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Multifuzzy β-Covering Approximation Spaces
and Their Information Measures
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Abstract—Fuzzy β-covering rough sets, as an effective extension
of covering-based rough sets, have been concerned by many re-
searchers. All fuzzy β-covering rough set models are constructed
under a corresponding fuzzy β-covering approximation space.
However, fuzzy β-covering is difficult to find directly from the
real data. Fortunately, fuzzy information granulation provides a
reasonable and effective way to obtain fuzzy β-coverings from
the real data. Since fuzzy information granulation is capable of
generating multiple fuzzy β-coverings, we introduce the notion
of multifuzzy β-covering approximation spaces. Fuzzy β-covering
approximation spaces are a special case of multifuzzy β-covering
approximation spaces. Besides, we employ fuzzy β-neighborhood
operators with reflexivity and symmetry to characterize the simi-
larity between samples. In this article, we first present the definition
of multifuzzy β-covering approximation spaces and investigate
some useful properties about fuzzy β-covering. Second, several
information measures are explored in the context of multifuzzy
β-covering approximation spaces. On this basis, a novel heuristic
fuzzy β-covering reduction method with the measure of monotone
conditional entropy is proposed. Moreover, a general framework of
attribute reduction based on fuzzy β-covering reduction is also de-
signed. Finally, through the comparative and experimental analyses
with other four state-of-the-art attribute reduction methods, the
effectiveness and superiority of the proposed method are verified.

Index Terms—Attribute reduction, fuzzy β-covering, fuzzy
rough sets, granular computing, uncertainty measure.
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I. INTRODUCTION

COVERING-BASED rough set model, as an effective ex-
tension of classical rough set model [1], was first proposed

by Zakowski [2]. Due to its strong ability of uncertain reasoning,
the theory and application of covering-based rough sets [3]–[5]
have further been developed. However, these models cannot
directly process the data with real values. For this reason, Dubois
and Prade [6] put forward the theory of fuzzy rough sets by
integrating the advantages of fuzzy sets [7] and rough sets [1].
Fuzzy rough sets can handle continuous data without discretiza-
tion. Fuzzification can effectively lower the information loss
of data caused by discretization [8]–[10]. Subsequently, fuzzy
covering rough sets, as a bridge between covering-based rough
sets and fuzzy rough sets, have attracted the attention of many
researchers [11]–[14]. Deng et al. [11] defined a novel fuzzy
rough sets with a fuzzy covering based on the lattice theory.
Li et al. [12] constructed two pairs of generalized fuzzy rough
approximation operators via the concept of fuzzy covering.
Feng et al. [13] investigated the reduction and fusion problem of
fuzzy covering systems. D’eer et al. [14] extended 16 different
fuzzy neighborhood operators based on fuzzy coverings and
studied the relationship among them. However, the application
condition of fuzzy covering is too harsh, which severely limits
its development. Therefore, Ma [15] introduced the concept
of fuzzy β-covering to solve this problem. After that, some
researchers [16]–[20] studied fuzzy β-coverings. In theory,
Huang et al. [16] established an intuitionistic fuzzy graded
covering rough set model, which is a generalization of fuzzy
β-covering rough sets [15] and intuitionistic fuzzy rough sets
[21]. Subsequently, Yang and Hu [17] constructed four fuzzy
β-neighborhood operators with fuzzy β-covering. Afterward,
Zhang and Wang [18] further studied some problems existing
in fuzzy β-covering approximation spaces (FβCAS). In terms
of application, Jiang et al. [19] presented some of variable
precision (I, T)-fuzzy rough set models with fuzzy β-covering
for multiattribute decision making. Based on fuzzy covering
rough sets with fuzzy β-covering, Zhang et al. [20] developed a
novel multiattribute decision-making method by utilizing fuzzy
measure and Choquet integral. In machine learning, the perfor-
mance of classification task depends on the model and data.
Data determine the upper bound of model performance, and
model only approximates this bound. Feature engineering is a
very important work for machine learning tasks. As a key step in
feature engineering, the research of attribute reduction [22], [23]
has been widely concerned. In general terms, attribute reduction
is a method of data preprocessing. It can effectively improve the
classification performance of a model.

Recently, the application of approximate reduction theory
based on fuzzy β-covering has attracted extensive attention
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[24]–[27]. Yang et al. [24] proposed a new granular reduction
method with fuzzy β-coverings called the granular matrix. Sub-
sequently, Huang and Li [25] first constructed a fitting model
with fuzzy β-covering for attribute reduction. Then, Huang and
Li [26] also defined a new discernibility measure and designed
a fuzzy β-covering reduction algorithm for removing redundant
fuzzy coverings. In addition, Huang et al. [27] presented a new
multigranulation rough set model based on the noise-tolerant
fuzzyβcovering and use it for feature subset selection. However,
these existing methods with fuzzy β-covering for approximate
reduction have some defects. For example, a general approach
to obtain fuzzy β-coverings is lacking, the properties of fuzzy
β-neighborhood operators for portraying similarity between
samples are not sufficiently well developed, the conditional
discrimination measure with fuzzy β-covering does not satisfy
the monotonicity, and so on. Thus, we propose the notion of
multifuzzy β-covering approximation spaces (MFβCAS) and
its related theories for approximate reduction. The main moti-
vations for conducting this research are shown as follows.

1) Since Ma [15] proposed the theory of fuzzy β-covering, a
problem has been around. In detail, the definition of fuzzy
β-covering is too strict, which makes it difficult to find
fuzzy β-covering directly from the real data [24]–[27].
This means that fuzzy β-covering theory is difficult to be
directly used to solve practical problems in life. The ap-
plication of fuzzy β-covering theory is greatly restricted.
Thus, the theory of fuzzy β-covering needs to be further
refined and perfected.

2) From literature works [25] and [27], we can see that the
authors used the original fuzzy β-neighborhood operator
proposed by Ma [15] to characterize the similarity between
samples. However, the original fuzzy β-neighborhood
operator does not satisfy some properties necessary to
characterize the relation between objects, including re-
flexivity, symmetry, and so on. Thus, it is unreasonable to
depict the similarity between samples. Fortunately, Zhang
et al. [28] proposed a reflexive fuzzy β-neighborhood
operator based on R-implicator, which provides a new
idea for constructing fuzzy β-neighborhood operators that
satisfy the necessary conditions for characterizing the
similarity between samples. For this reason, some new
fuzzy β-neighborhood operators need to be constructed or
a new fuzzy similarity relation based on fuzzy β-covering
needs to be employed for describing the similarity between
samples.

3) As mentioned above, the existing conditional discrimi-
nation index with fuzzy β-covering [26] has a theoretical
defect, i.e., it does not satisfy monotonicity. This may lead
to the instability of fuzzy β-covering reduction algorithm
based on the conditional discrimination index. So, we
need to put forward a new monotone conditional measure
for designing a more stable fuzzy β-covering reduction
algorithm.

To overcome these shortcomings, we first propose the notion
of MFβCAS and explore its theoretical properties. In this way,
the first problem that fuzzy β-covering is difficult to obtain from
the real data is addressed by fuzzy information granulation. Be-
sides, we introduce the fuzzyβ-covering relation with reflexivity
and symmetry to characterize the similarity between samples in
the context of MFβCAS. Then, the second problem is solved.
Finally, we present a new conditional discernibility measure with
monotonicity for fuzzy β-covering reduction in the context of

multifuzzy β-covering decision tables (MFβCDT). So far, the
three defects have been made up.

The rest of this article is structured as follows. In Section II,
we briefly review some basic knowledge that is relevant to
this article. In Section III, we propose the notion of MFβCAS
and discuss some of its properties. Section IV defines several
information measures in the context of MFβCAS. Section V
introduces a novel uncertainty measure for fuzzy β-covering
reduction and designs a new framework of attribute reduction.
Besides, we conduct a series of experiments to verify the ef-
fectiveness and stability of our proposed method in Section VI.
Finally, Section VII summarizes this article.

II. BASIC NOTIONS

In this section, some basic concepts related to fuzzy β-
covering and the knowledge related to information entropy are
introduced. In addition, inspired by fuzzy similarity relation, the
notion of fuzzy β-covering relation is also defined.

A. Fuzzy β-Covering Relations

First of all, let us review the related concepts of fuzzy β-
covering and the definitions of several fuzzy β-neighborhood
operators.

Definition 1 See ([15], [17], and [29]) (Fuzzy β-covering):
Let U = {x1, x2, . . . , xi, . . . , xm} be a nonempty universe, and
F(U) be the family of all fuzzy sets onU . For any β ∈ (0, 1] and
x ∈ U , if (

⋃n
j=1 Cj)(x) � β, then the family of fuzzy sets C =

{C1, C2, . . . , Cj , . . . , Cn} is defined as a fuzzyβ-covering ofU ,
where Cj ∈ F(U). In addition, < U, C > is called an FβCAS.
For any x ∈ U , the fuzzy β-neighborhood system NSβ

C (x) and
fuzzy β-minimal description mdβC (x) of x are defined as

NSβ
C (x) = {C ∈ C | C(x) � β}

mdβC (x)={C∈NSβ
C (x) | ∀D∈NSβ

C (x), D ⊆ C⇒C=D}.
Proposition 1 (See [17]): Let < U, C > be an FβCAS. For

any x ∈ U , NSβ
C (x) ⊇ mdβC (x) and

⋂
NSβ

C (x) =
⋂
mdβC (x).

Before presenting the existing fuzzy β-neighborhood opera-
tors, the concept of fuzzy β-neighborhood operators is given.

A fuzzy neighborhood operator [14] is a mapping N : U →
F(U). In particular, in the context of FβCASs, fuzzy neighbor-
hood operators are called fuzzy β-neighborhood operators.

Based on the concept of fuzzy β-neighborhood operators,
the fuzzy β-neighborhood operator Ñβ

C related to the fuzzy
β-covering C is proposed by Ma [15], which is as follows.

Definition 2 (See [15]): Let < U, C > be an FβCAS. For any
x ∈ U , the fuzzy β-neighborhood Ñβ

C (x) of x is defined as

Ñβ
C (x) =

⋂
{C ∈ C | C(x) � β}.

Subsequently, Zhang et al. [28] followed Ma’s work and
proposed a reflexive fuzzy β-neighborhood operator N̄β

C related
to the fuzzy β-covering C, which is given as follows.

Definition 3 (See [28]): Let < U, C > be an FβCAS. For any
x, y ∈ U , the fuzzy β-neighborhood N̄β

C (x) of x is defined as

N̄β
C (x)(y) = ∧

C∈mdβ
C (x)
I(C(x), C(y))

where I is an R-implicator.
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In machine learning, measuring the similarity between sam-
ples is a key step for many classification methods. Fuzzy sim-
ilarity relations are usually employed to measure the similarity
between samples in granular computing [6], [8], [9].

Definition 4 (Fuzzy similarity relation [6], [9]): Let U be
a nonempty universe, A be an attribute set on U , and B ⊆ A.
Suppose that RB is a fuzzy binary relation deduced by attribute
subset B. For any x, y ∈ U , if RB satisfies the conditions

1) reflexivity (i.e., RB(x, x) = 1)
2) symmetry (i.e., RB(x, y) = RB(y, x))
then RB is called a fuzzy similarity relation.
By the definition of fuzzy β-neighborhood operators, we can

determine that a fuzzy β-neighborhood operator is a special
fuzzy binary relation. Inspired by fuzzy similarity relation, the
notion of fuzzy β-covering relation is also proposed.

Definition 5 (Fuzzy β-covering relation): Let< U, C > be an
FβCAS, andB ⊆ C. Suppose thatRβ

B is a fuzzyβ-neighborhood
operator related to the fuzzy β-covering B. For any x, y ∈ U , if
Rβ
B satisfies the conditions
1) reflexivity (i.e., Rβ

B(x, x) = 1)
2) symmetry (i.e., Rβ

B(x, y) = Rβ
B(y, x))

then Rβ
B is called a fuzzy β-covering relation.

It is worth noting that fuzzy β-covering relation is a collective
term for all fuzzy β-neighborhood operators with reflexivity and
symmetry. In the context of FβCASs, the fuzzy similarity class
[x]βB of x related to B is a fuzzy set on U for describing the
similarity degrees between the sample x and all samples on
domain U under knowledge B. If Rβ

B is a fuzzy β-covering
relation, then [x]βB is called the fuzzy β-neighborhood of x

related to B, i.e., [x]βB(y) = Rβ
B(x, y) for any y ∈ U .

On this basis, several simple fuzzy β-neighborhood operators
with reflexivity and symmetry are presented.

Definition 6: Let < U, C > be an FβCAS, T be a t-norm,
and S be a t-conorm. For any x, y ∈ U , the four kinds of fuzzy
β-neighborhoods 1Nβ

C (x),
2Nβ
C (x),

3Nβ
C (x), and 4Nβ

C (x) of x
are, respectively, defined as

1Nβ
C (x)(y) = T (N̄

β
C (x)(y), N̄

β
C (y)(x))

2Nβ
C (x)(y) = S(N̄

β
C (x)(y), N̄

β
C (y)(x))

3Nβ
C (x)(y) =

1Nβ
C (x)(y) ∧ 2Nβ

C (x)(y)

4Nβ
C (x)(y) =

1Nβ
C (x)(y) ∨ 2Nβ

C (x)(y).

According to Definitions 5 and 6, we can determine that the
four fuzzy β-neighborhood operators with reflexivity and sym-
metry 1Nβ

B , 2Nβ
B , 3Nβ

B , and 4Nβ
B are fuzzy β-covering relations

forB ⊆ C. For example, 1Nβ
B is a fuzzy β-covering relation, i.e.,

Rβ
B = 1Nβ

B .
In order to make it easier to understand the concepts defined

above, an example is given as follows.
Example 1: Let < U, C > be an FβCAS, where U =

{x1, x2, x3, x4, x5}, C = {C1, C2, C3, C4} is a fuzzy β-
covering of U , and

C1 =
0.5

x1
+

0.7

x2
+

0.8

x3
+

0.6

x4
+

0.7

x5
,

C2 =
0.6

x1
+

0.7

x2
+

0.8

x3
+

0.7

x4
+

0.9

x5

C3 =
0.8

x1
+

0.6

x2
+

0.7

x3
+

0.8

x4
+

0.7

x5
,

C4 =
0.6

x1
+

0.5

x2
+

0.9

x3
+

0.9

x4
+

0.7

x5
.

For B = {C1, C4} ⊆ C, let β = 0.6 and Rβ
B = 1Nβ

B , where
T = TM 1 and I = IL2, then we have

Rβ
B =

⎡
⎢⎢⎢⎣
1.0 0.8 0.7 0.7 0.8
0.8 1.0 0.6 0.6 0.8
0.7 0.6 1.0 0.8 0.8
0.7 0.6 0.8 1.0 0.8
0.8 0.8 0.8 0.8 1.0

⎤
⎥⎥⎥⎦ .

Thus, we obtain the fuzzy similarity class [xi]
β
B of xi (i =

1, 2, 3, 4, 5) related to the fuzzy β-covering B, which is shown
as

[x1]
β
B =

1.0

x1
+

0.8

x2
+

0.7

x3
+

0.7

x4
+

0.8

x5
,

[x2]
β
B =

0.8

x1
+

1.0

x2
+

0.6

x3
+

0.6

x4
+

0.8

x5

[x3]
β
B =

0.7

x1
+

0.6

x2
+

1.0

x3
+

0.8

x4
+

0.8

x5
,

[x4]
β
B =

0.7

x1
+

0.6

x2
+

0.8

x3
+

1.0

x4
+

0.8

x5

[x5]
β
B =

0.8

x1
+

0.8

x2
+

0.8

x3
+

0.8

x4
+

1.0

x5
.

Essentially, fuzzyβ-covering relation is a special fuzzy binary
relation, which can be used to characterize the similarity between
samples. Therefore, we will discuss some new uncertainty mea-
sures based on fuzzy β-covering relation in this article.

B. Information Entropy

Let U be a universe, and A be the set of all attributes
in a dataset. Suppose that E and F are two attribute sub-
sets of A. If U/E = {X1, X2, . . . , Xi, . . . , Xm} and U/F =
{Y1, Y2, . . . , Yj , . . . , Yn} are two partitions derived by two
equivalence relations RE and RF , then the probability distri-
butions of E and F are, respectively, shown as follows:

E ∼
⎧⎪⎩X1 X2 . . . Xi . . . Xm

p(X1) p(X2) . . . p(Xi) . . . p(Xm)

⎫⎪⎭ (1)

F ∼
⎧⎪⎩Y1 Y2 . . . Yj . . . Yn

p(Y1) p(Y2) . . . p(Yj) . . . p(Yn)

⎫⎪⎭ (2)

where p(Xi) = |Xi|/|U |, p(Yj) = |Yj |/|U | and | · | denotes the
cardinality of a set.

Suppose that U is a universe, and U/E =
{X1, X2, . . . , Xi, . . . , Xm} is a partition of U related to
E. If E has the probability distribution (1), then the information
entropy of attribute subset E is defined as

H(E) = −
m∑
i=1

p(Xi) log p(Xi). (3)

1The standard min operator TM (x, y) = min{x, y} for any x, y ∈ [0, 1] is
a common t-norm.

2The Łukasiewicz implicator IL(x, y) = min{1, 1− x+ y} for any x, y ∈
[0, 1] is a common R-implicator.
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Suppose that U is a universe, U/E = {X1, X2,
. . . , Xi, . . . , Xm} and U/F = {Y1, Y2, . . . , Yj , . . . , Yn} are
two partitions of U related to E and F , respectively. If E and F
have the probability distributions (1) and (2), respectively, then
the joint entropy, conditional entropy, and mutual information
of attribute subsets E and F are defined as

H(E ∪ F ) = −
m∑
i=1

n∑
j=1

p(Xi ∩ Yj) log p(Xi ∩ Yj) (4)

H(E | F ) = −
m∑
i=1

n∑
j=1

p(Xi ∩ Yj) log p(Xi | Yj) (5)

I(E;F ) =

m∑
i=1

n∑
j=1

p(Xi ∩ Yj) log
p(Xi ∩ Yj)

p(Xi)p(Yj)
(6)

where p(Xi ∩ Yj) = |Xi ∩ Yj |/|U | and p(Xi | Yj) =
|Xi ∩ Yj |/|Yj |.

In general, joint entropy is a generalization of entropy to
multidimensional probability distributions, which describes the
uncertainty of a set of random variables. Conditional entropy
measures the amount of information of one random variable
given the known value of another random variable. Mutual
information reflects the degree of dependence of two random
variables, that is, the degree of correlation. In the following,
we will combine the theory of information entropy and the
fuzzy β-covering relation to measure the uncertainty of fuzzy
β-covering family.

III. MULTIFUZZY β-COVERING APPROXIMATION SPACES

All fuzzyβ-covering rough set models are constructed under a
corresponding FβCAS. Therefore, if we want to utilize a fuzzy
β-covering rough set model to solve a practical problem, this
real problem must be transformed into a problem in an FβCAS.
However, fuzzy β-covering is difficult to find directly from the
real data. Fortunately, fuzzy information granulation provides a
reasonable and effective way to obtain fuzzy β-coverings from
the real data. Since fuzzy information granulation is capable
of generating multiple fuzzy β-coverings, we introduce the
notion of MFβCAS. First, the definition of MFβCAS is given
as follows.

Definition 7: Let U be a nonempty universe and F(U)
be the family of all fuzzy sets on U . Suppose that M =
{C1, C2, . . . , Cj , . . . , Cn} is a family of fuzzy β-coverings of U ,
where Cj = {Cj

1 , C
j
2 , . . . , C

j
i , . . . , C

j
m} is a fuzzy β-covering

of U and Cj
i ∈ F(U), then the tuple < U,M > is called an

MFβCAS).
Remark 1: In the context of multiattribute group decision

making, we call the MFβCASs the fuzzy β-covering group
approximation spaces in [30]. By Definitions 1 and 7, we can
determine that the MFβCAS degenerates to an FβCAS when
there is and only one fuzzy β-covering in an MFβCAS, that is,
FβCASs are a special case of MFβCASs.

In order to make the fuzzy β-covering theory capable of
solving some practical problems, the notion of MFβCASs has
been presented above. In addition, some related definitions and
properties of MFβCASs are given here. Then, the definition of
fuzzy β-neighborhood in an MFβCAS is given in the following.

Definition 8: Let < U,M > be an MFβCAS and G ⊆M.
For any x, y ∈ U , the fuzzy β-neighborhood [x]βG of x related to

G is defined as

[x]βG (y) = ∧
C∈G

Rβ
C (x, y). (7)

Note that Cov(G) = {[x]βG | x ∈ U} is a fuzzy β-covering of
U induced by G.

Considering that data noise may cause weak relationships
between samples, a parameterized fuzzy β-neighborhood is
given as

[x]β,λG (y) =

{
0, [x]βG (y) < λ

[x]βG (y), [x]βG (y) � λ
(8)

where λ is the radius of fuzzy β-neighborhood of a sample and
λ ∈ [0, 1].

From (8), we can see that there are three factors impacting
the membership degrees of samples to the parameterized fuzzy
β-neighborhood. The first is the fuzzy β-covering family G,
the second is the covering threshold β, and the third is the
neighborhood radius λ.

Assume that < U,M > is an MFβCAS, 0 < β � 1 and 0 �
λ � 1, G ⊆M, and [x]β,λG is the fuzzy β-neighborhood of x
related toG and λ for any x ∈ U . Based on the above definitions,
we can easily obtain the following properties.

Proposition 2: Let β1 � β2, then [x]β1,λ
G ⊆ [x]β2,λ

G .
Proof: For any C ∈ G, by Definitions 1 and 5, we can de-

termine that the value of Rβ
C becomes larger as the value of

βincreases, i.e., Rβ1

C ⊆ Rβ2

C when β1 � β2. Further, based on
Definition 8 and (8), we have [x]β1,λ

G (y) � [x]β2,λ
G (y) for any

y ∈ U , that is, [x]β1,λ
G ⊆ [x]β2,λ

G . �
Proposition 3: Let λ1 � λ2, then [x]β,λ1

G ⊇ [x]β,λ2

G .

Proof: For any y ∈ U , for one thing, [x]β,λ2

G (y) = 0 when

[x]βG (y) < λ2, which implies [x]β,λ1

G (y) � [x]β,λ2

G (y). For an-

other, [x]β,λ1

G (y) = [x]β,λ2

G (y) = [x]βG (y) when [x]βG (y) � λ2.

Thus, [x]β,λ1

G (y) � [x]β,λ2

G (y), that is, [x]β,λ1

G ⊇ [x]β,λ2

G . �
Proposition 4: Let G1 ⊆ G2 ⊆M, then [x]β,λG1 ⊇ [x]β,λG2 .

Proof: Based on Definition 8, we have [x]βG1(y) =

∧C∈G1 R
β
C (x, y) and [x]βG2(y) = ∧C∈G2 R

β
C (x, y) for any y ∈ U .

Let G1 ⊆ G2, then C ∈ G2 for any C ∈ G1. Thus, [x]βG1(y) �
[x]βG2(y). According to the formula (8), we can obtain

[x]β,λG1 (y) � [x]β,λG2 (y), that is, [x]β,λG1 ⊇ [x]β,λG2 . �
The fuzzy β-neighborhood represents the distinguish-

ing ability of fuzzy β-covering family. The finer the
fuzzy β-neighborhood is, the greater the distinguishing
ability of fuzzy β-covering family is. Further, based on
the definition of fuzzy β-neighborhood, a novel fuzzy β-
covering rough set model in an MFβCAS is introduced as
follows.

Definition 9: Let < U,M > be an MFβCAS. G is a subset of
M, and [x]β,λG is the fuzzy β-neighborhood of x related to G and
λ for any x ∈ U . For any X ∈ F(U), the lower approximation

Rβ,λ
G (X) of X and the upper approximation R

β,λ
G (X) of X are,

respectively, defined as

Rβ,λ
G (X)(x) = ∧

y∈U
{(1− [x]β,λG (y)) ∨X(y)} ∀x ∈ U (9)
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R
β,λ
G (X)(x) = ∨

y∈U
{[x]β,λG (y) ∧X(y)} ∀x ∈ U. (10)

In particular, whenRβ,λ
G (X) = R

β,λ
G (X),X is a definable set;

otherwise, X is a fuzzy rough set, and (Rβ,λ
G (X), R

β,λ
G (X)) is

called a fuzzy β-covering rough set model of X in an MFβCAS.
Remark 2: Definition 9 is a rational extension of some exist-

ing rough set models. Therefore, other models can be derived
from this definition, which is shown as follows.

1) When the fuzzy β-neighborhood [x]β,λG of x is replaced by
the crisp equivalence class [x]G of xwith covering relation
and X is a crisp set on U

RG(X) = {x ∈ U | [x]G ⊆ X}

RG(X) = {x ∈ U | [x]G ∩X 
= ∅}
which is called the covering-based rough set model [3].

2) When the fuzzy β-neighborhood [x]β,λG of x is replaced by
the fuzzy similarity class [x]G of x with fuzzy similarity
relation and X is a fuzzy set on U

RG(X)(x) = ∧
y∈U
{(1−RG(x, y)) ∨X(y)}

RG(X)(x) = ∨
y∈U
{RG(x, y) ∧X(y)}

which is called the fuzzy rough set model [6].
From Remark 2, we can conclude that the fuzzy β-covering

rough set model in Definition 9 is a rational generalization of
the covering-based rough set model [3] and the fuzzy rough set
model [6].

Suppose that < U,M > is an MFβCAS, where U is a uni-
verse and M is a family of fuzzy β-coverings. Let U/D =
{D1, D2, . . . , Dr} represent r crisp equivalence classes divided
by the decision attribute D on U , then < U,M, D > is called
MFβCDT.

Given an MFβCDT < U,M, D > and G ∈ M, the fuzzy
positive region of the decision attribute D related to the fuzzy
β-covering family G for any x ∈ U is defined as

POSβ,λ
G (D)(x) =

r
∪
i=1

Rβ,λ
G (Di)(x) (11)

and the fuzzy dependence function of the decision attribute D
related to the fuzzy β-covering family G is defined as

fβ,λ
G (D) =

∑
x∈U POSβ,λ

G (D)(x)

|U | . (12)

Besides, the fuzzy dependence function is also called the
dependence degree, which reflects the classification ability of
fuzzy β-covering family.

Definition 10: Let < U,M, D > be an MFβCDT, 0 < β �
1, 0 � λ � 1, and G ⊆M. For any C ∈ G, the fuzzy β-covering
C is regarded as redundant in the fuzzy β-covering family G if
fβ,λ
G−{C}(D) = fβ,λ

G (D); otherwise, C is regarded as indispens-
able in G. If all C in G are indispensable, then G is regarded as
independent.

Definition 11: Let < U,M, D > be an MFβCDT, 0 < β �
1, 0 � λ � 1, and G ⊆M. The fuzzy β-covering family G is a
reduct ofM iff

1) fβ,λ
G (D) = fβ,λ

M (D)

2) ∀C ∈ G, fβ,λ
G−{C}(D) < fβ,λ

G (D).

In order to verify the effectiveness and rationality of Defini-
tions 10 and 11, an example is given as follows.

Example 2: Given an MFβCDT < U,M, D >, where U =
{x1, x2, x3, x4}, M = {C1, C2, C3, C4} is a family of fuzzy
β-coverings of U , Cj = {Cj

1 , C
j
2 , C

j
3 , C

j
4}, Cj ∈M, U/D =

{{x1, x2}, {x3}, {x4}} is a partition of U on D, and

C1
1 =

0.9

x1
+
0.69

x2
+
0.26

x3
+

0

x4
, C1

2 =
0.69

x1
+
0.9

x2
+
0.04

x3
+

0

x4

C1
3 =

0.26

x1
+

0.04

x2
+

0.9

x3
+

0

x4
, C1

4 =
0

x1
+

0

x2
+

0

x3
+

0.9

x4

C2
1 =

0.9

x1
+

0

x2
+

0

x3
+

0

x4
, C2

2 =
0

x1
+

0.9

x2
+

0

x3
+

0.9

x4

C2
3 =

0

x1
+

0

x2
+

0.9

x3
+

0

x4
, C2

4 =
0

x1
+

0.9

x2
+

0

x3
+

0.9

x4

C3
1 =

0.9

x1
+
0.08

x2
+
0.29

x3
+

0

x4
, C3

2 =
0.08

x1
+
0.9

x2
+

0

x3
+
0.29

x4

C3
3 =

0.29

x1
+

0

x2
+

0.9

x3
+

0

x4
, C3

4 =
0

x1
+

0.29

x2
+

0

x3
+

0.9

x4

C4
1 =

0.9

x1
+

0.52

x2
+

0

x3
+

0

x4
, C4

2 =
0.52

x1
+

0.9

x2
+

0

x3
+

0

x4

C4
3 =

0

x1
+

0

x2
+
0.9

x3
+
0.52

x4
, C4

4 =
0

x1
+

0

x2
+
0.52

x3
+
0.9

x4
.

Suppose that Rβ
C = 1Nβ

C , where T = TM and I = IL. Let
β = 0.5 and λ = 0.1, then we can find a reduct red of M as
follows.

Based on the (8), we can obtain that

[x1]
β,λ
C1 =

1

x1
+

0.79

x2
+

0.36

x3
+

0

x4
,

[x2]
β,λ
C1 =

0.79

x1
+

1

x2
+

0.14

x3
+

0

x4

[x3]
β,λ
C1 =

0.36

x1
+
0.14

x2
+

1

x3
+

0

x4
, [x4]

β,λ
C1 =

0

x1
+

0

x2
+

0

x3
+

1

x4

[x1]
β,λ
C2 =

1

x1
+

0

x2
+

0

x3
+

0

x4
, [x2]

β,λ
C2 =

0

x1
+

1

x2
+

0

x3
+

1

x4

[x3]
β,λ
C2 =

0

x1
+

0

x2
+

1

x3
+

0

x4
, [x4]

β,λ
C2 =

0

x1
+

1

x2
+

0

x3
+

1

x4

[x1]
β,λ
C3 =

1

x1
+

0.18

x2
+

0.39

x3
+

0

x4
,

[x2]
β,λ
C3 =

0.18

x1
+

1

x2
+

0

x3
+

0.39

x4

[x3]
β,λ
C3 =

0.39

x1
+

0

x2
+

1

x3
+

0

x4
, [x4]

β,λ
C3 =

0

x1
+
0.39

x2
+

0

x3
+

1

x4

[x1]
β,λ
C4 =

1

x1
+
0.62

x2
+

0

x3
+

0

x4
, [x2]

β,λ
C4 =

0.62

x1
+

1

x2
+

0

x3
+

0

x4

[x3]
β,λ
C4 =

0

x1
+

0

x2
+

1

x3
+
0.62

x4
, [x4]

β,λ
C4 =

0

x1
+

0

x2
+
0.62

x3
+

1

x4
.

According to the formula (12), we can determine
that fβ,λ

{C1}(D) = 0.79, fβ,λ
{C2}(D) = 0.50, fβ,λ

{C3}(D) = 0.61, and

fβ,λ
{C4}(D) = 0.69. Consequently, we have red = {C1}. Since

G = {C2, C3, C4} 
= ∅ and fβ,λ
{C1}(D)− 0 = 0.79 > 0, we need

to continue the next step. We calculate that fβ,λ
{C1,C2}(D) =

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2023 at 06:24:10 UTC from IEEE Xplore.  Restrictions apply. 



960 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 31, NO. 3, MARCH 2023

1, fβ,λ
{C1,C3}(D) = 0.82, and fβ,λ

{C1,C4}(D) = 1. Subsequently, we
obtain a new reduct red = {C1, C2}. Since G = {C3, C4} 
=
∅ and fβ,λ

{C1,C2}(D)− fβ,λ
{C1}(D) = 0.21 > 0, we need fur-

ther calculations. Similarly, we have fβ,λ
{C1,C2,C3}(D) = 1 and

fβ,λ
{C1,C2,C4}(D) = 1. Thus, we can obtain the final reduct

red = {C1, C2} with fβ,λ
{C1,C2,C3}(D)− fβ,λ

{C1,C2}(D) = 0 and

fβ,λ
{C1,C2,C4}(D)− fβ,λ

{C1,C2}(D) = 0.
Based on the above definitions and conclusions, we can

determine that MFβCASs are a special extension of FβCASs
actually. Similar to FβCAS, the uncertainty of data can also be
measured in an MFβCAS. In the following, we study several
information measures in an MFβCAS.

IV. INFORMATION MEASURES IN AN MFβCAS

As an important method to measure the significance of at-
tributes, information entropy has been widely used in attribute
reduction [31], [32]. Similarly, information entropy theory can
be used to measure the significance of fuzzy β-coverings [26].
In this section, by combining fuzzy β-covering theory and in-
formation theory, we extend the information measure in a fuzzy
probability approximation space proposed by Hu et al. [31] and
the neighborhood discrimination index in a fuzzy approximation
space proposed by Wang et al. [32] to the context of MFβCASs,
respectively. However, the conditional entropies in these two
kinds of information measures are not monotonous, which will
affect the selection of effective fuzzy β-coverings, resulting in
the degradation of the classification performance of the model.
Therefore, we propose a new measure of monotone conditional
entropy in an MFβCDT and apply it to fuzzy β-covering reduc-
tion.

A. Information Measures Based on Shannon’s Entropy

Based on the definition of parameterized fuzzy β-
neighborhood and Shannon’s entropy, the information mea-
sure proposed by Hu et al. [31] is extended to the context of
MFβCASs in this part.

Definition 12: Let < U,M > be an MFβCAS, and G ⊆M.
[x]β,λG is the fuzzy β-neighborhood of x related to G and λ for
any x ∈ U , where λ is the radius of fuzzy β-neighborhood. The
information measure of G in the MFβCAS is defined as

Hβ,λ(G) = − 1

|U |
∑
x∈U

log
|[x]β,λG |
|U | . (13)

Theorem 1: Let< U,M >be an MFβCAS andG ⊆M, then
the information measure of G satisfies the following properties.

(1) If β1 � β2, then Hβ1,λ(G) � Hβ2,λ(G).
(2) If λ1 � λ2, then Hβ,λ1(G) � Hβ,λ2(G).
(3) If G1 ⊆ G2 ⊆M, then Hβ,λ(G1) � Hβ,λ(G2).
Note that the information measure in Definition 12 degener-

ates into Shannon’s one when the fuzzy β-neighborhood [x]β,λG
of x is replaced by the crisp equivalence class [x]G of x for any
x ∈ U .

From Definition 12, it is easy to know that Hβ,λ(G) � 0.
Besides, the value of entropy increases monotonically with the
increase of distinguishing ability of fuzzy β-covering family in
an MFβCAS. It means that the finer the partition is, the larger
the entropy is, and the more significant the fuzzy β-covering

family is. Next, the definitions of joint entropy and conditional
entropy are shown in the following.

Definition 13: Let < U,M > be an MFβCAS, and E ,F ⊆
M. [x]β,λE and [x]β,λF are two fuzzy β-neighborhoods of x for
any x ∈ U . The joint entropy of E and F in the MFβCAS is
defined as

Hβ,λ(E ∪ F) = − 1

|U |
∑
x∈U

log
|[x]β,λE ∩ [x]β,λF |

|U | . (14)

Definition 14: Let < U,M > be an MFβCAS and E ,F ⊆
M. [x]β,λE and [x]β,λF are two fuzzy β-neighborhoods of x for
x ∈ U . The conditional entropy of F conditioned to E in the
MFβCAS is defined as

Hβ,λ(F | E) = − 1

|U |
∑
x∈U

log
|[x]β,λF ∩ [x]β,λE |
|[x]β,λE |

. (15)

According to [31] and [33], we can determine that the con-
ditional entropy in the formula (15) is not monotonous with the
size of fuzzy β-covering family E .

Theorem 2: Let < U,M > be an MFβCAS, and E ,F ⊆M.
[x]β,λE and [x]β,λF are two fuzzy β-neighborhoods of x for any
x ∈ U . We can obtain the following properties.

(1) Hβ,λ(E ∪ F) � max{Hβ,λ(E), Hβ,λ(F)}.
(2) Hβ,λ(F | E) = Hβ,λ(E ∪ F)−Hβ,λ(E).
(3) If E ⊆ F , then Hβ,λ(E ∪ F) = Hβ,λ(F) and Hβ,λ(E |

F) = 0.
To sum up, Theorems 1 and 2 provide a theoretical support for

the proposed information entropies to measure the distinguish-
ing ability of fuzzy β-covering family.

B. Information Measures Based on Neighborhood
Discrimination Index

Based on the definition of parameterized fuzzy β-
neighborhood and discrimination index, the information mea-
sure proposed by Wang et al. [32] is also extended to the context
of MFβCASs in this part.

Definition 15: Let < U,M > be an MFβCAS, and G ⊆M.
[x]β,λG is the fuzzy β-neighborhood of x related to G and λ for
any x ∈ U , where λ is the radius of fuzzy β-neighborhood.
The neighborhood discrimination index of G in the MFβCAS is
defined as

Hβ,λ(G) = log
|U |2∑

x∈U |[x]
β,λ
G |

. (16)

Theorem 3: Let < U,M > be an MFβCAS and G ⊆M,
then the neighborhood discrimination index of G satisfies the
following properties.

(1) If β1 � β2, then Hβ1,λ(G) � Hβ2,λ(G).
(2) If λ1 � λ2, then Hβ,λ1(G) � Hβ,λ2(G).
(3) If G1 ⊆ G2 ⊆M, then Hβ,λ(G1) � Hβ,λ(G2).
From Definition 15, it is easy to know that Hβ,λ(G) � 0. The

neighborhood discrimination index in Definition 15 is used to
measure the distinguishing ability of fuzzy β-covering family.
Further, the joint discrimination index, conditional discrimina-
tion index, and mutual discrimination index are, respectively,
introduced in the following.

Definition 16: Let < U,M > be an MFβCAS, and E ,F ⊆
M. [x]β,λE and [x]β,λF are two fuzzy β-neighborhoods of x for
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Fig. 1. Relationship between four discrimination indexes.

any x ∈ U . The joint discrimination index, conditional discrim-
ination index, and mutual discrimination index of E and F in
the MFβCAS are, respectively, defined as

Hβ,λ(E ∪ F) = log
|U |2∑

x∈U |[x]
β,λ
E ∩ [x]β,λF |

(17)

Hβ,λ(F | E) = log

∑
x∈U |[x]

β,λ
E |∑

x∈U |[x]
β,λ
E ∩ [x]β,λF |

(18)

Iβ,λ(E ;F) = log
|U |2

∑
x∈U |[x]

β,λ
E ∩ [x]β,λF |∑

x∈U |[x]
β,λ
E | ·

∑
x∈U |[x]

β,λ
F |

. (19)

According to [26] and [32], we can determine that the condi-
tional discrimination index in (18) is also not monotonous with
the size of fuzzy β-covering family E .

Theorem 4: Let < U,M > be an MFβCAS, and E ,F ⊆M.
[x]β,λE and [x]β,λF are two fuzzy β-neighborhoods of x for any
x ∈ U . We can obtain the following properties.

1) Hβ,λ(E ∪ F) � max{Hβ,λ(E), Hβ,λ(F)}.
2) Hβ,λ(F | E) = Hβ,λ(E ∪ F)−Hβ,λ(E).
3) If E ⊆ F , then Hβ,λ(E ∪ F) = Hβ,λ(F) and Hβ,λ(E |

F) = 0.
4) Iβ,λ(E ;F) = Iβ,λ(F ; E).
5) Iβ,λ(E ;F) = Hβ,λ(E) +Hβ,λ(F)−Hβ,λ(E ∪ F).
6) Iβ,λ(E ;F) = Hβ,λ(E)−Hβ,λ(E | F) = Hβ,λ(F)−

Hβ,λ(F | E).
In order to more intuitively understand the relationship be-

tween the neighborhood, joint, conditional, and mutual discrim-
ination indexes in an MFβCAS, the graph of the relationship
between four discrimination indexes is given in Fig. 1.

C. Novel Information Measure Based on the Monotone
Conditional Entropy

From the previous content, we can see that the measures of
conditional entropies in (15) and (18) do not satisfy monotonic-
ity, which may cause the algorithms of fuzzy β-covering reduc-
tion to be unstable. Therefore, a novel measure of monotone
conditional entropy in an MFβCDT is proposed as follows.

Definition 17: Let < U,M, D > be an MFβCDT, and G ⊆
M. U/D = {D1, D2, . . . , Dl, . . . , Dr} is composed of r crisp
equivalence classes divided by the decision attribute D on U .
[x]β,λG is the fuzzy β-neighborhood of x related to G and λ for
any x ∈ U , where λ is the radius of fuzzy β-neighborhood.
The monotone conditional entropy of D conditioned to G in
the MFβCDT is defined as

Hβ,λ(D | G) = −
∑
x∈U

∑
Dl∈U/D

|[x]β,λG ∩Dl|
|U | log

|[x]β,λG ∩Dl|
|[x]β,λG |

.

(20)

Further, the probability form of monotone conditional entropy
of D conditioned to G in an MFβCDT can be expressed as

Hβ,λ(D | G) =

−
∑
x∈U

p([x]β,λG )
∑

Dl∈U/D

p(Dl | [x]β,λG ) log p(Dl | [x]β,λG )

(21)

where p([x]β,λG ) = |[x]β,λG |/|U | and p(Dl | [x]β,λG ) = |[x]β,λG ∩
Dl|/|[x]β,λG |.

By analyzing Definition 17, some important properties of the
monotone conditional entropy in an MFβCDT are obtained,
which are shown in the following.

Theorem 5 (Equivalence): Let < U,M, D > be an
MFβCDT, and E ,F ⊆M. [x]β,λE and [x]β,λF are two fuzzy
β-neighborhoods of x for any x ∈ U . If [x]β,λE = [x]β,λF for any
x ∈ U , then Hβ,λ(D | E) = Hβ,λ(D | F).

Theorem 6 (Maximum): Let < U,M, D > be an MFβCDT,
and G ⊆M. The maximum of monotone conditional entropy
of D conditioned to G is |U | log |U | only if the fuzzy β-
neighborhood |[x]β,λG | = |U | for any x ∈ U and the decision
equivalence class |Dl| = 1 for anyDl ∈ U/D, that is,Hβ,λ

max(D |
G) = |U | log |U |.

Theorem 7 (Minimum): Let < U,M, D > be an MFβCDT,
and U/D = {[x]D | x ∈ U} is a family of crisp equivalence
classes onU divided byD. [x]β,λG is the fuzzyβ-neighborhood of
x related to G and λ for any x ∈ U , G ⊆M and λ is the radius of
fuzzy β-neighborhood. The minimum of monotone conditional
entropy of D conditioned to G is 0 only if [x]β,λG ⊆ [x]D for any

x ∈ U , that is, Hβ,λ
min(D | G) = 0.

Proof: For any x ∈ U , [x]β,λG ⊆ [x]D, we have

Hβ,λ(D | G) = −
∑
x∈U

|[x]β,λG ∩ [x]D|
|U | log

|[x]β,λG ∩ [x]D|
|[x]β,λG |

= −
∑
x∈U

|[x]β,λG |
|U | log

|[x]β,λG |
|[x]β,λG |

= 0.

�
Theorem 8 (Monotonicity): Let < U,M, D > be an

MFβCDT and G ⊆M, then the monotone conditional entropy
of D satisfies the following properties.

1) If β1 � β2, then Hβ1,λ(D | G) � Hβ2,λ(D | G).
2) If λ1 � λ2, then Hβ,λ1(D | G) � Hβ,λ2(D | G).
3) If G1 ⊆ G2 ⊆M, then Hβ,λ(D | G1) � Hβ,λ(D | G2).
Proof: It can easily proved by Propositions 2–4 and Defini-

tion 17. �
Suppose that < U,M, D > is an MFβCDT, and U/D =

{[x]D | x ∈ U} is a family of crisp equivalence classes on
U divided by D. [x]β,λM is the fuzzy β-neighborhood of x
related to M and λ for any x ∈ U , and λ is the radius of
fuzzy β-neighborhood. If [x]β,λM ⊆ [x]D for any x ∈ U , then
< U,M, D > is a consistent MFβCDT.

Theorem 9: Let < U,M, D > be a consistent MFβCDT,
then Hβ,λ(D | M) = 0.

Proof: It can easily proved by Theorem 7. �
Based on the above theorems, we can ensure that the mono-

tone conditional entropy in an MFβCDT proposed by us can be
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used as a reasonable uncertainty measure for fuzzy β-covering
reduction. The smaller the monotone conditional entropy of
fuzzy β-covering family is, the better the distinguishing ability
of fuzzy β-covering family is, and the more significant the fuzzy
β-covering family is.

In this article, some existing uncertain measures are ex-
tended to the context of MFβCASs by using the parameterized
fuzzy β-neighborhood, which provides a variety of methods to
measure the significance of fuzzy β-coverings. Moreover, in
an MFβCDT, the proposed monotone conditional entropy can
reasonably and effectively measure the significance of fuzzy
β-coverings compared with other nonmonotone conditional en-
tropies. In addition, the relationship among the newly proposed
information measures and the information measures with fuzzy
β-covering proposed by Huang and Li in [26] is further demon-
strated. The connection between them is that these information
measures are not only based on fuzzy β-neighborhood operators
to characterize the similarity between samples but also based
on information theory to measure the significance of fuzzy
β-coverings. The difference between them is that, in [26], the
original fuzzy β-neighborhood operator defined by Ma [15] is
employed to characterize the similarity between samples, which
does not meet the reflexivity and symmetry, while in this article,
the fuzzy β-covering relation with reflexivity and symmetry
is used to characterize the similarity between samples. Fur-
thermore, the conditional discrimination measure in [26] does
not meet the monotonicity, while the conditional information
measure proposed in this article meets the monotonicity.

In order to further show how the concept given by Definition
17 in this article improves existing ones in [26], an example is
given as follows.

Example 3 (Following Example 2): Given an MFβCDT
< U,M, D >, where U = {x1, x2, x3, x4}, M =
{C1, C2, C3, C4} is a family of fuzzy β-coverings of U , Cj =
{Cj

1 , C
j
2 , C

j
3 , C

j
4}, Cj ∈M. U/D = {{x1, x2}, {x3}, {x4}} is

a partition of U on D.
According to literature [26], let β = 0.5 and δ = 0.1, then we

have
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β,δ
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0.65

x1
+

0.65
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+
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x3
+

0

x4
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Fig. 2. Framework diagram of attribute reduction.

[x4]
β,δ
C4 =

0

x1
+

0

x2
+

0.46

x3
+

0.9

x4
.

Further, we can obtain that Hβ,δ(D | C1) = 0.0151 and
Hβ,δ(D | {C1, C3}) = 0.0214.

In this article, suppose that Rβ
C = 1Nβ

C , where T = TM
and I = IL. Let β = 0.5 and λ = 0.1, then we can obtain
[xi]

β,λ
Cj (i = 1, 2, 3, 4; j = 1, 2, 3, 4) by Definition 17, which can

be found from Example 2. Further, we can obtain that Hβ,λ(D |
C1) = 0.2629 and Hβ,λ(D | {C1, C3}) = 0.1751.

In general, conditional entropy should decrease monoton-
ically with the increase of attributes [34]. Similarly, in the
context of MFβCDTs, conditional information measure should
decrease monotonically with the increase of fuzzy β-coverings.
According to Example 3, we can determine that our proposed
conditional information measure satisfies this condition, while
the existing one does not. Based on the above results, we can
clearly see the difference between our proposed conditional
information measure and the existing one.

V. FRAMEWORK OF ATTRIBUTE REDUCTION BASED ON FUZZY

β-COVERING REDUCTION

In machine learning, attribute reduction is an important data
preprocessing process. Based on the importance measures of
fuzzy β-covering proposed in the Section IV, we can de-
sign many different algorithms for fuzzy β-covering reduction.
Moreover, an attribute is able to derive a fuzzy β-covering in
a decision table via fuzzy information granulation. Therefore,
we propose a framework of attribute reduction based on fuzzy
β-covering reduction in this section. The framework diagram of
attribute reduction is shown in Fig. 2.

From Fig. 2, we can see that the proposed framework has two
steps for attribute reduction. The first step is the acquisition of
MFβCDTs; the second step is the fuzzy β-covering reduction.
In the following, we introduce each of these two steps in detail.

A. Acquisition of MFβCDTs via Fuzzy Information
Granulation

A prerequisite for the proposed theory related to fuzzy β-
covering to be applied to solve a practical problem is that a
reasonable and valid MFβCDT can be obtained. Fortunately,
fuzzy information granulation is able to extract effective infor-
mation and discard redundant information from the raw data
based on different levels of granularity and, thus, can solve the
practical problem from different levels of granularity [35], [36].
It provides an effective and reasonable way to obtain MFβCDTs.
In this article, we conduct fuzzy information granulation on the
raw data by using fuzzy similarity relation so as to obtain the
matrices of similarity between samples, that is, the effective
classification information. Further, by introducing an adjustable
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TABLE I
DECISION TABLE < U,A,D >

coefficient η of similarity and η ∈ [0, 1], we extend the fuzzy
similarity relation to η-fuzzy similarity relation. Note that fuzzy
similarity relation is a special case of η-fuzzy similarity rela-
tion. The definition of η-fuzzy similarity relation is given as
follows:

Rη
B(x, y) = η ∗RB(x, y) ∀x, y ∈ U (22)

where RB(x, y) is an arbitrary fuzzy similarity relation on
domain U deduced by attribute subset B.

Based on the definitions of MFβCDTs and η-fuzzy similarity
relations, we can determine that MFβCDTs can be obtained from
the original decision tables through η-fuzzy similarity relations
when η ∈ [β, 1]. Then, the detailed construction process of
MFβCDTs is described as follows.

Let < U,A, D > be a decision table, where U =
{x1, x2, . . . , xi, . . . , xm} is a set of samples, A =
{a1, a2, . . . , aj , . . . , an} is a set of attributes, and D is a
decision attribute. If R{aj} is a fuzzy similarity relation on U
induced by aj , then the similarity between sample x and sample
y related to attribute aj is given as

Rη
{aj}(x, y) = η ∗R{aj}(x, y) ∀x, y ∈ U (23)

where η is an adjustable coefficient and η ∈ [β, 1]. In real
application, η is often set to 0.9 to make as many samples
enter the positive domain as possible [26], [27]. For any
xi, y ∈ U , let Cj

i (y) = Rη
{aj}(xi, y), then we have Cj

i (xi) =

Rη
{aj}(xi, xi) = η � β and (∪mk=1C

j
k)(xi) � β. Thus, Cj =

{Cj
1 , C

j
2 , . . . , C

j
i , . . . , C

j
m} is a fuzzyβ-covering induced byaj .

Consequently, an MFβCDT < U,M, D > is obtained, where
M = {C1, C2, . . . , Cj , . . . , Cn}.

In order to demonstrate the construction process of
MFβCDTs, an example is given as follows.

Example 4: Given a decision table < U,A, D > in Table I,
where U = {x1, x2, x3, x4}, and A = {a1, a2, a3, a4}.

Let β = 0.5 and η = 0.9. Assume that the fuzzy similarity
relation R{aj} for single numerical attribute uses the following
binary function [25], [37]:

R{aj}(x, y) =

max

(
min

(
aj(x)−aj(y)+σaj

σaj

,
aj(y)−aj(x)+σaj

σaj

)
, 0

)
(24)

where σaj
is the standard deviation of attribute aj .

From Table I, we can obtain that σa1
= 0.42, σa2

=
0.41, σa3

= 0.44, σa4
= 0.48. Based on the formula (23), we

have

R0.9
{a1}=

⎡
⎢⎣
0.9 0.69 0.26 0
0.69 0.9 0.04 0
0.26 0.04 0.9 0
0 0 0 0.9

⎤
⎥⎦ , R0.9

{a2}=

⎡
⎢⎣
0.9 0 0 0
0 0.9 0 0.9
0 0 0.9 0
0 0.9 0 0.9

⎤
⎥⎦

R0.9
{a3} =

⎡
⎢⎣
0.9 0.08 0.29 0
0.08 0.9 0 0.29
0.29 0 0.9 0
0 0.29 0 0.9

⎤
⎥⎦ ,

R0.9
{a4} =

⎡
⎢⎣
0.9 0.52 0 0
0.52 0.9 0 0
0 0 0.9 0.52
0 0 0.52 0.9

⎤
⎥⎦ .

It follows that

C1
1 =

0.9

x1
+
0.69

x2
+
0.26

x3
+

0

x4
, C1

2 =
0.69

x1
+
0.9

x2
+
0.04

x3
+

0

x4

C1
3 =

0.26

x1
+
0.04

x2
+
0.9

x3
+

0

x4
, C1

4 =
0

x1
+

0

x2
+

0

x3
+
0.9

x4
.

It is obvious that (∪4k=1C
1
k)(x) � β for any x ∈ U . Thus,

C1 = {C1
1 , C

1
2 , C

1
3 , C

1
4} is a fuzzy β-covering induced by a1.

Similarly, C2 = {C2
1 , C

2
2 , C

2
3 , C

2
4}, C3 = {C3

1 , C
3
2 , C

3
3 , C

3
4},

and C4 = {C4
1 , C

4
2 , C

4
3 , C

4
4} are three fuzzy β-coverings. Fi-

nally, an MFβCDT < U,M, D > is obtained, where M =
{C1, C2, C3, C4}.

B. Novel Uncertainty Measure for Fuzzy β-Covering
Reduction

In this section, a heuristic fuzzy β-covering reduction al-
gorithm based on the monotone conditional entropy in an
MFβCDT is designed. When the monotone conditional entropy
is regarded as a criterion for fuzzy β-covering reduction, the
search stop step of algorithm can be easily implemented. In
order to find the family of fuzzy β-coverings with maximum dis-
tinguishing ability and delete the redundant fuzzy β-coverings
before classification learning, the definition of a reduct in an
MFβCDT is given as follows.

Definition 18: Let < U,M, D > be an MFβCDT, 0 < β �
1, 0 � λ � 1, and G ⊆M. The fuzzy β-covering family G is a
reduct ofM iff

1) Hβ,λ(D | G) = Hβ,λ(D | M)
2) ∀C ∈ G, Hβ,λ(D | G − {C}) > Hβ,λ(D | G).
From Definition 18, we can see that the minimal family of

fuzzy β-coverings after reduction has the same classification
ability with the original family of fuzzy β-coverings. Further,
to evaluate the distinguishing ability of a new fuzzy β-covering
family, the definition of significance of a fuzzy β-covering is
given as follows.

Definition 19: Let < U,M, D > be an MFβCDT, G ⊆M,
and C ∈ M− G, then the significance of C related to G for D is
defined as

SIGβ,λ(C,G, D) = Hβ,λ(D | G)−Hβ,λ(D | G ∪ {C}). (25)

In particular, Hβ,λ(D | G) = Hβ,λ
max(D | G) if G = ∅. The

significance of a new fuzzyβ-covering depends on the increment
of distinguishing information after adding the fuzzy β-covering
into the selected family of fuzzy β-coverings. A large value of
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Algorithm 1: Forward greedy fuzzy β-covering reduc-
tion algorithm based on the monotone conditional entropy
(MFBC).

Input: An MFβCDT < U,M, D >, the covering
threshold βand the neighborhood radius λ.

Output: One reduct red.
1: Initialize red = ∅, G =M;
2: for each C ∈ G do
3: Compute the fuzzy β-covering relation Rβ

C ;
4: end for
5: while G 
= ∅ do
6: for each C ∈ G do
7: for each x ∈ U do
8: Compute the fuzzy β-neighborhood [x]β,λred∪{C};
9: end for

10: Compute the monotone conditional entropy
Hβ,λ(D | red ∪ {C});

11: end for
12: Find C′ = C when Hβ,λ(D | red ∪ {C}) is the

minimum for each C ∈ G;
13: Compute the significance SIGβ,λ(C,′ red, D) =

Hβ,λ(D | red)−Hβ,λ(D | red ∪ {C′});
14: if SIGβ,λ(C,′ red, D) > 0 then
15: red← red ∪ {C′};
16: G ← G − red;
17: else
18: return red;
19: end if
20: end while
21: return red

SIGβ,λ(C,G, D) implies that the fuzzy β-covering C is more
significant for the decision D.

Based on the above definitions, a forward greedy algorithm
for fuzzy β-covering reduction in an MFβCDT is proposed as
shown in Algorithm 1, and its time complexity is also discussed.

As described above, Algorithm 1 uses the monotone condi-
tional entropy as an index of significance of a fuzzy β-covering
and takes SIGβ,λ(C,G, D) as the termination condition. When
adding any remaining fuzzy β-covering does not decrease the
monotonic conditional entropy of D, the algorithm stops. For
an MFβCDT with m samples and n fuzzy β-coverings, the
time complexity of O(n ∗m2) is needed to compute the fuzzy
β-covering relation, and the worst search time of O(n(n+
1)/2 ∗m2) is needed to find a reduct. In summary, the overall
time complexity of Algorithm 1 is O(n(n+ 1)/2 ∗m2).

In order to verify the effectiveness and rationality of our
proposed algorithm, an example is given as follows.

Example 5: (Following Example 2) Given an
MFβCDT < U,M, D >, where U = {x1, x2, x3, x4},
M = {C1, C2, C3, C4} is a family of fuzzy β-coverings
of U , Cj = {Cj

1 , C
j
2 , C

j
3 , C

j
4}, and Cj ∈M. U/D =

{{x1, x2}, {x3}, {x4}} is a partition of U on D.
Suppose that Rβ

C = 1Nβ
C , where T = TM and I = IL. Let

β = 0.5 and λ = 0.1, then we can find a reduct red of M as
follows.

According to Definition 17, we can obtain that Hβ,λ(D |
C1) = 0.26, Hβ,λ(D | C2) = 0.30, Hβ,λ(D | C3) = 0.37, and
Hβ,λ(D | C4) = 0.23. Consequently, we have red = {C4}.

Since G = {C1, C2, C3} 
= ∅ and SIG(C4,∅, D) = 2.17 > 0,
we need to continue the next step. We calculate that
Hβ,λ(D | {C1, C4}) = 0, Hβ,λ(D | {C2, C4}) = 0, and
Hβ,λ(D | {C3, C4}) = 0. Subsequently, we obtain a new
reduct red = {C1, C4}. Since G = {C2, C3} 
= ∅ and
SIG(C1, {C4}, D) = 0.23 > 0, we need further calculations.
Similarly, we have Hβ,λ(D | {C1, C2, C4}) = 0 and
Hβ,λ(D | {C1, C3, C4}) = 0. Thus, we can obtain the final
reduct red = {C1, C4} with SIG(C2, {C1, C4}, D) = 0 and
SIG(C3, {C1, C4}, D) = 0.

Furthermore, the connections and differences between the
proposed method and the existing methods of attribute reduction
based on fuzzy β-covering theory are also given as follows.

According to [26], we can determine that both the fuzzy
β-covering reduction method proposed in this article and the
fuzzyβ-covering reduction method proposed in [26] adopt infor-
mation theory to measure the significance of fuzzy β-coverings.
Moreover, the attribute reduction framework proposed in this
article and the attribute reduction method proposed in [26] are
constructed based on the fuzzy β-covering reduction method.
Further, there are some differences between them. First, the
attribute reduction method in [26] simply uses a given formula
to construct fuzzy β-coverings manually, whereas the method
proposed in this article uses fuzzy information granulation,
which is more general. Second, the fuzzy β-covering reduction
method in [26] may have a stability problem due to the non-
monotonicity of the conditional discrimination measure, while
the fuzzy β-covering reduction method proposed in this article
does not have this problem.

Remark 3: Compared with the method in [26], the method
proposed in this article has some advantages. In this article,
we propose a general framework for attribute reduction based
on fuzzy β-covering reduction, which has stronger generaliza-
tion performance. Moreover, our proposed fuzzy β-covering
reduction method adopts the monotonic conditional information
measure, so it has better stability.

VI. EXPERIMENTAL ANALYSIS

In this section, we compare four state-of-the-art attribute
reduction algorithms with our proposed algorithm (MFBC)
experimentally. These four algorithms are the algorithm based
on the conditional discernibility measure of fuzzy βcovering
(FBC) [26], the algorithm based on neighborhood discrimination
index (HANDI) [32], the algorithm based on the conditional
entropy of fuzzy similarity relation (FSRBCE) [31], and the
algorithm-based fuzzy rough sets (FRS) [6], [38] respectively.
One algorithm (FRS) is based on the dependency degree, and
the other three are based on the theory of information entropy.
The proposed algorithm is evaluated from the following four
aspects:

1) size of selected attribute subset;
2) classification performance of selected attribute subset;
3) correlation between five algorithms, that is, statistical anal-

ysis;
4) robustness of the proposed algorithm, that is, parameter

analysis.
All experiments are implemented by MATLAB R2019a and

run on a personal computer with an Intel Core i7-6700HQ CPU
at 2.60 GHz, 32.0 GB RAM, and 64-bit Windows 10.
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TABLE II
DESCRIPTION OF DATASETS

A. Experimental Design

In our experiments, 12 open datasets are collected as bench-
marks for evaluating algorithm performance. Among them, the
first seven low-dimensional datasets are obtained from UCI Ma-
chine Learning Repository [39], and the other high-dimensional
datasets are downloaded from KRBD Repository [40]. The
details of these datasets are given in Table II. Moreover, before
attribute reduction, all data are normalized to the interval [0, 1].

Two classical classifiers, the decision tree (CART), and the
K-nearest neighbor (KNN, K = 3), are used to obtain the classi-
fication accuracies of all datasets. Classification and regression
trees, shortly CART, is a typical binary decision tree. CART
algorithm uses Gini coefficient to replace the information gain
ratio in C4.5 algorithm to select attributes. Gini coefficient repre-
sents the impure of the model. The smaller the Gini coefficient
is, the lower the impure is, and the better the attribute subset
is. K-Nearest Neighbor, shortly KNN, is one of the simplest
methods in data mining classification technology. The core idea
of KNN algorithm is that each sample can be represented by
its closest K adjacent values. In these experiments, we use two
functions fitctree and fitcknn provided by the statistics and
machine learning toolbox of matlab to complete the classifica-
tion task. Besides, the tenfold cross validation technology is also
employed to obtain the classification accuracies of all datasets.
Furthermore, the mean and the standard deviation format of
classification accuracies are shown as the final performance.

According to Algorithm 1, we can see that two parameters
βand λ may have an impact on the results of attribute reduction
of our proposed algorithm. Thus, we select an optimal attribute
subset for each dataset by adjusting the value of the covering
threshold βfrom 0.5 to 0.9 with a step of 0.1 and the value
of the neighborhood radius λ from 0.1 to 0.5 with a step of
0.1. Further, we can see how these two parameters affect our
proposed algorithm. In order to fairly compare our proposed
algorithm with the other four ones, we set βto a value between
0.5 and 0.9 in steps of 0.1 and δ to a value between 0.1 and
0.5 in steps of 0.1 for FBC, and set ε to a value between 0.1
and 0.5 in steps of 0.1 for HANDI. All experimental results are
displayed with the highest classification accuracy as follows.
All attribute reduction algorithms adopt the sequential forward
search strategy in our experiments.

B. Analysis of the Experimental Results

In this section, the experimental results based on the four
evaluation indexes mentioned above are respectively shown in
the following. The experimental results verify the superiority
and stability of our proposed algorithm.

Table III lists the sizes of attribute subsets selected by five
attribute reduction algorithms and original data on 12 datasets.
In particular, three algorithms (HANDI, FBC, and MFBC) show
the sizes of attribute subsets with the highest classification accu-
racies under different classifiers for each dataset. For HANDI,
the value in parentheses represents the value of the parameter
ε with the highest classification accuracy of a dataset under
a classifier. Similarly, the values in parentheses represent the
optimal parameter values for FBC (β/δ) and MFBC (β/λ).
According to the results given in Table III, we can determine
that these five algorithms can effectively select attributes. The
smallest average size of attribute subsets reaches only 5.08
obtained by FSRBCE, and the largest attains only 17 obtained by
FRS. For MFBC, the average dimensional reduction rate under
two classifiers is as high as 99.82% for 12 datasets.

Tables IV and V display, respectively, the classification per-
formance of five attribute reduction algorithms under two classi-
fiers, where the underlined data represent the highest classifica-
tion accuracy obtained by these five algorithms under the same
dataset. The parameter settings of HANDI, FBC, and MFBC for
obtaining the classification accuracies in Tables IV and V can
be found in Table III. From Tables IV and V, we can clearly see
that the classification accuracy of MFBC outperforms the other
four algorithms on most of datasets. Out of the total 24 cases,
MFBC algorithm obtains the highest classification accuracy
in 14 cases, and the FBC and HANDI algorithms acquire the
highest classification accuracies in 6 and 4 cases, respectively.
FSRBCE algorithm achieves it only one case, and FRS algorithm
attains it in two cases. Further, MFBC algorithm improves the
average classification accuracy 7.2% for CART and 9.14% for
KNN on the basis of the raw data. Thus, the average classification
accuracy of MFBC algorithm is higher than other four ones
under these two classifiers. In general, our proposed algorithm
is superior to other four ones in classification performance.

Besides, Friedman [41] and Bonferroni–Dunn tests [42] are
employed to analyze the significance of our proposed algorithm
from the viewpoint of statistics. Suppose that m and k are
the numbers of datasets and algorithms, respectively. rj is the
average rank of the jth algorithm for m datasets. Then, the
formula of Friedman statistic under null-hypothesis is given as

FF =
(m− 1)χ2

F

m(k − 1)− χ2
F

(26)

where FF follows a Fisher distribution with k − 1 and (k −
1)(m− 1) degrees of freedom, and

χ2
F =

12m

k(k + 1)

⎛
⎝ k∑

j=1

r2j −
k(k + 1)2

4

⎞
⎠ .

Especially, the critical value is FF (4, 44) = 2.08 at the signifi-
cance level α = 0.1.

Based on the above mentioned, we can easily obtain the
ranks of classification accuracies of five algorithms under two
classifiers, given in Tables VI and VII, respectively. According to
(26), we can obtain that the value of FF under CART is 5.49 and
the value of FF under KNN is 2.21. Further, we can see that the
values of test statistic for CART and KNN classifiers are larger
than the critical value, which implies that the null-hypothesis
at α = 0.1 is rejected. Thus, we can determine that these five
attribute reduction algorithms are significantly different.
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TABLE III
AVERAGE SIZES OF ATTRIBUTE SUBSETS

TABLE IV
CLASSIFICATION ACCURACIES OF ATTRIBUTE SUBSETS WITH CART (%)

TABLE V
CLASSIFICATION ACCURACIES OF ATTRIBUTE SUBSETS WITH KNN (%)

TABLE VI
RANK OF FIVE ATTRIBUTE REDUCTION ALGORITHMS WITH CART

Therefore, Bonferroni–Dunn test is needed to further explore
the difference between these five algorithms in classification
performance. The performance of two algorithms is regarded
as different if their average rank distance exceeds the critical

TABLE VII
RANK OF FIVE ATTRIBUTE REDUCTION ALGORITHMS WITH KNN

distance

CDα = qα

√
k(k + 1)

6m
(27)
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Fig. 3. Accuracy comparison with five algorithms. (a) CART (b) KNN.

Fig. 4. Number varying of selected attributes with βand λ. (a) Glass.
(b) Wine. (c) Ionosphere. (d) Soybean. (e) Promoters. (f) MuskV1. (g) German.
(h) ColonTumor. (i) DLBCLOutcome. (j) DLBCLTumor. (k) Ovarian61902.
(l) Breast.

where the critical value qα = 2.128 at the significance levelα =
0.1 can be obtained in [43].

By (27), we can attain CD0.1 = 1.37whenm = 12 andk = 5.
In order to more intuitively judge the performance difference
between these five algorithms, the critical distance diagrams for
two classifiers are shown as Fig. 3, where the red line denotes
the critical distance. Especially, if MFBC algorithm and another
are both within the red line, then they are not significantly
different; otherwise, they are significantly different. These two
tests demonstrate that MFBC algorithm is statistically better than
other four ones for CART and KNN classifiers.

In order to further compare the difference between the MFBC
and FBC algorithms, the diagrams of sizes of attribute sub-
sets selected by these two algorithms with the same parameter
changes on 12 datasets are shown in Fig. 4. From Fig. 4, we can
observe that attribute subsets selected by these two algorithms
are different for 12 datasets, and the number of attributes selected
by FBC algorithm is less than that of MFBC algorithm on all
datasets. Fortunately, the difference of sizes of attribute subsets
selected by these two algorithms is very small. The reason is that

Fig. 5. Accuracy varying of datasets withβand λ. (a) Glass. (b) Wine. (c) Iono-
sphere. (d) Soybean. (e) Promoters. (f) MuskV1. (g) German. (h) ColonTumor.
(i) DLBCLOutcome. (j) DLBCLTumor. (k) Ovarian61902. (l) Breast.

these two algorithms use different but similar measure methods
to select attributes.

Finally, we conduct a series of experiments to verify the
robustness of our proposed algorithm. From Algorithm 1, we can
determine that the covering threshold βand the neighborhood
radius λ may affect the performance of our proposed algorithm.
To this end, we implemented a variation on the classification
accuracy by adjusting the value of βto vary from 0.5 to 0.9 with
a step of 0.1 and λ to vary from 0.1 to 0.5 with a step of 0.1.
The classification accuracies of datasets varying with βand λ on
KNN are shown in Fig. 5. The experimental results obtained by
CART are roughly consistent with KNN.

From Fig. 5, we can see that the classification accuracy of
dataset remains constant as the value of βis changed when λ
is a constant value for 12 datasets. It means that the covering
threshold βcan be ignored when analyzing the neighborhood
radius λ. The classification accuracy of dataset decreases with
the increasing value of λ on most of datasets from the overall
trend of change. Furthermore, we observe that most of datasets
have achieved high classification accuracy. According to Figs. 4
and 5, we can ensure that our proposed algorithm is robust and
stable.

In addition, we can see that the proposed framework for
attribute reduction consists of two parts from Section V: the
acquisition of MFβCDTs and the fuzzy β-covering reduction. In
the above, we have analyzed the effects of the parameters λ and
βin the part of fuzzy β-covering reduction on the experimental
results (the number of attributes selected and the classification
accuracy). Next, we take a low-dimensional dataset Wine and a

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 03,2023 at 06:24:10 UTC from IEEE Xplore.  Restrictions apply. 



968 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 31, NO. 3, MARCH 2023

Fig. 6. Result varying of the dataset Wine with η. (a) MFBC. (b) CART.
(c) KNN.

Fig. 7. Result varying of the dataset Ovarian61902 with η. (a) MFBC.
(b) CART. (c) KNN.

high-dimensional dataset Ovarian61902 as examples to analyze
the parameter βin the part of acquisition of MFβCDTs. Through
the previous experimental analysis, we can determine that the
proposed method is not sensitive to the parameter β, i.e., the
parameter βhas little effect on the experimental results. There-
fore, we only analyze the effects of the parameter η change on
the experimental results when the parameter λ is varied and the
parameter βis fixed. The parameter λ is set to a value between
0.1 and 0.5 in steps of 0.1, the parameter βis set to 0.5, and the
parameter η is set to a value between 0.5 and 1 in steps of 0.05.

Figs. 6 and 7 show the results obtained from the analysis
of the parameter η on the datasets Wine and Ovarian61902,
respectively. The first plot shows the results for the number of
selected attributes as the parameter η varies, the second plot
shows the results for the classification accuracies of selected
attribute subsets as the parameter η varies under the CART
classifier, and the third plot shows the results for the classification
accuracies of selected attribute subsets as the parameter η varies
under the KNN classifier. From Figs. 6 and 7, we can see that
the number of selected attributes is almost always the lowest and
the classification accuracy is almost always the highest when
η = 0.9. This conclusion verifies that the value of η recom-
mended in the literature [26], [27] is set at 0.9 is reasonable.

In summary, the experimental results show that MFBC algo-
rithm is indeed better than other four ones for CART and KNN
classifiers.

VII. CONCLUSION

In order to solve the problem that fuzzy β-covering is difficult
to find directly from the real data, a general approach of obtaining
fuzzy β-covering is given, i.e., fuzzy information granulation.
Since fuzzy information granulation is capable of generating
multiple fuzzy β-coverings, the concept of MFβCASs is pro-
posed. Then, several information measures are investigated in
the context of MFβCASs. Moreover, a novel heuristic fuzzy
β-covering reduction algorithm and a general framework of
attribute reduction are also designed. Finally, a series of exper-
iments verify the effectiveness and superiority of our proposed
method. The main contributions of this article are listed as
follows.

1) To apply the relevant theory of fuzzy β-covering to solve
some practical problems, we introduce the concept of
MFβCASs and present its related theories.

2) In the context of MFβCASs, we investigate several new
information measures for characterizing the distinguish-
ing ability of fuzzy β-covering family.

3) Based on the measure of monotone conditional entropy,
we propose a novel heuristic fuzzy β-covering reduction
method in an MFβCDT.

4) By virtue of fuzzy information granulation, we design a
general framework of attribute reduction base on fuzzy
β-covering reduction.

The concept of MFβCASs not only enriches the theory of
fuzzy β-covering but also expands its application. Theoretically,
FβCASs are a special case of MFβCASs, so we can continue
to study the related theory of fuzzy β-covering on the basis of
FβCASs, that is, MFβCASs are compatible with the existing
fuzzy β-covering theory in the context of FβCASs. Moreover,
the new fuzzy β-covering theory can further be developed in the
context of MFβCASs. In terms of applications, MFβCASs are
a concept derived to solve the problem that fuzzy β-covering
is difficult to obtain. It allows the fuzzy β-covering theory to
be applied to solve some more complex practical problems.
Since the data stored in MFβCASs have been processed into
the effective classification information, the running time of at-
tribute reduction method in the context of MFβCASs is reduced.
However, the concept of MFβCASs has some limitations. First,
MFβCASs require the valid analysis and processing of the real
data before it can be obtained. Second, the methods in the context
of MFβCASs are not suitable for large-scale high-dimensional
datasets due to the large amount of storage space required by
MFβCASs.
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