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Intuitionistic Fuzzy Twin Support Vector Machines
Salim Rezvani , Xizhao Wang , Fellow, IEEE, and Farhad Pourpanah

Abstract—Fuzzy twin support vector machine (FTSVM) is an
effective machine learning technique that is able to overcome the
negative impact of noise and outliers in tackling data classification
problems. In the FTSVM, the degree of membership function in
the sample space describes the space between input data and class
center, while ignoring the position of input data in the feature space
and simply miscalculated the ledge support vectors as noises. This
paper presents an intuitionistic FTSVM (IFTSVM) that combines
the idea of intuitionistic fuzzy number with twin support vector
machine (TSVM). An adequate fuzzy membership is employed to
reduce the noise created by the pollutant inputs. Two functions,
i.e., linear and nonlinear, are used to formulate two nonparallel
hyperplanes. An IFTSVM not only reduces the influence of noises,
it also distinguishes the noises from the support vectors. Further,
this modification can minimize a newly formulated structural risk
and improve the classification accuracy. Two artificial and eleven
benchmark problems are employed to evaluate the effectiveness of
the proposed IFTSVM model. To quantify the results statistically,
the bootstrap technique with the 95% confidence intervals is used.
The outcome shows that an IFTSVM is able to produce promising
results as compared with those from the original support vector
machine, fuzzy support vector machine, FTSVM, and other models
reported in the literature.

Index Terms—Intuitionistic fuzzy number (IFN), kernel func-
tion, quadratic programming problem (QPP), twin support vector
machines (TSVMs).

I. INTRODUCTION

THE support vector machine (SVM) and its variants [1]–
[5] are popular machine learning techniques, which have

shown astonishing results in various application domains such
as regression [6]–[8], economy [9], [10], power system [11], and
medical [12], just to name a few. In fact, an SVM attempts to ex-
plore an optimal hyperplane with the maximum margin, while,
the generalization error of the SVM mainly depends on the ra-
tio of the radius and margin, i.e., radius–margin error bound
[13]. For a given feature space, radius of which is fixed, the
SVM can minimize the generalization error by only maximizing
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the margin. Nonetheless, radius information becomes an impor-
tant parameter for joint learning of feature transformation and
classification algorithm, which cannot be ignored.

The traditional SVM builds two parallel support hyperplanes
between which the area is first split into the two classes (i.e., +
and −), and then, the margin is maximized. Therefore, the regu-
larization term is achieved and the structural risk is minimized.
Several research have been considered the radius–margin error
[14]–[17]. However, most of these methods suffer from compu-
tational burden [18].

Apart from the SVM with two parallel hyperplanes, several
classifiers with nonparallel hyperplanes such as the general-
ized eigenvalue proximal SVM (GEPSVM) [19] and twin SVM
(TSVM) [20]–[26] have been proposed. Both methods find two
nonparallel proximal hyperplanes that locate hyperplane as far
as possible to one of the two classes and near to the other one.
Unlike the SVM that finds only one large quadratic program-
ming problem (QPP), the TSVM defines two small QPPs. As
shown in [20], the TSVM is four times faster than the SVM. It
has also shown promising results as compared those of the SVM
and GEPSVM [27]. One important characteristic of the SVM
is the implementation of the structural risk minimization prin-
ciple [28], [29], but, only the empirical risk is considered in the
TSVM. Although, the technique of organizing nonparallel hy-
perplanes has shown promising results [30], yet it is not always
good enough from the theoretical viewpoint, and it needs fur-
ther adjustments. On the other hand, it is known that the inverse
matrices (GT G)−1 and (HT H)−1 appear in the dual problems,
where H = [A e1 ] and G = [B e2 ]. A and B represent training
samples belonging to classes +1 and −1, respectively, and e1
and e2 correspond to the unit vectors. To achieve dual prob-
lems, one of the following conditions must be satisfied: either
the inverse matrices (GT G)−1 and (HT H)−1 occur or the ma-
trices GT G and HT H are nonsingular. Satisfying one of these
conditions can improve the dual problems theoretically.

If the support vectors are mixed by noises, the SVM cannot
find an optimal hyperplane, which leads to produce inferior re-
sults. To alleviate this problem, fuzzy SVM (FSVM) has been
proposed in [31]–[34], which uses a degree of membership func-
tion for each training sample. Even though, an FSVM is able
to reduce the effects of outliers and noises, but the degree of
membership function only considers the distance between the
training sample and the class center, which several outlier sup-
port vectors may be confused as noises. To solve this problem,
an FSVM with dual memberships is suggested in [35]. How-
ever, this method improved the performance of the FSVM, it
also suffers from several problems. For example, those training
samples that are located far away from the class center may
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produce better membership function as compared with those
nearby the class center [35].

Coordinate descent methods have received increasing atten-
tion in the last years due to recent results in the SVM [36],
[37]. A new coordinate descent fuzzy twin SVM (FTSVM) for
solving classification problems is introduced in [38], which is
faster than the TSVM. Later, a new FTSVM incorporated the
TSVM and fuzzy neural network to tackle binary classification
problems in [39]. In [40], an SVM with an intuitionistic fuzzy
number (IFN) and the kernel function is proposed to consider
the situation of training samples in the feature space.

Building upon our newly proposed ranking method of trape-
zoidal intuitionistic fuzzy numbers and type-2 intuitionistic ex-
ponential triangular fuzzy number [41], [42], which is able to
find the degrees of membership, nonmembership, and hesita-
tion, in this paper, we propose a new classification model,
called intuitionistic FTSVM (IFTSVM), to solve binary clas-
sification problems. The IFTSVM uses an IFN to assign a pair
of membership and nonmembership functions to every train-
ing sample. The degree of membership function measures the
distance between the training sample and class center, while
the degree of nonmembership function measures the relation
among the number of inharmonic samples and the number of
samples in its neighborhood. These two measurements help the
IFTSVM to reduce the effect of noise and identify support vec-
tors from noises. In addition, it minimizes the structural risk and
improves the classification accuracy. Two artificial and eleven
benchmark problems are employed to evaluate the effective-
ness of the IFTSVM. In summary, this paper proposes a new
learning model, which is called IFTSVM, with the following
contributions:

1) IFTSVM significantly alleviates the negative impact of
noise and outliers on the classification accuracy since it uses
a pair of membership and nonmembership functions for every
training sample.

2) IFTSVM constructs a new structural risk function with
regularization terms different from the existing SVM models.

3) IFTSVM statistically shows a better performance on artifi-
cial and benchmark classification problems in comparison with
other similar SVM models.

The rest of this paper is arranged as follows: Section II
explains the details of intuitionistic fuzzy set, SVM, FSVM,
and TSVM. Section III describes the structure of the pro-
posed IFTSVM model. The experimental results are reported in
Section IV. Section V concludes and suggests the future
research.

II. PRELIMINARIES

In this Section, we first describe the intuitinistic fuzzy set.
Then, the structure of the SVM, FSVM, and TSVM are ex-
plained in details. Suppose S ={(x1 , y1), (x2 , y2), . . . , (xi, yi)}
is a set of training samples where xi ∈ Rd and yi = {−1,+1},
respectively, represent the ith training sample and correspond-
ing target class. The training samples can be separated into
two matrices, i.e., XS

+ and XS
− , where XS

+ (XS
− ) contains those

samples that are belonging to positive (negative) class.

A. Intuitionistic Fuzzy Set

For a nonempty set X , a fuzzy set A in a universe X can be
defined as

A = {(x, µA (x))|x ∈ X} (1)

where µA : X → [0, 1] and µA (x) is the degree of membership
of x ∈ X . An intuitionistic fuzzy set is defined as

Ã = {(x, µÃ (x), νÃ (x))|x ∈ X} (2)

where µÃ (x) and νÃ (x) define the degrees of membership and
nonmembership functions of x ∈ X , respectively, µÃ : X →
[0, 1], νÃ : X → [0, 1] and 0 ≤ µÃ (x) + νÃ (x) ≤ 1, and the
hesitation degree of x ∈ X can be presented as

πÃ (x) = 1 − µÃ (x) − νÃ (x). (3)

An IFN can be defined as α = (µα , να ), where µα ∈ [0, 1], να ∈
[0, 1], and 0 ≤ µα + να ≤ 1. The largest IFN is α+ = (1, 0),
and the smallest IFN is α− = (0, 1). The IFN for a given α =
(µα , να ) can be calculated as follows:

s(α) = µα − να (4)

where s(α) represents the score value of the IFN α = (µα , να ).
However, it is impossible to determine the score value for
some IFNs. To alleviate this problem, following function can be
replaced

h(α) = µα + να . (5)

According to (3) and (5), we have

h(α) + π(α) = 1. (6)

If s(α1) = s(α2) and h(α1) < h(α2), then α1 < α2 .
Based on (4), other score function can be determined as

follows:

H(α) =
1 − ν(α)

2 − µ(α) − ν(α)
. (7)

Therefore, the relationships between membership and nonmem-
bership functions can be defined as follows:

1) s(α1) < s(α2) ⇒ H(α1) < H(α2);
2) s(α1) = s(α2), h(α1) < h(α2) ⇒ H(α1) < H(α2).

B. Support Vector Machines (SVMs)

A traditional SVM is able to solve binary classification prob-
lems. It attempts to find an optimal hyperplane wT x + b = 0,
where w ∈ Rn is the weight, and b ∈ R is the bias term. This
hyperplane can be used to define the label of input sample xi as
follows

{
(w.xi + b) ≥ 0, if yi is positive

(w.xi + b) ≤ 0, if yi is negative.
(8)

In a linear SVM an optimal hyperplane can be achieved by
solving the following primal QPP:




min

1
2
wT w + C

∑l
i=1 ξi

s.t. yi(wT xi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, 2, . . . , l

(9)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 30,2021 at 04:39:44 UTC from IEEE Xplore.  Restrictions apply. 



2142 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

where ξi (i = 1, 2, . . . , l), C, and l are slack variables, penalty
parameter, and the number of training samples, respectively.

C. Fuzzy SVMs (FSVMs)

Suppose {(x1 , y1 , s1), (x2 , y2 , s2), . . . , (xi, yi , si)} is a set
of training data containing i samples with their corresponding
fuzzy memberships (si), where σ ≤ si ≤ 1 and σ > 0 is a small
positive value. Let z = φ(x) denote a mapping φ from RN to
a feature space Z . The optimal hyperplane cab be achieved by
solving

min
1
2
wT .w + C

l∑

i=1

siξi

s.t. yi(w.zi + b) ≥ 1 − ξi , ξi ≥ 0, i = 1, . . . , l (10)

where ξi is the measured error in the SVM and term siξi is
measured error with different weighting, and C is a constant. A
small C minimizes the efficacy of the ξi in (10).

The Lagrangian can be constructed to solve this problem as
follows:

L(w, b, ξ,α,β) =
1
2
wT .w + C

l∑

i=1

siξi

−
l∑

i=1

αi(yi(w.zi + b) − 1 + ξi) −
l∑

i=1

βiξi (11)

and the following conditions must be satisfied to find the saddle
point of L(w, b, ξ,α,β)

∂L(w, b, ξ,α,β)
∂w

= w −
l∑

i=1

αiyizi = 0 (12)

∂L(w, b, ξ,α,β)
∂b

= −
l∑

i=1

αiyi = 0 (13)

∂L(w, b, ξ,α,β)
∂ξi

= siC − αi − βi = 0. (14)

Applying (12)–(14) into (11) and (10) can be written as

maximize W (α) =
l∑

i=1

αi −
1
2

l∑

i=1

l∑

j=1

αiαj yiyjK(xi, xj )

s.t.
l∑

i=1

yiαi = 0, 0 ≤ αi ≤ siC, i = 1, . . . , l

(15)

and the Karush–Kuhn–Tucker (K.K.T) conditions [43] are de-
scribed as

ᾱi(yi(w̄.zi + b̄) − 1 + ξ̄i) = 0, i = 1, . . . , l (16)

(siC − ᾱi)ξi = 0, i = 1, . . . , l. (17)

The point xi with the corresponding ᾱi > 0 is known as a
support vector. The FSVM can have two kinds of support vec-
tors. The first one with 0 < ᾱi < siC lies on the margin of the
hyperplane, and the second one with ᾱi = siC is misclassified.

Fig. 1. Geometric explanation of the TSVM.

In contrast with the SVM, a TSVM may recognize a point with
same ᾱi into different kind of support vectors owing to the si .

D. Twin Support Vector Machine (TSVM)

Unlike the traditional SVM, which uses only one hyperplane
to separate the positive samples from the negative samples,
TSVM [20] obtains two nonparallel hyperplanes (as shown in
Fig. 1). It finds a hyperplane around which the data samples of
the corresponding class get grouped [44]–[46] as follows:

w(1) .xi + b(1) = 0, w(2)xi + b(2) = 0 (18)

where w(i) and b(i) are the weight and bias term of the ith
hyperplane, respectively. The two hyperplanes are achieved by
solving the following QPPs

min
w ( 1 ) ,b( 1 ) ,ξ2

1
2
(Aw(1) + e1b(1))T (Aw(1) + e1b(1)) + p1e

T
2 ξ2

s.t. − (Bw(1) + e2b(1)) + ξ2 ≥ e2 , ξ2 ≥ 0 (19)

and

min
w ( 1 ) ,b( 1 ) ,ξ1

1
2
(Bw(2) + e2b(2))T (Bw(2) + e2b(2)) + p2e

T
2 ξ1

s.t. (Aw(2) + e1b(2)) + ξ1 ≥ e1 , ξ1 ≥ 0 (20)

where A and B represent the data samples belonging to classes
+1 and −1, respectively, ξ1 and ξ1 are the slack variables, e1
and e2 are the vector of ones with adequate length, and p1 and p2
are penalty parameters. Once optimal parameters, i.e., (w∗

1 , b
∗
1)

and (w∗
2 , b

∗
2), are achieved, new input sample x can be labeled

as follows:

f(x) = arg min
i∈1,2

| (w∗
i )T x + b∗i |
‖ w∗

i ‖ . (21)

III. INTUITIONISTIC FTSVM (IFTSVM)

In this section, we first explain the proposed IFTSVM model.
Then, the structures of two kernel functions, i.e., linear and
nonlinear, are discussed in detail.
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Fig. 2. Similar degree of membership for two training samples.

A. Intuitionistic Fuzzy Membership Assignment

The IFTSVM employs the degree of membership function,
which is proposed in [40]. To reduce the effect of noise and
outliers, it is critical to select an appropriate membership func-
tion. For example, as shown in Fig. 2, those training samples
that are located in the boundary areas of the two classes have
the same membership degrees for both classes. This may lead
to the wrong prediction. To alleviate this problem, an IFTSVM
assigns an IFN, i.e., (µ, ν), to each training sample, where µ
defines the degree of membership function related to one class,
and ν explains the degree of nonmembership function related to
other class. Obviously, the degrees of nonmembership related
to positive (negative) classes are not the same.

The designed degrees of membership and nonmembership
functions for every training sample in the high-dimensional fea-
ture space are explained in the following subsections.

1) Membership Function: The distance between training
sample and the class center is used as membership function in
the high-dimensional feature space. For each training sample,
the degree of membership can be described as

µ(xi) =






1 − ‖φ(xi) − C+‖
r+ + δ

yi = +1

1 − ‖φ(xi) − C−‖
r− + δ

yi = −1

(22)

where δ > 0 is an adjustable parameter, r+ (r−) and C+ (C−)
are the radius and class center of the positive (negative) class, and
||.|| is the distance between input sample and the corresponding
class center

D(φ(xi),φ(xj )) = ‖φ(xi) − φ(xj )‖ (23)

where φ represents input sample in the high-dimensional feature
space.

The class center of each class can be measured by

C± =
1
l±

∑

yi =±1

φ(xi) (24)

where l+ (l−) is the total number of positive (negative) samples.
The radius of each class can be calculated by

r± = max
yi =±1

‖φ(xi) − C±‖. (25)

2) Nonmembership Function: The relationship between all
inharmonious points and the total number of training samples
in its neighborhood (i.e., ρ(xi)) is used as a nonmembership
function, as follows:

ν(xi) = (1 − µ(xi))ρ(xi) (26)

where 0 ≤ µ(xi) + ν(xi) ≤ 1, and ρ(xi) is defined as

ρ(xi) =
|{xj |‖φ(xi) − φ(xj )‖ ≤ α, yj )= yi}|

|{xj |‖φ(xi) − φ(xj )‖ ≤ α}| (27)

where α > 0 is an adjustable parameter and |.| denotes the
cardinality.

The degrees of membership and nonmembership functions
of the IFN are built based on the inner product distance in the
feature space. Therefore, the kernel functions are used to make
IFNs.

Theorem 1. [40]: Suppose K(x, x′) be a kernel function.
Hence, the inner product distance is presented by

‖φ(x) − φ(x′)‖ =
√

K(x, x) + K(x′, x′) − 2K(x, x′).

Proof:

‖φ(x) − φ(x′)‖

=
√

(φ(x) − φ(x′)).(φ(x) − φ(x′))

=
√

(φ(x).φ(x)) + (φ(x′).φ(x′)) − 2(φ(x).φ(x′))

=
√

K(x, x) + K(x′, x′) − 2K(x, x′).

Theorem 2: With respect to Theorem 1, the radiuses of both
classes are, respectively, unnumbered eq. as shown at the bottom
of this page.

Proof:
1) Unnumbered eq. as shown at the bottom of the next page.
2) Is similar to that of part (1).
Therefore, training samples can be converted into the IFN as

follows:

T = {x1 , y1 , µ1 , ν1}, {x2 , y2 , µ2 , ν2}, . . . , {xl, yl , µl , νl}

1) r+ = max
yi =+1

√
K(xi, xi) +

1
l2+

∑
ym =+1

∑
yn =+1

K(xm , xn ) − 2
l+

∑
y

j = + 1
K(xi, xj )

2) r− = max
yi =−1

√

K(xi, xi) +
1
l2−

∑
ym =−1

∑
yn =−1

K(xm , xn ) − 2
l−

∑
y

j = −1
K(xi, xj ).
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Fig. 3. Recognize samples.

where µi and νi , respectively, indicate the degrees of member-
ship function and nonmembership functions of xi . For a given
IFN, the score function can be defined as

si =






µi, νi = 0

0, µi ≤ νi

1 − νi

2 − µi − νi
, others.

(28)

The score value can easily separate the support vector from
outliers and noises [40]. For example, assume three training
samples, i.e., A, B, and C, in Fig. 3. When νi = 0 (positive
sample A in Fig. 3), which has no negative samples as neighbor-
hoods, the degree of membership function can correctly classify
it. While µi ≤ νi (negative sample B in Fig. 3), the degree of
membership value is less than the degree of nonmembership
value, it will be considered as noise. When µi > νi and νi )= 0
(positive sample C in Fig. 3), it is far away from the class center,
there are few positive samples in its neighborhood. Thus, it may
be considered as a support vector, instead of an outlier.

B. Linear IFTSVM

The linear kernel for the IFTSVM can be considered as
follows:

min
w 1 ,b1 ,ξ2

1
2
‖ Aw1 + e1b1 ‖2 +

1
2
C1 ‖ w1 ‖2 +C2s

T
2 ξ2

subject to − (Bw1 + e2b1) + ξ2 ≥ e2 , ξ2 ≥ 0 (29)

and

min
w 2 ,b2 ,ξ1

1
2
‖ Bw2 + e2b2 ‖2 +

1
2
C3 ‖ w2 ‖2 +C4s

T
1 ξ1

subject to (Aw2 + e1b2) + ξ1 ≥ e1 , ξ1 ≥ 0 (30)

where C1 , C2 , C3 , and C4 are positive penalty parameters, ξ1
and ξ2 are slack variables, e1 and e2 are column vectors of ones
with desirable length, and s1 ∈ Rl+ and s2 ∈ Rl− are the score
values of class + and −, respectively.

The IFTSVM minimizes the structural risk by summing the
regularization term with the opinion of maximizing the margin.
It will be shown that the structural risk is minimized in (29)
and (30). This pair of QPPs can be achieved by constructing the
Lagrangian as follows:

L(w1 , b1 , ξ2 ,α,β) =
1
2
‖ Aw1 + e1b1 ‖2 1

2
C1 ‖ w1 ‖2

+C2s
T
2 ξ2 + α[(Bw1 + e2b1) − ξ2 + e2 ] − βξ2 (31)

where α and β are Lagrangian multipliers. With K.K.T condi-
tions, (31) can be obtained as follows:

∂L

∂w1
= AT (Aw1 + e1b1) + C1w1 + αB = 0 (32)

∂L

∂b1
= eT

1 (Aw1 + e1b1) + αe2 = 0 (33)

∂L

∂ξ2
= C2s

T
2 − α − β = 0. (34)

By combining (32) and (33), one can achieve
(

AT

eT
1

)
(A e1)

(
w1

b1

)
+

(
B

e2

)
α = 0. (35)

Let H1 = (A e1), G2 = (B e2), and u1 = (w 1
b1

), then, (35) can
be reformulated as

HT
1 H1u1 + GT

2 α = 0 ⇒ u1 = −(HT
1 H1)−1GT

2 α. (36)

It is hard to calculate the inverse of HT
1 H1 . This can be

managed by attaching regularization unit C1I in (37), where I
is an identity matrices with the appropriate dimension. Thus

u1 = −(HT
1 H1 + C1I)−1GT

2 α. (37)

In a similar way, weight vector and bias for other class can
be achieved by solving the following equation:

u2 = (GT
2 G2 + C3I)−1HT

1 β. (38)

r+ = max
yi =+1

‖φ(xi) − C+‖ = max
yi =+1

√
(φ(xi) − C+).(φ(xi) − C+)

= max
yi =+1

√
(φ(xi).φ(xi)) + (C+ .C+) − 2(φ(xi).C+)

= max
yi =+1

√

K(xi, xi) +
(

1
l+

∑
yi =+1

φ(xi)
)(

1
l+

∑
yi =+1

φ(xi)
)
− 2(φ(xi))

(
1
l+

∑
yi =+1

φ(xi)
)

= max
yi =+1

√
K(xi, xi) +

1
l2+

∑
ym =+1

∑
yn =+1

K(xm , xn ) − 2
l+

∑
y

j = + 1
K(xi, xj ).
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Using (29) and K.K.T conditions, the Wolfe dual (29) can be
written as

max
α

eT
2 α − 1

2
αT G2(HT

1 H1 + C1I)−1GT
2 α

subject to 0 ≤ α ≤ C2s2 . (39)

In the aforementioned equation, C1 is a weighting factor that
distinguishes the tradeoff between the regularization term and
the empirical risk. Hence, choosing an appropriate C1 , whether
small or large, reflects the structure risk minimization principle.

Likewise, the Wolfe dual for (30) can be written as

max
β

eT
1 β − 1

2
βT G1(GT

2 G2 + C3I)−1HT
1 β

subject to 0 ≤ β ≤ C4s1 . (40)

Once optimal u∗
1 and u∗

2 are achieved, the two nonparallel
hyperplanes (18) are admitted. A new input data x can be cate-
gorized as a positive or negative class, as follows:

x ∈ Wk, k = arg min
i=1,2

{
| wT

1 x + b1 |
‖ w1 ‖ ,

| wT
2 x + b2 |
‖ w2 ‖

}
(41)

where | . | is the absolute value.

C. Nonlinear IFTSVM

In order to solve nonlinear classification problems, the fol-
lowing kernel function is considered:

k(x,XT )w1 + b1 = 0, k(x,XT )w2 + b2 = 0 (42)

where k(x1 , x2) = (φ(x1),φ(x2)) is a kernel function. The pri-
mal problem of the nonlinear IFTSVM is defined as

min
w 1 ,b1 ,ξ2

1
2
‖ k(A,XT )w1 + e1b1 ‖2 +

1
2
C1 ‖ w1 ‖2 +C2s

T
2 ξ2

subject to − (k(B,XT )w1 + e2b1) + ξ2 ≥ e2 , ξ2 ≥ 0
(43)

and

min
w 2 ,b2 ,ξ1

1
2
‖ k(B,XT )w2 +e2b2 ‖2 +

1
2
C3 ‖ w2 ‖2 +C4s

T
1 ξ1

subject to (k(A,XT )w2 + e1b2) + ξ1 ≥ e1 , ξ1 ≥ 0. (44)

Lagrangian of (44) is given as

L(w1 , b1 , ξ2 ,α,β)=
1
2
‖ k(A,XT )w1 +e1b1 ‖2 +

1
2
C1 ‖ w1 ‖2

+ C2s
T
2 ξ2 + α[(k(B,XT )w1

+ e2b1) − ξ2 + e2 ] − βξ2 . (45)

The K.K.T conditions are obtained as follows:
∂L

∂w1
= k(A,XT )T (k(A,XT )w1 + e1b1)

+ C1w1 + αk(B,XT ) = 0 (46)

∂L

∂b1
= eT

1 (k(A,XT )w1 + e1b1) + αe2 = 0 (47)

∂L

∂ξ2
= C2s

T
2 − α − β = 0. (48)

Combining (46)–(48), can achieve
(

k(A,XT )T

eT
1

)
(k(A,XT ) e1)

(
w1

b1

)

+

(
k(B,XT )

e2

)
α = 0. (49)

Let H∗
1 = (k(A,XT ) e1), G∗

2 = (k(B,XT ) e2), and u∗
1 =

(w 1
b1

), then, (49) can be reformulated as

u∗
1 = −(HT ∗

1 H∗
1 + C1I)−1GT ∗

2 α. (50)

With the K.K.T conditions and Lagrangian method, the corre-
sponding Wolfe dual can be written as

max
α

eT
2 α − 1

2
αT G∗

2(H
T ∗
1 H∗

1 + C1I)−1GT ∗
2 α

subject to 0 ≤ α ≤ C2s2 (51)

and

max
β

eT
1 β − 1

2
βT G∗

1(G
T ∗
2 G∗

2 + C3I)−1HT ∗
1 β

subject to 0 ≤ β ≤ C4s1 . (52)

According to (42)–(52), the augmented vectors u1 =
[wT

1 b1 ]T and u2 = [wT
2 b2 ]T can be obtained by

u∗
1 = −(HT ∗

1 H∗
1 + C1I)−1GT ∗

2 α (53)

u∗
2 = (GT ∗

2 G∗
2 + C3I)−1HT ∗

1 β (54)

Once the vectors u∗
1 and u∗

2 are achieved, the two nonparallel
hyperplanes (42) are obtained. A new input data x can be labeled
as either positive or negative class, as follows

k = arg
i=1,2

min

{
| wT

1 k(x,XT )+b1 |√
wT

1 k(A,XT )w1
,
| wT

2 k(x,XT )+b2 |√
wT

2 k(B,XT )w2

}
.

(55)

D. Complexity Analysis of the IFTSVM

In this section, the big-O notation [47] is employed for the
analysis of on-time complexity of the IFTSVM. Let n be the
total number of training samples and m = n/2 be the num-
ber of samples in each class. The IFTSVM measures the de-
grees of membership (22) and nonmembership (26) functions
to compute the score value (28) of each sample. To mea-
sure the degree of membership function, it first computes the
class center (24) and radius of the class (25). Then, computes
the distance between each class center and sample (23), and
measures the degree of membership function for each sam-
ple using (22), which requires O(1) + O(1) + O(m) + O(m).
On the other hand, to measure the degree of nonmembership
function (26), the IFTSVM requires to compute ρ(xi) (27),
which needs O(m) + O(m) operations. Therefore, IFTSVM
involves O(1) + O(1) + O(m) + O(m) + O(m) + O(m) op-
erations to measure the score function of samples, which
is O(m) when m extends to infinity. Then, similar to the
TSVM, IFTSVM requires to solve two QPPs for both linear
and nonlinear functions. According to [48], the computational

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 30,2021 at 04:39:44 UTC from IEEE Xplore.  Restrictions apply. 



2146 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

TABLE I
DETAILS OF THE UCI DATASETS

complexity of the conventional SVM is O(n3), and the com-
putational complexity of the TSVM by considering m = n/2
is O(2 × (n/2)3). The time complexity of the IFTSVM is
O(2 × (n/2)3) + O(n/2), which is O(2 × (n/2)3). Therefore,
the time complexity of the IFTSVM is almost same as the
TSVM, which is four times faster than the conventional SVM.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness and generalization capability
of the IFTSVM, eleven benchmark datasets from University of
California, Irvine (UCI) machine learning repository [49] and
two artificial, i.e., Ripleys [50] and circle-in-the-square [51], are
conducted. Table I shows the details of the UCI datasets.

For each dataset, the tenfold cross validation is repeated ten
times. For all datasets, 90% of data samples are used for training
and the remaining 10% for the test. The bootstrap method [52]
with the 95% confidence intervals is employed to quantify the
results statistically. All samples are normalized between 0 and
1. The IFTSVM parameters are set as follows: ci(i = 1, 2, 3, 4)
are correctly explored in the grids {2i |i = −10,−9, . . . , 9, 10}
by setting C1 = C3 , C2 = C4 . Plus, Gaussian kernel is applied
to trade with the nonlinear cases, i.e.,K(x1 , x2) = exp(−‖x1 −
x2‖2/σ2) and σ ∈ {2σm in :σm a x } with σmin = −10, σmax = 10.
The entire experiments are performed using MATLAB 2018a
under a desktop PC with Intel(R) Core i5 processor (3.30 GHz)
and 12-GB RAM.

Five performance indicators including accuracy, computa-
tional time, sensitivity/true positive rate, specificity/negative
positive rate [53], and area under ROC (AUC) [54], are used to
compare the IFTSVM with those from the conventional SVM
[35], FSVM [29], TSVM [12], coordinate descent fuzzy twin
support vector machine (CDFTSVM) [38], gradient boosting
(GB) [55], accelerated GB (AGB) [56], LASSO [57], and ran-
dom forest (RF) [58]. The sensitivity or true positive rate is
the ratio of classified positive sample over all positive samples,
while the specificity or true negative rate is the ratio of correctly
classified negative samples over all negative samples.

A. UCI Datasets

In this Section, the performance of the IFTSVM is evaluated
with the UCI datasets. The results are compared with those of the
original SVM [53], FSVM [31], TSVM [20], and CDFTSVM

Fig. 4. Accuracy rates (%) of the IFTSVM with linear function for Ionosphere
dataset with different C setting.

[38]. Note that all results related to SVM, FSVM, and TSVM are
taken from [38]. Three experiments are conducted as follows.

In the first experiment, the effects of different setting of the
kernel parameter σ and tradeoff C are analyzed using the Iono-
sphere dataset. The aim is to find optimal parameter(s), i.e.,
C for linear function, and C and σ for the nonlinear function,
which yields high accuracy rate. First, C is optimized for the
linear function, it varied from −10 to 10. As shown in Fig. 4, an
IFTSVM produces better results for C < 0, specifically; when
C is set to −1. Then, both C and σ are optimized for the non-
linear kernel function. C and σ can be varied from −10 to 10
and −10 to 10, respectively. From Fig. 5, it can be found that an
IFTSVM with C = 1 and σ = 0.1 outperforms other settings.

Finally, the performance of the IFTSVM is compared with
the CDFTSVM for linear and nonlinear functions. For both
functions, C varied from −10 to 10, and for nonlinear function
σ was set to 0.1. Figs. 6 and 7, respectively, show the accuracy
rates of the CDFTSVM and IFTSVM for linear and nonlinear
functions. Except for linear function with C = 2, which both
methods perform similar performance, an IFTSVM outperforms
the CDFTSVM.

In the second experiment, the linear kernel with optimized C
is evaluated. Table II shows the average accuracy rates along
with the standard deviations (SD) and computational time (s)
of the IFTSVM and those methods reported in [38]. As can
be seen, an IFTSVM not only outperforms other methods, it
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TABLE II
ACCURACY RATES (%) WITH SD AND COMPUTATIONAL TIME (S) FOR UCI DATASETS WITH LINEAR KERNEL

Fig. 5. Accuracy rates (%) of the IFTSVM with nonlinear kernel on Iono-
sphere dataset with different C and σ settings.

Fig. 6. Comparison of linear CDFTSVM and IFTSVM methods on Iono-
sphere dataset.

also produces stable results owing to the small SD. In addition,
the IFTSVM and TSVM require shorter execution duration as
compared with the FSVM and SVM. However, CDFTSVM is
the fastest method.

Tables III and IV show the average sensitivity and speci-
ficity rates of the IFTSVM and CDFTSVM for the linear
kernel, respectively. As can be seen, an IFTSVM achieves
better results almost for all datasets. In overall, the IFTSVM
is able to achieve a balanced sensitivity and specificity

Fig. 7. Comparison of nonlinear CDFTSVM and IFTSVM on Ionosphere
dataset.

TABLE III
SENSITIVITY RATES OF CDFTDSVM AND IFTSVM ON UCI DATASETS WITH

LINEAR KERNEL

TABLE IV
SPECIFICITY RATES OF CDFTSVM AND IFTSVM ON UCI DATASETS WITH

LINEAR KERNEL

rates for Wisconsin Diagnostic Breast Cancer (WDBC)
and Heart datasets, while CDFTSVM is able to achieve
a balanced sensitivity and specificity rates only for Heart
dataset.
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TABLE V
ACCURACY RATES (%) WITH SD AND COMPUTATIONAL TIME (S) FOR UCI DATASETS WITH NONLINEAR KERNEL

TABLE VI
SENSITIVITY RATES OF CDFTDSVM AND IFTSVM ON UCI DATASETS WITH

NONLINEAR KERNEL

TABLE VII
SPECIFICITY RATES OF CDFTSVM AND IFTSVM ON UCI DATASETS WITH

NONLINEAR KERNEL

In the third experiment, a nonlinear kernel function with op-
timized parameters, i.e., C and σ, is evaluated. The average
classification accuracy along with the SD and computational
time of the IFTSVM and other methods is shown in Table V.
For all datasets, an IFTSVM outperforms other methods. Similar
to the linear function, both IFTSVM and TSVM with nonlinear
functions need almost same execution durations.

Tables VI and VII show the average sensitivity and speci-
ficity rates for the nonlinear kernel function. Both IFTSVM
and CDFTSVM are able to achieve balanced sensitivity and
specificity rates for Ionosphere, Australian, WDBC, and Heart
datasets. The IFTSVM also produces a balanced sensitivity and
specificity rate for Sonar dataset.

In the last experiment, the performance of the IFTSVM with
both linear and nonlinear functions is compared with GB, AGB,
LASSO, and RF. In this experiment, three datasets, i.e., Adult,
Advert, and Spam, are conducted. Following the same procedure
in [56], 75% and 25% of data samples are used as a training
and test samples, respectively. Table VIII shows the AUC rates

along with the SDs of GB, AGB, LASSO, RF, and IFTSVM
with both linear and nonlinear functions. The performance of
the IFTSVM with the nonlinear function for Adult is comparable
to GB and better than AGB, LASSO, and RF. Also, an IFTSVM
with linear function performs better than other methods for
Advert dataset, while GB outperforms other methods for Adult
and Spam datasets. However, an IFTSVM is not able to produce
better results for Adult and Spam datasets, but it performs more
or less similar to LASSO, RF, and AGB.

B. Artificial Datasets

In this Section, the IFTSVM is evaluated with two artificial
data problems, i.e., Ripleys synthetic and circle-in-the-square,
as follows.

1) Ripleys Dataset: Ripleys dataset is a binary classifica-
tion problem that has been generated by mixing two Gaussian
distributions. Each data sample includes two features. Training
and test sets include 250 and 1000 samples, respectively. In
order to reduce the effect of outlier data on the hyperplane, µ
is set to 0.1. Table IX shows the results of the SVM, FSVM,
TSVM, CDFTSVM [38], and IFTSVM. The outcome indicates
that IFTSVM outperform other methods for both linear and the
nonlinear functions.

Figs. 8 and 10 shows the linear and nonlinear separating hy-
perplanes constructed by the conventional SVM, TSVM, and
CDFTSVM, respectively [38]. In addition, the linear and non-
linear separating hyperplanes constructed by the IFTSVM, re-
spectively, are shown in Figs. 8 and 10. As can be seen, the SVM
[see Figs. 8(a) and 10(a)] and the FSVM [see Figs. 8(b) and
10(b)] generate only one single hyperplane, while the TSVM
[see Figs. 8(c) and 10(c)], the CDFTSVM [see Figs. 8(d) and
10(d)], and the IFTSVM (see Figs. 9 and 11) produce two prox-
imal hyperplanes.

2) Circle-in-the-Square: Circle-in-the-square is also a bi-
nary classification problem, which requires a classifier to iden-
tify which samples within a unit square are placed inside
or outside a circle. The location of the circle is center and
covers half of the square. The performance of the IFTSVM
with nonlinear function was compared with fuzzy ARTMAP
(FAM) [59], Q-learning fuzzy ARTMAP (QFAM) [60], and the
CDFTSVM [38]. According to [59], two experiments were con-
ducted. Each experiment is repeated ten times with different data
samples.
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TABLE VIII
AUC RATES WITH SD AND COMPUTATIONAL TIME (S) FOR UCI DATASETS

TABLE IX
ACCURACY RATES (%) FOR RIPLEYS DATASET

Fig. 8. Generated hyperplane(s) by the linear SVM, FSVM, TSVM, and
CDFTSVM on Ripleys dataset (adapted from [38]). (a) Single hyperplane by
the SVM. (b) Single hyperplane by the FSVM. (c) Dual hyperplanes by TSVM.
(d) Dual hyperplanes by CDFTSVM.

In the first experiment, different numbers of training samples,
i.e., 100, 1000, and 10000, are used, while 1000 samples are
used for the test. Table X shows the accuracy rates of the FAM,
QFAM, CDFTSVM, and IFTSVM. It can be seen that the classi-
fication error of all methods except the CDFTSVM reduce when
the numbers of training samples increase from 100 to 10000.
The CDFTSVM produces the inferior result for 1000 cases as
compared with 100 and 10000 cases. In general, an IFTSVM
outperforms other methods for 1000 and 10000 statistically,
as there is no overlap between the 95% confidence intervals
of the IFTSVM and other methods, while the CDFTSVM and
IFTSVM perform at the same level statistically for the 100 cases.

In the second experiment, the performance of the IFTSVM
further tested by injecting the noise into the training samples.
The numbers of training and test samples, respectively, are fixed
to 10000 and 1000, and different level of noise, i.e., 5% and 10%,
is injected to the class of training samples. For example, 5% or
10% of the training samples are randomly picked and flipped
their class. The accuracy rates are shown in Table XI. Obviously,

Fig. 9. Generated hyperplanes by the linear IFTSVM on Ripleys dataset.

Fig. 10. Generated hyperplane(s) by the nonlinear SVM, FSVM, TSVM, and
CDFTSVM on Ripleys dataset (adapted from [38]). (a) Single hyperplane by
the SVM. (b) Single hyperplane by the FSVM. (c) Dual hyperplanes by TSVM.
(d) Dual hyperplanes by CDFTSVM.

the accuracy rates of all methods decrease by raising the noise
level. The IFTSVM achieves the highest accuracy rates for both
noise-free and noisy datasets. The accuracy rates of both QFAM
and CDFTSVM dramatically drop from 97.15% (for 0% noise)
to 94.71% (for 10% noise) and 99.19% (for 0% noise) to 97.32%
(for 10% noise), respectively. However, this trend is slow for the
IFTSVM, which drops from 99.50% (for 0% noise) to 98.54%
(for 10% noise). In general, an IFTSVM produces better results
as compared with the QFAM and CDFTSVM for both noise
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Fig. 11. Generated hyperplanes by the nonlinear IFTSVM on Ripleys dataset.

TABLE X
ACCURACY RATES (%) FOR THE CIRCLE-IN-THE-SQUARE PROBLEM WITH 95%

CONFIDENCE INTERVALS

(“Mean,” “upper,” and “lower” indicate the mean accuracy, upper, and
lower bounds of the 95% confidence intervals, respectively).

TABLE XI
ACCURACY RATES (%) FOR THE CIRCLE-IN-THE-SQUARE PROBLEM WITH THE

95% CONFIDENCE INTERVALS FOR DIFFERENT LEVEL OF NOISE

free and noisy datasets. This is because of the capability of the
IFTSVM in reducing the effect of noise and outliers.

V. CONCLUSION

In this paper, a new IFTSVM model, which is inspired by
the IFN and FTSVM, for solving binary classification prob-
lems has been proposed. The IFTSVM obtains two nonparallel
hyperplanes by solving two QPPs instead of one as in the tradi-
tional SVM. It classifies an input sample based on both degrees
of membership and nonmembership functions, which helps to
decrease the effect of noise and outliers. The effectiveness of
the IFTSVM has been evaluated by eleven benchmarks and two

artificially generated datasets. The results of the IFTSVM were
compared with those from the traditional SVM, FSVM, TSVM,
CDFTSVM, FAM, and QFAM and other state-of-the-art clas-
sification algorithms. Overall, an IFTSVM is able to produce
astonishing results. However, it is sensitive to C, in which, if it
is not chosen properly, the IFTSVM produces inferior results.
Our future work is focused on enhancing the structure of the
IFTSVM in order to solve the imbalance classification problems.
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