
A Brief Introduction to 
Generative Adversarial 

Networks

Chunru Dong



Content

• Generative model & discriminative model

• What’s GANs？

• Math behind GANs？

• Characteristics of GANs 

• Applications of GANs 



Generative model & discriminative model



Generative model & discriminative model

• Discriminative models learn the boundary between classes

• Generative models model the distribution of the sample data

Observed instances
from an unknow distribution
Pdata(x)

Approximate distribution
PG(x) to the real distribution
Pdata(x)

New instance





Generative models



Discriminative models



What is GAN?

• GANs are generative models devised by Goodfellow et al. in 2014.

Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial 
nets[C]// International Conference on Neural Information Processing Systems. 
2014

• Facebook’s AI research director Yann LeCun called adversarial 
training “the most interesting idea in the last 10 years in ML.”

• GANs’ potential is huge, because they can learn to mimic any 
distribution of data (such as images, music, speech, prose).

https://arxiv.org/abs/1406.2661
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning


https://github.com/hindupuravinash/the-gan-zoo Track updates at the GAN Zoo



Generation problem

• Given a sample of x What’s the distribution of these images?
Pdata(x)   (unknown)

How to sample a new image from its 
distribution?

Drawing?



Generation

• We want to find data distribution 𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥

High 
Probability

Low 
Probability

Image
Space

𝑥: an image (a high-
dimensional vector)



Maximum Likelihood Estimation

• There is a data distribution 𝑃𝑑𝑎𝑡𝑎 𝑥 (We don’t know, but can sample from it.)

• We have a distribution 𝑃𝐺 𝑥; 𝜃 parameterized by 𝜃

• We want to find 𝜃 such that 𝑃𝐺 𝑥; 𝜃 close to 𝑃𝑑𝑎𝑡𝑎 𝑥

• E.g. 𝑃𝐺 𝑥; 𝜃 is a Gaussian Mixture Model, 𝜃 are means and variances of the 
Gaussians

Sample 𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥

We can compute 𝑃𝐺 𝑥𝑖; 𝜃

Likelihood of generating the samples

𝐿 =ෑ

𝑖=1

𝑚

𝑃𝐺 𝑥𝑖; 𝜃

Find 𝜃∗ maximizing the likelihood



Maximum Likelihood Estimation
= Minimize KL Divergence

𝜃∗ = 𝑎𝑟𝑔max
𝜃

ෑ

𝑖=1

𝑚

𝑃𝐺 𝑥𝑖; 𝜃 = 𝑎𝑟𝑔max
𝜃

𝑙𝑜𝑔ෑ

𝑖=1

𝑚

𝑃𝐺 𝑥𝑖; 𝜃

= 𝑎𝑟𝑔max
𝜃



𝑖=1

𝑚

𝑙𝑜𝑔𝑃𝐺 𝑥𝑖; 𝜃

≈ 𝑎𝑟𝑔max
𝜃

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝑃𝐺 𝑥; 𝜃 ]

= 𝑎𝑟𝑔max
𝜃

න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝐺 𝑥; 𝜃 𝑑𝑥 −න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝑑𝑎𝑡𝑎 𝑥 𝑑𝑥

= 𝑎𝑟𝑔min
𝜃

𝐾𝐿 𝑃𝑑𝑎𝑡𝑎||𝑃𝐺

𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥

How to define a general 𝑃𝐺? 



KL divergence & JS Divergence

（2）Jensen–Shannon Divergence is another measure of similarity between 

two probability distributions, bounded by [0,1][0,1]. JS divergence is symmetric 

and more smooth.

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence




JS Divergence



A basic framework for GAN



Here are the steps a GAN takes:

• The generator takes in random numbers and returns an image.

• This generated image is fed into the discriminator alongside a stream 
of images taken from the actual, ground-truth dataset.

• The discriminator takes in both real and fake images and returns 
probabilities, a number between 0 and 1, with 1 representing a 
prediction of authenticity and 0 representing fake.



A basic framework for GAN

Both nets are trying to optimize a different and opposing 
objective function, or loss function, in a zero-zum game.



A basic framework for GAN

• The game follows with:
• The generator trying to maximize the probability of making the discriminator 

mistakes its inputs as real.

• And the discriminator guiding the generator to produce more realistic images.



Generator 

• A generator G is a network. The network defines a 
probability distribution 𝑃𝐺

generator 
G𝑧 𝑥 = 𝐺 𝑧

Normal 
Distribution

𝑃𝐺(𝑥) 𝑃𝑑𝑎𝑡𝑎 𝑥

as close as possible

How to compute the divergence?

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎
Divergence between distributions 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎

𝑥: an image (a high-
dimensional vector)



Discriminator

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Although we do not know the distributions of 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎, 
we can sample from them.

sample

G

vecto
r

vecto
r

vecto
r

vecto
r

sample from 
normal

Database

Sampling from 𝑷𝑮

Sampling from 𝑷𝒅𝒂𝒕𝒂



Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

𝑉 𝐺,𝐷 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

Example Objective Function for D

(G is fixed)

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺Training:

Using the example objective 
function is exactly the same as 
training a binary classifier. 

[Goodfellow, et al., NIPS, 2014]

The maximum objective value 
is related to JS divergence.

Sigmoid Output



Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

hard to discriminatesmall divergence

Discriminator
train

easy to discriminatelarge divergence

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

Training:

(cannot make objective large)



max
𝐷

𝑉 𝐺,𝐷

• Given G, what is the optimal D* maximizing

• Given x, the optimal D* maximizing

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

= න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 𝑑𝑥 + න

𝑥

𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

= න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

Assume that D(x) can be any function

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥



max
𝐷

𝑉 𝐺,𝐷

• Given x, the optimal D* maximizing

• Find D* maximizing: f 𝐷 = a𝑙𝑜𝑔(𝐷) + 𝑏𝑙𝑜𝑔 1 − 𝐷

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑑f 𝐷

𝑑𝐷
= 𝑎 ×

1

𝐷
+ 𝑏 ×

1

1 − 𝐷
× −1 = 0

𝑎 ×
1

𝐷∗
= 𝑏 ×

1

1 − 𝐷∗

𝑎 × 1 − 𝐷∗ = 𝑏 × 𝐷∗

𝑎 − 𝑎𝐷∗ = 𝑏𝐷∗

𝐷∗ =
𝑎

𝑎 + 𝑏
𝐷∗ 𝑥 =

𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥

a D b D

0 < < 1

𝑎 = 𝑎 + 𝑏 𝐷∗

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥



max
𝐷

𝑉 𝐺,𝐷

= 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔
𝑃𝐺 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥

= න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
𝑑𝑥

max
𝐷

𝑉 𝐺,𝐷

+න

𝑥

𝑃𝐺 𝑥 𝑙𝑜𝑔
𝑃𝐺 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
𝑑𝑥

2

2

1

2

1

2

+2𝑙𝑜𝑔
1

2

𝐷∗ 𝑥 =
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
= 𝑉 𝐺,𝐷∗

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

−2𝑙𝑜𝑔2



max
𝐷

𝑉 𝐺,𝐷

= −2log2 + KL Pdata||
Pdata + PG

2

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷 𝑃𝑑𝑎𝑡𝑎||𝑃𝐺 Jensen-Shannon divergence

= −2𝑙𝑜𝑔2 + න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥 /2
𝑑𝑥

+න

𝑥

𝑃𝐺 𝑥 𝑙𝑜𝑔
𝑃𝐺 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥 /2
𝑑𝑥

+KL PG||
Pdata + PG

2

max
𝐷

𝑉 𝐺,𝐷 𝐷∗ 𝑥 =
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
= 𝑉 𝐺,𝐷∗



𝐺1 𝐺2 𝐺3

𝑉 𝐺1 , 𝐷 𝑉 𝐺2 , 𝐷 𝑉 𝐺3 , 𝐷

𝐷 𝐷 𝐷
𝑉 𝐺1 , 𝐷1

∗

Divergence between 𝑃𝐺1 and 𝑃𝑑𝑎𝑡𝑎

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

The maximum objective value 
is related to JS divergence.

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

max
𝐷

𝑉 𝐺,𝐷



𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎max
𝐷

𝑉 𝐺,𝐷

The maximum objective value 
is related to JS divergence.

• Initialize generator and discriminator

• In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

[Goodfellow, et al., NIPS, 2014]



Algorithm

• To find the best G minimizing the loss function 𝐿 𝐺 ,

𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝐿 𝐺 𝜕𝜃𝐺

𝑓 𝑥 = max{𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥 }
𝑑𝑓 𝑥

𝑑𝑥
=?

𝑓1 𝑥

𝑓2 𝑥

𝑓3 𝑥

Τ𝑑𝑓1 𝑥 𝑑𝑥 Τ𝑑𝑓2 𝑥 𝑑𝑥 Τ𝑑𝑓3 𝑥 𝑑𝑥

Τ𝑑𝑓𝑖 𝑥 𝑑𝑥

If 𝑓𝑖 𝑥 is the 
max one 

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑉 𝐺, 𝐷

𝐿 𝐺

𝜃𝐺 defines G



Algorithm

• Given 𝐺0

• Find 𝐷0
∗ maximizing 𝑉 𝐺0, 𝐷

• 𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝑉 𝐺,𝐷0
∗ 𝜕𝜃𝐺 Obtain 𝐺1

• Find 𝐷1
∗ maximizing 𝑉 𝐺1, 𝐷

• 𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝑉 𝐺,𝐷1
∗ 𝜕𝜃𝐺 Obtain 𝐺2

• ……

𝑉 𝐺0, 𝐷0
∗ is the JS divergence between 𝑃𝑑𝑎𝑡𝑎 𝑥 and 𝑃𝐺0 𝑥

𝑉 𝐺1, 𝐷1
∗ is the JS divergence between 𝑃𝑑𝑎𝑡𝑎 𝑥 and 𝑃𝐺1 𝑥

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑉 𝐺, 𝐷

𝐿 𝐺

Decrease JS
divergence(?)

Decrease JS
divergence(?)

Using Gradient Ascent



Algorithm

• Given 𝐺0

• Find 𝐷0
∗ maximizing 𝑉 𝐺0, 𝐷

• 𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝑉 𝐺,𝐷0
∗ 𝜕𝜃𝐺 Obtain 𝐺1

𝑉 𝐺0, 𝐷0
∗ is the JS divergence between 𝑃𝑑𝑎𝑡𝑎 𝑥 and 𝑃𝐺0 𝑥

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑉 𝐺, 𝐷

𝐿 𝐺

Decrease JS
divergence(?)

𝑉 𝐺0 , 𝐷

𝐷0
∗

𝑉 𝐺1 , 𝐷

𝐷0
∗

𝑉 𝐺0 , 𝐷0
∗

𝑉 𝐺1 , 𝐷0
∗

smaller

𝑉 𝐺1 , 𝐷1
∗ ……

Assume 𝐷0
∗ ≈ 𝐷1

∗

Don’t update G 
too much



In practice …

• Given G, how to compute max
𝐷

𝑉 𝐺,𝐷

• Sample 𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥 , sample 
𝑥1, 𝑥2, … , 𝑥𝑚 from generator 𝑃𝐺 𝑥

෨𝑉 =
1

𝑚


𝑖=1

𝑚

𝑙𝑜𝑔𝐷 𝑥𝑖 +
1

𝑚


𝑖=1

𝑚

𝑙𝑜𝑔 1 − 𝐷 𝑥𝑖Maximize

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

Minimize Cross-entropy

Binary Classifier

𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥

𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝐺 𝑥

D is a binary classifier with sigmoid output (can be deep)

Positive examples

Negative examples

=



• In each training iteration:

• Sample m examples 𝑥1, 𝑥2, … , 𝑥𝑚 from data distribution 
𝑃𝑑𝑎𝑡𝑎 𝑥

• Sample m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the prior 
𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Obtaining generated data 𝑥1, 𝑥2, … , 𝑥𝑚 , 𝑥𝑖 = 𝐺 𝑧𝑖

• Update discriminator parameters 𝜃𝑑 to maximize 

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 𝑥𝑖

• 𝜃𝑑 ← 𝜃𝑑 + 𝜂𝛻 ෨𝑉 𝜃𝑑
• Sample another m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the 

prior 𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Update generator parameters 𝜃𝑔 to minimize

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 𝐺 𝑧𝑖

• 𝜃𝑔 ← 𝜃𝑔 − 𝜂𝛻 ෨𝑉 𝜃𝑔

Algorithm

Repeat 
k times

Learning 
D

Learning 
G

Initialize 𝜃𝑑 for D and 𝜃𝑔 for G

max
𝐷

𝑉 𝐺,𝐷Can only find  
lower bound of

Only 
Once



Objective Function for Generator
in Real Implementation

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

𝑉 = 𝐸𝑥∼𝑃𝐺 −𝑙𝑜𝑔 𝐷 𝑥

Real implementation: 
label x from PG as positive

−𝑙𝑜𝑔 𝐷 𝑥

𝑙𝑜𝑔 1 − 𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐷 𝑥

Slow at the beginning

Minimax GAN (MMGAN)

Non-saturating GAN (NSGAN)



Pdata(x)

PG(x)

Descriminator

• In the perfect equilibrium, the generator would capture the general 
training data distribution. As a result, the discriminator would be 
always unsure of whether its inputs are real or not.



Advantages of GANs

• From a statistical point of view, the parameter updating of G does 
not come directly from the data sample, but from the 
backpropagation gradient of D.

• Markov chain is not needed.

• In theory, as long as differentiable functions can be used to 
construct D and G, it can be combined with deep learning to learn 
deep production networks.

• Various loss functions can be used in the GAN model.



Disadvantages of GANs

During the training, the generator may collapse to a setting where it 
always produces same outputs.



Disadvantages of GANs

No good sign to tell when to stop; No good indicator to compare 
the performance of multiple models.

The distributed PG(x) of the generator is not represented.

It's difficult to train. D and G need good synchronization, such 
as D update K times and G update 1 time.



Tips and tricks to make GANs work



Tips and tricks to make GANs work



Tips and tricks to make GANs work



Tips and tricks to make GANs work



Tips and tricks to make GANs work



Tips and tricks to make GANs work



DCGAN

Radford A , Metz L , Chintala S . Unsupervised Representation Learning with Deep Convolutional 
Generative Adversarial Networks[J]. Computer Science, 2015.



Wasserstein GAN (WGAN)

• Even when two distributions are located in lower dimensional 
manifolds without overlaps, Wasserstein distance can still provide 
a meaningful and smooth representation of the distance in-
between.

Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J].  2017.



Wasserstein GAN (WGAN)

• The last layer of the discriminator removes sigmoid

• Loss of generator and discriminator does not take log

• After updating the discriminator parameters each time, 
truncate their absolute values to no more than a fixed 
constant C

• Instead of using momentum-based optimization algorithms 
(including momentum and Adam), recommend RMSProp
and SGD.



Advantages of WGAN

• Greatly improve the problem of GAN training instability, no longer need to 
carefully balance the training level of generator and discriminator.

• The collapse mode problem is basically solved and the diversity of 
generated samples is ensured.

• At last, there is a value such as cross-entropy and accuracy to indicate the 
training process. The smaller the value, the better the GAN is trained and 
the higher the image quality produced by the generator is represented (as 
shown in the title chart).

• All the above benefits can be achieved without elaborate network 
architecture. The simplest multi-layer fully connected network can be 
achieved.





BiGAN

https://arxiv.org/pdf/1605.09782.pdf

https://arxiv.org/pdf/1605.09782.pdf


DCGAN

• Here is the summary of DCGAN:
• Replace all max pooling with convolutional stride

• Use transposed convolution for upsampling.

• Eliminate fully connected layers.

• Use Batch normalization except the output layer for the generator and the 
input layer of the discriminator.

• Use ReLU in the generator except for the output which uses tanh.

• Use LeakyReLU in the discriminator.



Applications of GANs

• Generating 
high-quality 
images



Applications of GANs

• Semi-
supervised 
learning



Applications of GANs



Applications of GANs



Applications of GANs



Applications of GANs



Applications of GANs





GAN Theory
• [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

• [Improved Techniques for Training GANs] [Paper][Code](Goodfellow’s paper)

• [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

• [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , 
ICLR 2017)

• [Sampling Generative Networks] [Paper][Code]

• [How to train Gans] [Docu]

• [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

• [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

• [Least Squares Generative Adversarial Networks] [Paper][Code](ICCV 2017)

• [Wasserstein GAN] [Paper][Code]

• [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

• [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]

• [Generalization and Equilibrium in Generative Adversarial Nets] [Paper]（ICML 2017）

https://arxiv.org/pdf/1609.03126v2.pdf
https://github.com/buriburisuri/ebgan
https://arxiv.org/abs/1606.03498
https://github.com/openai/improved-gan
https://openreview.net/pdf?id=HJKkY35le
https://openreview.net/pdf?id=S1X7nhsxl
https://github.com/hvy/chainer-gan-denoising-feature-matching
https://arxiv.org/abs/1609.04468
https://github.com/dribnet/plat
https://github.com/soumith/ganhacks#authors
http://openreview.net/forum?id=Hk4_qw5xe
https://arxiv.org/abs/1611.02163
https://github.com/poolio/unrolled_gan
https://arxiv.org/abs/1611.04076
https://github.com/pfnet-research/chainer-LSGAN
https://arxiv.org/abs/1701.07875
https://github.com/martinarjovsky/WassersteinGAN
https://arxiv.org/abs/1704.00028
https://github.com/igul222/improved_wgan_training
https://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1703.00573


Thanks & questions?


