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Adversarial examples are usually generated by adding adversarial perturbations on clean samples,
designed to deceive the model to make wrong classifications. Adversarial robustness refers to the
ability of a model to resist adversarial attacks. And currently, a mainstream method to enhance
adversarial robustness is the Projected Gradient Descent (PGD). However, PGD is often criticized
for being time-consuming during constructing adversarial examples. Fast adversarial training can
improve the adversarial robustness in shorter time, but it only can train for a limited number of
epochs, leading to sub-optimal performance. This paper demonstrates that the multi-exit network can
reduce the impact of adversarial perturbations by outputting easily identified samples at early exits.
Therefore, we can improve the adversarial robustness. Further, we find that the multi-exit network
can prevent catastrophic overfitting existing in single-step adversarial training. Specifically, we find
that, in the multi-exit network, (1) the norm of weights at a fully connected layer in a non-overfitted
exit is much smaller than that in an overfitted exit; and (2) catastrophic overfitting occurs when
the late exits have weight norms larger than the early exits. Based on these findings, we propose
an approach to alleviating the catastrophic overfitting of the multi-exit network. Compared to PGD
adversarial training, our approach can train a model with decreased time complexity and increased
empirical robustness. Extensive experiments have been conducted to evaluate our approach against
various adversarial attacks, and the experimental results demonstrate superior robustness accuracies
on CIFAR-10, CIFAR-100 and SVHN.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Adversarial examples are delicately crafted samples, the at-
acker tries to deceive the model by adding adversarial per-
urbations which are invisible for human (Szegedy, Zaremba,
utskever, Bruna, Erhan, Goodfellow, & Fergus, 2014). As the deep
eural network (DNN) is widely used in various challenging ma-
hine learning tasks in real life, the threat of adversarial examples
s receiving particular attention in the deep learning community.

A large body of defense methods have been proposed to alle-
iate this problem. Based on the structures and characteristics of
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DNNs, the defense methodologies can be categorized as Adver-
sarial Training and Certified Robustness. The former feeds model
with both clean samples and adversarial examples, for example,
Madry, Makelov, Schmidt, Tsipras, and Vladu (2018) use PGD
adversarial examples for training; while the latter proposes to use
new regularization schemes which provably improves adversarial
robustness, for instance, Lyu, Huang, and Liang (2015) develop
gradient regularization methods to penalize the gradient of loss
function. Among those defense methods, PGD adversarial training
is widely accepted by the public since it can get better adversarial
robustness and perform well in different problems (Madry et al.,
2018). However, PGD adversarial training requires high computa-
tional costs. Some research attempts to overcome this issue, i.e.,
dversarial training based on a weaker single-step attack, which
s much more efficient.

Wong, Rice, and Kolter (2020) first discovered ‘catastrophic
verfitting’, which is a phenomenon that accuracy against
rojected Gradient Descent (PGD) attack drops significantly. It
appens while conducting Fast Gradient Sign Method (FGSM)
dversarial training. After that, many methods have been pro-
osed to solve this problem. Kim, Lee, and Lee (2021) used
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heckpoints (i.e., early stopping) to prevent catastrophic over-
itting. Andriushchenko and Flammarion (2020) proposed a new
egularization method by using gradient alignment to solve catas-
rophic overfitting. Li, Wang, Jana, and Carin (2020) proposed
sing PGD adversarial training temporarily when catastrophic
verfitting occurs. However, these approaches can only get a sub-
ptimal solution (Kim et al., 2021), or have high time complexity
Andriushchenko & Flammarion, 2020; Li et al., 2020). Thus, the
ain problem to be solved in this paper is to make the model

obust and accurate, at the same time reduce the training time.
In this paper, we first investigate the relationship between

epth and influence of adversarial perturbations. The experimen-
al results demonstrate that the multi-exit network can reduce
he impact of adversarial perturbations, thus will get better ad-
ersarial robustness. Then we show that the multi-exit network
an alleviate the phenomenon of FGSM catastrophic overfitting
nd recover from overfitting. The underlying reasons are discov-
red empirically. Based on the above findings, we propose a new
raining scheme for the multi-exit network, which can further
lleviate the phenomenon of catastrophic overfitting. Extensive
xperiments have evaluated our approach against various adver-
arial attacks, including PGD, C&W, BIM, MIM and AutoAttack
AA). Experiments show promising results comparable to PGD
dversarial training and its extensions on CIFAR-10, CIFAR-100
nd SVHN.
Our contributions can be concluded as follows:

• We show that the impact of adversarial perturbations on
feature space will be amplified as the network goes deeper,
and the multi-exit network can reduce the impact of adver-
sarial perturbations by outputting easy-identified samples at
early exits.
• We find that the multi-exit network can alleviate the catas-

trophic overfitting of FGSM adversarial training, and the
reason for alleviation is analyzed theoretically and experi-
mentally.
• Based on the above observations, we suggest a simple

method by adopting different penalty term coefficients to
minimize the weights of fully connected layers, which can
alleviate the phenomenon of catastrophic overfitting of
multi-exit networks.
• Experimentally, our method is evaluated against various

adversarial attacks, including FGSM, BIM, MIM, PGD, C&W
and AutoAttack. The experiment shows promising results
comparable to PGD adversarial training and its extensions.

The rest of this paper is organized as follows. Section 2 dis-
usses related works about adversarial learning and multi-exit
etworks. Section 3 talks about the multi-exit network and adver-
arial attack and defense for them. Section 4 claims our proposed
ethod. Section 5 experimentally demonstrates the effectiveness
f the proposed method, and Section 6 makes some discussions
f this paper.

. Related work

We focus on classification tasks over samples {(x, y)} ∈ (X ,Y).
iven a loss function L, we can learn a classifier fθ : X → Y
hich is parameterized by θ . Considering an original sample x ∈

X , bound of perturbation ϵ, perturbation δ and a distance metric
D(·, ·) (usually we use ℓp metric). The definition of adversarial
xamples x′ = x+ δ is as follows:

argminfθ (x+ δ) ̸= fθ (x) s.t. ∥δ∥p < ϵ (1)

δ

2

2.1. Adversarial attacks

Since Szegedy et al. (2014) proposed the concept of adversarial
examples, many researchers have extensively proposed different
attack methods. Gradient-based attacks have full access to the
model, which is a kind of white-box attack (Yuan, He, Zhu, &
Li, 2019). Goodfellow, Shlens, and Szegedy (2014) proposed a
simple Fast Gradient Sign Method (FGSM), which performs a
gradient ascent by using a first-order approximation of the loss
function. Kurakin, Goodfellow, and Bengio (2017) extended FGSM
by applying FGSMmultiple times with small step size and clip the
image in each iteration to ensure that the new image is in the ϵ-
neighborhood of the original image, and named it Basic Iterative
Method (BIM). In addition, aiming at escaping from local max-
ima during iterations of BIM, Momentum-based Iterative Method
(MIM) (Dong, Liao, Pang, Su, Zhu, Hu, & Li, 2018) integrated
momentum term into the iterative attack process. Projected Gra-
dient Descent (PGD) (Madry et al., 2018) is also a variant of
BIM. In this method, perturbation is initialized within a l∞ ball,
and the new image will be projected in each iteration. However,
those methods cannot find the minimal perturbation necessary
to change the class of a given input. To solve this problem,
Croce, Andriushchenko, and Hein (2019) proposed Fast Adaptive
Boundary Attack, which minimizes the norm of the perturbation
necessary to achieve a misclassification. Apart from this, another
type of white-box attack is the optimization attack. Carlini and
Wagner (C&W) attack (Carlini & Wagner, 2017) designed a spe-
cific objective function for generating adversarial examples. Fan
et al. (2020) formulated the sparse adversarial attack as a mixed-
integer programming (MIP) problem to optimize perturbation
magnitudes and binary selection factors jointly. AutoAttack (AA)
(Croce & Hein, 2020) proposed two extensions of the PGD-attack
and combine them with two complementary attacks, thus formed
a new ensemble attack.

In addition to the white-box attack, another type of attack
is the black-box attack. In the black-box attack, the role of the
attacker is more like a regular user, and the attacker can only
get the output of the model. Papernot, McDaniel, and Goodfellow
(2016) first show the transferability of adversarial examples, i.e.,
dversarial examples that successfully fool this model can fool
nother too. Square Attack (Andriushchenko, Croce, Flammarion,
Hein, 2020) is a score-based black-box attack for norm bounded
erturbations that uses random search and does not exploit any
radient approximation.

.2. Adversarial defenses

In view of the harm of adversarial examples to real-world
pplications, many approaches have been proposed to mitigate
his problem and make the model more robust to adversarial
ttacks. At present, most defense methods can be divided into
wo categories:

1. Adversarial Training feeds model with clean samples and
adversarial examples, which can be formulated as an op-
timization problem, as shown in formula (2). Adversar-
ial training approximates the inner maximization problem
by generating adversarial examples, and then update the
model parameters θ .

min
θ

E(x,y)∼X ,Y max
∥x′−x∥

∞
<ϵ

(
L

(
fθ

(
x′

)
, y

))
(2)

2. Certified Robustness proposes a new regularization
scheme which provably improves adversarial robustness.
Certified robustness studies the characteristics of the
model, and proposes a regular term to improve robustness.
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In this paper, we mainly study adversarial training. Among
those defense methods about adversarial training, FGSM is the
fastest way for approximating the inner maximization of for-
mulation (2), which performs only one gradient ascent by using
first-order approximation of loss function:

x′ = x+ ϵ sign (∇xL (fθ (x), y)) (3)

However, FGSM adversarial training may fall into the dilemma
of gradient masking (Athalye, Carlini, & Wagner, 2018; Tramèr,
Kurakin, Papernot, Goodfellow, Boneh, & McDaniel, 2018) or
catastrophic overfitting (Wong et al., 2020). A more general
method is PGD adversarial training (Madry et al., 2018), which is
one of the most effective methods to improve model’s adversarial
robustness. The iterative formula of the PGD attack method is as
follows:

x′t+1 = Π∥x′−x∥
∞
≤ϵ

(
x′t + α sign

(
∇x′tL

(
fθ

(
x′t

)
, y

)))
(4)

Zhang et al. (2019) provided a differentiable upper bound
for prediction error of adversarial examples, and proposed a
defense method to trade adversarial robustness off against ac-
curacy (TRADES). Manifold adversarial training (Zhang, Huang,
Zhu, & Liu, 2021) built an adversarial framework to promote
the manifold smoothness in the latent space, which can learn a
more robust and compact data representation. Feature Scattering
(FS) (Zhang & Wang, 2019) considered the relationship of inter-
samples, and trained the model through feature scattering in the
latent space. Zhang and Qian et al. (2021) investigated adversarial
training from the perspective of shift consistency in latent space,
and proposed a new regularization method — shift consistency
regularization (SCR), which can achieve impressive adversarial
robustness when combined with FS.

Although the above adversarial training methods can greatly
improve the adversarial robustness of the model, these perfor-
mance improvements come at the cost of time as it relies on
the multi-step adversarial attack. In order to overcome this issue,
some studies attempted to eliminate the overhead cost of gen-
erating adversarial examples in PGD adversarial training. ‘Free’
adversarial training (Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer,
Davis, Taylor, & Goldstein, 2019) recycled the gradient informa-
tion when updating model parameters, which can achieve com-
parable robustness to PGD adversarial training and can be 7 or 30
times faster than other PGD adversarial training methods. Some
studies (Andriushchenko & Flammarion, 2020; Kim et al., 2021; Li
et al., 2020; Schwinn, Raab, & Eskofier, 2020; Vivek & Babu, 2020;
Wong et al., 2020) attempted to use single-step attack instead
of multi-step attack to speed up the training process. Wong
et al. (2020) observed the phenomenon of catastrophic overfitting
and proposed Fast Adversarial Training to solve this problem,
which adds the random initialization process in FGSM attack.
However, it can only get a suboptimal result due to its cyclic
learning rate setting. Li et al. (2020) proposed combining FGSM
adversarial training with PGD adversarial training. Although it can
achieve comparable robustness and without too many epochs,
PGD adversarial training is still time-consuming. We hope that
we can only use FGSM in adversarial training to reduce training
time. Andriushchenko and Flammarion (2020) showed that Fast
Adversarial Training cannot prevent catastrophic overfitting, thus
they proposed a new regularization method named GradAlign to
prevent this phenomenon. They maximized the gradient align-
ment inside the perturbation set and therefore improved the
quality of the FGSM attack. However, this method greatly in-
creased the time complexity, which violates the original intent
of FGSM adversarial training.
3

2.3. Input-adaptive inference

Methods for improving DNN’s efficiency can be divided into
two types: reducing model calculation (Sandler, Howard, Zhu,
Zhmoginov, & Chen, 2018) and input-adaptive inference (Hong,
Kaya, Modoranu, & Dumitras, 2021; Huang, Chen, Li, Wu, van der
Maaten, & Weinberger, 2018; Kaya, Hong, & Dumitras, 2019;
Teerapittayanon, McDanel, & Kung, 2016). Reducing model cal-
culation means designing a compact network or compressing
the model. Input-adaptive inference means that samples can
adaptively choose different exits during inference, and simple
samples can be output in the front part of the model, which
reduces unnecessary computation. Here we mainly talk about
input-adaptive inference in adversarial robustness.

BranchyNet (Teerapittayanon et al., 2016) is the first archi-
tecture that is augmented with additional side branch classifiers,
which exploits the observation that features learned at an early
layer of a network may often be sufficient for the classification
of many data points. MSDNet (Huang et al., 2018) extended
the multi-exit network by using a two-dimensional multi-scale
network architecture, which can maintain coarse and fine level
features throughout the network. So far, there is not much re-
search on adversarial examples for the multi-exit network. Hong
et al. (2021) proposed DeepSloth, which can cause multi-exit DNN
slowdown. Hu, Chen, Wang, and Wang (2020) studied adversarial
learning in the multi-exit network, and they proposed three
attack methods and a defense method for the multi-exit network.
However, they did not explain why the multi-exit network can
improve the robustness, and the whole training process uses PGD
adversarial training, which takes a long time. In this paper, we
will explain why the multi-exit network can improve adversarial
robustness and speed up the training by using FGSM adversarial
training.

3. Multi-exit network

In this section, we first introduce the multi-exit network struc-
ture used in this paper. Then we discuss attack and defense
methods in the multi-exit network.

3.1. MSDNet

Huang et al. (2018) developed a DNN that can slice a large
network into small parts and process these slices sequentially,
and stop the inference process once the prediction is sufficiently
confident. However, the existing DNN has two problems: (1) The
multi-exit network should extract different features according to
the number of layers left before classification. In contrast, the
existing DNN directly extracts the features of the last layer. (2)
The first layer of the DNN operates on the fine scale to extract
low-level features, and the subsequent layers are transferred to
the coarse scale. Thus the global context can enter the classifier.
Both of these scales are required, but they occur in different
locations in the network. These two problems make it infeasible
to add exits to traditional CNN directly.

Therefore, Huang et al. (2018) proposed a novel network ar-
chitecture. For the first problem, they solved it by density con-
nectively (Huang, Liu, van der Maaten, & Weinberger, 2017). By
connecting all layers to all classifiers, the classifier is no longer
dominated by the nearest feature. For the second problem, be-
cause the front layer lacks coarse-grained features, a multi-scale
structure is proposed. In each layer, all scale features (from fine
to coarse) are generated, which are helpful to the classification of
early classifiers. The network structure is illustrated in Fig. 1, and
they refer to it as Multi-Scale DenseNet (MSDNet).
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Fig. 1. An overview of MSDNet with network reduction we used to train CIFAR-10. This is a multi-scale network which has three scale, and the network is divided
into five blocks, which maintain a decreasing number of scales. The classifier consists of two convolution layers, an average pooling layer and a fully connected layer.
The dotted line and solid line between different scales indicates dense connectivity.
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3.2. Attack and defense

Considering samples {(x, y)} ∈ (X ,Y), an N-output network
ith N classifiers can produce a set of predictions [ŷ1, ŷ2, . . . , ŷN ].
e denote these classifiers as [fθ1 , fθ2 , . . . , fθN ], where θi denotes

he model parameter of fθi , i = 1, . . . ,N , and as shown in Fig. 1,
θi will share some weights. In white-box attack, L is the loss
unction, δ is the perturbation we generate, ϵ is the bound of
erturbation and x = x+ δ denotes the adversarial example.
Hu et al. (2020) proposed three attack optimization formu-

ations and one adversarial training scheme for the multi-exit
etwork, here we briefly review.

ingle Attack is a naive extension for attack single-exit net-
ork, which is defined to maximize loss function of one of the
lassifiers.

′

i = argmax
δ∈∥δ∥p≤ϵ

⏐⏐L (
fθi (x+ δ) , y

)⏐⏐ (5)

here y is the ground truth label of x, x′ is adversarial example,
δ is perturbation and ϵ is limitation of perturbation in lp norm.

Average Attack maximizes the average of losses of all classifiers,
so that x′ can better attack all exits.

x′avg = argmax
δ∈∥δ∥p≤ϵ

⏐⏐⏐⏐⏐⏐ 1N
N∑
j=1

L
(
fθi (x+ δ) , y

)⏐⏐⏐⏐⏐⏐ (6)

here N is the number of exits.

ax-Average Attack is a combination of single attacks and av-
rage attack, which aims to strengthen the ability of a single
ttack. This method does not simply maximize the average of all
osses, but first solves N times of single attacks to get x′i through
ormulation (5), and denotes their collection as Ω , then calculates
he average loss as formulation (6) do respectively and finds i∗
4

that can maximize the loss function.
x′max ← x′i∗ , where x′i∗ ∈ Ω

nd i∗ = argmax
i

⏐⏐⏐⏐⏐⏐ 1N
N∑
j=1

L
(
fθj

(
x′i

)
, y

)⏐⏐⏐⏐⏐⏐ (7)

Hu et al. (2020) also proposed a defense scheme based on
min–max optimization of adversarial training (Madry et al., 2018),
which can embed the above three attack methods for generating
adversarial examples. The formulation is as follows:

θi ∈ Θ, where θi = argmin
θ ′

⏐⏐L (
fθi (x), y

)
+ L

(
fθi

(
x′

)
, y

)⏐⏐ (8)

where Θ is the union of learnable parameters and θ1 ∪ θ2 ∪ · · · ∪

θN = Θ . And x′ ∈ {x′i, x
′
avg , x′max}.

4. Approach

In this section, we first investigate the relationship between
the model’s depth and adversarial robustness in Section 4.1. Then
we show that the multi-exit network can alleviate catastrophic
overfitting of FGSM adversarial training and empirically discover
the underlying reason in Section 4.2. Our method is proposed in
Section 4.3.

4.1. Motivation

In order to investigate the relationship between the model’s
depth and adversarial robustness, we investigate the characteris-
tics of the model’s output. Considering a multi-exit network with
N classifiers, a set of samples {(x, y)}, we produce adversarial
xamples x′ for each x. And then, we calculate the features of
oth clean samples and adversarial examples before softmax re-
pectively, and denote those features as li and li′ , i = 1, 2, . . . ,N .
o compare clean samples with adversarial examples intuitively,
he differences between them are calculated and expressed in l2

′
norm, denotes as di, where di = ∥li − li ∥2.
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Fig. 2. di of FGSM and PGD attack in a 5-output MSDNet in CIFAR-10 and
CIFAR-100. The x-axis represents the index of the block or classifier. di shows
a monotonous increasing trend, which means the influence of adversarial
perturbations on the model is magnified as the network becomes deeper.

We regard di as the impact of adversarial perturbations on
deep neural networks. When di is larger, that is, the model has
a larger difference for a pair of samples that are visually similar,
it is considered that the impact of adversarial perturbations on
the model is more severe.

As we can see in Fig. 2, di shows a monotonous increasing
trend. That means the difference between clean samples and
adversarial examples of the model becomes larger as the network
becomes deeper. Therefore, the features obtained by recognizing
adversarial examples are increasingly different from those of
clean samples. The model prediction is more likely to be wrong.
Apart from this, differences in CIFAR-100 (Fig. 2b) are greater
than that in CIFAR-10 (Fig. 2a), which is in line with our common
sense. The classification task in CIFAR-100 is more complicated
and therefore easier to attack. Those observations further support
us to use di to estimate the adversarial robustness.

It can also be observed from Fig. 2 that the growth rate of
PGD is much faster than FGSM, which shows that the stronger the
attack, the greater the deviation of model recognition. Thus, the
influence of perturbation on the model will be more severe as the
network goes deeper, making the model more vulnerable to ad-
versarial examples. For some simple samples, if the classification
results can be output when the effect of the adversarial pertur-
bation is small, is it possible to improve adversarial robustness
without reducing too much accuracy?

Based on the above observation, we propose to use the multi-
exit network to improve the model’s adversarial robustness. We
will output easily identified samples in early exits of the network
to better avoid the influence of perturbations on the samples and
improve model efficiency.

4.2. Catastrophic overfitting

Although the multi-exit network can improve the adversarial
robustness of the model to some extent, in order to have a better
robustness of the model, we will further incorporate the FGSM
adversarial training, which is mentioned in Section 3.2.

Fast Adversarial Training (Wong et al., 2020) uses random
initialization to increase the diversity of FGSM adversarial ex-
amples and improve catastrophic overfitting. However, we find
that when we train too many epochs, Fast Adversarial Training
will also fall into the dilemma of catastrophic fitting, as shown in
Fig. 3. Catastrophic fitting is a phenomenon that occurs in FGSM
adversarial training (Wong et al., 2020). After training for a while,
the recognition accuracy of PGD attack suddenly drops to 0. It

can be seen from Fig. 3 that although the multi-exit network can

5

Fig. 3. The accuracies of catastrophic overfitting in the multi-exit network on
CIFAR-10 dataset. For robust accuracy here, we use PGD-5 attack.

alleviate catastrophic overfitting, the robustness of the late exits’
classifiers still eventually decreases. The classifiers of early exits
will not fall into overfitting, which is in line with the conclusions
of Wong et al. (2020) and the discussion of Section 4.1, that is,
large epsilon for FGSM adversarial training may force the model
to overfit to the boundary of the perturbation region. For the clas-
sifiers of early exits, the impact of adversarial perturbations on
it is relatively small. Thus, minor epsilon training is used. While
for the late classifiers, the impact of adversarial perturbations is
magnified so that it may fall into overfitting.

It can be observed from Fig. 3 that robust accuracy begins to
decline around the twenty-ninth epoch. Although different from
the single-exit network, the robust accuracy is not reduced to
0, accuracies of late exits still drop a lot. To understand the dif-
ference between FGSM adversarial training and PGD adversarial
training, inspired by the relationship between overfitting and l2
regularization, we investigate the l2 norm of weights at a fully
connected layer (Here we abbreviate it as LW ). Moreover, we
plot in Fig. 4 that LW obtained by FGSM and PGD adversarial
training on CIFAR-10. Catastrophic overfitting occurs for FGSM
adversarial training around the twenty-ninth epoch. It has the
following characteristics: (a) At the twenty-ninth epoch, robust
accuracies of late exits of the model begin to drop, along with
robust accuracies of early exits speed up the increase. In addition,
before the twenty-ninth epoch, LW of late exits never exceeded
that of classifiers of early exits. This observation suggests that
the model may start to overfit the FGSM attack. (b) LW of FGSM
dversarial training is bigger than PGD adversarial training, and
W gradually stabilizes and will not recover after catastrophic
verfitting. The connection between LW and catastrophic overfit-
ing has aroused our interest. We hope to solve the catastrophic
verfitting problem through LW .

.3. Proposed method

Based on the link between FGSM adversarial training and
W , we propose a regularizer to fix the problem. Section 4.2
entioned that LW of late exits exceed LW of early exits in the

model and LW of FGSM adversarial training is bigger than that of
PGD adversarial training. Thus, our regularizer tries to minimize
the LW of all classifiers, and for the LW of late exits, we increase
the penalty term to make sure that these LW will not exceed the
LW of early exits. The optimization objective is as follows:

N∑(
L

(
fθi (x), y

)
+ L

(
fθi

(
x′

)
, y

)
+ λi × LWi

)
(9)
n=1
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Fig. 4. l2 norm of the weights of fully connected layers (LW ) obtained by FGSM
dversarial training and PGD adversarial training. Here we use PGD-7 for PGD
dversarial training.

here N is the number of classifiers in multi-exit network, θi is
he ith classifier, x is the clean sample and y is its label, x′ is
dversarial example generating from x. L is the loss function, LWi

s the abbreviation of l2 norm of fully connected layer weight of
th classifier and we use λi to control the influence of LWi. The
mplementation of our proposed training scheme is summarized
n Algorithm 1.

In the following, we will use a simple neural network to math-
matically prove why a model with a smaller LW can be more
obust against adversarial examples. Without loss of generality,
e use a fully connected network to illustrate.
Consider a single network f (X) = XW, where W is a n × k

atrix, k is the number of classification tasks. X is a sample with
features, whose dimension is 1× n. The process of minimizing
W is the process of minimizing l2 norm of W. Since the process
f minimizing l2 produces more parameters close to 0, when the
ean of W is 0, this process will make the variance of W smaller.
herefore, we consider the following two models:

1. f1(X) = XW1, where w
(1)
i,j ∈ W1, w

(1)
i,j ∼ U(0, d1) and w

(1)
i,j

are independent of each other.
2. f2(X) = XW2, where w

(2)
i,j ∈ W2, w

(2)
i,j ∼ U(0, d2) and

d2 < d1, and w
(2)
i,j are independent of each other.

e can get the following theorem:

heorem 1. Assume that the weights of models Wi=1,2 obey normal
distribution, and the variance of W1 is bigger than W2, then f1 is
more susceptible to adversarial perturbations:

∥f1(X+ δ)− f1(X)∥2 > ∥f2(X+ δ)− f2(X)∥2 (10)

Proof. Firstly, since fi(X) = WiX, we can rewrite the two sides of
the inequality as follows:

∥fi(X+ δ)− fi(X)∥2 = ∥XWi + δWi − XWi∥2

= ∥δWi∥2

=

√ k∑
a2j

(11)
j=1

6

where [aj] = δWi. And we can write the quadratic sum of aj in
matrix form, that is:
k∑

j=1

a2j = (δWi)(δWi)T

= δWiWT
i δ

T

(12)

Thus we can substitute formula (11) and formula (12) into
formula (10) to obtain the following form:

E
[
δW1WT

1δ
T ] > E

[
δW2WT

2δ
T ] (13)

Since δ is not a random variable, we only need to prove:

δE
[
W1WT

1 −W2WT
2

]
δT > 0 (14)

E
[
W1WT

1 −W2WT
2

]
> 0 (15)

We partition the matrix Wi into the following form:

Wi = [ω
(i)
1 , ω

(i)
2 , . . . ,ω

(i)
k ] and ω

(i)
j = [w

(i)
j1 , w

(i)
j2 , . . . , w

(i)
jn ]

T (16)

where j = 1, . . . , k, k is the number of classification tasks, n is
the number of features.

Through formula (16), we can get: WiWT
i =

∑k
j=1 ω

(i)
j ×

ω
(i)
j

T
,where

ω
(i)
j × ω

(i)
j

T
=

⎛⎜⎜⎜⎜⎜⎝
w

(i)
j1

w
(i)
j2

...

w
(i)
jn

⎞⎟⎟⎟⎟⎟⎠×
(
w

(i)
j1 , w

(i)
j2 , . . . , w

(i)
jn

)

=

⎛⎜⎝w
(i)
j1 × w

(i)
j1 · · · w

(i)
j1 × w

(i)
jn

...
. . .

...

w
(i)
jn × w

(i)
j1 · · · w

(i)
jn × w

(i)
jn

⎞⎟⎠
(17)

Accroding to the formulation V (x) = E(x2) − [E(x)]2, since
E(wja) = 0, wja and wja are independent, then for all w

(i)
ja ×w

(i)
jb :

E
[
w

(i)
ja × w

(i)
jb

]
=

{
V (w(i)

ja )+ [E(w
(i)
ja )]

2
= di, if a = b

0, else
(18)

Substituting formula (18) into formula (17), we can get:

WiWT
i =

⎛⎜⎜⎝
k× di

k× di
. . .

k× di

⎞⎟⎟⎠ (19)

where n is the number of features and di is variance of wi.
According to condition d2 < d1, formula (10) is proved.

Theorem 1 shows that if the l2 weight norms of the model
are smaller, its adversarial robustness will be stronger. Especially,
our method plays the same role as weight decay (Krogh & Hertz,
1992). However, the difference from weight decay is: (1) Our
method only minimizes the weight of the fully connected layer.
If we just set parameters of l2 regularization to be large, i.e.,
minimize parameters of the whole model, the model may be un-
derfitting. (2) We solve the dilemma of catastrophic overfitting of
multi-exit network FGSM adversarial training, i.e., the parameter
λi of LWi in formulation (9) can be different for different clas-
sifiers. According to previous observations, we set the λi of late
exits slightly bigger than the λi of early exits to avoid catastrophic
overfitting.
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Algorithm 1 Our training scheme for N-output network fθ
Input: epsilon ϵ, epochs T , step size α, number of classifiers N ,

λ = [λ1, λ2, ..., λN ] and a dataset of size M
Output: θ

1: for t = 1, 2, ..., T do
2: // Traverse the dataset and perform FGSM attack
3: for i = 1, 2, ...,M do
4: δ = Uniform(-ϵ,ϵ)
5: δ = δ + α×sign(∇δL (fθ (xi + δ) , yi))
6: δ = max(min(δ, ϵ),−ϵ)
7: // Calculate loss of clean and adversarial examples
8: Loss = L (fθ (xi), yi) + L (fθ (xi + δ), yi)
9: // Add regular term to Loss

10: for j = 1, 2, ...,N do
11: Loss = Loss+ λj × LWj

12: // Update model parameters with given optimizers
13: θ = θ −∇θLoss

return θ

5. Experimental results

This section shows the performance of models trained using
ur proposed training scheme against various adversarial attacks
n CIFAR-10, CIFAR-100 and SVHN. In addition to multi-step
radient-based attack methods such as BIM, MIM, and PGD, we
lso used C&W attack to ensure the model does not exhibit
bfuscated gradients (Athalye et al., 2018).

.1. Experiment setup

atasets: We evaluate adversarial robustness on CIFAR-10,
IFAR-100 (Krizhevsky, Hinton, et al., 2009) and SVHN. Following
he literature (Huang et al., 2018), we deploy MSDNet (block
5) on CIFAR-10 and MSDNet (block = 7) on CIFAR-100.1 For

ata-augmentation, random crop and random horizontal flip are
erformed on CIFAR-10 and CIFAR-100.

enchmark models: We compare the proposed method with 7-
tep PGD Adversarial Training (PGD-7), 10-step PGD Adversarial
raining (PGD-10), 7-step PGD Adversarial Training with Shift
onsistent Regularization (PGD-SCR), Free PGD Adversarial Train-
ng (Free-8), Fast FGSM and Grad Alignment (GradAlign), all those
ethods are described in Section 2.2.

yper-parameters: For CIFAR-10 and SVHN, we use SGD opti-
izer with momentum of 0.9 and train for 100 epoch, where
eight decay is set to be 0.0005. The learning rate is set as 0.05,
nd is divided by 10 at the 50th and the 75th epoch. The λ

in formulation (9) is set as [0.1, 0.1, 0.15, 0.15, 0.15]. Epoch in
ast-FGSM and Free-8 is set to 60 and 25 respectively.
For CIFAR-100, we also use the SGD optimizer but train for

50 epochs. The learning rate is set as 0.1 and is divided by 10 at
he 75th and the 115th epoch. λ = [0.1, 0.1, 0.1, 0.15, 0.15, 0.15,
.15]. For Fast FGSM, we follow the settings in Wong et al. (2020),
hich train for 60 epochs with cyclic learning rate. Furthermore,

or Free PGD, we set the number of training epochs as 50, mini-
atch replay as 8, which are the same as literature (Shafahi et al.,
019).

ttack and defense: We use four attack methods to evaluate the
dversarial robustness, including BIM, MIM, PGD, C&W and AA
entioned in Section 2.1. The bound of perturbations ϵ is set to

1 We use the public implementation of MSDNet available at https://github.
om/kalviny/MSDNet-PyTorch.
 a

7

be 8/255. For BIM, MIM and PGD, we set the step size of attack as
1/255 and the number of iterations as 40 while the iteration times
in the C&W attack is 100. And all attack methods are untargeted
attacks. In defense, we use FGSM adversarial training. All attack
is in the mode of Average Attack describe in Section 3.2, because
we think it is the most balanced form of attack, it can better
evaluate/improve the adversarial robustness. In order to be easy
to reproduce, all attack and defense methods are based on Ding,
Wang, and Jin (2019).2

Evaluation metrics: We evaluate accuracy, robustness, training
time, using the metrics below:

• Standard Accuracy (Standard): classification accuracy on
original samples.
• Robust Accuracy: classification accuracy on adversarial test

set against a specific attacker.
• Training Time (Time): the total execution time for training

the model in minutes.

5.2. CIFAR-10

The experimental settings are described in Section 5.1. And the
experimental results are shown in Table 1.

Table 1 demonstrates that the accuracy of our method on clean
samples is comparable to other methods. Nevertheless, the most
robust method among the comparison methods, TRADES, has
relatively lower accuracy on clean samples. This result confirms
the point in the paper (Tsipras, Santurkar, Engstrom, Turner, &
Madry, 2019) that using more powerful attacks for adversarial
training will reduce the accuracy of the model. Moreover, Free-8
uses a method similar to PGD, but the number of training epochs
of this method is much smaller than those of other methods,
which has a more significant impact on its accuracy. Despite
saving a lot of training time, the results obtained in this way are
not ideal. In comparison, the proposed method does not cause a
significant loss of accuracy.

In terms of robust accuracy, our method is better than other
training methods, no matter single-step adversarial training or
multi-step adversarial training. TRADES is an improved version of
PGD and can get the best robustness currently. Our method has
similar robust accuracy to TRADES, and the training time is signif-
icantly reduced, which is reduced by 50% compared to TRADES.
Compared to other single-step adversarial training methods, our
method is even better. Especially it is well known that PGD and
C&W are the two most powerful attack methods at present, and
the recognition accuracy of our method under these two attacks
is much higher than those of other methods.

Talking about the training time, although compared to the
proposed method, Free-8 and Fast FGSM take a shorter time to
train due to their fewer epochs, but they finally get a sub-optimal
result. It means that we have made a trade-off between training
time and robustness. Compared with Fast-FGSM and other meth-
ods, we can get better adversarial robustness because we have
solved the catastrophic overfitting problem during the training of
multiple epochs. Compared with multi-step adversarial training
such as TRADES, we can reduce a lot of training time and get
a robust model. It is interesting to note that the training time
of PGD-10 here is nearly doubled that of TRADES. This may be
due to the fact that the cross-entropy is calculated twice in one
iteration (clean sample and adversarial sample). In comparison,
TRADES only needs to calculate a KL divergence in one attack
iteration, which caused a difference in training time. Due to the
FGSM attack, our method can save half of the time than TRADES.

2 Our attack and defense methods are based on AdverTorch, which is
vailable at https://github.com/BorealisAI/advertorch.

https://github.com/kalviny/MSDNet-PyTorch
https://github.com/kalviny/MSDNet-PyTorch
https://github.com/BorealisAI/advertorch
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Table 1
CIFAR-10 results.
Training method Standard PGD BIM MIM CW-100 AA Time (min)

PGD-7 82.26% 40.75% 40.29% 41.98% 67.04% 28.90% 755.28
PGD-10 81.97% 41.56% 40.65% 42.89% 66.49% 29.83% 881.39
PGD-SCR 82.27% 43.99% 43.79% 45.23% 62.47% 25.38% –
TRADES 78.11% 48.90% 48.83% 49.48% 54.55% 35.31% 406.90
Free-8 73.46% 41.30% 41.31% 42.55% 53.21% 29.48% 73.32
Fast FGSM 79.99% 42.85% 42.62% 42.23% 61.23% 32.92% 64.33
GradAlign 82.78% 44.46% 44.19% 42.67% 69.06% 37.26% 364.48

Proposed 81.93% 49.30% 48.97% 47.00% 74.34% 43.90% 201.50
Table 2
CIFAR-100 results.
Training method Standard PGD BIM MIM CW-100 AA Time (min)

PGD-7 61.60% 22.08% 21.94% 22.58% 47.02% 19.50% 816.05
PGD-10 61.97% 22.79% 22.78% 23.14% 46.97% 19.95% 941.17
TRADES 55.74% 27.76% 27.65% 28.16% 36.72% 22.55% 658.33
Free-8 51.05% 23.96% 23.87% 24.47% 23.04% 19.13% 176.62
Fast FGSM 52.86% 23.85% 23.67% 23.92% 38.08% 19.14% 88.60
GradAlign 62.60% 25.00% 24.47% 23.40% 49.24% 23.59% 641.33

Proposed 63.01% 24.05% 23.97% 23.55% 51.56% 21.83% 291.47
The proposed approach gets better adversarial robustness than
other single-step adversarial training methods by mitigating the
catastrophic overfitting problem.

5.3. CIFAR-100

The results on CIFAR-100 reveal a drawback of adversarial
raining, i.e., it may significantly reduce the recognition accu-
acy on clean samples, especially for models trained with more
owerful attacks, e.g., TRADES. It can be seen from Table 2 that
nder attack methods such as PGD, TRADES has the strongest
dversarial robustness. However, its accuracy is also the lowest
xcept for Fast FGSM and Free-8 methods and is far lower than
he proposed method. Although such a model can obtain strong
obustness, the method has a significant loss in the recognition
ccuracy on clean samples. Furthermore, TRADES cannot resist
&W attacks very well. In contrast, the proposed method obtains
much higher recognition accuracy than TRADES under the C&W
ttack, reflecting the balance of our approach.
Note that GradAlign can also effectively improve the model’s

dversarial robustness. However, the time we spend is half of
radAlign. Although GradAlign is a single-step adversarial train-
ng method, the time complexity for calculating the regularization
erm is high, where the real time cost of this method is close to
hat of PGD adversarial training. In other words, the improvement
f robustness in GradAlign is obtained by sacrificing the train-
ng time, which loses the original intention of fast adversarial
raining. Although our method is slightly worse than GradAlign
n improving the robustness on CIFAR-100, it can maintain the
ighest robustness under C&W attack, and it also has a great
dvantage in time.
About other PGD adversarial training methods, our method

s superior to them in all aspects. Regardless of the accuracy
n clean samples or the robust accuracy, although our method
s only 1% or 2% higher than others, it only needs nearly one-
hird of the time of PGD-7 and PGD-10, which greatly improves
raining efficiency. Besides, the reason why PGD-7 and PGD-10
ake much longer time than TRADES here is the same as explained
n Section 5.2, i.e., the cross-entropy is calculated twice when
alculating loss.
Same as the result of CIFAR-10, Fast FGSM and Free-8 took

he shortest time and got a seemingly robust model. However,
8

these models can only successfully defend against gradient-based
attack methods, such as PGD. For C&W attack, the models trained
by these two methods are far worse than other models. The
exact cause is unknown, and it needs further analysis. Although
these two methods greatly reduce the training time, only a sub-
optimal model can be obtained in the end. We also think that
such a model is not ideal. Our method has a better trade-off
between training time and robustness. Compared with Fast-FGSM
and other methods, we can obtain better adversarial robustness
because we alleviate the catastrophic overfitting problem during
multiple epoch training. At the same time, due to the use of
single-step adversarial training, the time consumed is shorter
than multi-step methods such as TRADES. Overall, our method
stands out among these methods.

5.4. SVHN

As shown in Table 3, the proposed method outperforms multi-
step adversarial training under all attacks. But surprisingly, Free
and Fast FGSM outperform other methods on SVHN by a lot,
which may be because these two methods are more suitable for
simple datasets. Apart from this, Whether GradAlign under cyclic
settings, or ours, it does not achieve ideal adversarial robustness
on this dataset (here we use cyclic settings).

Another interesting phenomenon is that most of the single-
step adversarial training methods are better than those multi-
step adversarial training methods on SVHN, which possibly be-
cause these methods are more suitable for slightly simple
datasets with the multi-exit network. The model can learn suf-
ficient information from FGSM adversarial training, so it also has
the ability to generalize to other attacks. In general, the proposed
method can achieve well performance on these datasets.

5.5. Other evaluations

We also test the adversarial robustness of the proposed
method under multiple attack budgets. The result is shown in
Fig. 5, our method outperforms TRADES on both SVHN and CIFAR-
10. It can be also observed that as the dataset becomes more
complex, the gap of accuracies between the proposed method
and TRADES becomes narrower, and finally, it is slightly worse
than TRADES on CIFAR-100. Combined with the previous results,
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Table 3
SVHN results.
Training method Standard PGD BIM MIM CW-100 AA Time (min)

PGD-7 91.57% 48.45% 48.24% 49.15% 73.85% 55.05% 943.97
PGD-10 94.09% 48.54% 48.45% 48.47% 73.97% 54.05% 1050.24
TRADES 89.56% 56.55% 56.28% 57.50% 73.08% 60.24% 538.15
Free-8 91.69% 72.06% 71.75% 70.86% 86.21% 72.37% –
Fast FGSM 91.28% 73.03% 67.61% 63.57% 87.57% 68.71% 81.33
GradAlign 95.25% 24.02% 23.55% 26.58% 53.93% 21.85% 156.75

Proposed 92.77% 64.89% 63.82% 56.37% 89.72% 63.13% 253.90
Fig. 5. Figure (a–c) are comparisons of PGD attack on proposed method and TRADES on different budgets. And Figure (d) is black-box attack on CIFAR-10 (attacking
with PGD, CW and MIM).
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we believe that FGSM-based methods may be more suitable for
relatively simple datasets.

For black-box, we use the transfer attack proposed by Pa-
ernot et al. (2016). We adopt the model provided by the re-
earch (Zhang & Wang, 2019) as the attacked model, and test it
ith PGD, MIM, C&W and AA attacks. Fig. 5d shows the robust ac-
uracy of proposed method and TRADES under black-box attack.
he results show that the proposed method can better defend
gainst transferable adversarial examples than TRADES.

. Discussion

Catastrophic overfitting is a phenomenon in which accuracy
gainst PGD attacks drops significantly during FGSM adversarial
raining. Wong et al. (2020) first observed the problem, and
elieved that the reason for the problem might be insufficient
dversarial examples generated by the FGSM attack. Thus, the
ombination of random initialization in the FGSM attack is pro-
osed to alleviate catastrophic overfitting. Other researchers also
olved this problem from the perspective of sample diversity. In
his paper, we tackle this problem from another angle, that is,
rom the model’s perspective.

Firstly, we propose to use the multi-exit networks to im-
rove the model’s adversarial robustness. Moreover, by observing
he overfitting and non-overfitting classifiers in the multi-exit
etwork as well as comparing the FGSM training model and
GD training model, we find that weights of the fully connected
ayer of the model may be the cause of catastrophic overfitting.
s shown in Fig. 3, classifiers of early exits will not fall into
verfitting while classifiers of late exits lose the ability to gen-
ralize multi-step attacks. At the same time, as shown in Fig. 2,
hen catastrophic overfitting occurs, the l2 norms of the model
lassifiers also change drastically. Therefore, the weight norms
f the fully connected layer are adjusted to alleviate the catas-
rophic overfitting phenomenon, thereby improving adversarial
obustness.

l2 regularization is a commonly used method to alleviate over-
itting. In this method, l2 norm is used as the regularization term
n order to penalize large weight values (Goodfellow, Bengio,
9

Courville, 2016). Here we have further discussed the impact
f l2 regularization on adversarial perturbations. Through multi-
le experimental observations, we find that weights of the fully
onnected layer of the model may be the cause of catastrophic
verfitting. Besides, it mathematically proves that the influence of
2 normalization on adversarial perturbations in Theorem 1—the
maller the weight norm is, the smaller the influence of adver-
arial perturbations on samples, which leads to higher adversarial
obustness of the model.

Theorem 1 proves that l2 regularization can weaken the in-
luence of adversarial perturbations. It assumes that the model
eights follow a normal distribution with a mean of 0. This
ssumption may be too strict. However, according to the liter-
ture (Goodfellow et al., 2016), the regularization takes effect
hen the model parameters are close to any point. Therefore,
he limitation of the mean does not affect the conclusion. Here
e do not know whether the correct mean should be positive
r negative. And zero is a meaningful default value. Furthermore,
he regularization of model parameters to zero is more common.
hus, here we only discuss this particular case. Besides, the theo-
em also assumes that the model is a linear model. In particular,
onvolution and fully connected layers are linear operations so
hat they can be expressed in the form of matrix multiplication.
nly after the activation function is added, the network is a non-
inear operation. However, our current commonly used activation
unction, i.e. RELU function, is a piecewise linear function. So here
e simplify the network to a linear operation.
According to experimental observations and theoretical

roofs, this paper proposes a method based on l2 regulariza-
ion to alleviate catastrophic overfitting. We suggest a simple
ethod based on traditional l2 regularization by adopting dif-

erent penalty term coefficients to minimize the weights of fully
onnected layers. As shown in Fig. 6, the proposed method re-
uces l2 norm of the weights of all classifiers and ensures that
he weight of late exits will not be greater than the weight of
arly exits. Tables 1 and 2 verify the effectiveness of our method.
In general, the method proposed in this article is simple, effec-

ive and not time-consuming. But there are some disadvantages.
irst of all, the proposed method increases the number of hyper-
arameters, and the setting of hyperparameters is a complicated
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Fig. 6. l2 norm of fully connected layer weight of model obtained by FGSM
adversarial training and proposed method.

Table 4
Accuracy of models with different depth under PGD attack.
Model FS PGD FS-norm

WRN-16-4 36.78% 33.70% 41.50%
WRN-28-10 56.62% 40.37% 68.79%
WRN-52-1 34.14% 42.76% 37.77%

problem. In our experiments, we just set the parameters simply
through some experiments and guesses. Of course, there may be
better options. At present, some papers propose adaptive weight
decay (Nakamura & Hong, 2019), but we do not think this is the
point of our article, so we do not focus on it.

Regarding the experimental dataset, we do not use datasets
uch as MNIST and ImageNet. Because for a small dataset like
NIST, there is no need to use a large network, and natu-

ally, there is no need to use a multi-exit network. As for Ima-
eNet, large-scale adversarial training is not easy and very time-
onsuming. The model obtained by adversarial training on Ima-
eNet has very low accuracy on clean samples. Previous efforts
o conduct adversarial training on the ImageNet dataset were
nsuccessful (Kurakin et al., 2017). We believe this is a problem
hat needs to be solved in the future adversarial training.

In terms of defense methods, Feature Scattering method (FS) is
ne of SOTA methods, and we also tried to use FS for comparison,
ut the experimental results show that FS is not suitable for
ur experiment settings. This may be due to the deeper network
nd data normalization settings. For proving this conjecture, we
ompare WRN-16-4, WRN-28-10 and WRN-52-1 described in
agoruyko and Komodakis (2016), and train the model with FS,
GD, FS with data normalization (FS-norm). The experimental
esults in Table 4 show that when the model is shallow, FS
utperforms than PGD adversarial training. And when model be-
ome deeper (WRN-52-1), the performance of FS becomes poor.
hese phenomena show the effect of network model depth on FS.
esides, no matter which model is, FS-norm has a higher robust-
ess accuracy than FS, show the role of normalization. However,
n our experimental setting, the network is deep and no data
ormalization was used. We consider these are the reasons why
S was less effective in our experiments. Therefore, FS (Zhang
Wang, 2019) and FS-SCR (Zhang & Qian et al., 2021) are not

dopted.

onclusion

In this paper, we explore the relationship between adversarial

erturbations and model depth and give some explanations on

10
how multi-exit networks can improve robustness. Therefore, we
propose using the multi-exit network to reduce the impact of
adversarial perturbations. In addition, we find that the multi-exit
network can alleviate the catastrophic overfitting phenomenon.
The possible cause is found through experiments — the weight
of overfitted classifier in the multi-exit network has a larger
l2 norm. Based on these observations, we believe that a small
weight norm can improve adversarial robustness. Consequently,
an objective function is proposed to minimize the weight norms
of the classifiers. Experiments have verified the effectiveness of
our proposed method. And theoretically, we prove that mini-
mizing the l2 norm of weight can effectively reduce the impact
of adversarial perturbations, which shows that our method can
alleviate catastrophic overfitting.

In the future, we will explore other potential causes of catas-
trophic overfitting and discover more properties of adversarial
examples in DNN. Moreover, the primary purpose is to improve
the adversarial robustness of the model.
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