEG Eye State dataset is not the best but is comparable to that of CDFTSVM and
better than that of the others.

In the second experiment, we compare our technique with Cluster-based under-sampling approaches for imbalanced
data distributions (SBC, SBCNM-1, SBCNM-2, SBCNM-3, SBCMD, SBCMF) [68], RT, AT, NearMiss-2 [69] that are under-
sampling approaches in Census-Income Database. This dataset is collected from UCI Knowledge Discovery and extracted
from the 1994 and 1995 current population surveys managed by the US Census Bureau. The total number of instances after
cleaning the incomplete data is 30001, including 21465 majority class samples and 8536 minority class samples. We used
80% of the instances for training and 20% for testing to evaluate the performances of the classifiers. For this dataset, the five-
fold cross-validation is repeated. The F-measures for our technique is chosen to compare with the other cluster-based under-
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sampling methods. From Table 9, we can see that our technique CIL-FART-IFTSVM has the highest Minority Class F-measure
and Majority Class F-Measure with other techniques. (See Table 10)

5.3.2. Real-world dataset
In recent years, credit card transactions have experienced remarkable progress with the development of electronic com-

merce and show great promise for improvement in the future. Therefore, the implementation of an effective fraud detection
system has becomes essential for all card issuing authorities to avoid losses. Usually, only 1% of transactions are fraudulent
while 99% are valid. Therefore, credit card transaction datasets are highly skewed and scattered. Hence, fraud detection or
simple pattern matching techniques are not effective in detecting fraud.

To overcome these substantial difficulties, we apply CIL-FART-IFTSVM on the UCSD-FICO [51] dataset, which includes
100,000 transactions of 73,729 customers for 98 days. The dataset includes 20 features, including the class label. Of the
100,000 credit transactions, 97,346 (98.35%) are Class 0 (normal) and 2,654 (2.65%) were Class 1 (fraudulent). For this exper-
iment, 10-fold cross-validation is performed. We focus on the fraud detection rate (FDR %) of CIL-FART-IFTSVM and other
machine learning classifiers, such as Bayesian classifiers, rules, functions, meta-algorithms, lazy algorithms, and tree algo-
rithms. The experimental results are obtained from [70]. For fraud detection, good performance means a high detection rate,
i.e., true positives/positives (how many fraud cases can be detected correctly). Table 9 shows that the best result for Rules is
36.96 for DTNB-X1, for Bayes is 35.41 for Bayes Net, for Function is 21.48 for the MLP Classifier, for Lazy is 48.30 for KStar, for
Meta is 49.17 for Rotation Forest, and for Tree is 47.28 for Random Tree. CIL-FART-IFTSVM (55.31) outperforms all other algo-
rithms used in this experiment. Therefore, CIL-FART-IFTSVM can detect fraudulent transactions.

6. Conclusion

This paper proposes CIL-FART-IFTSVM for the binary class imbalance problem. In this method, we used Fuzzy ART as a
clustering method and IFTSVM to address the issues of class imbalance, outliers/noise, and large-scale dataset. To validate
the performance of CIL-FART-IFTSVM and other existing CIL methods, we used 45 imbalanced datasets and considered a non-
parametric statistical test. The experimental results indicate that the approach proposed in this paper outperforms the other
methods, particularly in the presence of noise and outliers. For large-scale datasetss, CIL-FART-IFTSVM is significantly better
than SVM, LSSVM, TSVM, FSVM, and CDFTSVM, and the training is significantly faster. In future work, it would be interesting
to apply our method to decision trees.
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