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Abstract— Concept-cognitive learning is an emerging area of
cognitive computing, which refers to continuously learning new
knowledge by imitating the human cognition process. However,
the existing research on concept-cognitive learning is still at the
level of complete cognition as well as cognitive operators, which
is far from the real cognition process. Meanwhile, the current
classification algorithms based on concept-cognitive learning
models (CCLMs) are not mature enough yet since their cognitive
results highly depend on the cognition order of attributes.
To address the above problems, this article presents a novel
concept-cognitive learning method, namely, stochastic incremen-
tal incomplete concept-cognitive learning method (SI2CCLM),
whose cognition process adopts a stochastic strategy that is inde-
pendent of the order of attributes. Moreover, a new classification
algorithm based on SI2CCLM is developed, and the analysis of
the parameters and convergence of the algorithm is made. Finally,
we show the cognitive effectiveness of SI2CCLM by comparing
it with other concept-cognitive learning methods. In addition, the
average accuracy of our model on 24 datasets is 82.02%, which
is higher than the compared 20 classification algorithms, and the
elapsed time of our model also has advantages.

Index Terms— Classification, concept-cognitive learning, gran-
ular computing, incremental learning, stochastic incomplete
concept.

I. INTRODUCTION

COGNITIVE science is a discipline that uses scientific
methods to study human mental world from the view-

point of modern science, including many research fields such
as psychology and computer science. Among these, cognitive
computing is the core technical field in cognitive science and
uses a computer system to simulate the human brain’s cogni-
tion process [1], [2]. As a new computing paradigm, it reflects
human cognition processes, including concept learning [3], [4]
and brain thinking [5].

As the basic units of cognition, concepts are the founda-
tion of human brain thinking [6]. As an emerging research
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direction, concept learning has attracted a large amount of
attention from researchers. For example, the study of con-
cept learning was made from different perspectives, such as
granular computing [7], [8], [9], [10], [11], formal concept
analysis [12], [13], [14], [15], and rough set [16], [17], [18],
[19]. Learning concepts by recognizing necessary attributes
and excluding unnecessary attributes is known as concept
cognition. Yao [20] proposed a conceptual framework to
explain concept cognition. Qiu et al. [21] presented a gran-
ular computing system to form different types of concepts.
Kumar et al. [12] combined formal concept analysis with
human brain’s cognition to study concept cognition from a
cognitive psychology perspective. Zhao et al. [22] studied
concept cognition under incomplete information environment,
and Fan et al. [23] put forward an attribute-oriented approach
to concept cognition from a multilevel perspective. In addition,
concept cognition was also combined with other domains, and
some significant results have been achieved, such as three-way
concept cognition [24], [25], [26], fuzzy bidirectional cogni-
tion [13], fuzzy incremental cognition [26], [27], [28], [29],
concept cognition of causal asymmetric analysis [30], and
multiattention concept-cognitive learning [31].

Zhang and Xu [32] put forward some concept-cognitive
operators to form sufficient, necessary, and sufficient and
necessary granules, making a study of concept-cognitive
operators. On this basis, Xu et al. [33] further proposed
a concept-cognitive learning method that converts all
information granules into sufficient, necessary, and sufficient
and necessary granules. Since it is often difficult to achieve
exact cognition of concepts, Li et al. [34] presented an
approximate concept-cognitive learning method based on the
idea of upper and lower approximations. Considering that
concept-cognitive learning is often affected by many factors
such as time, space, and cost, Li et al. [35] incorporated
the time factor into the concept-cognitive operator and gave
an incremental concept-cognitive learning method under
incomplete cognition.

In addition, inspired by the combination of granu-
lar computing and machine learning [36], Mi et al.
[27], [37], [38] and Shi et al. [39], [40] combined
concept cognition with machine learning and proposed
fuzzy concept-cognitive learning classification algorithm [27],
semisupervised concept-cognitive learning model (CCLM)
[37], and incremental concept-cognitive learning classification
algorithm [39]. To improve the efficiency of concept cognition,
Mi et al. [38] and Shi et al. [40] further put forward parallel
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CCLMs. Meanwhile, Niu et al. [28], [41] explored a classifica-
tion model based on granular concepts and dynamic granular
rules, which was further extended to a fuzzy environment.

However, the existing studies on concept-cognitive learning
still have some limitations. For example, the conversion of
information granules into sufficient and necessary granules
leads to some deviation between cognitive results and the
target clue in [33]. In addition, there are many factors affecting
the cognition process in real world. Li et al. [35] discussed the
cognition step from the viewpoint of time, but it is unclear how
to determine an appropriate cognition step and whether it can
improve the cognitive accuracy. In fact, there are other factors
affecting concept-cognitive learning except time, such as the
factors of space and cost. In this article, the influences of time,
space, and cost on concept-cognitive learning are uniformly
viewed as priori knowledge. Generally speaking, different
priori knowledge will lead to different cognitive results, but
a better concept-cognitive learning method often guarantees
that only changing the cognition order of attributes does not
affect the final cognitive results. Thus, we propose stochastic
incomplete concepts that are able to make the obtained cog-
nitive results invariant when changing the cognition order of
attributes.

On the other hand, in the application of concept-cognitive
learning to classification task, some classification algorithms,
such as CCLM [39], dynamic rule-based classification model
(DRCM) [41], multiattention CCLM (MACLM) [31], and
incremental learning mechanism based on progressive fuzzy
three-way concept (ILMPFTC) [26], were developed for
supervised learning. The drawbacks of these algorithms are
apparent: 1) the CCLM algorithm involved high time com-
plexity in calculating all granular concepts in the classification
process; 2) the DRCM algorithm required the dataset to
strictly meet the consistency condition, which is not suitable
for the majority of real datasets; 3) the MACLM algorithm
included too many parameters to achieve an effective concept
clustering; and 4) the ILMPFTC algorithm did not consider
the influence of priori knowledge on cognition, resulting
in unsatisfactory cognitive results. In order to avoid these
problems, we propose a stochastic incremental incomplete
concept-cognitive learning method (SI2CCLM), which does
not need to compute granular concepts, can make full use of
priori knowledge in the cognition process, and is applicable
for common datasets.

It is well known that stochasticity is undirected and can be
characterized by multiple possibilities and fluctuations [42],
[43], [44]. Human cognitive activities, based on natural,
physiological, psychological, and social activities, have the
stochastic characteristics. Meiser [45] analyzed the stochastic
dependence of cognition process, and Warren et al. [46]
pointed out that humans have biases in the random cognition
process. In essence, cognition with a stochastic strategy is
primarily about the randomness of recognizing attributes.
Therefore, in order to reflect the randomness in human cogni-
tion in a quantitative way, we use a stochastic strategy by
means of posterior probability to learn concepts, which is
independent of the order of attributes.

Inspired by the above discussion, an incremental incomplete
concept-cognitive learning method is proposed in this article.

Specifically, the notion of a stochastic incomplete concept
is given, and a stochastic incremental incomplete CCLM
is discussed, which is further applied to the classification
task. In addition, the analysis of parameters involved in the
algorithms is made, how to determine and calculate them is
investigated, and the convergence of the algorithm is proved.
In the experiments, we show the cognitive effectiveness of the
stochastic strategy in our method (SI2CCLM) by comparing it
with the existing concept-cognitive learning methods. On the
other hand, we evaluate the performance of SI2CCLM-based
classification algorithm by comparing it with 16 machine
learning classification algorithms and four concept-cognitive
learning classification algorithms. It is shown that the aver-
age accuracy of SI2CCLM-based classification algorithm on
24 datasets is higher than those of the compared 20 classifica-
tion algorithms, and our algorithm also has advantages in the
running time.

The remainder of this article is organized as fol-
lows. Section II briefly introduces the preliminaries about
concept-cognitive learning and formal decision context.
Section III proposes the theory of SI2CCLM. In Section IV,
we present the SI2CCLM-based classification algorithm, dis-
cuss the parameters setting, and prove its convergence. Some
experiments are conducted in Section V to show the effec-
tiveness of the proposed concept-cognitive learning method.
A summary of the current work and some suggestions for
future research are given in Section VI.

II. PRELIMINARIES

In this section, we review some notions related to the
concept-cognitive learning and formal decision context.

A. Concept-Cognitive Learning

Definition 1 [47]: A triple (G, M, I ) is called a formal
context, where G = {g1, g2, . . . , gm} is a nonempty finite set
of objects, M = {m1, m2, . . . , mn} is a nonempty finite set
of attributes, and I is a Boolean relation on the Cartesian
product G × M . (g, m) = 1 is called the object g possess-
ing the attribute m, while (g, m) = 0 means the opposite.
The complete concept-cognitive operators can be defined as
follows:

L(X) = {m ∈ M |∀g ∈ X, (g, m) = 1} (1)
H(B) = {g ∈ G|∀m ∈ B, (g, m) = 1} (2)

where X ⊆ G and B ⊆ M . L(X) is the set of the attributes
common to all the objects in X , and H(B) denotes the set of
the objects that have all the attributes in B.

Denote 2G and 2M as the power sets of G and M , respec-
tively, and L : 2G

→ 2M and H : 2M
→ 2G are a pair of

set-valued mappings.
Definition 2 [34]: L and H form a pair of complete

concept-cognitive operators, if for X1, X2 ⊆ G and B1, B2 ⊆

M , L and H satisfy the following properties.
1) X1 ⊆ X2 ⇒ L(X2) ⊆ L(X1).
2) B1 ⊆ B2 ⇒ H(B2) ⊆ H(B1).
3) X ⊆ HL(X), B ⊆ LH(B).
Also, L is called the object–attribute operator and H is

called the attribute–object operator.
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For convenience, hereinafter, we refer to L as the complete
cognitive operator, and concepts generated by the operators L
and H are called complete cognitive concepts.

Definition 3 [47]: Let (G, M, I ) be a formal context. For
X ⊆ G and B ⊆ M , if L(X) = B and H(B) = X , then the
pair (X, B) is said to be a formal concept, where X is the
extent of the concept and B is the intent of the concept.

Definition 4: Let (G, M, I ) be a formal context. For
X1, X2, . . . , Xk ⊆ G and B1, B2, . . . , Bk ⊆ M , if C1 =

(X1, B1), C2 = (X2, B2), . . . , Ck = (Xk, Bk) are k formal
concepts and they are further used to do cognition of new
concepts, then C1, C2, . . . , Ck are called the priori knowledge
with its length being k.

A priori knowledge with its length being k can be generated
randomly in the experiments to simulate what has already been
learned in the cognition process.

B. Formal Decision Context

Definition 5 [39]: A quintuple (G, M, I, D, J ) is said to
be a regular formal decision context, where I ⊆ G × M and
J ⊆ G × D, and for any d1, d2 ∈ D, H(d1) ∩ H(d2) =

∅. (G, M, I ) and (G, D, J ) are called the conditional formal
context and decision formal context, respectively.

That is, there exists a unique label d (d ∈ D) for each object
g (g ∈ G) in a regular formal decision context.

Definition 6 [39]: Let K = (G, M, I, D, J ) be a regular
formal decision context, and D = D1∪D2∪· · ·∪Dl (Di ∩D j =

∅). Then, KDi = (G i , Mi , Ii , Di , Ji ) is called the decision
subcontext of K under the label of Di , and we have K =⋃

i∈L KDi , where L = {1, 2, . . . , l} is a set of labels.
From Definition 6, a regular formal decision context can

be decomposed into l decision subcontexts by l labels. For
brevity, the concept mapping under the label of Di is denoted
as HDi .

III. STOCHASTIC INCREMENTAL INCOMPLETE
CONCEPT-COGNITIVE LEARNING METHOD

In human cognition, sometimes changing the order of
cognition of things does not affect the final cognitive results.
However, the existing concept-cognitive learning methods are
not able to deal with this problem since they are sensitive
to the cognition order of things. In this section, we define a
stochastic incomplete concept and propose an SI2CCLM to
learn the concept from a given clue, which is not sensitive to
the cognition order of attributes.

A. Stochastic Incremental Incomplete Concept-Cognitive
Learning Process

Concept-cognitive learning is a process of learning concepts
from given clues, which can be sets of objects or sets of
attributes. Generally speaking, there may be many concepts
that can be learned from the same clue, but there is only one
concept whose extent contains the clue with the least number
of objects. When a clue is an extent of a concept, the cognition
is to learn the concept with the clue being its extent; when a
clue is not an extent of a concept, then it is interesting to find

a minimal concept whose extent contains the clue. In any case,
our goal is to learn the best matching concept through a clue.

The key part of the process of learning a concept is to
recognize the attributes associated with the clue. Cognition
of attributes is often a random process and it is influenced
by multiple factors such as time, space, and cost. Thus, it is
important to measure the possibility of cognition of attributes
for the purpose of realizing incremental learning of attributes.
In the following, we first give a probability to each attribute
being recognized preferentially for developing an SI2CCLM.
The event of recognizing an attribute from a clue X0 is
considered as a random variable ξ , and P(ξ = mi , X0)

represents the probability of an attribute mi being recognized
from the clue X0 at a certain time, which is abbreviated as
P(mi , X0) below for simplicity.

Definition 7: Let (G, M, I ) be a formal context, X0 ⊆ G,
M = {mi |i = 1, 2, . . . , n}, and H be an attribute–object
operator. When cognition is performed on the clue X0, the
probability of an attribute mi being preferentially recognized
is defined as

P(mi , X0) = exp
(

−
cos−1(H(mi ), X0)

2σ 2

)
(3)

where σ is a parameter. When cos(H(mi ), X0) = 0, let
P(mi , X0) = 0.

In fact, the right-hand side of (3) is the combination of the
Gaussian kernel function [48] and the cosine similarity [49],
which is used to measure the similarity degree between the
objects of mi and the clue X0.

In many random phenomena, P(mi , X0) having the largest
value does not completely mean that the attribute mi must be
recognized first, but it indeed represents that the attribute mi

has the highest chance being recognized. In (3), although the
probability of each attribute being preferentially recognized
is defined for a given clue, we need to normalize all the
probabilities to realize the random selection of attributes based
on roulette principle, i.e.,

Pnew(mi , X0) =
P(mi , X0)∑n

i=1 P(mi , X0)
. (4)

That is, the stochastic cognition of attributes is converted to the
random selection of attributes based on the probabilities. In the
following, roulette will use these probabilities Pnew(mi , X0)

(mi ∈ M) to realize the random selection of attributes. For
brevity, Pnew(mi , X0) is also written as P(mi , X0) if causing
no confusion.

Once an attribute is selected, the first round of cognition
is completed. However, it still needs to judge whether the
identified attribute is correct, i.e., the selected attribute must
be a substantial attribute of the clue X0.

Definition 8: Let (G, M, I ) be a formal context, H be an
attribute–object operator, X0 ⊆ G be a clue, and mi be the
attribute selected in the process of cognition. If X0 ⊆ H(mi )

is satisfied, then the cognition of mi is said to be valid.
When the cognition is valid, the selected attribute is retained

and we continue doing the next cognition. Otherwise, the
random selection needs to be performed repeatedly until an
attribute is successfully selected. Only, in this case, can we
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achieve the first round of cognition. However, if the selection
is repeated many times, but we still cannot get the required
attribute, then we say that no attribute can be recognized for
the given clue.

Note that the previous selection of attributes will more or
less cause some impact on the probability of selecting the
remaining attributes since there is a dependency between them.
Therefore, we continue to introduce a posteriori probability to
measure the probability of selecting the remaining attributes
after one or more attributes have been selected. The condi-
tional probability P(m j |mi , X0) can represent the probability
of selecting the attribute m j for the clue X0 after the selection
of the attribute mi has been completed.

Definition 9: Let {mi }
n
i=1 be the set of attributes of

(G, M, I ). Suppose that the attributes m1, m2, . . . , ml (l < n)

have been recognized in the previous cognition. Then, the
posterior probability of selecting the attribute mk is defined as

P(mk |m1, . . . , ml , X0)

= exp

(
−

cos−1(H(mk), X0) ·
∏l

i=1 cos−1(H(mi ),H(mk))

2σ 2

)
(5)

where σ is a parameter. When cos(H(mk), X0) = 0 or
cos(H(mi ),H(mk)) = 0, let P(mk |m1, . . . , ml , X0) = 0.

According to Definition 9, if both the attributes mi and
mk share the same set of objects, we have P(mk |mi ,

X0) = P(mk, X0); otherwise, P(mk |mi , X0) < P(mk, X0).
By Definitions 7 and 9, we can calculate the probabilities of all
the attributes being recognized, which help us gradually select
all the necessary attributes and, at the same time, excludes all
the unnecessary attributes associated with the clue X0 until
the cognition is finished.

Property 1: For any integer h ∈ [1, l), let P1 =

P(mk |m1, . . . , mh, X0) and P2 = P(mk |mh+1, . . . , ml , X0).
Then, the following equation holds:

P(mk |m1, . . . , ml , X0) = exp
(

1
A

· ln P1 · ln P2

)
(6)

where A = −((cos−1(H(mk), X0))/2σ 2) is free of the infor-
mation of the selected attributes.

Proof: By taking the logarithm function ln(·) of both sides
of (5), we have

ln P(mk |m1, . . . , ml , X0)

= A ·

l∏
i=1

cos−1(H(mi ),H(mk))

= A ·

h∏
i=1

cos−1(H(mi ),H(mk))

l∏
j=h+1

cos−1(H(m j ),H(mk))

=
1
A

· ln P(mk |m1, . . . , mh, X0) · ln P(mk |mh+1, . . . , ml , X0).

Furthermore, by taking the exponential function exp(·) of both
sides of the above equation, we obtain

P(mk |m1, . . . , ml , X0) = exp
(

1
A

· ln P1 · ln P2

)
that is, the conclusion is at hand. ■

By Property 1, the probability P(mk |m1, . . . , ml , X0) of a
newly added attribute can be obtained by integrating the local
subprobabilities P1 and P2, which means that the calculation
of (5) can be accelerated by parallel computing.

B. Stochastic Incomplete Concept

Given a clue X0, suppose that all the cognitive attributes
obtained are recorded as Bp. Then, the notion of a stochastic
incomplete concept is defined as follows.

Definition 10: Let (G, M, I ) be a formal context, H be an
attribute–object operator, and X0 be a clue. The set of all
the attributes obtained by the cognition process is denoted
by Bp and X p = H(Bp). Then, we call (X p, Bp) a stochastic
incomplete concept.

Property 2: Let (X p, Bp) be the stochastic incomplete
concept of a given clue X0 obtained by the cognitive process.
Then, X0 ⊆ X p and Bp ⊆ L(X0).

Proof: The proof is immediate from Definitions 1, 2,
and 10. ■

In fact, the cognition process will be terminated when all
the attributes associated with the clue have been recognized.
In this case, there is no attribute in the candidate set whose
objects include the given clue X0.

Property 3: Let (X p, Bp) be the stochastic incomplete
concept of a given clue X0 obtained by the cognitive pro-
cess. Then, there is no attribute in the candidate set whose
objects include the given clue X0 if and only if (X p, Bp) =

(HL(X0),L(X0)).
Proof: (X p, Bp) = (HL(X0),L(X0)) is equivalent to

Bp = L(X0) since a concept can uniquely be determined
by its intent. What is more, Bp = L(X0) is equivalent to
the assumption that there is no attribute in the candidate set
whose objects include the given clue X0. To sum up, the proof
is completed. ■

From Definition 10 and Property 3, it can be seen that
the stochastic incomplete concept is different from the formal
concept because the process of recognizing attributes through
the clue is an incomplete cognition process. However, when
Bp = L(X0), the stochastic incomplete concept becomes
a formal concept. In this case, the stochastic incremental
incomplete concept cognition achieves complete cognition.

Based on the above discussion, to achieve a complete
cognition of a given clue X0, we need to recognize all the
substantial attributes of the given clue in the cognition pro-
cess. Motivated by this, the stochastic incremental incomplete
concept-cognitive learning with the clue X0 is summarized
in Algorithm 1. For brevity, we abbreviate the algorithm
as SI2CCLM.

To make the algorithm easier to understand, we further
illustrate it in the scene of classifying objects into a cluster
based on a concept, that is, how to learn an appropriate
concept, which is able to classify the objects into a cluster
and keep the cluster they belong to correct. To make it simple,
suppose that the task is to classify all the objects in X0.
Although there may be more than one concept achieving this
task, it is important to find the best one that can not only
classify the objects into a cluster but also exclude other objects
not belonging to the cluster as much as possible. In fact,
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finding such a concept is equivalent to recognizing all the
substantial attributes of X0. Generally speaking, it is difficult to
recognize all the substantial attributes for a given clue since the
recognized attributes will more or less disturb the selection of
other attributes. This requests that the process of recognizing
the attributes can be proceeded until the task is achieved no
matter what the order of the attributes being recognized is. Our
algorithm can satisfy this request since selecting an attribute
each time in the cognition process is stochastic by means
of the probability (i.e., the similarity between the candidate
attribute and the given clue). In fact, the stochasticity used
in our algorithm can guarantee that the output is as globally
optimal as possible and it is just the target concept of X0,
which can classify the objects correctly.

Now, we continue to analyze the time complexity of
Algorithm 1. The time complexity of Steps 4–12 and 19–32
is O(|G||M |), while that of Steps 3 and 18 is O(|G||M |).
Thus, the time complexity of Steps 3–12 is O(|G||M |), and
that of Steps 17–33 is O(q|G||M |), where q is the cardinality
of substantial attributes of the clue X0. Therefore, the total
time complexity of our algorithm is O(q|G||M |) in the worst
case.

The above only discusses the stochastic incremental incom-
plete concept-cognitive learning for the clue being a set of
objects. However, it can also be a set of attributes. In this
case, we can use the concept-cognitive operator H to transform
attributes into objects before concept cognition, so we do not
elaborate on this case in this article.

IV. STOCHASTIC INCREMENTAL INCOMPLETE CONCEPT-
COGNITIVE LEARNING CLASSIFICATION MODEL

In this section, we further apply stochastic incomplete
concepts to dealing with the classification problem and put
forward a classification model based on SI2CCLM. Specifi-
cally, we discuss the concept prediction of SI2CCLM-based
classification model, analyze the parameters involved in our
model, and prove the convergence of our algorithm.

A. Concept Prediction Process of SI2CCLM-Based
Classification Model

How to predict the labels of instances becomes a critical
problem when the SI2CCLM is applied to the classification
task. In the experiments, the dataset will randomly be divided
into a training set G train and a testing set G test. For every
predictive instance gs ∈ G test, an object set can be obtained
in each decision subcontext associated with the label Di

(i ∈ {1, 2, . . . , l}) by using the concept-cognitive operator
HDi . These obtained object sets are considered as cognitive
clues. By Algorithm 1, l stochastic incomplete concepts can be
obtained based on these cognitive clues, and then, we compute
similarity degrees between the predictive instance gs and l
stochastic incomplete concepts. Furthermore, we are able to
determine the greatest similarity degree and use it to complete
the assignment of the predictive label of the instance gs .

According to the above discussion, it needs to clarify the
similarity degree between the predictive instance and stochas-
tic incomplete concepts.

Algorithm 1 Stochastic Incremental Incomplete Concept-
Cognitive Learning From a Clue X0

1: Input: A formal context (G, M, I ), the clue X0, attribute-
object operator H and σ .

2: Output: A stochastic incomplete concept (X p, Bp).
3: Calculate the probabilities P(mi , X0) (mi ∈ M) of

attributes being selected;
4: for k = 1 : |M | do
5: Roulette is used to select an attribute mi randomly;
6: if X0 ⊆ H(mi ) then
7: Bp = {mi };
8: break
9: else

10: continue
11: end if
12: end for
13: if Bp = ∅ then
14: X p = U , and go to Step 32;
15: end if
16: Let q = 1;
17: while |Bp| = q do
18: Calculate the conditional probabilities of the remain-

ing attributes other than the attributes m1, m2, . . . , mq ;
19: for h = 1 : |M | do
20: Roulette is used to select an attribute randomly;
21: if X0 ⊆ H(mq+1) then
22: q = q + 1;
23: Bp = {m1, m2, . . . , mq , mq+1};
24: break;
25: else
26: continue;
27: end if
28: if h = |M | then
29: q = q + 1;
30: Bp = {m1, m2, . . . , mq};
31: end if
32: end for
33: end while
34: X p = H(Bp);
35: Return (X p, Bp).

Definition 11: Let KDi = (G i , Mi , Ii , Di , Ji ) be a reg-
ular decision subcontext under the label Di , where i ∈

L (L = {1, 2, . . . , l}). Suppose that (X pi , Bpi ) is a stochas-
tic incomplete concept generated by the predictive instance
gs (gs ∈ G test) under KDi . We use a vector g⃗s to represent the
attributes’ information possessed by gs . Then, the similarity
degree between the predictive instance gs and the stochastic
incomplete concept (X pi , Bpi ) is defined as follows:

γi
s =

|g⃗s ∩ Bpi |

|g⃗s ∩ Bpi | + 2(α|g⃗s − Bpi | + (1 − α)|Bpi − g⃗s |)
(7)

where α ∈ [0, 1].
For simplicity, (7) is called attribute similarity degree and

it is abbreviated as AS degree. For the predictive instance gs ,
we can obtain a vector (γ1

s , γ
2
s , . . . , γ

l
s) for all the l labels.

On this basis, the maximum of similarity degrees can be
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obtained, namely, γ̂s = maxi∈L{γi
s}, where L = {1, 2, . . . , l}.

Then, the label of the stochastic incomplete concept with the
maximum value γ̂s is considered as the predicted label of gs if
the maximum value is unique. In this way, we can successfully
assign labels to all predictive instances in the testing set.

In the following, we discuss the special case: the maximum
similarity degrees between the predictive instance and the
stochastic incomplete concepts are not unique. In this case,
we have to further distinguish them from each other.

1) ∃ i, j, . . . , k ∈ L , s.t. γ̂s = γi
s = γ

j
s = · · · = γk

s ̸= 0.
2) γ1

s = γ2
s = · · · = γl

s = 0.

Definition 12: Let KDi = (G i , Mi , Ii , Di , Ji ) be a regular
decision subcontext under the label Di , where i ∈ L (L =

{1, 2, . . . , l}). Suppose that (X1
ps

, B1
ps

), (X2
ps

, B2
ps

), . . . ,

(X l
ps

, Bl
ps

) are the l stochastic incomplete concepts generated
by gs under l labels. If there exist i, j, . . . , k ∈ L such that
γ̂s = γi

s = γ
j
s = · · · = γk

s ̸= 0, then the label of gs is denoted
as

lgs = lmax ∈ {i, j, . . . , k}

where |X lmax
ps

| = max(|X i
ps

|, |X j
ps |, . . . , |X

k
ps

|). When lmax is not
unique, we choose one of them randomly as the label of gs .

For the other case, if the similarity degrees between the
predictive instance gs and the stochastic incomplete concepts
are 0, it means that the instance has no matching stochastic
incomplete concept in each decision subcontext. To handle this
problem, the similarity degrees between the predictive instance
gs and each instance of the training set are calculated, and
the label of the instance in the training set with the highest
similarity degree is assigned to the predictive instance.

To sum up, no matter which case happens, we are able
to complete the concept prediction task for all the predictive
instances in the testing set.

B. Overall Procedure of SI2CCLM-Based Classification
Model

Based on the previous discussion, Fig. 1 shows the overall
procedure of SI2CCLM-based classification model, which
includes three stages: 1) concept mapping; 2) stochastic con-
cept cognition; and 3) concept prediction. Assume that the
training set in Stage 1 is divided into three classes according
to three labels. First, for any predictive instance gs in the
testing set, concept mapping is done in three decision sub-
contexts under three labels, and then, three object sets can be
obtained and viewed as the input of Stage 2. Second, apply
Algorithm 1 to realizing stochastic incremental incomplete
concept-cognitive learning of the three clues, and stochastic
incomplete concepts (X i

ps
, Bi

ps
) are obtained. Finally, we com-

pute similarity degrees between the predictive instance gs and
three stochastic incomplete concepts and use them to assign
the most suitable category label to the instance gs . The detailed
process is described in Algorithm 2.

Now, we continue to analyze the time complexity of
Algorithm 2. According to (7), the time complexity of
Step 10 is O(|M |). Note that Algorithm 2 will call Algorithm 1
in Step 9 to calculate a stochastic incomplete concept. Thus,
the time complexity of Steps 4–12 is O(q|G train||M ||D|),

Algorithm 2 Prediction Algorithm Based on SI2CCLM
1: Input: A regular decision context (G, M, I, D, J ), train-

ing set G train , and testing set G test .
2: Output: The classification accuracy Accu.
3: for each gs ∈ G test do
4: for each label Di do
5: X i

s = HDi (g⃗s);
6: if X i

s = ∅ then
7: γi

s = 0;
8: else
9: Apply Algorithm 1 to concept cognition with

the clue X i
s , and get the stochastic incomplete concept

(X i
ps

, Bi
ps

);
10: Compute the AS degree γi

s between the
instance gs and Bi

ps
by Eq. (7);

11: end if
12: end for
13: Find the label lmax of the stochastic incomplete

concept whose AS degree with gs is the maximum;
14: if the maximum AS degree is 0, then
15: Find the most similar object to gs from the training

set G train and take its label lgs as the predictive label of
gs ;

16: else if lmax is unique then
17: lgs = lmax;
18: else
19: |X j

ps | = max(|X1
ps

|, |X2
ps

|, . . . , |X k
ps

|);
20: lgs = j ;
21: end if
22: end for
23: Let Lc be the number of all correctly predicted labels,

and Accu = Lc/|G test |;
24: Return Accu.

where q is the maximum cardinality of the clues of predic-
tive instances. Obviously, the time complexity of Step 15 is
O(|G train||M |), so is that of Steps 13–21. As a result,
Steps 3–22 take O(q|G train||G test||M ||D|) time. It should be
pointed out that before embarking on Algorithm 2, we need
to call Algorithm 3 [see Section IV-C for details, and its
time complexity is O(|G train||M |)] to determine the value of
the parameter σ . To sum up, the total time complexity of
Algorithm 2 is O(q|G train||G test||M ||D|) in the worst case.

Note that the existing concept-cognitive learning classifica-
tion models match predictive instances by exhausting all the
granular concepts under each label to achieve the label pre-
diction of instances. However, sometimes it is not enough for
granular concepts to achieve the best match for the predictive
instances, that is, it often happens that the granular concepts
of each label do not cover enough required information and
one has to find the next best match or even a reluctant
match for the predictive instances, resulting in an inaccurate
prediction. Our algorithm can effectively avoid such cases
since the stochastic incomplete concepts of each label contain
more information than granular concepts, and it matches the
predictive instances with more accurate concepts. Thus, the
classification performance of SI2CCLM-based classification
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Fig. 1. Diagram of the overall procedure of SI2CCLM-based classification model.

model is expected to be better than those of the existing
concept-cognitive learning classification models.

On the other hand, our algorithm is to find the best
match from the obtained stochastic incomplete concepts
whose number equals that of the labels, while the existing
concept-cognitive learning methods are to find the best match,
the next best match, or even a reluctant match from the
granular concepts of the training set whose number is often
much greater than that of the labels. Thus, our algorithm can
reduce the running time in achieving the classification task.

C. Analysis of Parameters

Note that there are two parameters α and σ in Algorithm 2.
The first parameter α was appeared in (7). Thus, the change of
α will lead to an update of the value of (7), and consequently,
the accuracy of SI2CCLM-based classification model will also
be changed. In this article, we will determine an appropriate
value for the parameter α by a reasonable experimental anal-
ysis, and the details are left in Section V.

The second parameter σ was brought in the process of
stochastic incremental incomplete concept-cognitive learning.
According to Algorithm 1, there is no doubt that the determi-
nation of the parameter σ plays an important role in developing
a reasonable stochastic concept-cognitive learning process.
Moreover, it can be known from (3) and (5) that different

values of the parameter σ reflect the different probabilities
of preferentially recognizing an attribute. Thus, how to find
an appropriate value for the parameter σ is crucial to the
improvement of the classification performance.

In what follows, we construct an objective function Z(σ )

to optimize the value of the parameter σ such that the
probabilities between H(mi ) (i = 1, 2, . . . , n) and X0 are as
large as possible, while the probabilities between H(M−{mi })

(i = 1, 2, . . . , n) and the clue are as small as possible.
It is worth noting that the objects in the same decision

subcontext cannot be distinguished from each other by only
using their original labels that are the same. Thus, we need to
find additional supervised information to obtain the differences
between the attributes and the given clue.

Definition 13: Let (G, M, I ) be a formal context and C =

(X, B) be the priori knowledge with its length being 1. The
set of all attributes in B is denoted as {mi }i∈{k1,k2,...,kp}, and the
set of all attributes in M − B is denoted as {m j } j∈{t1,t2,...,tn−p}.
Then, we say that the label of mi is 1 and that of m j is −1,
which are denoted as ymi = 1 and ym j = −1, respectively.

Essentially, the objective of the proposed stochastic incre-
mental incomplete CCLM is to provide a clustering of the
attributes of a given clue X0 such that attributes in the same
class are as similar as possible, while attributes in the different
class are as dissimilar as possible. Motivated by the work in
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[50], we construct the following objective function Z(σ ) to
achieve the goal of parameter optimization:

Z(σ ) =

n∑
i=1

i−1∑
j=1

P(mi , X0) · ymi · ym j (8)

where ymi and ym j represent the labels of the attributes
mi and m j , respectively. It is sufficient to make Z(σ ) as
large as possible to meet the above clustering requirement.
In this way, the problem of parameter determination can easily
be transformed into an optimization problem of finding the
maximum value of the below function

σ̂ = arg max
σ

Z(σ ). (9)

Theorem 1: When σ = (1/
√

−2c), we have Z(σ ) = Zmax,
where

c = −

∑n
i=1
∑i−1

j=1 cos−1(H(mi ), X0) · ymi · ym j∑n
i=1
∑i−1

j=1 cos−2(H(mi ), X0) · ymi · ym j

. (10)

Proof: For conciseness, let

λi = cos−1(H(mi ), X0), c = −
1

2σ 2 . (11)

By substituting (3) and (11) into (8), it follows:

Z(σ ) = Z(c) =

n∑
i=1

i−1∑
j=1

ecλi · ymi · ym j . (12)

Expanding ecλi by using the Taylor expansion, we have

ecλi ≈ 1 + cλi +
1
2!

(cλi )
2. (13)

By substituting (13) into (12), we obtain

Z(c) =

n∑
i=1

i−1∑
j=1

ymi · ym j +

 n∑
i=1

i−1∑
j=1

λi · ymi · ym j

 · c

+

 n∑
i=1

i−1∑
j=1

1
2!

λ2
i · ymi · ym j

 · c2. (14)

Obviously, this is a quadratic function only related to c.
In most cases, the number of attributes owned by the concept
is smaller than the number of attributes not owned by the
concept in a formal context, which usually satisfies

n∑
i=1

i−1∑
j=1

1
2!

λ2
i · ymi · ym j < 0.

Thus, the maximum value of Z(c) can be reached when

c = −

∑n
i=1
∑i−1

j=1 λi · ymi · ym j∑n
i=1
∑i−1

j=1 λ2
i · ymi · ym j

. (15)

That is, the proof of Theorem 1 is completed. ■
According to Theorem 1, we can obtain the optimal value

of the parameter

σ̂ =

√√√√ ∑n
i=1
∑i−1

j=1 cos−2(H(mi ), X0) · ymi · ym j

2
∑n

i=1
∑i−1

j=1 cos−1(H(mi ), X0) · ymi · ym j

. (16)

Although priori knowledge with its length being 1
(i.e., a concept) can be used to calculate one value of σ , the
priori knowledge will be repeated k times in the subsequent
experiments to reduce the impact of the randomness of priori
knowledge. When the length of the priori knowledge is k
(i.e., k concepts), σ is averaged over them. Usually, the
values of σ are different when the datasets used to train it
are different, which reflects the learning abilities of different
datasets. The detailed procedure of calculating σ is given in
Algorithm 3 whose time complexity is analyzed as follows.

The time complexity of calculating cos−1(H(mi ), X0) and
cos−2(H(mi ), X0) for any i ∈ {1, 2, . . . , n} is O(|G|) so that
of
∑n

i=1 cos−1(H(mi ), X0) · ymi and
∑n

i=1 cos−2(H(mi ), X0) ·

ymi is O(|G||M |). According to (16), the calculation of the
parameter σr can be represented as

σr =

√√√√ ∑n
i=1 cos−2(H(mi ), X0) · ymi

∑i−1
j=1 ym j

2
∑n

i=1 cos−1(H(mi ), X0) · ymi

∑i−1
j=1 ym j

.

That is, calculating σr once takes O(|G||M |) time, which
means that the time complexity of Algorithm 3 is O(k|G||M |).
In general, k is much less than |G| and |M | in the experiments,
so the time complexity of Algorithm 3 is O(|G||M |).

Algorithm 3 Computation of the Parameter σ

1: Input: Priori knowledge with its length k.
2: Output: The value of σ .
3: for r = 1 : k do
4: Calculate σr according to Theorem 1;
5: end for
6: σ =

1
k

∑k
r=1 σr ;

7: Return σ .

D. Convergence of Our Algorithm

In this section, we discuss the convergence of our algorithm.
In Algorithm 1, we adopt a stochastic strategy to obtain a
better cognitive result by avoiding the effect of cognition
order of attributes. However, it is still necessary to verify
whether the cognitive result under the stochastic strategy is
consistent with the complete concept of a given clue X0.
Actually, it is equivalent to the following problem: the output
(X p, Bp) of Algorithm 1 can tend to the complete concept
(HL(X0),L(X0)) of the given clue X0 when the running time
is long enough. Considering that a concept can uniquely be
determined by its intent, this problem is also equivalent to the
proposition that the attribute set Bp obtained by the cognition
process can tend to the intent L(X0) of the complete concept
of the given clue when the iteration number is large enough,
that is, Bp → L(X0) (t → ∞).

Theorem 2: Given a clue X0, let Bp be the set of attributes
output by Algorithm 1. Then, Bp = L(X0).

Proof: For any mk ∈ Bp, according to Steps 6 and 21 in
Algorithm 1, we have X0 ⊆ H(mk), that is, mk ∈ L(X0),
which leads to Bp ⊆ L(X0).

On the other hand, for any mk ∈ L(X0), by Definition 2,
we have X0 ⊆ HL(X0) ⊆ H(mk), yielding cos(H(mk),
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X0) ̸= 0. For convenience, suppose that the recognized
attributes are m1, . . . , ml in the first l times of cogni-
tion. Similarly, X0 ⊆ H(mi ) is satisfied for every mi ∈

{m1, . . . , ml}. Thus, X0 ⊆ H(mi ) ∩ H(mk), which leads
to cos(H(mi ),H(mk)) > 0. By Definition 9, it follows
P(mk |m1, . . . , ml , X0) > 0. According to the small proba-
bility event principle in statistics, the event of selecting mk in
the whole cognition process must happen through multiple
repeated experiments. As a result, mk ∈ Bp is satisfied.
Consequently, L(X0) ⊆ Bp.

To sum up, we have Bp = L(X0). ■
Based on the above discussion, the stochastic selection of

attributes in our algorithm not only guarantees that recognizing
attributes is an incremental process but also keeps the cognitive
result correct. In other words, our method can always obtain
an accurate cognitive result as long as the iteration process is
sufficient. Therefore, the proposed algorithm is convergent.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of
SI2CCLM and its classification model by conducting com-
parative experiments. On one hand, we evaluate SI2CCLM by
comparing it with other concept-cognitive learning algorithms
in terms of cognitive performance. On the other hand, for the
classification task, we compare the SI2CCLM-based classifi-
cation model with 16 machine learning classification methods
and four concept-cognitive learning classification methods.

A. Experimental Settings

We totally chose 24 datasets to do experiments. The
datasets, Automobile, Harberman, Wdbc, Titanic, and Banana,
were taken from the KEEL dataset repository,1 the datasets
Fourclass, Svmguide1, and Ijcnn1 were from the LIBSVM
dataset repository,2 and the rest of datasets were from the UCI
dataset repository.3 The details of these datasets are shown in
Table I. In order to ensure the fairness of the experiments
and reduce statistical differences, the same training set and
testing set were used for all the classification methods, and
the experiments were repeated ten times to obtain the average
values of evaluation indicators.

Note that all the classification algorithms were trained by
MATLAB R2021b and Weka 3.8.6. For fairness, all exper-
iments were implemented on a machine with Intel4 Xeon4

Platinum 8259CL CPU @ 2.50 GHz and 256-GB main
memory.

B. Evaluation of SI2CCLM

For every dataset, we first need to calculate the parameter σ

according to Algorithm 3. For that, the length k of priori
knowledge should be determined in advance. Based on the
previous discussion on k in Section IV-C, the main objective of
considering k is to reduce randomness of the priori knowledge,

1Available at: https://sci2s.ugr.es/keel/datasets.php
2Available at: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3Available at: http://archive.ics.uci.edu/
4Registered trademark.

TABLE I
DETAILED INFORMATION OF CHOSEN DATASETS

which is granular concepts (H(g⃗), g⃗) generated randomly
in the experiments. To keep the cognitive effectiveness and
control the cost of generating concepts, k was set to 10 for
our algorithm in the experiments.

In Sections III and IV, we applied a stochastic strategy
to the recognition of attributes and proved the convergence
of SI2CCLM. However, to better balance the accuracy and
running time of SI2CCLM in the experiments, it deserves
sacrificing accuracy to significantly improve the computational
efficiency. In other words, we need to find an appropriate
iteration, which is able to achieve the cognition task quickly
with a tiny decrease of accuracy. To clarify the above issue,
we are going to test the convergence speed of Algorithm 1 on
24 datasets.

We first define the cognitive accuracy as follows:

Accucogn =
|Bp ∩ Bfull|

|Bp ∪ Bfull|
(17)

where Bp is the set of attributes that Algorithm 1 outputs for
a given clue, and Bfull is the set of attributes obtained by a
complete cognition. Obviously, Accucogn = 1 indicates that
our algorithm achieves a complete cognition; otherwise, our
algorithm does not achieve a complete cognition when it is
terminated.

Fig. 2 shows the convergence speed of SI2CCLM on
24 datasets. It can be seen from Fig. 2 that the majority
of datasets can converge to 1 quickly except Datasets 13,
16, 19, 22, and 24. In other words, the convergence speed
of our method is rather satisfactory in most cases within an
acceptable iteration number.

Furthermore, to evaluate the cognitive effectiveness of
SI2CCLM, we contrasted it with two existing concept-
cognitive learning methods: the incremental concept-cognitive
learning method in [35], and the upper and lower
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Fig. 2. Convergence speed of SI2CCLM on 24 datasets. (a) Variation in the accuracy of Datasets 1–6. (b) Variation in the accuracy of Datasets 7–12.
(c) Variation in the accuracy of Datasets 13–18. (d) Variation in the accuracy of Datasets 19–24.

Fig. 3. Comparison of cognitive accuracies of the three different concept-cognitive learning methods.

approximation-based concept-cognitive learning method
in [34]. Our experiments took a random object set as a clue
from each chosen dataset for concept cognition, and the
attributes of the recognized concept were used to calculate
cognitive accuracy [i.e., (17)] for achieving the comparison
task. It is worth noting that we set the number of iterations as
15 in the experiments to better balance the cognitive accuracy
and the running time of SI2CCLM.

For the sake of fairness, we randomly generated a clue with
three objects and used the three concept-cognitive learning
methods to do concept cognition for this clue. Since the cog-
nition method based on the upper and lower approximations
in [34] would get two concepts, we averaged the cognitive
accuracies of these two concepts.

Fig. 3 shows the comparison of cognitive accuracies of
three concept-cognitive learning methods on 24 datasets.

From Fig. 3, our method outperforms the other two
concept-cognitive learning methods on 21 datasets and suc-
cessfully achieves complete cognition on 19 datasets. It is
worth noting that the cognitive accuracies of our method
become 0 on Datasets 13 and 22. The reason is that the
number of iterations for the two datasets was artificially
set to 15 as the tradeoff termination condition of our
method in the experiments for the purpose of improving
the efficiency, that is, the accuracies were not waited to
increase until our method has been terminated compulsively.
On the other hand, it can be observed from Fig. 2 that
the accuracies of our method on Datasets 13 and 22 are
indeed 0 in the current iteration number. In fact, it should
be noted that although SI2CCLM is convergent, the minor-
ity of datasets may converge slowly at the beginning of
cognition.
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Fig. 4. Influence of the parameter α on the classification accuracies of
SI2CCLM-based classification model when α = 0, 0.1, 0.2, . . . , 1.

Fig. 5. Comparison of elapsed time of SI2CCLM and machine learning
classification methods on 24 datasets. (a) Results of NB, RF, EC, KNN,
and SI2CCLM. (b) Results of GSVM, LSVM, LDA, RSS, and SI2CCLM.
(c) Results of CT, CART, Boosting, RT, and SI2CCLM. (d) Results of J48,
MLP, BP, SMO, and SI2CCLM.

C. Comparison With Other Classification Algorithms

In order to verify the validity of SI2CCLM-based classifica-
tion model, we compared it with other classification models.
For the sake of convenience, we divide the classification
methods into two categories: 1) concept-cognitive learning
classification methods, namely, CCLM [39], DRCM [41],
MACLM [31], and ILMPFTC [26]; 2) machine learning classi-
fication models, that is, naive Bayes (NB), random forest (RF),
bagged trees in ensemble classifiers (ECs), K -nearest neighbor
classifier (KNN), Gaussian kernel function support vector
machine (GSVM), linear SVM (LSVM), linear discriminant
analysis (LDA), root sum squares (RSS), classification and
regression tree (CART), complex tree (CT), boosting, random
tree (RT), sequential minimal optimization (SMO), J48, back
propagation neural network (BP), and multilayer perceptron
(MLP).

For comparison, we divided each dataset into two parts: a
training set and a testing set, and used the formula

TestRatio =
|testing set|

|training set| + |testing set|
× 100%
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Fig. 6. Diagram of CDs for all the classification methods in the experiments.

to represent the ratio of a testing set to the whole object set.
We considered the case of TestRatio = 0.2 in the experiments.

Before embarking on the classification comparison, we first
discuss the influence of the parameter α on the accuracy of
SI2CCLM-based classification model. Fig. 4 shows the effect
of the parameter on the average classification accuracies of
24 datasets with α = 0, 0.1, 0.2, . . . , 1. From Fig. 4, the aver-
age accuracy of SI2CCLM-based classification model on all
datasets reaches the maximum when α = 0.5. Hence, we took
α = 0.5 in the experiments to achieve the comparison task.

To test the performance of SI2CCLM-based classification
model, we compared it with 16 machine learning classifica-
tion algorithms. Table II gives the classification accuracies
and standard deviations of SI2CCLM and machine learning
classification algorithms on 24 datasets. It can be seen from
Table II that the SI2CCLM-based classification model has an
average accuracy of 82.02% on 24 datasets, and we can also
observe that our model has the highest classification accuracies
on all the datasets except Datasets 16, 17, 19, and 23.
Furthermore, to further illustrate the advantage of SI2CCLM-
based classification model in computational efficiency, we also
compare the elapsed time between SI2CCLM and 16 machine
learning classification algorithms in Fig. 5. As can be seen
from Fig. 5, the elapsed time (red) curves of our model are
almost all at the bottom of Fig. 5(a)–(d), which shows that
SI2CCLM-based classification model also has advantages in
the computational efficiency.

To further demonstrate the effectiveness of SI2CCLM-based
classification model, we additionally compared it with four
concept-cognitive learning classification algorithms. Table III
shows the classification accuracies of SI2CCLM, CCLM,
DRCM, MACLM, and ILMPFTC on 24 datasets. It can be
seen from Table III that the average classification accuracy of
our algorithm is larger than the four compared classification
algorithms. Specifically, the classification accuracies of our
method are the largest on 18 datasets among all the compared
methods. In addition, from Table IV, the average elapsed time
of SI2CCLM-based classification model on 24 datasets is less
than those of other methods, which demonstrates that the
computational efficiency of our algorithm is better than the
compared concept-cognitive learning classification algorithms.

TABLE III
AVERAGE CLASSIFICATION ACCURACIES (MEAN ± STANDARD

DEVIATION) OF SI2CCLM AND OTHER CLASSIFICATION
METHODS BASED ON CONCEPT-COGNITIVE LEARNING

In order to show the classification performance of our
method more intuitively, the average rank and critical dif-
ference (CD) of all the classification methods mentioned in
the experiments are shown in Fig. 6, where the CD value
means the significant difference between the ranking of any
two methods at a confidence level of 95%. For the specific
calculation process, please refer to [51]. From Fig. 6, it can
be seen that our method ranks first among all the com-
pared classification methods, and hence, the performance of
SI2CCLM-based classification model is the best.
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TABLE IV
COMPARISON OF ELAPSED TIME (S) OF CONCEPT-COGNITIVE LEARNING

CLASSIFICATION METHODS ON 24 DATASETS

VI. CONCLUSION

In this article, we have proposed an incremental incom-
plete concept-cognitive learning method by using a stochastic
strategy. The stochastic cognition of concepts was realized
by calculating the probabilities of attributes being selected in
priority. In addition, we have constructed a classification model
based on the SI2CCLM whose convergence has been proved
as well. Compared with the existing concept-cognitive learning
algorithms and machine learning classification algorithms,
we have demonstrated the validity of our method from the
perspectives of cognitive accuracy, classification accuracy, and
running time.

The current work can provide a reference for the further
study of concept-cognitive learning from a stochastic view-
point. Such kind of thinking can effectively avoid the effect
of the cognition order of attributes on the cognitive results,
and hence, it is able to achieve better concept cognition and
classification performance.

However, people’s cognition of concepts is very complex
in reality, that is, although this article has made a prelim-
inary discussion on the stochastic cognition of concepts by
using a stochastic strategy, it is still not enough because
cognition in some cases cannot be realized by an individual
cognitive subject. For example, different cognitive subjects
may have different cognitive results for the same clue, and
a global consistent cognitive result often requires the fusion
of different cognitive results obtained by different individual
cognitive subjects. Nevertheless, the stochastic incremental
incomplete CCLM depends on priori knowledge, which is
granular concepts generated randomly in the experiments.
However, it is not sure whether the granular concepts are
qualified representatives since granular concepts are only a

small portion of concepts. In addition, to explore the practical
application of our method, it is still necessary and important to
find more specific scenes to illustrate our method. The above
problems deserve to be studied in our future research.
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